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Abstract 24 

Ongoing declines in insect populations have led to substantial concern and calls for conservation 25 

action. However, even for relatively well-studied groups, like butterflies, information relevant to 26 

species-specific status and risk is scattered across field guides, the scientific literature, and 27 

agency reports. Consequently, attention and resources have been spent on a miniscule fraction of 28 

insect diversity, including a few well-studied butterflies. Here we bring together heterogenous 29 

sources of information for 396 butterfly species and 1,004 subspecies to provide the first regional 30 

assessment of butterflies for the 11 western US states. For 184 species, we use monitoring and 31 

other observational data to characterize historical and projected trends in population abundance; 32 

for another 212 species (for which sufficient observational data are not available), we use 33 

exposure to climate change, development, geographic range, host breadth and other factors to 34 

rank species for conservation concern. We also organize information relevant to subspecific risk 35 

and prioritize a top 50 subspecies for further attention. A phylogenetic signal is apparent, with 36 

concentrations of declining and at-risk species in the families Lycaenidae and Hesperiidae. A 37 

geographic bias exists in that many species that lack monitoring data occur in more southern 38 

states where we expect that impacts of warming and drying trends will be most severe. Legal 39 

protection is relatively uncommon among the taxa with the highest risk values: of the top 100 40 

species, one is listed as threatened under the US Endangered Species Act and one is a candidate 41 

for listing; of the top 50 subspecies, 15 have federal legal protection and one is under review for 42 

protected status. Among the many taxa not currently protected, we highlight a short list of 43 

species in decline, including Vanessa annabella, Thorybes mexicanus, Euchloe ausonides, and 44 

Pholisora catullus. Notably, many of these species have broad geographic ranges, which perhaps 45 
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highlights a new era of insect conservation in which small or fragmented ranges will not be the 46 

only red flags that attract conservation attention. 47 

KEYWORDS 48 

Anthropocene, butterfly, climate change, Lepidoptera, population viability analysis, 49 

demographic uncertainty, extinction, heterogeneous data, hierarchical Bayesian model  50 

 51 

 52 

INTRODUCTION 53 

Reductions in abundance, contractions in geographic range, extirpation, and extinction have 54 

become common features of wild plant and animal populations impacted by the various stressors 55 

of the Anthropocene (Dirzo et al. 2014, Turvey and Crees 2019). Effects on individual 56 

populations translate into depauperate assemblages of species in remaining natural lands, even 57 

those far removed from the most immediate effects of habitat destruction and degradation 58 

(McLaughlin et al. 2002, Brook et al. 2008). To the extent that the loss of evolutionary lineages 59 

(populations, species and higher taxonomic groups) is a part of life on earth and always has been, 60 

the current mass extinction crisis affords ecologists the chance to study extinction as an 61 

important earth-system process (Benton 2003). However, the need to maintain functioning 62 

natural ecosystems is increasingly generating motivation among scientists and the general public 63 

to reverse or slow whatever biotic losses might still be addressed (Naeem et al. 2016). Concern 64 

for functioning ecosystems has been elevated in recent years by a steady pulse of papers 65 

reporting declines in insect abundance and diversity (Eisenhauer et al. 2019, Wagner 2019) that 66 

have inspired calls for new conservation attention focused on "the little things that run the world" 67 

(Wilson 1987, Goulson 2019, Cardoso et al. 2020).  68 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492972doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Forister et al. p. 4 

 For certain charismatic and well-studied organisms, like the greater sage-grouse 69 

(Centrocercus urophasianus) or the desert tortoise (Gopherus agassizii), governmental agencies 70 

have been mobilized on a regional scale to monitor populations and management efforts, often in 71 

a proactive rather than reactive way (Pilliod et al. 2020). That kind of conservation and 72 

management depends on the synthesis of multiple lines of information including population 73 

monitoring, natural history studies, and geographic surveys. For insects, the taxonomic diversity 74 

is so great and the available information is so sparse (Cardoso et al. 2011), that proactive 75 

conservation informed by diverse data types has rarely been an option. As a consequence, insect 76 

conservation has often been motivated largely by fragmentation and small geographic ranges 77 

(Samways 2007, Diniz-Filho et al. 2010). Exceptions to that pattern include a few European 78 

countries where studies of butterflies have been sufficiently thorough in terms of natural history 79 

and monitoring that researchers have been able to prioritize species for conservation attention in 80 

a way that follows the International Union for Conservation of Nature (IUCN) and the Red List 81 

framework (Fox et al. 2011, van Swaay et al. 2011, Maes et al. 2012, Bonelli et al. 2018). That 82 

depth of species-specific information for insects is unusual, even for butterflies, and most 83 

countries will have a more complex mix of some monitoring or observational data, natural 84 

history observations, and expert opinion (New et al. 1995, Edge and Mecenero 2015, Geyle et al. 85 

2021).  86 

 Butterflies in the western United States provide an excellent case study for the challenge 87 

of conservation prioritization that involves a mixture of heterogenous data types and sources of 88 

information. The region does include butterfly monitoring programs, but also expansive areas 89 

that are sparsely populated and understudied, including in particular the Intermountain West with 90 

hundreds of mountain ranges in the nearly 500k square kilometers of the Great Basin Desert. The 91 
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most temporally-intensive butterfly monitoring program in the western US is the Shapiro transect 92 

of ten permanent sites across Northern California that have been monitored biweekly during the 93 

flight season for between 35 and 51 years (Shapiro 2022). Many years before the entomological 94 

world made a collective pivot to the problem of insect declines (Hallmann et al. 2017), work 95 

with the Shapiro data documented shifting spring phenologies (Forister and Shapiro 2003), and 96 

the influence of land use and warming temperatures on extensive declines in abundance and 97 

species richness (Forister et al. 2010, Casner et al. 2014b).  98 

 Within the last couple of years, the issue has been raised of geographic and taxonomic 99 

heterogeneity or consistency of declines (Crossley et al. 2020, van Klink et al. 2020). This was 100 

the impetus for asking if results from the temporally-intensive Shapiro dataset would be 101 

consistent with geographically-extensive monitoring data from the North American Butterfly 102 

Association (NABA) and iNaturalist observations across the 11 western states (Forister et al. 103 

2021). That effort quantified a compounding loss of 1.6% fewer butterflies observed per year and 104 

highlighted the negative influence of warming and drying conditions on butterfly populations in 105 

natural areas. However, the species included in Forister et al. (2021) were only those common 106 

and widespread enough to be present with sufficient frequency in monitoring databases to allow 107 

for inclusion in statistical models. Moreover, an attempt was not made to combine different lines 108 

of information into a ranking of species for conservation concern.  109 

 Here we address that need by taking a multi-faceted approach to conservation 110 

prioritization that utilizes observational data when available (for approximately half the species) 111 

and a combination of data types for other species, including natural history traits and quantitative 112 

estimates of exposure to climate change and development. We also include an assessment of 113 

subspecies using a combination of conventional conservation rankings and data on historical 114 
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occurrences. The different data types are detailed below and are used (1) to produce a 115 

quantitative ranking that highlights the taxa most severely declining and most likely to face 116 

regional extirpation or extinction in coming decades; and (2) to identify geographic and 117 

taxonomic knowledge gaps in our understanding of western butterflies. It is our hope that these 118 

results will be used by conservation practitioners and land managers to guide restoration and 119 

protection efforts, and will also motivate additional monitoring and the development of new 120 

population models that take maximum advantage of the heterogenous data types we have 121 

brought together. Throughout this paper, we use the word "risk" (and related terms, like "risk 122 

index") in a flexible way that encompasses evidence of past decline, projected declines, and 123 

combinations of traits that could predispose species to ongoing and future declines. This 124 

flexibility is necessary given the nature of our project encompassing species for which different 125 

kinds and quantities of information are available, but in all cases we intend the concept of high 126 

risk to flag species that could profitably receive careful attention from ecologists, conservation 127 

biologists, and the general public. 128 

 129 

MATERIALS AND METHODS 130 

A schematic overview of our methods is shown in Figure 1, emphasizing the flow of information 131 

from external data sources through analyses to the generation of quantitative risk assessment. All 132 

parts of the process are discussed in detail here. Starting with the 875 taxa on the North 133 

American Butterfly Association's 2nd edition checklist of butterflies occurring north of Mexico 134 

(NABA 2018), we retained 396 species with resident (non-vagrant) status in the eleven western 135 

states (Washington, Oregon, California, Idaho, Montana, Nevada, Wyoming, Colorado, Utah, 136 

New Mexico, and Arizona) based on range maps in Glassberg (2017), and collapsed 18 137 
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subspecies into full species. For clarity and in order to facilitate wide use of our results, we also 138 

reference a second checklist by Pelham (2022) in places where names differ. The Pelham list 139 

includes a larger number of subspecies and is thus important in particular for our organization of 140 

subspecific risk information, discussed in detail below. 141 

 Of the 396 species from the NABA list, 184 were present in monitoring databases (either 142 

the Shapiro transect or the NABA count circles) with sufficient frequency to be used in 143 

population models. For those species, which we will refer to in text and in figures as the "A 144 

group", our approach is to rank species based on observed and forecast population trajectories. 145 

Acknowledging the great uncertainty inherent to insect time series analyses, we present the 146 

ranking of A group species in a way that risk associated with other variables (e.g., geographic 147 

range size) can be evaluated by the reader. As will be discussed below, we use iNaturalist 148 

observations for A group species as a third source of historical information, but give it 149 

proportionally less weight than the Shapiro or NABA data. 150 

 For the other 212 species (the "B group", not present in monitoring schemes in sufficient 151 

frequency for inclusion in core population models), we have accumulated seven variables that 152 

form a composite picture of risk: geographic range, exposure to developed land, exposure to 153 

climate change, average (range-wide) precipitation, voltinism (number of generations per year), 154 

wingspan, and host breadth (or "host range"). We combine those seven variables into a single 155 

risk index as a weighted sum, where the weights are determined in part by our previous work 156 

with western butterflies, but also by analyses of the A group (described in detail below). The 157 

weighting scheme and other steps in data processing involve informed but partly subjective 158 

judgements with respect to threats to butterflies and natural history traits that predispose 159 

butterflies to risk. We have presented all data decisions in a transparent way, so that the reader 160 
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can judge for themselves the consequences of our methods and decisions, and alternative weights 161 

can be assigned by researchers using an online tool (see supplementary material). In the sections 162 

below, we describe first the three observational datasets (Shapiro, NABA, and iNaturalist) and 163 

associated analyses, then the seven other variables and how they are combined into composite 164 

risk indices and are visualized geographically and in a phylogenetic context. 165 

