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Abstract 18 

Breast cancer is one of the most common cancers, accounting for about 30% of 19 

female cancers and a mortality rate of 15%. The 5-year survival rate is most 20 

commonly used to assess cancer progression and guide clinical practice. We used the 21 

CatBoost model to systematically construct a five-year mortality risk prediction 22 

model based on two independent data sets (BRCA_METABRIC, BRCA_TCGA). The 23 

model input data are the somatic genomic variants (copy number variation, SNP locus, 24 

cumulative mutation number of genes) and phenotype data of cancer samples. The 25 

optimal model combined all the above characteristics, and the AUC reached 0.70 in 26 

an independent external data set. At the same time, we also conducted a biological 27 

analysis of the characteristics of the model and found some potential biomarkers 28 
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(TP53, DNAH11, MAP3K1, PHF20L1, etc.). The results of model risk stratification 29 

can be used as a guide for the prognosis of breast cancer. 30 

Introduction 31 

Breast cancer has overtaken lung cancer to become the most common malignancy 32 

and the first leading lethal cancer among women, accounting for approximately 11.7% 33 

of all cancer cases diagnosed (2.3 million) in 2020 around the world[1]. In spite of 34 

significant medical improvements in early diagnosis and modern therapy [2], breast 35 

cancer still poses increasing burden globally and the overall survival outcomes remain 36 

unsatisfactory given the mortality of 1 in 6 female cancers (685,000 deaths)[1], 37 

reflecting high biological complexity and genetic heterogeneity of the disease[3-5].  38 

Consequently, identification of genetic prognostic indicators plays crucial roles in 39 

understanding inter-individual differences in pathogenesis between breast cancer 40 

patients, providing better insight into therapeutic decision-making and optimizing 41 

personalized precise treatment. Additionally, the prognosis of breast cancer, which has 42 

a 5-year survival rate greater than 85%, is better than other cancers[6]. Since the 43 

threshold of five years is most commonly used to assess the process of the cancer, we 44 

can anticipate the 5-year mortality of breast cancer to guide clinical intervention.  45 

One of the earliest survival prognostic models, Nottingham Prognostic 46 

Index(NPI)[7], was constructed based on clinical factors using Cox regression[8]. 47 

Since then, more variables had been considered to improve the accuracy of NPI[9]. In 48 

2001, Adjuvant, an internet-based tools was developed and widely applied in 49 

prognosis analysis in breast cancer[10]. In 2010, two independent models, 50 
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OPTIONS[11] based on parametric regression and PREDICT based on Cox 51 

proportional hazards, were established. But both Adjuvant and PREDICT showed low 52 

accuracy of estimating mortality in different sub-groups, especially for young breast 53 

cancer patients[12]. Additionally, these statistically constructed models based on 54 

clinical data are limited by the prolonged process of data collecting and poor 55 

timeliness. These drawbacks entail the need for prediction using data collected right 56 

after diagnosis. With the advent of microarray-based gene expression profiling, some 57 

gene-related studies demonstrate the impact of genetic factors on prognostic and 58 

survival prediction of breast cancer and lots of predictive signatures have been 59 

found[13]: such as MammaPrint[14], Oncotype DX[15], Endopredict[16]. Although 60 

these models are applied to sub-groups of breast cancer patients, their signatures 61 

cannot sensibly interpret their relationships with breast cancer outcomes, which are 62 

called black-box models[17]. Thus models with high accuracy and high 63 

interpretability need to be further developed. 64 

Machine learning(ML) is a feasible method, since ML can extract features from 65 

large genetic datasets and perform risk scoring and classification[18]. Genetic 66 

signature copy number alteration(CNA) has a strong correlation with the prognosis 67 

and mortality of cancer[19]. However, because the genomic CNA dataset is large and 68 

relatively sparse, traditional models based on single or several CNA signatures are not 69 

explicable. Furthermore, Somatic mutations can also be used to construct predictive 70 

models for risk scoring and survival prediction. Nguyen et al. selected multi-features 71 

with Random Forest(RF), largely improving the accuracy of the predictive model[20]. 72 
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Support Vector Machine(SVM), Artificial Neural Network(ANN) and 73 

semi-supervised learning methods were employed to construct predictive models for 74 

assessing the survivability of breast cancer patients[21]. Compared to the integrated 75 

model, the models based on somatic mutations alone have lower accuracies, and 76 

integrated models are limited by small samples and may have overfitting problems[22, 77 

