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Abstract

Ventral visual cortex contains regions of selectivity for domains of ecological im-
portance. Food is an ecologically and evolutionarily important category, whose high
degree of visual variability may make the identification of selectivity more challenging.
We investigated neural responsiveness to food using natural images combined with
large-scale human neuroimaging. Leveraging the improved sensitivity of modern designs
and statistical analysis methods, we identified two food-selective regions in the ventral
visual cortex. Our results were robust across 8 subjects, multiple independent sets
of images and multiple analysis methods. Additionally, these results were not due
to stimulus properties or saliency. The identification of food-selective regions stands
alongside prior findings of functional selectivity and provides an important addition to
our understanding of the organization of knowledge within the human visual system.
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2
Introduction

The representation of high-level visual information in the human brain has been marked by
the phenomenon of selectivity for visual categories or properties of high ecological importance.
Focusing on ventral visual cortex, there are multiple brain regions that show preferential
responses to categories such as faces1,2, bodies3, places4, and words5, and to broad orga-
nizational principles such as animacy6, real-world size6, and “reach space”7. Independent
of any particular theory on the origins and specificity of these functional brain regions8,9,
the prevailing view is that the likely role of these regions is to instantiate processes and
representations for categories and properties that are highly relevant for day-to-day behavior.
In a similar vein, food is a category that is relevant to evolution – the need to find nourishment
is more ancient than social interaction and, arguably, more fundamental to survival. It is
therefore surprising that food has not been consistently identified as a visual category for
which localized, selective neural responses are observed.

The visual presentation of food images prompts a range of brain responses10,11, including
affective, sensory, and cognitive effects. However, agreement on neuroanatomical locations of
food-related activation across studies using food images has been low to moderate12. Only
41% of 17 experiments in a meta analysis contributed to food-related clusters in the bilateral
fusiform gyrus and left orbitofrontal cortex12. And in cases where statistically significant
activations in response to food have been observed, they typically have been attributed to
increased attention to food images arising from subjects’ mental states and/or physiological
factors12,13. One study of selectivity across a range of proposed categories found no robust
selectivity for either fruits or vegetables in occipitotemporal cortex14. As such, to date there
has been no robust demonstration of food selectivity in the human visual system.

One factor that may influence prior studies of food-elicited neural responses is context.
We posit that the apparent inconsistency in detecting food-selective responses is, in part, a
result of relying on unrealistic, isolated food and non-food images (e.g., Downing et al.14).
A second contributing factor may be that prior studies have used a limited number of
food images – insufficient to capture the large variety of visual properties of food or of the
natural contexts in which it appears. Unlike faces, bodies, or word stimuli, food images
vary widely in low- to mid-level visual characteristics, such as curvature, shape, texture,
color and the organization of the parts into a whole. Consistent with these arguments, when
using naturalistic food images, Tsourides et al.15 observed a neural correlate, as measured by
magnetoencephalography (MEG), at 85 msec for the visual food/non-food distinction.

Within-category variability in food appearance may contribute in several ways that
render identifying food-selectivity more challenging than those selective for other ecologically
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important categories. First, food images may not generate robust activation patterns in visual
cortex without the presence of associated content (e.g. plates, tables, silverware). Second,
because of the high visual variability for food as a category, detecting significant food-driven
responses may require more sensitive designs than standard neuroimaging designs (which
typically rely on small numbers of similar images and trials per condition).

Our study addresses these issues by using two large-scale datasets. Real-world images,
drawn from the the Microsoft COCO dataset16, were used for both the food and non-food
conditions. Functional MRI (fMRI) data was collected at a massive scale as part of the
Natural Scenes Dataset (NSD)17, thereby improving our ability to detect effects across
conditions. To preview our most important result, we reliably identify two distinct regions in
ventral high-level visual cortex that are preferentially responsive to food images. These two
strips surround the Fusiform Face Area (FFA) and are aligned on the anterior to posterior
axis. We replicate these regions across subjects while controlling for other aspects of images
that are thought to be coded in the ventral visual system, such as image perspective. In
that food is incontrovertibly an ecologically critical category, this finding is consistent with
earlier findings of selectivity in the perception of faces, bodies, and places. Multivariate
pattern analyses suggest a rich organization of information within food-selective visual cortex,
possibly reflecting gradients along which food is combined with other ecologically relevant
categories.