 166 

North American Butterfly Association (NABA) counts and models 167 

The NABA butterfly count program is a suite of hundreds of individual locations throughout the 168 

country that are monitored during midsummer (typically once, but in some cases more than 169 

once) by a group of at least four observers recording counts of all individual butterflies seen and 170 

identified to species, in a 15-mile (24.14 km) diameter circle. Observations from count circles in 171 

the 11 western states encompass different numbers of years at different sites from the 1970s to 172 

the present, with the final year in the dataset we examined being 2018 (the data were compiled 173 

for analysis in 2019). For the current project, we filtered the observations so that we only 174 

included sites that had been monitored for at least ten years, and with the final year being 2017 175 

or 2018 (we did this so as not to generate forecasts for species with a substantial recent gap in 176 

observations). More than one monitoring day has been reported per year at a small number of 177 

sites, and for those locations we retained only the survey closest to the 4th of July, which is the 178 

traditional target date for these censuses. We then excluded any site-by-species combinations in 179 

which a species was not present for at least ten years (not necessarily consecutive years); finally, 180 

only species meeting the latter criterion for at least three locations were retained. Those filters 181 

resulted in a dataset with 162 species from 44 locations used in the core model and associated 182 

population forecasts (we experimented with less stringent filters but found that model 183 
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performance suffered). For species with less data, we ran a second set of models with lower 184 

thresholds, as described after the core model below.  185 

 Previous work with the NABA data used hierarchical Bayesian linear Poisson regressions 186 

run separately for each species (Forister et al. 2021). Here we advance that approach using a 187 

single, multi-species model that shares information about heterogeneity in the observation 188 

process across species observed at each site (Riecke et al. 2021). The components of the model 189 

(each described in turn below) include an observation sub-model, an abundance sub-model, and 190 

a forecast or simulation process that projects occupancy (the fraction of sites with non-zero 191 

presence by species) for various intervals of years in the future. 192 

 For the observational component, we modeled the counts of individual butterflies (y) 193 

using a Poisson distribution given the expected count of each species at each location during 194 

each year ("#,%,&), where t, l, and s identify the year, location, and species respectively: 195 

'#,%,&~Poisson."#,%,&/. 196 

We modeled the expected count ("#,%,&) as a function of an abundance index (1#,%,&), year- and 197 

site-specific survey effort (2), and a year- and location-specific random effect (3#,%) shared 198 

among species: 199 

"#,%,& = exp(ln(1#,%,&) + 2 ∗ effort#,% + 3#,%), 200 

with a vague prior for the effect of survey effort:  201 

2	~	normal(0,10). 202 

The empirical variable for effort is the z-standardized total hours searched by all survey groups 203 

at a site on a day. After accounting for the effect of survey effort, we modeled additional 204 

variation in detection probability for each survey or monitoring day as a random effect shared 205 

among species. This random effect can be thought of as the combined effects of survey-specific 206 
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variation in detection due to processes such as variation in observer experience and local weather 207 

conditions (Riecke et al. 2021): 208 

3#,%	~	normal(0, EF), 209 

E	~	gamma(1,1). 210 

 For the abundance sub-model, we assigned priors for initial population abundance indices 211 

for each species at their first encounter (H&I#JK,&LJMIJ&K) at a study site as a function of initial survey 212 

effort and the initial count: 213 

1NO,P,%,&	~	gamma(exp[ln.'NO,P,%,&/ + .effortNO,P,%,& ∗ 	−0.1/], 1). 214 

We modeled changes in population size (N) from one year to the next for each species at each 215 

site as a function of year (t), location (l), and a species(s)-specific population growth rate (λ): 216 

1TUV,W,X = 	1T,W,X ∗ YT,W,X	. 217 

Variation in population growth rate was in turn modeled as a function of a species-specific mean 218 

population growth rate (γs), and species-specific random variance in population growth rate: 219 

YT,W,X	~	lognormal(ZX, [XF), 220 

ZX	~	normal(0,1), 221 

[XF	~	gamma(1,1). 222 

 Finally, for each species at each location, we projected the abundance index into the 223 

future using Monte Carlo simulation from the posterior distributions of species-specific 224 

population growth rate (YT,W,X), and species-specific population growth rate variance ([XF): 225 

1TUV,W,X = 	1T,W,X ∗ YT,W,X, 226 

YT,W,X	~	lognormal(ZX, [XF). 227 

We defined local ‘extirpations’ as locations at which the expected count of a species given mean 228 

effort was less than 0.1 individuals, and calculated extirpation probability for each species at 10, 229 
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20, and 50 years into the future. Thus, one minus the extirpation probability is the probability of 230 

population persistence, and it is that value (probability of persistence) for each species from the 231 

core NABA model that moves forward (represented by 1k samples from the final year of the 232 

simulations) into the calculation of the risk index for the A group species. 233 

 The above model and 50-year projections were used for 162 species (in the A group) with 234 

sufficient data (passing filters described above). For another 105 species (with a median presence 235 

of 2 sites per species), we used a less complex model. These species are part of the B group with 236 

minimal observational data that were too sparse to be included in the core NABA model 237 

described above. However, in the interest of presenting maximal information on all species, we 238 

estimated trends through time for this subset of the B group (albeit at many fewer sites per 239 

species); the results are reported but not incorporated into the risk index calculation for these 240 

species. In this model, the counts (y) were also modeled with a Poisson distribution given the 241 

expected count for each location and year ("#,%), where t is the year and l is the location: 242 

'#,%	~	Poisson."#,%/. 243 

The expected count ("#,%) was then modelled as a linear function of a site-specific intercept (\%), a 244 

site-specific (s) year effect (2V), and site-specific effect of effort (2F): 245 

ln."#,%/ = \% + 2V,& ∗ year# + 2F,& ∗ effort#,%. 246 

The intercept and both beta coefficients were drawn from normal priors, with the normal 247 

truncated at zero to be positive for effort (2F); the means and variances of those distributions 248 

were in turn drawn from hyperpriors (thus estimating effects across sites) with means drawn 249 

from normal distributions (with mean of zero and variance of 100) and variances drawn from 250 

gamma(1,1) as in the core model above. For 35 species present at only a single site, the model 251 

was run without the hierarchical (across sites) structure. The output of these secondary models 252 
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(for the 105 species) was retained as a directional probability (the fraction of the posterior 253 

distribution above zero for species with a positive year coefficient, and below zero for species 254 

with a negative year coefficient). 255 

 All Bayesian models were implemented using JAGS (version 4.3) and the jagsUI 256 

package (Kellner 2017) in R (R Core Team 2020). The core model (for A group species) was run 257 

with three chains for 500k iterations, with a 250k iteration burn-in. The secondary models (for 258 

the 105 B group species with some presence in the NABA data) were run with two chains for 2k 259 

steps and a 1k burn-in. Model diagnostics included inspection of plots of chain histories (all 260 

chains converged; _̂ < 1.01), and effective samples sizes. 261 

 262 

Shapiro transect data and models 263 

Ten long-term study sites across northern California have been monitored for between 35 and 51 264 

years (depending on the site), with the presence of all butterflies noted along fixed routes every 265 

two weeks during the flight season. Data used here were compiled in 2021, including 266 

observations through 2020; earlier years were truncated so the dataset starts at 1985, except for 267 

three sites where data collection began in 1988. Species by site combinations of at least eight 268 

years were retained for analyses of 133 species. Additional details on sites, butterflies and field 269 

methods have been described elsewhere (Forister et al. 2010, Halsch et al. 2021, Shapiro 2022). 270 

In brief, data from the Shapiro sites have been analyzed using hierarchical Bayesian linear 271 

models in which the response variable (the number of days a species is observed in a year) is 272 

modeled as a binomial process, with a beta coefficient from the year term in the linear model 273 

representing change through time in the probability that a species is observed (Nice et al. 2014, 274 

Halsch et al. 2021). Here we use the version of this model and implementation as described in  275 
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Forister et al. (2021) in which the model was run separately for each species and beta 276 

coefficients for years are estimated within and across sites; the higher level coefficients (across 277 

sites) are used as indices of population change for each species across the northern California 278 

sites. As with the NABA models, model diagnostics included inspection of convergence and 279 

effective sample sizes. For downstream analyses (the creation of the risk index for A group 280 

species), 1k samples were retained from the posterior distributions of the year coefficients 281 

estimated across sites for each species. For two species, Lycaena rubidus and Agraulis vanillae, 282 

the year coefficients were extreme outliers (in the negative and positive direction, respectively) 283 

and were not used in the creation of the risk index values (described below) but we do include 284 

those coefficients in visual summaries of patterns across species. 285 

 The year coefficients from this modeling approach have been shown to be effective 286 

indices of change in total abundance as reflected in total counts of individuals which are 287 

available from a subset of years and sites (Casner et al. 2014a). Unlike the main NABA model, 288 

described in the previous section, we have not taken a forecasting approach with the Shapiro 289 

data. The two datasets have different strengths and weaknesses. The strengths of the Shapiro data 290 

are intensity and consistency of observation, which lend precision to estimates of species-291 

specific change through time. In contrast, the NABA observations are only once per year, but the 292 

geographically distributed nature of the NABA sites (with greater independence among 293 

locations) lends value to the forecasting of population occupancy with our simulation approach 294 

(which does not account for dispersal or demographic connections among locations). 295 