23]. We found that most of the reported 5-year survival prediction models for breast 78 

cancer have considered data preprocessing, feature selection, class imbalance 79 

processing, and model validation.[24]. We only find two studies that were further 80 

verified externally[25, 26]. Both of the studies used the Molecular Taxonomy of 81 

Breast Cancer International Consortium(BRCA_METABRIC) dataset for training and 82 

internal validation, and The Cancer Genome Atlas(BRCA_TCGA) dataset was used 83 

for further validation. However, after scrutinizing these two studies, we found that 84 

their independent dataset, which should be used for external test, was fed into their 85 

models for training and internal testing again. External validation is necessary because 86 

it can reflect the generalization ability of the predictive model. So far as we know, 87 

there is no breast-survival-predictor that undertakes external test using independent 88 

cancer datasets.  89 

In our study, we developed a CatBoost-based machine learning model that 90 

integrates multi-dimensional data including single-nucleotide variants(SNV), 91 

cumulative number of gene mutations(CNGM) ,copy number alteration(CNA) and 92 

phenotype data. BRCA_METABRIC dataset was employed for training and internal 93 

validation and BRCA_TCGA dataset for external testing. The final result of the model 94 
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has good generalization ability, and the AUC in the external test set is 0.70. In 95 

addition, the feature interpretation of the model found that the model has a high 96 

learning ability, and some features that have been reported to be highly related to 97 

cancer were found in the model. The code required by the model can be viewed in 98 

github: https://github.com/jxs1996/Breast_cancer-5-year-survival-prediction 99 

Materials and methods 100 

Data preparation 101 

We obtained two breast cancer data sets from the public database 102 

cBioPortal(BRCA_TCGA(n=1108 samples)[27], 103 

https://www.cbioportal.org/study/summary?id=brca_tcga; 104 

BRCA_METABRIC(n=2509 samples) [28-30], 105 

https://www.cbioportal.org/study/summary?id=brca_metabric). Overall, the median 106 

age was 62�years; the 5-year survival rate was 75%. Both data sets contain clinical 107 

data, somatic mutations, CNA and gene expression data. In the preliminary data 108 

processing(Figure1.A), The SNV, CNGM, and CNA features in the two data sets were 109 

separately counted and constructed into the input data required by the model. 110 

Predictive features were expressed as follows: (1)SNV: if there is a mutation, it is 111 

marked as "1", if it is not marked as "0"; CNGM: each additional SNV, the value 112 

increases by 1, and each additional insertion or deletion, the value increases by 10 113 

(This is because we assume that insertions and deletions have a greater accumulation 114 

of mutations and a greater impact on genes than SNV); CNA: “-2” for homozygous 115 

deletion, “-1” for hemizygous deletion, “0” for neutral / no change, “1” for gain, “2” 116 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492994doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492994
http://creativecommons.org/licenses/by/4.0/


for high level amplification. The missing values of all features are filled with “0”.  117 

Gene expression data is not included in the feature representation. There are two main 118 

reasons. 1) The data obtained from the two datasets are standardized with Z-score, 119 

which means they are not in the same spatial dimension. Training results in one data 120 

cannot be applied in another dataset; 2) If genomic data alone yields better prediction 121 

results.This can significantly reduce the cost of the application. Nevertheless, gene 122 

expression data will be used in subsequent analysis to observe the performance of the 123 

model features at the transcriptome level. In order to ensure the consistency of 124 

features, the intersection of SNV, CNGM and CNA is obtained in two independent 125 

datasets. Next, we labeled samples as survival(OS_Months > 60) or 126 

death(OS_MONTHS < 60 and OS_Status = deceased). Some sample data were 127 

discarded(OS_MONTHS < 60 and OS_STATUS = LIVING）. 128 

 We retained a total of CNA - 18533, SNV - 215, CNGM - 170 in both datasets. 129 

BRCA_METABRIC dataset retained 1904 individuals(survival - 1432, death - 412, 130 

discarded - 60), BRCA_TCGA dataset retains 513 individuals(survival-148, death-46, 131 

discard-319). In addition, we screened the clinical data shared by the two 132 

datasets(because we hope to establish an early risk prediction model, the data of 133 

intervention treatment will not be considered), and finally obtained age, gender, 134 

number of positive limph nodes and menopausal state. Most patients are female (there 135 

are only three males in the BRCA_TCGA dataset), so the sample is no longer grouped 136 

by gender. The statistical results of other phenotypes are shown in Supplementary 137 