Results

To investigate responsiveness to food in a large-scale natural setting, we used the Natural
Scenes Dataset (NSD)17, which consists of high-resolution fMRI responses to naturalistic
scenes. NSD contains fMRI data from 8 screened subjects (S1-S8) who each viewed 9,000-
10,000 scene images Of the 70,566 total unique images viewed across subjects, for purposes
of consistency we focused on the 1,000 images that were viewed by all 8 subjects.

Though COCO images already include labels for many categories, including some types
of food, there is important information not captured by these labels, such as whether an
image contains human faces. We methodologically relabeled by hand the 1,000 shared
images, based on 3 main attributes: location, content, and image perspective. We used the
hierarchical structure shown in Fig. 1B (refer to Methods for labeling details, and Fig. 1A
for examples). Image perspective was included because there is evidence that objects shown
at human-reachable distances have a distinct representational signature in the brain7,18 and
food is often viewed at reachable distances.

Using these labeled images, we constructed a standard linear model that expresses brain
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Figure 1: The 1,000 images viewed by all 8 subjects in NSD were manually relabeled to investigate
responsiveness to naturalistic food images. (A) Example images labeled as (clockwise, from upper
left): {outdoor, food, food-related, reach} {indoor, human face, human body, object, large-scale},
{indoor, object, large-scale}, {outdoor, animal face, animal body, object, zoom}. (B) The labeling
taxonomy, including attributes of location (top), content (middle), and image perspective (bottom).
(C) Flattened, inflated lateral, and inflated bottom views of the MNI surface indicating voxels with
higher activity for food than all non-food labels for the 1,000 shared images. The subject count for a
significant contrast was obtained at each MNI voxel. Voxels more responsive to food are found in the
frontal, insular, and dorsal visual cortex, with the highest concentration across subjects occurring in
the fusiform visual cortex. Both hemispheres show two strips within the fusiform that are separated
by a gap that lies on the posterior-to-anterior axis. (D) Top 10 images per subject (S1-S8) leading
to the largest responses in the food area. These images, which overwhelmingly depict food, were
unique for each subject and were not in the set used to localize the food-selective region.
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activity as a combination of the attributes assigned to each image. This model identified
voxels that are more responsive to food than other categories, based on a t-test comparing
the weights for food versus all other labels (Fig. 1C). Across the cortex, there are several
regions showing significantly higher activation for food than non-food categories (p<0.05,
FDR corrected), including some areas in parietal and frontal cortex, as well as on the ventral
surface of the occipital lobe. We focus on ventral visual cortex due to the long history of
mapping category-selective responses in this brain region. Across all subjects, we consistently
find two food-selective strips in the ventral visual cortex that surround FFA on the lateral and
medial sides. (Fig. 1C shows the count of subjects for whom these contrasts are significant
at each MNI voxel, and the contrast strength is shown for individual subjects in Figs. 2A
and S2A). Considering only unique images that were viewed by a given subject, Figure 1D
shows the top 10 activating images for the food-selective voxels for that subject. These
images overwhelmingly depict food. These images were not used to identify the food regions,
and thus reinforce the generality of food selectivity across independent image sets. Note that
these identified regions persist even when removing all images with the “reach” (Fig. S3) or
“zoom” (Fig. S4) annotations – demonstrating that food-selective responses are not dependent
on food being shown at a particular distance7.

Given that food-selective regions appear adjacent to the FFA, we focused on the spatial
relationship between food-selective and face-selective populations on the ventral surface.
We compared the t-statistics for a contrast of food vs. non-food and t-statistics from a
contrast of faces vs. non-faces for S1-S8 individually (Figs. 2A and S2A). The faces vs.
non-faces contrast reveals a voxel cluster overlapping with the FFA1,2 (Figs. 2A and S2A).
FFA was localized for each subject through a separate visual category localizer experiment.
(The faces vs. non-faces comparison also makes the methodological point that established
category-selective regions can be reliably localized in a large-scale event-related design using
stimuli embedded in complex, real-world scenes. This stands in contrast to typical localizer
designs and decontextualized images19). The regions with higher activity for food are spatially
distinct from the ones with higher activity for faces. This pattern persists when comparing
food or faces to non-face and non-food images only (Fig. S5), indicating that the regions
that have high activity for food and faces have highly independent or non-overlapping spatial
extents.