 296 

iNaturalist observations and expected ranges 297 
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Observations recorded on the iNaturalist platform are a wealth of geographic and phenological 298 

information, which researchers are increasingly using to answer ecological questions (Prudic et 299 

al. 2018, Kirchhoff et al. 2021), even for rare insects (Wilson et al. 2020). In our previous work 300 

with western butterflies, we used iNaturalist records in time series models, which revealed trends 301 

that were generally consistent with temporal patterns in the NABA and Shapiro data (Forister et 302 

al. 2021). Here we take a different approach, with the goal of using the broad geographic 303 

coverage of iNaturalist records to generate information on species status that is complementary 304 

to the detailed time series information from the other two observational datasets. We used 305 

iNaturalist records from the last 15 years (2007-2021) to generate a community scientist-derived 306 

estimate of area of occupancy. Those area of occupancy estimates were then compared to expert-307 

derived range area estimates (described below) in a simple linear regression, and residuals from 308 

that relationship were saved. In other words, we asked which species have been seen more or less 309 

frequently in the last 15 years relative to the expected area based on the expert-derived range.  310 

 To generate the citizen scientist-derived area of occupancy estimates, we downloaded 311 

iNaturalist research grade observations from the Global Biodiversity Information Facility 312 

(GBIF.org 2021a, 2021b, 2021c, 2021d, 2021e, 2021f) for all butterfly species in the 11 western 313 

states. We retained observations from 2007 onwards for species that were observed at least 100 314 

times (with very few exceptions, these were all A group species, present in Shapiro or NABA 315 

datasets, thus the analysis of iNaturalist records was confined to the A group). We calculated an 316 

unweighted Gaussian Kernel Density estimate using the function sp.kde from the R package 317 

spatialEco v1.3-7 (Evans and Ram 2021) based on the iNaturalist observations with a 318 

distance bandwidth of 2 (four examples are shown in Figure S1). The resulting raster was 319 
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converted to a disjoint spatial polygon (i.e. not all parts of the range needed to be connected) that 320 

encompassed all values > 0.00001 and calculated the area of the resulting range map.  321 

 322 

Geographic ranges and voltinism 323 

Expert-derived range estimates from Glassberg (2017) were generated from Keyhole Markup 324 

Language (.kml) files for each species. The range of each species was separated by voltinism 325 

(the number of generations per year in different portions of the range), with spatial polygons 326 

retained separately for uni-, bi-, and multivoltine regions. Quantitative areal estimates were then 327 

derived for all range portions within 11 western states using the area function in the R package 328 

raster v3.5-11(Hijmans et al. 2021), which estimates area based on the size of raster cells. 329 

This estimate is biased closer to the poles; however, we only generated range areas within the 11 330 

western states (excluding portions of ranges that extended farther east, north into Canada, or 331 

south into Mexico) and thus the bias is expected to be minimal.  332 

 The expert-derived geographic ranges were used for multiple purposes (see Figure 1), 333 

including comparison with iNaturalist ranges (described in the previous section). The total 334 

expert-derived range estimates for each species were also used as a variable that contributes to 335 

the composite risk index, as did the fraction of the range that was univoltine (i.e., for simplicity, 336 

we focus on a univoltine vs bi- plus multivoltine comparison, rather than considering bivoltinism 337 

as a distinct category). The outlines of the expert-derived ranges were also used to calculate 338 

exposure to land use and climate (as described in the next section) and to calculate weighted 339 

latitudinal midpoints as another geographic descriptor. We used the function rasterToPoints from 340 

the raster package v3.5-11 (Hijmans et al. 2021) to convert each species range map to 341 
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coordinates; weighted latitudinal midpoints were then calculated that account for the longitudinal 342 

width of the range (i.e. the mean latitude across all cells in the raster). 343 

 As yet another line of expert-derived geographic information, we assigned each species a 344 

qualitative biogeographic designation of North, South, East, or West to reflect where the 345 

majority of the range area is found. For example, species labelled as western have the majority of 346 

their range in the 11 western states, with a minor presence north or south of the US borders or in 347 

the eastern states. Northern species have most of their range in Canada with only outlier (and 348 

often isolated) locations in the western US; similarly, southern species are those with ranges in 349 

Mexico often extending only dozens or hundreds of square kilometers into Arizona or New 350 

Mexico. Finally, species were labelled as eastern if they either had a transcontinental range (e.g., 351 

Pieris rapae, Vanessa cardui) or had a range almost entirely in the eastern states with only a 352 

minority of the range area in the 11 western states. These assignments were made by visual 353 

inspection of range maps in field guides (Scott 1986, Glassberg 2017). 354 

 355 

Land use and climate change       356 

Previous work with butterflies in our region has revealed effects of land use and climate change 357 

that are complex, potentially interacting, and dependent on both the species involved and the 358 

landscape context (Casner et al. 2014b, Forister et al. 2018, Halsch et al. 2021). Summarizing 359 

exposure to land use and climate change is not a simple task, but we have taken the relatively 360 

straightforward option of using the range outline (described in previous section) to quantify these 361 

stressors within the range of each species. Note that this differs from the use of point locations to 362 

quantify proximity to, for example, urban development (Jamwal et al. 2021). The range-outline 363 

approach is a better fit for our goals simply because all species have the same starting data (the 364 
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expert-derived ranges), which would not be true of 396 species using available point-occurrence 365 

records in, for example, iNaturalist. For highly mobile animals, like butterflies, the range-outline 366 

method has another advantage in that we do not have to assume that point locations of 367 

observations represent the only or most relevant habitats. 368 

 To quantify land use change, we reclassified the 2020 Cropland Data Layer (USDA 369 

2020) into land cover types of agriculture, development, or natural and semi-natural habitats 370 

using the associated Cropland Data Layer scheme; all crops were classified as agriculture, 371 

development of any intensity level as development, and remaining land cover types (including 372 

pastureland) as natural or semi-natural habitat. For each species, we used the spatial polygon 373 

generated from the range map to clip the rasterized land cover types and calculated the 374 

proportion that was agriculture or development. This was done separately for regions of different 375 

voltinism, but these were summed to a single value for each species (see Figure S2 for examples 376 

of range-wide exposure to land use). 377 

 To estimate climate change exposure, we used TerraClimate data for minimum 378 

temperature, maximum temperature, and precipitation (Abatzoglou et al. 2018), which we 379 

resampled from ~4km spatial resolution to ~40km for computational efficiency. Using 380 

multivariate Mahalanobis distance as a measure of departure (Farber and Kadmon 2003, 381 

Abatzoglou et al. 2020), we calculated departure from baseline conditions (1958-1987) for the 382 

most recent thirty years (1991-2020) for each cell. To estimate exposure to climate change, we 383 

calculated rate of change in departure over time using Theil-Sen slopes (Theil 1950, Sen 1968) 384 

which estimate the median slope between each pairwise set of observations and are relatively 385 

robust to outliers near the start or end of a series. We generated a raster of these trends in 386 

departures for the eleven western states. For each species, we then clipped the climate departure 387 
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raster layer using the species range maps as spatial polygons and calculated the mean climate 388 

change exposure across that portion of the range (as with land use, this was done separately by 389 

voltinism, but then added for a single value per species for further analyses; see Figure S2 for 390 

examples). We also calculated 30-year climate normals (1991-2020) for minimum temperature, 391 

maximum temperature, and precipitation annually and within each season across the entire range 392 

for each species. Among those three variables, precipitation was recently found to be predictive 393 

of changes in butterfly abundance across the west (Forister et al. 2021), thus it was used as a 394 

static description of climate for inclusion in the composite risk index (described below). 395 

 396 

Wingspan and host range 397 

Among the many morphological and natural history traits that could be informative of status and 398 

risk, body size and ecological specialization are widely studied, and thus relevant data are 399 

available for many species. More narrow diets are often associated with greater sensitivity to 400 

habitat loss and other disturbance (Hughes et al. 2000), and dispersal ability is a key determinant 401 

of metapopulation resilience in the face of fragmentation or other stressors. Wingspan has been 402 

shown to be a proxy for dispersal ability in butterflies (Sekar 2012). For most of the butterflies 403 

studied here, wingspan was previously estimated (in Forister et al. 2021) with data derived from 404 

Opler (1999). For a small number of species included in the present study for which a 405 

measurement was not available from that source, we supplemented with ad hoc online searches. 406 

Similarly with diet breadth (or host range), we used a single source for the vast majority of 407 

species (Scott 1986), and supplemented from other field guides and other online resources for the 408 

few species with missing data.  409 
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 We gathered both the number of plant genera and plant families reported as caterpillar 410 

hosts for each species, and then calculated a combined index of diet breadth as the number of 411 

taxonomic families plus the natural log of the number of genera. That calculation of taxonomic 412 

diet breadth puts most weight on the number of families but allows for some influence of the 413 

number of genera eaten. For example: a species that uses hosts in two genera in two families 414 

would have a diet breadth of 2.69 (2 + ln(2)), while a species that uses plants in three genera in 415 

two families would have a diet breadth of 3.10 (2 + ln(3)). We did not attempt to gather species-416 

level host records, for which too much data would be missing or unreliable. 417 

 418 

Transformations  419 

In total, we compiled ten variables that contribute to the prioritization of A and B group species 420 

in different ways: (1) 50-year occupancy projections (probabilities of population persistence) 421 

based on NABA data; (2) historical rates of change from the Shapiro data; (3) recent change in 422 

range based on the difference between community scientist-derived and expert-derived ranges; 423 

(4) geographic range based on expert assessment; (5) exposure to agricultural and other 424 

developed lands; (6) exposure to climate change; (7) average precipitation throughout the range; 425 

(8) the fraction of the range with one generation per year; (9) wingspan; and (10) an index of diet 426 

or host breadth (Figure 1). Prior to their use in assigning a risk value to each species (discussed 427 

in the next section), each variable was subjected to a specific set of transformations that resulted 428 

in a variable with a range of 0 to 1 where larger values represent greater risk. Depending on the 429 

nature of the variable (when larger values do or do not naturally represent higher risk), the 430 

transformations included inversion, and (for all variables) standardization between 0 and 1 (by 431 

dividing by the largest value). In some cases, for highly skewed variables, a natural log 432 
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transformation was applied as the first step. For example, wingspan was first log transformed, 433 

then multiplied by -1, such that all values become negative and the larger wingspans become 434 

larger negative numbers; the distribution was then shifted to the positive by adding the absolute 435 

value of the smallest (most negative) value to all of the numbers; finally, the distribution was 436 

divided by the largest value, thus scaling the numbers between 0 and 1, where the smallest 437 

wingspans (representing the greatest risk because of less dispersal ability) are now closest to 1. 438 