Figure S1. The average age of all breast cancer patients is 60.65 years, and the 138 
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average lymph node is 2.02. 443 are not yet menopausal, and 1548 are in menopause. 139 

If there is no measurement data in the phenotype, it will be represented by -9 and will 140 

not participate in the mean calculation. 141 

Machine learning analysis process development 142 

As shown in Figure 1.B, Catboost, a high-performance open source library for 143 

gradient boosting on decision trees, was developed to predict the five-year mortality 144 

risk of patients. The analysis process is systematically constructed using the machine 145 

learning framework scikit-learn(https://scikit-learn.org/stable/, version=0.24.2). The 146 

BRCA_METABRIC data(1844 samples: survival-1432, death-412) set was split into 147 

training set(80%) and testing set(20%) by random stratified sampling. The 148 

independent external data set BRCA_TCGA (194 samples: survival-148, death-46) 149 

will be used for model evaluation. For the three features(SNV, CNA, CNGM), 150 

separate models are established to evaluate their effects on prediction. After that, we 151 

extract the model features constructed by SNV, CNA, and CNGM and merge them to 152 

construct a new multi-dimensional feature set for training and evaluation. Finally, 153 

phenotypic characteristics (age, number of positive lymph nodes, menopausal status) 154 

are also integrated to further improve the accuracy of the model. 155 

Single-dimensional feature model construction 156 

 Separate models were constructed for CNV, SNV, and CNGM characteristics to 157 

explore their impact on the five-year mortality risk prediction. As shown in Figure 1.B, 158 

For CNA (18533 features), the training set is first standardized (StandardScaler 159 

method), the average value and standard deviation are retained and then applied to the 160 
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corresponding features in the test phase, and feature selection is performed on the 161 

processed data (described in Feature selection part). Next, use the CatBoost model to 162 

select the hyperparameters of the model (described in Hyperparameter selection part). 163 

After fixing the hyperparameters, perform model training. Five-fold cross-validation 164 

is used to evaluate the stability of the model, and finally tested on the test set and 165 

independent external data set. The processing of SNV and CNGM is similar to CNA, 166 

but due to the small number of SNV features (215) and onehot-encoded, data 167 

standardization and feature selection are not performed; CNGM uses log first and then 168 

logMinMaxScaler method during standardization. Since there are only 170 features, 169 

feature selection is also omitted.  170 

Multi-dimensional feature model construction 171 

 Combine the feature selection results of the single-dimensional feature model and 172 

perform hyperparameter selection (described in Hyperparameter selection part). After 173 

the hyperparameter results are fixed, perform training and evaluation. In addition, we 174 

combined the phenotypic data (age, gender, number of positive lymph nodes, and 175 

menopausal status) with the feature selection results of the single-dimensional feature 176 

model to observe whether the phenotypic data can improve the performance of the 177 

model. 178 

Feature selection 179 

 For CNA(18533 features), irrelevant features may decrease the performance of 180 

the model. We propose a hybrid feature selection method to subtract features. In this 181 

method, mutual information (MI) technology[31], recursive feature elimination (RFE) 182 
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algorithm[32] and Boruta algorithm[33] are used to obtain the relevant subset of the 183 

raw features. MI calculates feature weights based on the relationship between features 184 

of mutual information; RFE selects features by recursively considering smaller and 185 

smaller feature sets, and this method can obtain all feature rankings. The Boruta 186 

algorithm is a packaging method that selects a subset of features based on a random 187 

forest machine learning algorithm, which can be used to measure the importance of 188 

features. Respectively use the above methods to obtain the feature ranking and retain 189 

the top 3% features (extract the most effective features and maintain a balance with 190 

the SNV and CNGM feature numbers). The features selected by any two methods will 191 

be retained eventually. 192 

Hyperparameter selection 193 

 Due to the imbalance between death and survival samples (~1:3), when 80% of 194 

the training set is used for hyperparameter training, a small number of samples are 195 

randomly sampled to make the ratio of positive and negative samples reach 1:1. We 196 

implemented a basic grid search algorithm with 5-fold cross-validation to optimize 197 