We further investigated how food representations might be distributed across multiple
voxels, using searchlight classification20 (Figs. 2B and S2B). Training a decoder to classify
food versus other categories revealed that food was decodable across a wide area of the ventral
surface. The regions from which food information was decodable are a union of the regions
that are high for food vs. all and the regions that are high for faces vs. all. This finding is
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consistent with the idea that voxels primarily selective for other categories, such as faces,
may contain information relevant to the detection of food21.

We have focused on identifying food-selective regions through responses to the 1,000 shared
images and our hand-labeled annotations. For the approximately 9,000 remaining images per
subject that were not manually labeled, we can still take advantage of COCO annotations16

(including specific types of food) to further investigate brain responses to food and validate
our findings on an independent set of images. We built an encoding model using the 80 object
labels provided by COCO and obtained the resulting voxel-wise weights for food labels. We
find that the voxels having the highest weights for several individual food sub-categories (i.e.,
cake, sandwich, pizza, and broccoli) fall within previously identified food-selective regions
(weights for S1 in Fig. 3A). Next, we investigated the specific contribution of food images
to these voxel responses by comparing two encoding models: one including the 67 non-food
COCO labels, and the other including both food and non-food labels. We compared the R2

values of the two models on held-out data (Fig. 3B and Fig. S6). Many voxels on the ventral
surface show improved prediction performance due to the inclusion of food labels, suggesting
that modeling the presence of food beyond other categories was required to accurately predict
the voxel responses. These voxels are distributed in roughly the same spatial pattern as the
voxels with high-valued weights for individual food categories and our previously identified
food regions, further supporting the generality of our results.

To better understand the organization of information in our food-selective visual areas, we
isolated food-selective voxels using a mask of the ventral visual cortex based on corresponding
ROIs from the HCP atlas22 (see Methods). The resulting “food relevant” voxel masks, which
were used for the following analyses, are shown in Figures 2C and S2C. To understand the
representational structure of these regions, we ran a principal components analysis (PCA) on
the responses from all subjects to the shared food images. The PCA produces for each voxel a
set of principal component scores that capture the projection of its high-dimensional response
profile across all images onto a lower dimensional subspace. The axes of this subspace –
shared semantic axes – should correspond to the dimensions in food image space that are
most strongly reflected in the voxel responses (Fig. 4A). In Figure 4B and C, we visualize the
top and bottom images for each PC. The first three PCs are each associated with distinct
groups of voxels. PC1 is characterized by small positive patches around the center of each
food-preferring strip on the ventral surface, with more negative values close to the edges of
each strip. Negative and positive scores for PC2 differentiate the lateral and medial strips of
the food-selective region. PC3 scores are generally more spatially diffuse, but in the right
hemisphere, PC3 scores are more negative near the FFA (i.e., medial side of the lateral strip,
lateral side of the medial strip). Based on inspection of the top and bottom images associated
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Figure 2: Food-selective regions at the individual subject level. (A) Comparing the spatial
localization of food- and face-selective neural populations on the ventral surface, for S1-S4 (see
Fig. S2 for S5-S8). Voxels’ t-statistics from two 1-sided t-tests comparing food vs. non-food (red)
and face vs. non-face (blue). The regions identified by each contrast are largely non-overlapping.
This pattern is maintained for food vs. non-(food and face) and face vs. non-(face and food) (Fig.
S5). (B) Classification accuracy for multivariate searchlight decoding of food vs. non-food images
for S1-S4, with darker voxels signifying higher accuracy. These regions encompass the two sets of
regions corresponding to high values for the food vs. non-food and the face vs. non-face contrasts
(respectively red and blue in panel A). (C) Spatial mask for food-selective regions used in subsequent
analyses for S1-S4 (highlighting ventral visual responses). The mask is the overlap between the region
that is identified from the t-test for food vs. non-food (panel A, red) at p<0.05 (FDR corrected)
and relevant neuroanatomically localized regions using the HCP atlas22 (see Methods).
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Figure 3: A consistent set of food-selective regions can be identified across independent image sets
with different labeling schemes. We used the set of images for each subject that were not included in
previous analyses, and an encoding model built from the 80 COCO object labels. (A) Voxel-wise
encoding model weights for four food sub-categories from the original COCO dataset, shown for S1.
We see variability in the weights, such as (perhaps, not surprisingly) pizza yielding higher weights
in some areas than broccoli. (B) We compared predictive accuracy of an encoding model with all
COCO labels (including 13 food and 67 non-food labels) to an encoding model with only the 67
non-food COCO labels. On S1’s native surface, there is an improvement in validation set R2 values
when including the food labels (R2 for the full model; R2 for the model with food removed), with
S1-S8 results in Fig. S6. Weights corresponding to individual food labels (A) and the pattern of
improvement in R2 (B) highlight similar food-selective regions. Such consistent results lend further
support for these regions being robustly food selective.
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with each PC, PC1 captures the prominence of food in an image, distinguishing images with
food as a key focus in the foreground versus those with food as a background element. PC2
distinguishes food images based on overall scale, differentiating close-up images that focus on
a few food objects from larger-scale images of food-related scenes (Fig. 4B). This is consistent
with the pattern of positive scores for this PC on the medial side of the food-selective area,
close to the PPA. PC3 distinguishes food images based on social attributes, separating food
images that include few people from images of multiple people eating or preparing food,
with social settings being at the end of the spectrum (Fig. 4C). Some amount of person or
animacy-related information also appears to be reflected in the first two PCs (top right vs.
bottom left images in Fig. 4B). Such results highlight the ecological importance of food as a
category, as well as how high-level knowledge structures arise from the interaction between
food and other ecologically important categories within the ventral visual cortex.