All transformations and scaling steps are illustrated in Figure S3. 439 

 For visualization of the transformed and scaled variables, we divided the distributions 440 

(Figure S3) into quantiles and assigned circles of different sizes to the different intervals, with 441 

larger circles indicating larger values and greater assumed risk.  For most of the variables, we 442 

found that the following breakpoints provided a useful assignment of circles for visualization: 443 

0.15, 0.5, and 0.85; in other words, the interval from 0 to 0.15 was assigned the smallest circle 444 

(the least risk), from 0.15 to 0.5 the next largest, etc.  Breakpoints differed for some of the more 445 

skewed variables (e.g., host range), but the results are interpreted in the same way (larger circles 446 

represent larger assumed risk). 447 

 448 

Calculation of risk index for A and B group species 449 

The A group species are those species for which data were available from at least one of the 450 

monitoring programs (Shapiro or NABA), and many of these species also had enough iNaturalist 451 

observations for analysis. For these species, we calculated a weighted sum based on those three 452 

lines of information with weights as follows: 47.5% NABA, 47.5% Shapiro, and 5% iNaturalist. 453 

The small weight given to the iNaturalist data reflects the fact that the data are heterogeneous (in 454 

space and among species) and rapidly accumulating; these data are thus complex and potentially 455 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492972doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Forister et al. p. 21 

important but still only barely explored from an analytical perspective. Alternative weighting 456 

schemes among all variables (including the three observational variables) can be explored using 457 

an interactive, online tool; see supplementary material. 458 

 The variables used in our A group weighting scheme (multiplied by the three 459 

percentages, 47.5%, 47.5%, and 5%) were the 50-year probabilities of persistence (from NABA), 460 

historical rates of change (from Shapiro), and observed range changes (from iNaturalist) that had 461 

been transformed (see previous section) such that larger values represent greater evidence for 462 

decline or (in the case of NABA) projected decline. Thus, a species with the most severe 463 

declining values (historical or projected) for each dataset would receive a composite risk score of 464 

1. To incorporate uncertainty retained from Bayesian analyses of the NABA and Shapiro data, 465 

the composite risk index was recalculated 1k times using 1k samples of the relevant posterior 466 

distributions; we then calculated a mean and 85% highest density interval of risk for each 467 

species.  468 

 The B group species are those lacking observational data. Thus, we used a composite of 469 

the other seven variables to estimate risk. We experimented with a number of weighting schemes 470 

for those seven variables and settled on an approach that was partly influenced by previous 471 

research (e.g., Forister et al. 2021) but also informed by an additional analysis of the species in 472 

the monitoring data. Specifically (for that additional analysis), we took the composite risk index 473 

for the A group species (based on NABA, Shapiro, and iNaturalist data) and used linear 474 

regression models to determine which of the other seven variables were most predictive of that 475 

risk index (following general protocols with other Bayesian models as described above). The 476 

exact weighting scheme for B group species (influenced partly by results of the analysis of the A 477 

group) is described fully in results below. Clearly many schemes are possible for a weighted sum 478 
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of seven variables, and we report correlations among outcomes from different schemes. Finally, 479 

many of the B group species had some data from the NABA dataset that were not sufficient for 480 

inclusion in our main model and occupancy forecasts. For those species, we ran a less complex 481 

model (described above as the secondary set of NABA models) and report the results along with 482 

other B group results, but we do not incorporate those values into the B group risk index to 483 

maintain consistency in risk index calculations. 484 

 The calculation of the risk index for both the A and B groups relied on a complete data 485 

matrix. For most of the variables used for the B group, there were no missing values, specifically 486 

for all of the variables deriving in part from the expert geographic ranges: range area, voltinism, 487 

precipitation, development, and climate departure (Figure 1). A few species lacked data for host 488 

range, and these we filled with interpolation of the median value calculated across all species. A 489 

more consequential decision was to similarly use median interpolation with the observation data 490 

and the A group species. In other words, a species without sufficient iNaturalist observations for 491 

analysis was given the median value associated with that variable prior to the calculation of the 492 

risk index. The same was true for species not represented in the NABA or Shapiro data: lacking 493 

any other information we assume those species are simply following the central tendency (for 494 

historical and projected change) as estimated across other species.  495 

 496 

Risk index for subspecies 497 

A list of subspecies present in the western United States (Arizona, California, Colorado, Idaho, 498 

Montana, New Mexico, Nevada, Oregon, Utah, Washington, and Wyoming) was gathered from 499 

Pelham (2022). Geographic inclusion for subspecies was based on described ranges in original 500 

descriptions and records from public databases (n = 1,004 subspecies). Two categories of 501 
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conservation need were considered in ranking subspecies: 1) global, national, and subnational 502 

(state) ranks assigned by the organization NatureServe; and 2) the last year a subspecies had a 503 

publicly available recorded observation based on our inspection of available databases.  504 

 A full description of NatureServe ranking methods and rank descriptions is available in 505 

Faber-Langendoen et al. (2012). Briefly, ranks are assigned a 1-5 number where 1 is Critically 506 

Imperiled, 2 is Imperiled, 3 is Vulnerable, 4 is Apparently Secure, and 5 is Secure. Rankings are 507 

assessed using a Rank Calculator that includes aspects of rarity, threats, and population trends. 508 

Ranks are used to assess imperilment over the entire (global) range of subspecies as well as at 509 

the national and state levels. For subspecies, global rankings are indicated by a “T” rank 510 

following the global rank. Thus, an Imperiled subspecies (rank of 2) of an Apparently Secure 511 

species (rank of 4) would have the rank G4T2. National (“N”) and state (“S”) rankings are 512 

assessed separately for species and subspecies. Additional ranks are “X” for taxa that are 513 

presumed extirpated, “H” if a taxon is possibly extirpated with records in the last 20-40 years 514 

and might be rediscovered, as well as others including "NR" for taxa that have not yet been 515 

assessed (Faber-Langendoen et al. 2012).  516 

 First, we created a summary measure of subspecies imperilment at various geographic 517 

scales based on the NatureServe evaluations by creating a quantitative scale for global, national, 518 

and state rankings. Points increased with imperilment, such that a rank of G1 is worth 4 points 519 

and G5 is worth 0 points. This scoring was completed similarly for the nominate species global 520 

("G") ranks, global subspecies (“T”) ranks, national (“N”) ranks, and each state with a S1-S5 521 

ranking. State scores for each species were averaged to create a single state-level score. Any 522 

other rankings including "X" and "H" were scored as a 0 as these are equally uninformative with 523 
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respect to realized conservation need. A total score for each taxon was calculated as the sum of 524 

the global, national, and state scores such that a taxon could have a score from 0-16.   525 

 Second, the most recent year of observation for each subspecies was collected from 526 

various accessible databases, websites, photographic collections, and peer-reviewed literature, 527 

with a goal of finding one observation for a taxon from 2001 or more recent as evidence of 528 

recent presence. Searches began with all specimen records by family in the Symbiota Collections 529 

of Arthropods Network for the 11 western states (SCAN 2022). For any taxon that did not have a 530 

post-2001 observation, progressive searches through the literature were made until one was 531 

found or until all references had been searched for the most recent record available; a full list of 532 

resources used is available Table S1. Any taxon with a record from 2001 or more recent received 533 

a score of 0, and each year previous to this increased the score by 1 point. Scores for this 534 

category ranged from 0 to 34 (for Megathymus yuccae harbisoni). While we have done our best 535 

to collect available observations, identification to the subspecies level was challenging at times 536 

due to either recent taxonomic changes or difficulty identifying individuals using only 537 

photographs. We do not believe these issues significantly affect our overall ranking of 538 

subspecies. 539 

 As with the species-level risk assessment, subspecies values for each of the three 540 

categories were normalized to be between 0 and 1 before the calculation of a composite index. 541 

The NatureServe score was given 75% weight towards a total score as it includes the most 542 

information regarding total threat or risk, and the year of observation scores were given 25% 543 

weight. Weighted scores for the two categories were added together to create a single 544 

comprehensive score for each subspecies between 0 and 1. Those scores were used to rank the 545 

subspecies, and we also asked if subspecies risk values were correlated with risk calculated 546 
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independently at the species level (calculations described in previous section). For species with 547 

multiple subspecies evaluated for risk, the subspecies values were averaged (within each nominal 548 

taxon), and then a simple Pearson correlation was calculated between the two sets of risk values 549 

(at the species and subspecies level). 550 

 551 

Geographic and Phylogenetic visualization of risk 552 

Finally, we asked how the composite risk indices were distributed across the landscape and 553 

across the phylogeny of western butterflies. From a spatial perspective, we calculated both 554 

species richness (separately for each cell in a raster covering the extent of the eleven western 555 

states) and average risk among species present in a cell. We did this separately for the A and B 556 

group species, and we restricted analyses to only species with higher risk values by subsetting to 557 

the upper 75th quantile of risk values separately for each list (A and B). Within those higher-risk 558 

groups, we converted each species range map from a spatial polygon to a raster layer where 559 

values within the range were set to 1 and values outside the range to 0. We summed these values 560 

across all rasters to produce a new raster of species richness. To calculate mean risk for each cell, 561 

we divided the cumulative risk index raster by the species richness raster.  562 

 For the evolutionary perspective, we used the phylogeny from Zhang et al. (2019) for all 563 

845 butterfly species from the United States and Canada. Briefly, this tree was based on 756 564 

universal single-copy orthologs we identified from 36 reference genomes using OrthoMCL (Li 565 

et al. 2003). Sequences of these orthologs were aligned using both local (BLAST [Altschul et al. 566 

1997] ) and global (MAFFT [Katoh et al. 2002] ) alignment methods, and only positions that 567 

were consistently aligned by both methods were used. Sequences of non-reference species were 568 

derived by mapping the Illumina reads to the exon sequences of the reference species and 569 
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performing reference-guided assembly. Multiple sequence alignments (MSA) of different 570 

orthologs were concatenated to a single MSA. This MSA was partitioned by codon position and 571 

used to build a tree by IQ-TREE (version 1.6.12) (Nguyen et al. 2015) with the most suited 572 

evolutionary model automatically found by IQ-TREE. 573 

The phylogeny was imported as a time-calibrated .tre file into R and pruned to our focal 574 

western butterflies (the combined A and B group lists). The package ggtree (Yu et al. 2017) 575 

was used to plot a phylogeny with tips labelled by risk categories assigned based on the quantiles 576 

of the risk distributions separately for the A and B group species. Specifically, species in the 577 

upper 90th quantile were labelled as "high risk," species between the 75th and 90th quantiles 578 

were labelled as "medium risk", and species below the 75th were "low risk."  Finally, the 579 

phylosig function from phytools (Revell 2012) was used to calculate lambda and K (with 580 