the Catboost model parameters while maximizing the weighted F1 score. 198 

Model comparison  199 

 After the model training is completed, we will use the five-fold cross-validation 200 

data set, test set and independent external data set to evaluate the model. The specific 201 

evaluation indicators are as follows: 202 

 TP: True Positive. In the samples judged to be positive, the number of correct 203 

judgments.  204 
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FP: False Positive. In the samples judged as positive, the number of judgment 205 

errors.  206 

TN: True Negative. Among the samples judged as negative, the correct number is 207 

judged.  208 

FN: False Negative. In the samples judged as negative, the number of judgment 209 

errors. 210 

Accuracy = 
�� � ��

�� � �� � �� � ��
                                                       211 

(1) 212 

Precision = 
��

�����
              (2) 213 

Recall = 
��

�����
                   214 

(3) 215 

AUC: The area under the receiver operating characteristic(ROC) curve, is 216 

currently considered to be the standard method to assess the accuracy of predictive 217 

distribution models[34]. with AUC = 1 represents perfect performance and 0.5 means 218 

random guess. 219 

F1-score: The harmonic mean of the precision(2) and recall(3). The highest 220 

possible value of an F-score is 1.0, indicating perfect precision and recall, and the 221 

lowest possible value is 0, if either the precision or the recall is zero. 222 

Feature analysis 223 

 We will select the model with the best comprehensive score and use the 224 

SHAP(Shapley Additive exPlanations) tool to analyze the characteristics of the final 225 

model[35]. SHAP is a unified method to explain machine learning predictions based 226 
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on the optimal Shapley value of game theory. SHAP computed the contribution of 227 

each feature to the prediction, which was quantified using Shapley values from 228 

coalitional game theory. The Shapley value was represented as an additive feature 229 

attribution method, providing the average of the marginal contributions across all 230 

permutations of features and distribution of model prediction among features. As an 231 

alternative to permutation feature importance, SHAP feature importance was based on 232 

magnitude of feature attributions. The absolute Shapley values per feature across the 233 

data was further averaged as the global importance was needed. We ranked the 234 

features importance in descending order and picked the top 30 most important 235 

features. The SHAP value can be plotted for each sample corresponding to the first 30 236 

features. We used the Python library to implement the SHAP algorithm 237 

(https://github.com/slundberg/shap). 238 

For features, the enrichment analysis in CLINVAR, KEGG, GO, and Reactome 239 

will also be performed using ClueGO[36]. In addition, the genes corresponding to the 240 

optimal model features were extracted, and the Kruskal-Wallis test was used in the 241 

BRCA_METABRIC gene expression data set (Bonferroni correction of the results, 242 

adjusted P value <=0.05) to calculate the difference between survival and death 243 

groups. For genes with significant differences, use the limma tool[37] to calculate the 244 

expression fold difference. 245 

Risk stratification analysis 246 

The original output result of the model is a probability value (between 0 and 1). 247 

Based on the optimal model result, We will divide all samples into high, medium and 248 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492994doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492994
http://creativecommons.org/licenses/by/4.0/


low risk groups (BRCA_METABRIC, BRCA_TCGA), and draw Kaplan-Meier (K-M) 249 

curve.  250 

Result 251 

Comparison of performance of different machine learning models 252 

The optimization process of the five models (CNA, SNV, CNGM, 253 

SNV+CNGM+CNA(combined variants) , combined variants+phenotype)was shown 254 

in Supplementary Figure S2. The number of features and AUC values corresponding 255 

to the optimal model were: SNV(AUC:0.56; features: 93), CNGM(AUC:0.63; 256 

features: 4), CNA(AUC:0.64; features: 75), combined variants (AUC:0.72; features: 257 

353), combined variants  + phenotype (AUC:0.81; features: 172).  258 

We have drawn the Precision-Recall and ROC curves for the above optimal 259 

models using the 5-fold cross-validation method in the BRCA_METABRIC, internal 260 

test set and external test set (Figure 2). Taking the test result of the external data set 261 

BRCA_TCGA as the final evaluation index, the indexes of each model are as follows: 262 