Finally, to explore the contributions of features based on different sources of information to
the visual representation of food, we clustered food images according to their voxel responses
in our food-selective regions. This analysis produces image clusters that are not easily
characterized in terms of visual features, viewpoints or semantic attributes (Fig. S7A). We
also constructed image clusters using two neural-network models – CLIP23 and ResNet-1824 –
from which we derived semantic and visual embeddings that did not include the associated
brain activity for the images. CLIP is trained on both images and text captions, enabling us
to extract features that capture the high-level semantics of the images. ResNet-18, trained
solely on images and their associated object labels, yields features with less emphasis on scene
semantics. As shown in Figure S7, the clusters arising from CLIP capture semantic classes
of food (e.g., fruits, deserts or meals; Fig. S7B) while the clusters arising from ResNet-18
appear more visually organized and more focused on individual elements (e.g., broccoli, pizza;
Fig. S7C). Comparing the similarity of the cluster assignments of images for each of the three
clustering procedures, neither CLIP or ResNet-18 clusters show any clear correspondence
with our voxel-based clusters. The lack of correspondence in our clustering results suggests
that the responses in food-selective areas do not organize easily into clusters based on scene
semantics or object semantics.

Discussion

How are knowledge representations organized in the human brain? Within the visual system,
one of the hallmarks of the past several decades has been category selectivity for faces,
bodies, places, and words1–5. Consistent with the ecological importance of these categories,
we predicted and found selectivity for another ecologically relevant category, food, within
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Figure 4: PCA of responses from food-selective regions provides insight into their functional
structure. (A) Average principal component score across subjects for PC1, PC2, and PC3, shown
on the MNI surface. Blue-green indicates high, brown indicates low PC scores. These top three
PCs explain, respectively, 34.31%, 12.68%, and 11.16% of the variance. In (B) and (C), we show
the images that lead to the highest and lowest activations in each PC. We include the 4 top and
bottom images for ease of visualization. Top images for PC1 and PC2 are plotted in a 2D space (B),
with the points connected to each image indicating its position in the space. In (C), we plot the
top and bottom images for PC3 along a linear axis. Several patterns emerge here: PC1 scores yield
small positive patches around the center of each food-preferring strip with more negative values
close to the edges of each strip, and may capture the prominence of food in an image, separating
images with focus on food in the foreground from those with food in the background. PC2 scores
are higher medially (closer to PPA) and lower laterally, and seem to distinguish large-scale images of
food-related places from close-by images of food and people eating food. PC3 scores in the right
hemisphere food regions are lower at the center of the two strips, in the areas that border the FFA,
while the left hemisphere does not show a clear pattern. PC3 appears to distinguish non-social food
settings from social food settings. These results highlight that the combination of food with other
ecologically important categories, including people (both faces and bodies) and places, creates a
richer co-organization that reveals itself as gradients across the cortex.
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the visual system, using a large-scale event-related fMRI design and images of real-world
scenes17. We demonstrate their robustness by identifying the results using a traditional
analysis and an encoding model analysis. We also verify the robustness of food-selectivity by
showing consistent food-selective responses across independent sets of images, and we begin
to characterize the fine-grained structure of representations within the food category itself.