1000 simulations for the permutation test) as measures of phylogenetic signal for the continuous 581 

risk index across all species, which in this context is informative with respect to the extent to 582 

which closely related species share similar levels of risk. 583 

 584 

RESULTS    585 

We calculated an index of risk for 396 species, which includes two groups: 184 species in the A 586 

group with extensive monitoring or observational data, and 212 species in the B group without 587 

observational data (or without enough to be used in our primary population models). Not 588 

surprisingly, the B group species tend to have smaller geographic ranges (Figure 2a), which in 589 

part explains their reduced presence (just by geographic chance) in monitoring groups, but the 590 

two groups differ in other ways (Figure 2). The B group species have slightly lower exposure to 591 

development (Figure 2b) and moderately higher exposure to climate change (Figure 2c). The 592 
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higher climate change exposure is explained in part by the greater presence of more southern 593 

species in the B group, as seen by latitudinal midpoints (Figure 2g) and qualitative 594 

characterization of range (Figure 2h). 595 

 For the A group species, we modeled historical and projected population trajectories 596 

using different sources of observational data. Consistent with previous work with NABA data, 597 

our new model with shared (across-species) observation heterogeneity found a majority of 598 

species (71%) with annual growth rates below replacement (Figure S4). We used those estimated 599 

annual growth rates and the most recent year of observed counts to simulate 50 years into the 600 

future. The median fraction of extant locations (or probability of local persistence) per species at 601 

50 years was 0.60, and that fraction was positively related to historical population growth rates 602 

(Figure S4). Results from analyses of Shapiro data also find a majority of species with downward 603 

trends through time of varying magnitude (84.5% of species have negative year coefficients). We 604 

combined the 50-year persistence estimates (from the NABA model) with historical rates of 605 

change (from the Shapiro data) and an estimate of shift in range size based on community 606 

scientist observations (from iNaturalist) relative to expert range sizes to generate a composite 607 

risk index for the A group species. Note that the A group species are shown in Figure 3 with risk 608 

information associated with the other seven variables (geographic range, exposure to 609 

development, etc.), even though the actual ranking of the A group is based solely on the 610 

observational data (NABA, Shapiro, iNaturalist). We present the information in this way because 611 

we acknowledge the imperfect geographic coverage of monitoring programs and the inherent 612 

uncertainty in population models. Thus, the reader or conservation practitioner can easily see if 613 

two species with similar risk values in the A group (based on NABA, Shapiro and iNaturalist 614 

results) potentially have similar risk based on other variables like range size. We also generated 615 
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the risk values with an even split in weights between NABA and Shapiro data (leaving out 616 

iNaturalist), and found that the resulting risk values were correlated with our primary risk values 617 

at r = 0.997 (which reflects primarily the low weight assigned to iNaturalist observations but also 618 

the fact that they are correlated with results from Shapiro data, Figure S5). 619 

 Without observational data, the ranking of B group species required a partitioning of 620 

weights among the other lines of information. To partly inform that process, we used the A group 621 

species to estimate the effects of other variables on risk index (based on NABA, Shapiro, and 622 

iNaturalist data). The model explained a relatively small proportion of variance in the risk index 623 

(Table S2), but did demonstrate that smaller wingspans (99% probability of effect) and lower 624 

range-wide precipitation (86% probability of effect) are associated with risk for the A group 625 

species. In addition, we also suspected climate change would be important based on our previous 626 

work with western butterflies (Forister et al. 2021, Halsch et al. 2021). This is especially true 627 

given the large presence of B group species with ranges in the desert southwest (Figure 2h), a 628 

region heavily impacted by warming and drying trends. We adopted the following weighting 629 

scheme to calculate a single risk value for each species in the B group: 20% precipitation, 20% 630 

wingspan, 20% climate change, 10% development, 10% range size, 10% voltinism, and 10% 631 

host range; correlations among the seven variables as well as the three observational variables 632 

(for the A group) are shown in Figure S5. As a comparison to that scheme, we also ranked the B 633 

group species with equal weights among the seven variables (14.3%); the resulting risk values 634 

were correlated at r = 0.90 (t = 29.32, df = 210, P < 0.001) with the values from the primary 635 

scheme. With a third weighting scheme based on 50% from each of average range-wide 636 

precipitation and wingspan (the two variables identified by the analyses of A group risk), the 637 

correlation with the main scheme was r = 0.55 (t = 9.66, df = 210, P < 0.001).  638 
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 The top fifty species with the highest risk values from each of the A and B groups are 639 

shown in Figure 3 (the other species with lower risk values are in Figures S6, S7 and S8). For the 640 

highest-ranked A group species, agreement between the two monitoring schemes is apparent 641 

with large "risk circles" in both the NABA and Shapiro columns (Figure 3a). In some cases, 642 

these top-ranked A group species have also been seen less frequently over the last 15 years 643 

relative to expectation based on the expert-derived range maps (see the iNaturalist column in 644 

Figure 3a). Time series plots for two of those top species are shown in Figure 4 (Vanessa 645 

annabella) and Figure 5 (Euchloe ausonides); in Figure 6, neutral or upward trajectories can be 646 

seen for Poanes melane, the species with the lowest risk index among the A group species 647 

(Figure S8). Similar plots for all other A group species are available through an online tool (see 648 

supplementary material). The rankings for the A group species are shown with 85% credible 649 

intervals (Figure 2a), which are broad; this uncertainty reflects the high inter-annual variability 650 

inherent to the time series data being modelled (from both NABA and Shapiro) and should be 651 

kept in mind when interpreting the position of species on the A group list.  652 

 We compiled data for 1,004 subspecies, and ranked them using criteria that were largely 653 

based on NatureServe ratings, but also included the last year in which an observation was 654 

reported for a particular taxon. The 50 subspecies with the highest priority for conservation are 655 

shown in Table 1, where the high frequency of butterflies in the family Lycaenidae is notable, 656 

with almost half (22 out of 50) in the top 50 list in that family. Another 15 taxa are in the 657 

Nymphalidae family, 8 of which are subspecies of Speyeria [Argynnis], a charismatic group of 658 

subspecifically diverse species. It is interesting to note that the split between A and B group 659 

species in the top 50 subspecies list is 31 A group and 19 B group, which at least suggests that 660 

the evaluation of subspecies is not necessarily biased towards species with the smallest ranges 661 
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(which tend to be the B group species; Figure 2a). Additional information on the 1,004 662 

subspecies that we evaluated is available in archived data for this project (see data availability 663 

statement), and in an online tool where output similar to Table 1 can be filtered by state and by 664 

family (see supplementary material). 665 

 We also asked if the risk index calculated at the subspecies level could be predicted by 666 

the risk index calculated at the species level (Figure 3). An overall correlation was detected 667 

between the two indices at r = 0.17 (t = 2.05, df = 140, P = 0.04), and the relationship was driven 668 

by the B group species. With the data split into the A and B groups, a correlation was not 669 

detected for the former (r = 0.10, t = 0.95, df = 99, P = 0.34) but was for the latter: for the 670 

species without monitoring data (the B group) the risk index calculated at the species level is 671 

correlated at r = 0.28 (t = 2.15, df = 55, P = 0.0036) with the risk index at the subspecies level. 672 

 Finally, we examined the distribution of the species-level risk index geographically and 673 

phylogenetically. Considering the species with the highest risk index values (above the 75th 674 

quantile of risk values) for the A group, across the 11 western states the spread of average risk 675 

shows a partially inverted relationship with richness of the most at-risk species in some parts of 676 

the region (Figure 7). For example, average risk is high in the northern Central Valley of 677 

California and in the northwestern region of Oregon (Figure 7a), while total richness of at-risk 678 

species is lower in those areas (Figure 7b). Similarly, richness of at-risk species is high in the 679 

Sierra Nevada, but average risk is low. The distributions of risk for the B group species highlight 680 

the bias of that group towards the most southern areas, with high average risk along the southern 681 

California coast (Figure 7c) and a concentration of at-risk species along the border between 682 

Mexico and New Mexico (Figure 7d). 683 
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 The phylogenetic picture of risk shows multiple clusters of at-risk species, and some 684 

lineages with notably lower risk, like the Papilionidae and much of the Nymphalidae (Figure 8). 685 

The families sharing the disproportionate amount of risk are the Hesperiidae (with 16% of 686 

species in the high risk category, above the 90th quantile of risk) and the Lycaenidae (with 14% 687 

of species at high risk); these are followed by the Riodinidae (with 13% of species at high risk, 688 

albeit based on a small sample size with the family represented by only 8 species) and the 689 

Pieridae (with 12% of species at high risk). The percentages of high risk species in the 690 

Papilionidae and Nymphalidae are just 8% and 1%, respectively (Figure 8). Tests of 691 

phylogenetic inertia are consistent with the observation of phylogenetically clustered risk 692 

(Pagel's a = 0.39, P < 0.001; Blomberg's K = 0.052, P = 0.001 based on 1k randomizations).  693 

 694 

DISCUSSION 695 

Our primary goal in this paper has not been to document butterfly declines or to identify traits 696 

that make insects more or less sensitive to the stressors of the Anthropocene, as these topics have 697 

been addressed elsewhere for North America (Schultz et al. 2019, Wepprich et al. 2019, Crossley 698 

et al. 2021, Forister et al. 2021), the Neotropics (Janzen and Hallwachs 2019, Salcido et al. 699 

2020), and numerous other parts of the world (Nakamura 2011, Fox 2013, Wagner 2019). 700 

Instead, our goal has been to organize and analyze heterogenous data sources in a way that 701 

allows conservation biologists to identify the butterflies in the 11 western US states that are most 702 

likely to suffer serious reductions in range or population size in coming years. We hope that our 703 

work advances the issue of the prioritizing of species for conservation given mixed data types, 704 

uneven spatial coverage and uncertainty in historical trends. Although some parts of the world 705 
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(notably countries in western Europe) have dense coverage with standardized monitoring, 706 

prioritization in most of the world will involve some mix of monitoring and trait-based inference.  707 