SNV(AUC:0.53, APS:0.25); CNGM(AUC:0.54, APS:0.26); CNA(AUC:0.62, 263 

APS:0.42); combined variants (AUC:0.61, APS:0.35);  combined 264 

variants+phenotype(AUC:0.70, APS:0.43); More model evaluation indicators can be 265 

viewed in Table 1.  The best comprehensive score was the combined 266 

variants+phenotype model, which performed best in both the internal test set 267 

(AUC:0.81, APS:0.55) and the independent external data set (AUC=0.70, 268 

APS:0.43)(Table 1). 269 

Optimal model feature ranking 270 
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The combined variants  + phenotype model comprised a total of 172 features, 271 

including 121 CNA, 45 CNGM, 4 SNV, and 2 phenotypes (age, number of positive 272 

limph nodes). We used shap to analyze the importance of the predictive characteristics 273 

of the model. As shown in Figure 3, among the 172 features of the model, we 274 

extracted the top 30 most important features. The phenotypic characteristics age and 275 

number of positive lymph nodes ranked first and second, and showed positive 276 

correlation with death within five years. The remaining 28 features included 18 CNA 277 

(ZNF720, TBC1D13, SCAF4, CDRT15, TMED6, OR4M2, C17orf102, TAS2R10, 278 

PHF20L1, RNF187, STIM2, CCDC136, TTI2, MTBP, FAM24B, TMEM26, OR4F15, 279 

PDCL2), 9 CNGM (TP53, DNAH11, DNAH2, PIK3CA, MAP3K1, GATA3, CDH1, 280 

PDE4DIP, 80273), 1 SNV(chr3:178936091:G:A). Some characteristics also showed  281 

positive correlation with mortality within five years, such as CNGM-TP53, 282 

CNGM-DNAH2, CNGM-PIK3CA, CNA-SCAF4, CNGM-CDH1, etc. There were 283 

also some opposite manifestations, such as CNA-ZNF720, CNGM-DNAH11, 284 

CNA-TMED6, CNGM-MAP3K1, SNP-3-178936091-G-A, etc. 285 

Enrichment analysis of optimal model features 286 

We used ClueGO to perform enrichment analysis on the genes corresponding to 287 

172 features. The selected data sets included CLINVAR, KEGG, GO, and Reactome 288 

pathways. The enrichment results were corrected by bonferoni multiple test. After 289 

correction, the pathways with adjusted P value less than 0.05 were selected( Figure 290 

4.A). A total of 33 records were obtained. In CLINVAR and KEGG, the features were 291 

enriched in pan-cancer or breast cancer-related pathways (C0006142, C1458155, 292 
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KEGG:05212, KEGG:05222, KEGG:05224). In GO biological process pathways, 293 

these genes were over-represented in some pathways related to cell cycle and cell 294 

proliferation (GO:0048103, GO:1904030, GO:0000079, GO:0061982, etc.). Two 295 

REACTOME pathways reached statistical significance, both of which are related to 296 

the NOTCH signaling pathway (R-HSA: 350054, R-HSA: 1980143) 297 

Difference analysis of features at the transcriptoional level 298 

In the optimal model, we extracted the genes corresponding to 170 features 299 

(excluding two phenotypic features). In BRCA_METABRIC, a total of 17 genes were 300 

differentially expressed between the living and dead breast cancer patient groups 301 

(adjusted P value < 0.05 for all cases, Kruskal-Wallis test), such as TP53, DNAH11, 302 

MAP3K1, PHF20L1, etc. (Figure 4.B). TP53 (No. 3), DNAH11 (No. 5), MAP3K1 303 

(No. 12), PHF20L1 (No. 20)  ranked in the top 30 of the model feature weights. The 304 

limma results showed that none of these genes had a significant fold change in 305 

expression, between the living and dead breast cancer patient groups. 306 

Results of risk stratification 307 

According to the model prediction results of all samples, we assigned samples 308 

with probability values less than 0.1(TPR>0.93) to the low-risk group (1473 samples), 309 

samples with probability values greater than 0.9(TNR>0.99) to high-risk group (363 310 

samples), and others to medium-risk group (202 samples). The stratification results 311 

are shown in Figure 5.A. The Kaplan-Meier survival curves corresponding to the 312 

three sets of results are shown in Figure 5.B. The results showed that the three groups 313 

of patients had significantly different survival outcomes. This has clinical implications. 314 
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For high-risk patients, more clinical intervention and active treatment may be 315 

required. 316 

Discussion 317 

Model evaluation 318 

The CatBoost algorithm model is used. Different models performed similarly in 319 

the training set and the test set without serious overfitting and strong generalization 320 

ability.  The best model result is the combined variants+phenotype (AUC: 0.70). For 321 