Our approach and results allow us to rule out several alternative explanations for the
finding of food selectivity. It is not likely that food selectivity reflects preferential responses
to “reachspaces”7, rather than food per se. This is ruled out on the basis that our labeling
taxonomy allowed us to control for image perspective (i.e., including reach as a label).
Specifically, we found that food-selectivity remained stable even after removing the reach
labeled images. Another possible alternative is that food-selectivity reflects preferential
responses to small vs. big real-world object size6, again, rather than food per se. However,
the representation of real-world object size manifests as big flanking the medial side of the
FFA and small flanking the lateral side of the FFA. This explanation can be ruled out in that
our observed food selective responses co-locate more with big, as opposed to small, regions,
yet food categories, particularly prepared foods, have small real-world size. Finally, it is
not likely that low- or mid-level visual features (i.e. color, spatial frequency) underlie our
pattern of results. This is supported by the fact that food selectivity was primarily found in
higher visual areas, rather than early visual areas (Fig. 2). Further, as discussed previously,
the visual variability of food makes it unlikely that there is a set of low- or mid-level visual
features or high-level shape structures that consistently correspond to food (in contrast,
see25–27). These conclusions are consistent with a recent MEG study which excluded low-level
visual features as an explanation for food selectivity15. Finally, it is unlikely that food
selectivity can be solely attributed to greater attention or higher intrinsic visual salience for
food relative to non-food28. Both human faces and bodies are subject to the same kinds
of saliency effects29, yet attentional/saliency differences are not the preferred explanation
for face or body selectivity30. Moreover, within our study, faces and bodies comprised a
reasonable proportion of the non-food contrast images, yet food selectivity was robust across
these comparison categories.

Of note, we also observed food selectivity in the parietal and frontal cortices, though
the localization of these regions was less consistent over subjects (Fig. 2). Although we
focused on the ventral visual cortex regions based on the large body of past work investigating
category-selective responses in this portion of the visual system, other brain regions may
also play a role in processing food information during visually-guided behavior. The dorsal
visual areas in particular may process the actions or affordances associated with food (i.e.,
cooking/eating), as suggested by past work showing that object representations in dorsal visual
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cortex tend to be action-oriented31,32. Activation in frontal cortex appears to overlap roughly
with orbitofrontal regions (rightmost map in Fig. S1), which may reflect the involvement
of these areas in processing reward information associated with certain types of food12,33,34.
Food selectivity was also observed in a number of subjects in the insular cortex, which has
previously been implicatged in taste processing12,34. Future work should investigate the role
of these areas, perhaps using manipulations that vary reward or action representations evoked
by food stimuli.

While a finding of food selectivity naturally emerges from considering ecologically impor-
tant visual categories, this leaves open the question as to how such selectivity arises in the
human brain? We speculate that, similar to human language, domain-relevant perceptual
inputs related to food can vary widely depending on the cultural and physical environment.
Learned representations for food are only loosely constrained at the surface level, but still
reflect common underlying mechanisms that have emerged over the course of evolution due
to reward and the selection for learning abilities that flexibly responded to variations in
inputs (the “Baldwin Effect”35,36). Thus, as a core property of knowledge organization,
food selectivity is likely to have emerged as a neural preference shaped heavily by semantic
associations and context.
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Methods

fMRI data. We used the Natural Scenes Dataset (NSD)17, consisting of high-resolution
fMRI responses to natural scenes. The detailed experimental procedure are described by Allen
et al.17. The naturalistic scene images were pulled from the annotated Microsoft Common
Objects in Context (COCO) dataset16. 8 subjects each viewed between 9,000-10,000 natural
scene images over the course of a year, each repeated 3 times. Of the 70,566 total images
presented, 1,000 are viewed by all subjects. The data were collected during 30-40 scan
sessions. Images were square cropped, presented at a size of 8.4° × 8.4° and for 3 s with 1-s
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gaps in between images. The subjects were instructed to fixate on a central point and to
press a button after each image if they had seen it previously.