 The western states have been our region of study, rather than the entire US, because the 708 

impacts of climate change are severe and distinct in this arid region (Gonzalez et al. 2018), and 709 

the butterfly fauna is similarly shaped by a unique topography and climatic history (Shapiro 710 

1996, Hawkins 2010). At the continental scale, butterflies in the west also appear to be 711 

experiencing the most severe declines (Crossley et al. 2021). As a consequence of expansive 712 

areas with low human population density, about half of the butterfly species in the region are not 713 

included in the monitoring datasets used here, yet we have brought together information on the 714 

entire fauna (with the exception of a few species with rare occurrences, mostly strays across the 715 

US-Mexico border). Because of this, our study has an apples-and-oranges structure (species with 716 

and without monitoring data) that extends to the interpretation of the risk index values and 717 

engenders certain ironies. Chief among the ironies of our work is the fact that we rank B group 718 

species in part by certain variables (geographic range, exposure to climate change, etc.) that are 719 

not evidently associated with declines in the species for which we have historical records (the A 720 

group). In other words, considering Figure 3, the A group species near the top of the list do not 721 

necessarily have the smallest ranges, and the same can be said of other variables. Even for the 722 

two variables (wingspan and average precipitation) which do predict risk in the A group, the 723 

variance explained is low (Table S2) yet we still emphasize these variables in ranking the B 724 

group species. We discuss these apparently counterintuitive decisions below, and then discuss 725 

phylogenetic and geographic hotspots of risk. Finally, we end with a consideration of individual 726 

taxa most deserving of attention given available evidence. 727 
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 Among the complexities of variables potentially associated with risk, an understanding of 728 

geographic range starts by noting that the A group species have broader geographic ranges 729 

(Figure 2a), which is indeed why they are present at enough NABA sites to be included in our 730 

core population model. Thus the fact that many of the most severely declining species are 731 

widespread (e.g., Vanessa annabella in all 11 states) does not diminish the logic of prioritizing B 732 

group species based in part on small range size, which is a well-known determinant of risk 733 

(Staude et al. 2020). Similarly, the effects of voltinism and ecological host specialization are 734 

relatively straightforward: everything else being equal, we expect a species with multiple 735 

generations per year and an ability to utilize many hosts to be more resilient (to any number of 736 

stressors) than another species without those traits (Eskildsen et al. 2015).  737 

 The interpretation of other variables is less straightforward, chief among them being 738 

exposure to climate change. Previous work with western butterflies has identified warming and 739 

drying conditions as stressors, based in particular on analyses of geographic variation among 740 

study sites in climate change effects and changes in aggregate butterfly density (Forister et al. 741 

2021). At the species level (rather than the level of individual study sites), the same signal is not 742 

as apparent in the present study for the A group species (in other words, the species towards the 743 

top of the A group list do not have particularly high exposures to climate change). This is 744 

because most of these species have large enough ranges that their exposure to climate change 745 

(when quantified across the entire range) includes areas with both more and less severe warming 746 

and drying that tend to cancel each other out at the scale of broadly-distributed species. 747 

However, the B group species have smaller and more southern ranges (Figure 2), which is the 748 

part of the west most impacted by climate change (Gonzalez et al. 2018). Thus, we believe 749 
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exposure to climate change is well justified as a contributing factor to risk specifically for these 750 

species for which we lack monitoring data.  751 

 Exposure to development (urban, suburban and agricultural lands) requires similarly 752 

careful interpretation. This is chiefly because the data most well suited to understanding the 753 

effects of habitat destruction on insects will rarely be collected: places that have already been 754 

developed will not be monitored, and existing monitoring efforts will often be located in more 755 

pristine locations even when relatively proximate to human habitation. The Shapiro dataset is an 756 

exception, as it encompasses a severe land use gradient from the agricultural and urban Central 757 

Valley to the undeveloped high elevations of the Sierra Nevada. From that program, we know 758 

that land conversion and contamination (with pesticides) have effects of similar magnitude at 759 

low elevations (Forister et al. 2016). Though similar information does not exist across the west, 760 

we included exposure to development in our rankings here for the B group species for the simple 761 

reason that common sense suggests that a range that encompasses more development is likely to 762 

experience increasing fragmentation and contamination in coming years relative to a species with 763 

less exposure.  764 

 Geographic projections of risk for B group species emphasize the southern areas of the 765 

west (Figure 7), but also point to specific hotpots of average risk that include the southern 766 

California coast. Like A group species in the Central Valley of California, that coastal region has 767 

low richness of B group species, but on average the species that are there in the vicinity of the 768 

Los Angeles basin score high for our risk factors. Arizona and southwestern New Mexico have a 769 

high concentration of B group species with high risk factors, thus this area should be prioritized 770 

for future monitoring efforts. For A group species, the Sierra Nevada Mountains (especially the 771 

northern Sierra), the Colorado Plateau and the southern Rocky Mountains are hotspots of 772 
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declining species (Figure 7). These same places have been recently identified as hotspots of 773 

imperiled species in analyses that included plants, vertebrates, freshwater invertebrates and some 774 

terrestrial insects (Hamilton et al. 2022). For both A and B group species, iNaturalist records 775 

(and other distributed, community-scientist platforms such as eButterfly) hold great promise for 776 

understanding population trajectories in coming years.  777 

 We have used iNaturalist records to ask if species have been seen across smaller or larger 778 

areas relative to expectation based on the areal extent of expert derived range estimates. We 779 

consider that approach to be exploratory and gave it a corresponding low weight in our ranking. 780 

Although we used research grade observations from iNaturalist (Hochmair et al. 2020), 781 

misidentifications are still possible and (more generally) complexities in taxonomic usage and 782 

metadata associated with GBIF (the Global Biodiversity Information Facility from which we 783 

accessed the records) produce challenges when merging with other datasets. We have been 784 

conservative in our vetting of that process but acknowledge that tool development in this area is 785 

needed, and we offer our results in the hope of encouraging other researchers to explore creative 786 

uses of iNaturalist and other publicly-sourced records. Despite the potential issues, we note that 787 

the variable for change in range size that we derived from the iNaturalist-to-expert comparison 788 

was positively correlated (r = 0.21) with historical trajectories derived from Shapiro data (Figure 789 

S5) but not with 50-year projections based on NABA data (r = 0.04).  790 

 Phylogenetically, risk values are strongly clustered within and among families, with 791 

notable concentrations in the Lycaenidae and Hesperiidae, with the latter in part due to both 792 

species with small southern ranges (B group species) and species in monitoring programs with 793 

observed declines. Of the high-risk category species (with risk index values above the 90th 794 

quantile), 53% are Hesperiidae. The family Nymphalidae has the lowest concentration of at-risk 795 
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species, although one of the most notably-declining species is in this family. Despite being large 796 

and dispersive and able to use a number of exotic plants as larval hosts, Vanessa annabella is 797 

becoming hard to find across locations that include urban centers, high mountains, and southern 798 

deserts (Figure 4).  799 

 Although V. annabella is deservedly at the top of the risk list (Figures 3 - 4), we stress the 800 

uncertainty in the actual risk values that we have generated and we do not place much weight on 801 

the exact position of species on that list. In other words, we believe that the top species in the A 802 

group are indeed in historical declines that will likely continue in coming years, but the fact that 803 

one species is in the 4th position vs the 10th or even the 25th position on the list is not 804 

necessarily important. Small differences in, for example, the projected 50-year probability of 805 

population persistence affect the positions for those top species which have mostly similar risk 806 

values (and broadly overlapping credible intervals). This is why we conservatively suggest that 807 

all of the top 50 species in the A group (Figure 3) deserve closer scrutiny and in some cases 808 

likely deserve protection. The fact that rankings should be treated as approximate is also why we 809 

have presented other lines of information (geographic range, host specialization, etc.) for the A 810 

group, even though the risk index ranking is based solely on the observational data (NABA, 811 

Shapiro and iNaturalist) for those species. For example, Pontia protodice and Lycaena 812 

xanthoides have nearly identical risk indices, but the latter (L. xanthoides) is univoltine with a 813 

smaller geographic range, greater exposure to development and a more specialized diet (Figure 814 

3); these are all factors that could be considered by conservation biologists and ecologists 815 

interested in declining insects. With respect to current protections, only two of the species that 816 

we have studied have status at the federal level: one of the A group species (the monarch 817 

butterfly, Danaus plexippus) is currently a candidate for protection under the US Endangered 818 
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Species Act (ESA), and one of the B group species, Lycaena hermes, is currently listed as 819 

threatened. Note that Boloria acrocnema is treated as a full species under the ESA, but we have 820 

followed both NABA (2018) and Pelham (2022) in counting it among the protected subspecies 821 

(Boloria improba acrocnema) in Table 1. 822 

 Our presentation of the top 50 species in the A group (Figure 3) includes sample sizes 823 

(for NABA and Shapiro datasets) which should also be considered when judging the evidence 824 

for risk. For example, the 2nd and 3rd species on the A group list (Figure 3) are represented by 825 

data from 3 or fewer sites for the NABA and Shapiro datasets, and are not represented in 826 

iNaturalist analyses. The small samples for those species are reflected in broad intervals around 827 

the risk values, and it can be noted that other species in the top 10 for the A list are known to be 828 

in decline based on evidence from two to three times as many sites (e.g., Pholisora catullus, 829 