a single feature such as SNV, CNGM has a lower AUC In an independent external 322 

data set  (SNV: AUC=0.53, CNGM: AUC=0.54). CNA, as a single-dimensional 323 

feature, is similar to the combined variants model’s result in external data 324 

set(AUC=0.62), and compared to CNGM and SNV, CNA has better generalization 325 

capabilities. But this is also related to the small number of CNA and SNV features, 326 

and more comprehensive data needs to be collected for further verification. In 327 

addition, the addition of phenotype, especially age and the number of lymph nodes, 328 

has a very large impact on death, as can be seen from the feature weights of the 329 

optimal model (Figure 3).  330 

In general, we comprehensively assessed the impact of different characteristics on 331 

the five-year mortality risk. In the process of model evaluation, we found that a single 332 

feature has poorer performance than the feature fusion model. CNA accounts for a 333 

relatively large number of model features due to the large number of original features, 334 

but there are still more CNGM features in the top 30 features. The contribution of 335 

SNV features in risk prediction is low. The addition of phenotypic information such as 336 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492994doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492994
http://creativecommons.org/licenses/by/4.0/


age and number of lymph nodes can increase the accuracy of the model. 337 

Discovery of biomarkers associated with five-year mortality risk 338 

In the optimal combined variants+phenotype model, in addition to phenotypic 339 

features, some genomics features that have a greater contribution to the model have 340 

also been found. And these features still have significant differences between the 341 

survival and death groups at the transcriptome level, although there is no large fold 342 

difference. For example, TP53, DNAH11, MAP3K1, PHF20L1. As a very complex 343 

biomarker, TP53 acts as a tumor suppressor in many tumor types; induces growth 344 

arrest or apoptosis depending on the physiological circumstances and cell type which 345 

has been widely reported. Its mutations are widely present in various cancers[38-41]. 346 

IARC TP53 Database (https://p53.iarc.fr/) records all the resources of TP53 347 

mutations[41]. They pointed out that there are 28 mutations that lead to a poor 348 

prognosis (https://p53.iarc.fr/SomaticPrognosisStats.aspx). In our model, the TP53 349 

feature comes from the CNGM feature dimension. The model results indicate that the 350 

greater the cumulative number of TP53 mutations, the greater the probability of death 351 

within five years (Figure. 3). The DNAH11 gene mutation rs2285947 is considered a 352 

potential risk factor for ovarian cancer and breast cancer[42], and there is no clear 353 

report related to prognosis. MAP3K1 is a component of a protein kinase signal 354 

transduction cascade, which has dual regulatory effects on cell survival and apoptosis, 355 

and its regulatory mechanism is not yet clear[43, 44]. These characteristics have been 356 

reported to be related to cancer, and our study further verified their relationship with 357 

the five-year mortality risk. 358 
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Through feature selection and multi-dimensional feature fusion, the optimal model 359 

features are concentrated on pathways related to cancer, cell division, and 360 

proliferation without adding additional prior information. This reflects that the design 361 

of the model is relatively reliable, and the model can eliminate features that are not 362 

related to the training target from a large amount of input data. The genes 363 

corresponding to the features retained by the model are potential biomarkers for 364 

prognostic analysis and drug development. 365 

Conclusion 366 

In general, in this article, based on the CatBoost algorithm, we use independent 367 

data sets of BRCA_METABRIC and BRCA_TCGA to conduct systematic model 368 

training on features of different dimensions. The effects of different dimensional 369 

features at the genome level on the prediction results of the model are compared. Our 370 

best model combines all the features, and the AUC in the external independent 371 

BRCA_TCGA is 0.70. In addition, the risk stratification results of all samples showed 372 

significant differences between different populations. For high-risk groups classified 373 

by the model, active clinical treatment is very necessary. This is the first five-year 374 

breast cancer death analysis based on genomic data and using external independent 375 

data for evaluation. And compared with other studies, the model based on somatic 376 

genomic variants data and phenotypic data (age, number of lymph nodes) is more 377 

prospective, and the patient's condition can be evaluated before clinical intervention, 378 

providing guidance for follow-up treatment 379 

Nevertheless, the research still has limitations. When selecting the features that 380 
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the two data sets contain in common, the SNP and CNGM features only get very little 381 

intersection, which may lead to the underestimation of the role of SNP and CNGM. 382 