The functional MRI data were acquired at 7T using whole-brain gradient-echo EPI at
1.8-mm resolution and 1.6-s repetition time. The preprocessing steps included a temporal
interpolation (correcting for slice time differences) and a spatial interpolation (correcting
for head motion). Single-trial beta weights were estimated with a general linear model.
FreeSurfer37,38 was used to generate cortical surface reconstructions to which the beta weights
were mapped. The beta weights corresponding to each image were averaged across repetitions
of the image (3 repetitions of each image), resulting in one averaged fMRI response to each
image per voxel, in each subject. The dataset also included several visual ROIs that were
identified using separate functional localization experiments. We drew the boundaries of
those ROIs for each subject on their native surface for better visualization and interpretation
of the results. All brain visualization were produced using the Pycortex software39.

Image labeling. The authors (n=7) performed manual image labeling of the 1,000
shared images based on each image’s depicted location, image perspective and content.
Location refers to whether the image is indoor or outdoor (or ambiguous), content refers to
the categories of objects in the image (including the binary existence of food), and image
perspective refers to the approximate scale of the image, discretized into zoom, reach or
large-scale. Zoom refers to a very close shot, thereby likely concentrated on one object and
excluding surrounding information. Reach images display objects at a human-reachable
distance, and may activate representations related to object affordances7,18. Large-scale
images encompass the remaining images, which include an image of a typical scene as opposed
to one or more close-up objects. Images could only be assigned one label for location and
perspective, but could be assigned multiple content labels. More details about this image
labeling are described in the Figure 1A and B. Labeling was performed using the Computer
Vision Annotation Tool40. In order to avoid variation in labels and ensure consistency, we
performed several rounds of labeling and verification across multiple raters; each image was
seen by a least two raters. Disagreements were discussed in the group of raters until unified
labeling assignments were reached.

Encoding models. We constructed two different encoding models. The first was based on
our hand-labeled annotations of the 1,000 shared images (Fig. 2). Encoding all 16 hand-labels
into a single binary vector per image, we utilized voxel-wise ordinary least squares (OLS)
encoding models to predict each individual voxel response to a given stimulus. Identifying
voxels more responsive to Category A over Category B was done using a 1-sided t-test
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between the respective learned model coefficients for each of the two categories. Note that
this analysis collapses across the three "attributes" used in our labeling taxonomy (i.e., food
is compared against object categories like faces, as well as against location labels like indoor).
We used these methods to identify voxels that are more responsive to food than other labels,
as well as for face versus other labels. We obtained a p-value from the t-value, then corrected
for multiple comparisons across all voxels using the Benjamini-Hochberg False Discovery Rate
procedure (FDR)41, which is appropriate for fMRI results due to the assumption that they
show positive dependence42,43. The significance of the contrast was computed at the subject
level, the results were converted to MNI space, and plotted in Fig. 1C. See Figure S1 for an
un-thresholded version of this map.

Our second encoding model was based on COCO object category labels, and made use
of the set of images that were unique to each subject (3). The purpose of this model was
to verify that our proposed food region derived from the 1,000 shared images is consistent
across the larger set of images that also includes images not used in the first analysis. We
used the 80 COCO object category annotations provided in the dataset, specifically each
COCO label’s corresponding bounding box proportion relative to the image (i.e., proportion
of the image covered by the category of interest), as input to a ridge regression encoding
model. We built and tested the model via 10-fold cross-validation, where R2 was computed
on a tenth of the data not used for training at each fold, and the 10 resulting R2 values were
averaged. The penalty parameter for each voxel was chosen independently by nested 10�fold
cross-validation. When determining which images were used to fit the encoding model, we
create a set of images that contained half food and half non-food images. We considered
images to include food if their maximum food label proportion exceeded a threshold of 0.15.
We identified 940 such images, and randomly selected 940 non-food images, together creating
a total input set of 1880 images. We built two models, one with all the labels, and one
with all the labels that were not food (67 in total). We then computed the voxel-wise R2

improvement from including food labels in the regression. In addition to helping identify
voxels that responded most to inclusion of food, this encoding model also helped us visualize
food sub-category activations. We observed the voxel-wise learned weights corresponding
to specific COCO food labels (i.e. cake, sandwich) to uncover potential food sub-category
patterns.