Atalopedes campestris, and Euchloe ausonides). The number of sites for individual species is a 830 

reflection not just of information available for analysis, but it should be remembered that risk 831 

associated with the NABA data derives from a multi-species population viability analysis, and 832 

species with fewer sites are more likely by chance to have lower occupancy in forecasts than 833 

species known from a greater number of sites. This is both a methodological feature of stochastic 834 

simulations but also reflects a biological reality in that more widespread species are known from 835 

a greater number of NABA sites (thus geographic range is indirectly involved in the contribution 836 

that the NABA analyses make to our estimate of risk).  837 

 Yet another important aspect of sample size involves the great many A group species not 838 

represented in all three of the observational datasets (Shapiro, NABA and iNaturalist); for these 839 

species, we used median interpolation. In other words, when calculating the risk index for a 840 

species present in, for example, the Shapiro and iNaturalist datasets but not NABA, we assigned 841 
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a 50-year projection value based on the median across all other species represented in the NABA 842 

dataset. For the present effort, we consider this to be at least a relatively simple assumption, 843 

although we acknowledge that future analyses could use more sophisticated interpolation 844 

perhaps including information from closely related species. The phylogenetic signal observed 845 

here suggests that genetic relatedness could be a tool for dealing with uncertainty and missing 846 

data in conservation ranking. 847 

 The weight of missing data and uncertainty of course becomes greater when we turn to 848 

the top 50 species in the B group (Figure 3) for which monitoring data is either absent or 849 

insufficient for robust models. Not only is robust observational data lacking, but so many of the 850 

B group species are similar in having small ranges in hot and dry parts of the region that the 851 

overall spread of risk values is smaller than for the A group. Thus, rankings in the top 50 for the 852 

B group should be taken with an even more substantial serving of salt. Indeed, there are certainly 853 

species beyond the top 50 that merit careful scrutiny. For example, Strymon avalona is restricted 854 

entirely to Catalina Island (less than 200 square kilometers) off the coast of southern California. 855 

The partly wild nature of the island gives the species a low development score and the area 856 

happens to be characterized by only moderate departure from climatic baseline. Thus S. avalona 857 

ranks outside of the top 50 for the B group (Figure S6), even though that small geographic range 858 

of course puts it at risk of stochastic loss. Similarly, many of the B group species below the top 859 

50 have red lambda symbols (to the right of the panel) which indicate negative annual trends 860 

(Figures S6-S8), albeit based on very few NABA sites (which is why we have shown those 861 

results but did not use them in the calculation of the B group risk index). In general we hope that 862 

the data organized here for the B group species is an inspiration for greater monitoring of these 863 
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taxa with small ranges in regions vulnerable to threats that include ongoing climate change and 864 

the loss of natural disturbance regimes (Haddad 2018).    865 

 Even greater uncertainty underlies the prioritization of subspecies for conservation, 866 

which we have done using a composite of rankings published elsewhere (NatureServe) and a 867 

survey of the last year of a publicly reported observation. Despite the uncertainty and different 868 

approaches involved in ranking species and subspecies, it is noteworthy that the subspecific risk 869 

values are correlated (r = 0.28) with risk values for the associated B group species. Not 870 

surprisingly given their well-known propensity for subspecific differentiation and localized 871 

population dynamics, 44% of the top 50 subspecies (Table 1) are in the family Lycaenidae. Our 872 

ranking of subspecies also highlights two states with high numbers of at risk subspecies. First, 25 873 

of the top 50 taxa have a range that includes California, reflecting the long-standing risks to 874 

butterfly populations and endemic subspecies from various types of habitat loss and degradation 875 

in that state (Forister et al. 2016). Second, 21 of the top 50 taxa have a range that includes 876 

Nevada, a region of high subspecific diversity and endemism for many butterfly species across 877 

families. In particular, the extreme subspecific diversity of Euphilotes species in the western US 878 

is apparent and should be a target for future investigation with resurveys, conservation genetics 879 

and targeted monitoring; more than 50 Euphilotes subspecies are listed in Pelham (2022).  880 

Finally, we can also note that several subspecies in our top list are either protected 881 

federally or currently in review for protection under the US Endangered Species Act, but those 882 

are intermixed with many taxa in the top 50, and especially the top 25, not receiving federal 883 

conservation attention. In addition, while some state agencies in the west manage proactive 884 

conservation efforts that prevent species from needing federal protection (e.g., through a list of 885 

Species of Greatest Conservation Need [FWS 2001]), other state wildlife agencies do not have 886 
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regulatory authority over terrestrial invertebrates. Perhaps our most important finding for 887 

subspecies is not reflected in Table 1: of the more than 1k taxa that we reviewed, approximately 888 

400 are not included in NatureServe assessments. Thus the need for broader evaluation is great, 889 

and is also urgent as there are many examples of subspecies that have not been seen in many 890 

years; these include Philotiella speciosa bohartorum with no sightings since the 1970s despite 891 

extensive searches (Davenport 2007), Plebejus [Icaricia] saepiolus aureolus presumed extinct 892 

from development, and Euchloe ausonides andrewsi, threatened by fires and drought and with its 893 

last available observation from 1983 (Davenport 2018, SCAN 2022). 894 

  895 

CAVEATS & CONCLUSIONS 896 

Our synthesis of status and trends for a diverse fauna faced many challenges. Chief among these 897 

is the fact that even for species that are relatively well represented in monitoring schemes, the 898 

information is still clustered around areas of human population density. Thus, broad ranges (e.g., 899 

Figure 4) and more narrow ranges (e.g., Figure 6) alike are not particularly well sampled in terms 900 

of spread of monitored locations in space. We can hope that coming years will see greater 901 

investment in monitoring and participation by the general public, and we hope that our use of 902 

iNaturalist data in particular encourages both increasing contributions by the general public and 903 

the development of new models that can take advantage of mixed data types (e.g, Strebel et al. 904 

2022). Another major data issue that we faced was at the US-Mexico border; although ranges are 905 

more recently available for species in Mexico (Glassberg 2018), we have limited our studies for 906 

now to north of the border (and south of the Canadian border). We did this partly because of our 907 

previous focus on butterflies of the 11 western US states (Forister et al. 2021), but also because 908 

one has to bite off a manageable problem which in this case involved stopping at political 909 
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borders. We note, however, that the political border especially in the south created many 910 

apparently small ranges for those species just crossing that line. Most seriously, those very small 911 

ranges are subject to stochasticity in our assessment of exposure to development because a pixel 912 

of development can by chance be included or not in small ranges and thus have an outsized 913 

influence (in terms of the fraction of the range exposed to development). Better integration of 914 

data across southern and northern US borders is an important area for future work, especially 915 

since threats involving development or pesticide use could be different in different countries. In 916 

the meantime, it is for these reasons that we have included our qualitative range labels (N, S, E, 917 

and W) with our rankings (Figure 3). For the B group species in particular, those labels can be 918 

used to focus on western species where the political boundaries are considerably less of an issue. 919 

 The traditional focus for butterfly conservation in the United States has been at the 920 

taxonomic level of subspecies, which is partly a consequence of the fact that population 921 

segments cannot be listed for invertebrates (thus leaving subspecies as the next unit below full 922 

species that can be protected). We have organized subspecific information and present a list of 923 

subspecies that could be profitable targets of conservation attention (Table 1), though most of 924 

our effort has been at the level of full species. Thus, we acknowledge that our results fall partly 925 

outside of the traditional scope of conservation work for butterflies in the United States. It is, 926 

however, entirely likely that compounding population losses across the wild spaces of the region 927 

have pushed many full species to the point where range-wide research and conservation attention 928 

are warranted. A notable example of this is recent effort focused on conservation of the monarch 929 

butterfly, Danaus plexippus (Pelton et al. 2019), which is indeed in our list of the 50 most at-risk 930 

species (Figure 3), but a number of species are higher on the list and are equally deserving of 931 

attention.  It is our chief hope that the work presented here is a framework that will facilitate 932 
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such work in coming decades, acknowledging the many assumptions that have been made along 933 

the way. 934 
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TABLE 1. Top 50 subspecies ranked by quantitative risk index, including taxonomic name and family, states in which 
subspecies are found, as well as the species group (A or B) to which the nominal species belongs. The taxonomy used 
here is based on Pelham (2022) because of the emphasis on subspecific distinctions; where the generic or specific names 
differ from NABA (2018), the alternative name is in brackets (exceptions to that are the Euphilotes taxa, for which 
taxonomy and differences in usage are complex; in those cases we have not listed synonymies between Pelham and 
NABA); common names are also given here as they are more stable for some subspecies than trinomials. Species 
marked with an asterisk (*) are protected by the US Endangered Species Act; ** = currently under review for protection. 
Risk Subspecies States Family Group 
0.837 Philotiella speciosa bohartorum, Bohart's small blue 

Bohart's small blue 
 
Bohart's small blue 
 
Bohart's small blue 
 

CA Lycaenidae B 
0.750 Argynnis [Speyeria] adiaste adiaste, unsilvered fritillary CA Nymphalidae B 
0.723 Euchloe hyantis andrewsi, Andrew's marble CA Pieridae A 
0.720 Icaricia [Plebejus] saepiolus aureolus, San Gabriel Mtns greenish blue CA Lycaenidae A 
0.712 Euphilotes pallescens mattonii, Mattoni's blue NV Lycaenidae B 
0.692 Cercyonis oetus alkalorum, small wood-nymph NV Nymphalidae A 
0.677 Argynnis [Speyeria] nokomis nokomis, Great Basin nokomis fritillary **  AZ, CO, NM, UT Nymphalidae B 
0.677 Euphilotes pallescens arenamontana, San Mountain blue NV Lycaenidae B 
0.677 Euphilotes pallescens calneva, Honey Lake blue CA, NV Lycaenidae B 
0.677 Hesperia miriamae longaevicola, White Mountains skipper CA, NV Hesperiidae B 
0.677 Satyrium polingi organensis, Organ Mountains Poling's hairstreak NM Lycaenidae B 
0.677 Euphilotes pallescens ricei, Rice's blue NV Lycaenidae B 
0.677 Philotiella speciosa septentrionalis, Great Basin small blue NV Lycaenidae B 
0.664 Euphilotes enoptes primavera, dotted blue NV Lycaenidae A 
0.654 Megathymus ursus deserti, desert yucca borer AZ Hesperiidae B 
0.653 Argynnis [Speyeria] nokomis carsonensis, Carson Valley nokomis fritillary CA, NV Nymphalidae B 
0.650 Colias skinneri [pelidne] hinchliffi, Skinner's pelidne sulphur OR Pieridae B 
0.629 Callophrys mossii bayensis, San Bruno elfin * CA Lycaenidae A 
0.629 Callophrys mossii marinensis, Moss' elfin * CA Lycaenidae A 
0.629 Euphilotes bernardino minuta, Baking Powder Flat blue NV Lycaenidae A 
0.629 Hesperia leonardus montana, Leonard's skipper * CO Hesperiidae B 
0.629 Euphilotes mojave virginensis, Virgin Mountains Mojave blue AZ, NV, UT Lycaenidae A 
0.626 Hesperia uncas fulvapalla, Uncas skipper NV Hesperiidae B 
0.609 Argynnis [Speyeria] egleis yolaboli, Great Basin fritillary CA Nymphalidae A 
0.605 Pseudocopaeodes eunus alinea, Eunus skipper CA, NV Hesperiidae B 
0.605 Hesperia uncas giulianii, Railroad Valley skipper CA Hesperiidae B 
0.605 Hesperia uncas grandiosa, Big Smoky Valley skipper NV Hesperiidae B 
0.605 Callophrys loki [gryneus] thornei, Thorne's hairstreak CA Lycaenidae A 
0.600 Cercyonis pegala carsonensis, Carson Valley wood nymph CA, NV Nymphalidae A 
0.591 Euphilotes battoides fusimaculata, square dotted blue NV Lycaenidae A 
0.581 Boloria improba acrocnema, Uncompahgre fritillary * CO Nymphalidae B 
0.581 Phyciodes cocyta [selenis] arenacolor, Steptoe Valley crescent 