Deep learning algorithms have not been used and compared. We will continue to 383 

conduct in-depth research, collect more comprehensive data, design and develop new 384 

algorithms based on existing experience, and further compare the performance 385 

differences between machine learning and deep learning. In addition, we will also try 386 

to collect other cancer data, conduct migration learning, and develop a five-year 387 

mortality risk model for pan-cancer. 388 
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Figure 494 

Figure 1. Data quality control and five-year survival prediction model building process. A) 495 

BRCA_TCGA and BRCA_METABRIC data acquisition and quality control process; B) In the 496 

process of building a polygenic risk assessment model, different processing methods are adopted 497 

for different dimension characteristics. 498 

Figure 2. Precision-Recall and ROC curves of optimal models constructed with features of 499 

different dimensions. The first row is the ROC curve and the second row is the Precision-Recall 500 

curve. From left to right are the results in the cross-validation set(mean), training set and test set, 501 

respectively. 502 

Figure 3. Optimal model feature weight analysis. The scatter points represent the SHAP value 503 

of each feature for each sample. Features are sorted according to the sum of the magnitudes of the 504 

SHAP values of all samples. The first 30 features are shown, and the colors represent the feature 505 

values (red high, blue low). For example, as age ("AGE_AT_DIAGNOSIS") increases, the risk of 506 

death within five years of the sample will increase. 507 

Figure 4. A) Optimal Model Pathway Enrichment Analysis; B) Transcriptome-level differential 508 

analysis of optimal model features. 509 

Figure 5. A) Risk stratification for all samples based on model scoring; B) Plot Kaplan-Meier 510 

survival curves for three groups of stratified outcomes (high, intermediate, and low risk). 511 

Supplementary Figure 512 

Supplementary Figure S1. Statistical results of sample distribution regarding gender, number of 513 

lymph nodes, menopause (-9 - unknown, 0 - not menopause, 1 - menopause). 514 

Supplementary Figure S2. The optimization process of the five models (CNA, SNV, CNGM, 515 

SNV+CNGM+CNA(combined variants) , combined variants+phenotype). 516 

  517 
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Table  518 

Table 1. The model predicts the performance indicators of breast cancer deaths within five years 519 

in the internal and external test data sets. 520 

 521 

Model 
Internal test data External test data 

AUC F1 Accuracy precision recall APS AUC F1 Accuracy precision recall APS 

SNV 0.56 0.21 0.72 0.29 0.17 0.25 0.53 0.22 0.70 0.29 0.17 0.25 

CNGM 0.63 0.37 0.66 0.32 0.45 0.28 0.54 0.36 0.62 0.30 0.46 0.26 

CNA 0.64 0.34 0.74 0.39 0.30 0.34 0.62 0.38 0.77 0.52 0.30 0.42 

SNV+CNGM+CNA 0.72 0.32 0.76 0.42 0.26 0.38 0.61 0.25 0.73 0.36 0.20 0.35 

SNV+CNGM+CNA 

+Phenotype 

0.81 0.52 0.80 0.55 0.49 0.55 0.70 0.46 0.77 0.51 0.41 0.43 
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Data sets BRCA_METABRIC BRCA_TCGA
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Figure 1. Data quality control and five-year survival prediction model building process.  A) BRCA_TCGA and BRCA_METABRIC data 
acquisition and quality control process; B) In the process of building a polygenic risk assessment model, different processing methods are 
adopted for different dimension characteristics.
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Figure 2. Precision-Recall and ROC curves of optimal models constructed with features of different dimensions. The first row 
is the ROC curve and the second row is the Precision-Recall curve. From left to right are the results in the cross-validation set(mean), 
training set and test set, respectively.
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Figure 3. Optimal model feature weight analysis. The scatter points represent the SHAP value 
of each feature for each sample. Features are sorted according to the sum of the magnitudes of the 
SHAP values of all samples. The first 30 features are shown, and the colors represent the feature 
values (red high, blue low). For example, as age ("AGE_AT_DIAGNOSIS") increases, the risk of 
death within five years of the sample will increase.
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Figure 4. A) Optimal Model Pathway Enrichment Analysis; B) Transcriptome-level differential 
analysis of optimal model features.
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Figure 5. A) Risk stratification for all samples based on model scoring; B) Plot Kaplan-Meier survival curves for three groups of stratified 
outcomes (high, intermediate, and low risk).
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