Decoding models. While an encoding model is able to provide some insight into single-
voxel selectivity through response predictions, a decoding model can uncover distributed
pattern-level representations of visual features. To observe representations at the population
level, we used a searchlight decoding method20. Specifically, for each voxel in the cortical
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sheet, we defined a searchlight sphere that consisted of 27 nearby voxels, and we trained
a decoder to classify the existence of food based on the pattern of activation across these
voxels. We used 5-fold cross validation via Support Vector Classification, with our input
image set consisting of 108 food images and 108 randomly selected non-food images from
our 1,000 shared images. High decoding accuracy from this method suggests that an area
encodes food-related information at the pattern level, which our model is able to exploit in
order to classify the existence of food.

Determining the ventral visual food selective regions. To generate a mask that only
included the ventral visual food selective region, we first manually selected apparent relevant
ROIs via the Glasser HCP Atlas22. We use the concatenation of sub-areas TE2p, PH, VVC,
v8, PIT, and VMV3 to create our mask. After converting the mask for this anatomical area
into each subject’s native space, we identified the intersection of this mask with the identified
food region from a food vs non-food significance test (Fig. 2 shows the final mask definition).

Principal Component Analysis (PCA). We ran PCA to better understand possible
structure and/or correspondence in these food-selective regions. Using the food mask above
that consists only of our proposed food region, we selected ’food-relevant’ voxels for each
subject. Then, we ran PCA on a matrix of concatenated ’food-relevant’ voxels for all subjects
(rows) by the activity related to shared food images (columns), reducing along the image
dimension (the columns). We extracted the top principal axes of this matrix, and projected
our initial data matrix onto the calculated lower-dimensional space to obtain the voxel-wise
PC scores on the brain. To compare the voxel-wise PC scores across subjects, we converted
the scores for each subject to the MNI template and average the scores across subjects for
each MNI voxel. We identified the most positive and negative contributing images to each
axis by computing the dot-product between the PC score and the activity related to an image,
to assess whether the representations of each principle axis were cohesive or semantically
interpretable.

Clustering analyses. We ran a K-means clustering analysis to better investigate visual
and semantic patterns in the food selective regions. As a point of comparison with the voxel
clustering results, we also clustered visual and semantic embeddings of these images derived
from deep neural networks. To compute the clusters for one subject, we picked 940 food
images. Voxel embeddings were calculated for each individual subject, using responses from
voxels within the ventral food mask. To obtain visual and semantic embeddings for these
same 940 images we used two trained deep neural networks: CLIP and ResNet-1823,24. CLIP,
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trained on both images and text, allows us to extract features arising from a contrastive
learning paradigm with dual semantic and visual constraints. We used the pretrained ViTB32
model, which was trained to align image and text embeddings within a shared space. Within
this model, we extracted the features given an input image from the vision module of the
model. Given an image, we call these corresponding CLIP features the CLIP embedding.

ResNet-18, trained on solely images, provides a visual feature-based embedding with no
language component. Given an image, we ran a ResNet-18 model pretrained on ImageNet
to extract the features from the average pool layer immediately preceding the final fully-
connected layer44. We refer to these extracted features for a given image as the corresponding
ResNet embedding of that image.

To cluster embeddings, we used K-means clustering algorithm with Euclidian distance.
We consider a range of K values and for each, observe the average Euclidian distance from
each data point to their corresponding cluster centroid. Next, we selected the first K value
that led to the drop in the average distance for voxel embeddings beyond which the decrease
plateaus (the elbow method). This value was 4. We use this same K = 4 for all three
embedding clusterings.

To compare different clustering assignments, we constructed for each clustering procedure
a 940 ⇥ 940 matrix where the rows and columns correspond to the 940 images. Each cell
in this matrix is an indicator value where matrixi,j is 1 if the two images i and j are in the
same cluster, and 0 otherwise. We then used Pearson correlation to compute the correlations
between two clustering assignments. To visualize each cluster, we chose the closest images to
the centroid of that cluster.
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