 
NV Nymphalidae A 

0.581 Euphilotes enoptes aridorum, dotted blue CA, NV Lycaenidae A 
0.581 Argynnis [Speyeria] zerene behrensii, Behren's silverspot * CA Nymphalidae A 
0.581 Argynnis [Speyeria] callippe callippe, Callippe silverspot * CA Nymphalidae A 
0.581 Icaricia [Plebejus] shasta charlestonensis, Mt. Charleston blue * CA Lycaenidae A 
0.581 Euphydryas anicia [chalcedona] cloudcrofti, Sacramento Mtns checkerspot 

 
NM Nymphalidae A 

0.581 Euphilotes pallescens emmeli, Emmel's blue AZ, NV, UT Lycaenidae A 
0.581 Icaricia [Plebejus] icarioides fenderi, Fender's blue * OR Lycaenidae A 
0.581 Argynnis [Speyeria] zerene hippolyta, Oregon silverspot * CA, OR, WA Nymphalidae A 
0.581 Euchloe ausonides insulanus, island marble * 

 
WA Pieridae A 

0.581 Pyrgus ruralis lagunae, Laguna Mountains skipper * CA Hesperiidae A 
0.581 Apodemia mormo langei, Lange's metalmark * 

 
CA Riodinidae A 

0.581 Icaricia [Plebejus] icarioides missionensis, Mission blue * CA Lycaenidae A 
0.581 Ceryconis oetus pallescens, small wood-nymph NV Nymphalidae A 
0.581 Glaucopsyche lygdamus palosverdesensis, Palos Verde blue * CA Lycaenidae A 
0.581 Polites sabuleti sinemaculata, bleached sandhill skipper NV Hesperiidae A 
0.581 Argynnis [Speyeria] zerene sonomensis, Zerene fritillary CA Nymphalidae A 
0.581 Euphydryas editha taylori, Taylor's checkerspot * OR, WA Nymphalidae A 
0.568 Glaucopsyche piasus gabrielina, San Gabriel Mtns arrowhead blue CA Lycaenidae A 
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Figure legends   1193 

 1194 

FIGURE 1  Schematic overview of main inputs, processes and products associated with the 1195 

generation of risk index values for species (subspecies are treated separately). As noted in the 1196 

key, data sources are in brown, analyses (and other calculations) are in blue boxes, variables 1197 

(used in the creation of the risk index) are in red, and the primary products are in green. The 1198 

central branching path illustrates the division of species into the A and B groups, with 1199 

observational data contributing to the A group risk assessment on the left, and other data types 1200 

contributing to B group assessment on the right. The 10 variables (in red) are identical to the 1201 

columns in Figure 3, although labelled slightly different here, especially for the observational 1202 

variables: "β year" is the year coefficient from analyses of Shapiro data summarizing change 1203 

through time; "P(persistence)" is the probability of population persistence from 50-year 1204 

forecasts, and b range is an index of change in geographic range based on the relationship 1205 

between the last 15 years of iNaturalist observations while controlling for the size of the expert-1206 

derived range. Variables on the right ("range area", "precipitation," etc.) are more self-1207 

explanatory. Also note that the expert-derived geographic ranges contribute to the risk index 1208 

calculations both directly ("range area" and "voltinism") and indirectly as indicated with 1209 

connecting arrows. Finally, the "Risk analysis" process box (towards the lower left) illustrates 1210 

the analysis of A group risk that was used to partly inform the weighting scheme for the B group 1211 

species. 1212 

 1213 

FIGURE 2  Summary of differences between species in the A and B groups. The 184 A group 1214 

species are those with observational data from either the Shapiro monitoring program or the 1215 
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NABA annual counts; the 212 B group species are not included in those data sources (at least not 1216 

with sufficient abundance to be used in our primary models). Comparisons in panels (a) through 1217 

(g) are shown as violin plots with kernel density estimates and horizontal lines marking medians 1218 

inside rectangles spanning interquartile ranges; vertical lines are upper and lower fences 1219 

computed as the third quartile plus one and a half times the interquartile range, and the first 1220 

quartile minus one and a half times the interquartile range, respectively. Colors in panels (a) 1221 

through (f) match those used in Figure 3 for the same variables. Area-weighted latitudinal 1222 

midpoints are shown in panel (g), and the mosaic plot in (h) shows the biogeographical 1223 

breakdown of qualitative range positions for A and B group species (e.g., species with ranges in 1224 

the South category have a majority of their range south of the US-Mexico border, with only a 1225 

small presence north of the border in the western US).  1226 

 1227 

FIGURE 3  The top 50 species with the highest risk rankings in the A group (on the left) and the 1228 

B group (on the right). The two panels have some features in common, and some unique 1229 

elements. In common they both show the extent to which different variables are associated with 1230 

higher or lower risk for each species: a large circle under NABA occupancy, for example, marks  1231 

a species that we infer as being at risk because of low forecast occupancy (probability of 1232 

population persistence) across currently-extant locations; similarly, a large circle under 1233 

development indicates a species at risk because of high exposure to developed lands, and a large 1234 

circle under geographic range indicates corresponding risk associated with a relatively small 1235 

range. The sizes of the circles were assigned separately within the two lists, A and B group 1236 

species, and thus indicate relative differences within those lists. Although all variables are shown 1237 

for comparison, the overall risk ranking for the A group species is based solely on the first three 1238 
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variables (NABA occupancy, Shapiro monitoring, and iNaturalist, to the left of the vertical gray 1239 

line), while the ranking for the B group species is based entirely on the other seven variables (see 1240 

main text for details, and Figure 1). Both panels also have in common the quantitative risk values 1241 

shown to the right (e.g., the risk index for Vanessa annabella in panel A is 0.675); note that the 1242 

risk values for the A group species include 85% credible intervals (in parentheses), 1243 

encompassing uncertainty derived from Bayesian analyses of both NABA and Shapiro data. The 1244 

capital letters (N, S, E and W) running down the left side of each panel are qualitative 1245 

biogeographical descriptions (see main text for details), and the asterisks next to species names 1246 

flag taxonomic issues (see Table S3). A unique element of the panel on the left is the sample size 1247 

in parentheses, e.g. "(14,10)" for Vanessa annabella, which is the number of locations from 1248 

which data were included from the NABA and Shapiro datasets, respectively. Finally, on the far 1249 

right of panel (b), the lambda symbols represent the results of individual time series models run 1250 

for the species present in the NABA program but without enough sites and years to be included 1251 

in the main model (and thus not a part of the A list); a blue symbol indicates a species with an 1252 

80% or greater probability of increasing in recent years, while a red symbol indicates an 80% 1253 

chance of decreasing, and black is neither increasing nor decreasing. The other species (beyond 1254 

the top 50 highest ranked shown here) are included in Figures S6, S7, and S8. 1255 

 1256 

FIGURE 4  Overview of site-specific trends through time for Vanessa annabella at Shapiro sites 1257 

(on the left) and NABA sites (on the right and along the bottom). Plots for Shapiro sites are 1258 

shown with decreasing elevation (cooler colors are montane sites) and colored to match the 1259 

elevational profile of Northern California shown below the map of the western US. The y-axes 1260 

for Shapiro plots are the fraction of days a species was seen at a site in a year (Shapiro data were 1261 
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truncated at 1984 for analyses, but earlier years are shown here and in Figures 5 and 6). Plots for 1262 

NABA sites are shown with decreasing latitude (starting with the most northern sites), with 1263 

symbols matching the locations shown in the central map. Values shown in NABA plots have 1264 

been adjusted for variation in sampling effort, and values plotted are total counts of individuals 1265 

on a natural log scale. Finally, the light gray triangles on the central map are locations of 1266 

iNaturalist records within the last 15 years that were used to estimate the difference between 1267 

expert-derived geographic range and community scientist-derived area of occupancy (based on 1268 

the iNaturalist records). Adult and caterpillar images by Camryn Maher, copyright 2022. 1269 

 1270 

FIGURE 5  Overview of site-specific trends through time for Euchloe ausonides at Shapiro sites 1271 

(on the left) and NABA sites (on the right). Plots for Shapiro sites are shown with decreasing 1272 

elevation (cooler colors are montane sites) and colored to match the elevational profile of 1273 

Northern California shown below the map of the western US. The y-axes for Shapiro plots are 1274 

the fraction of days a species was seen at a site in a year. Plots for NABA sites are shown with 1275 

decreasing latitude (starting with the most northern sites), with symbols matching the locations 1276 

shown in the central map. Values shown in NABA plots have been adjusted for variation in 1277 

sampling effort, and values plotted are total counts of individuals on a natural log scale. Finally, 1278 

the light gray triangles on the central map are locations of iNaturalist records within the last 15 1279 

years that were used to estimate the difference between expert-derived geographic range and 1280 

community scientist-derived area of occupancy (based on the iNaturalist records). Adult and 1281 

caterpillar images by Camryn Maher, copyright 2022. 1282 

 1283 
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FIGURE 6  Overview of site-specific trends through time for Poanes melane at Shapiro sites 1284 

(on the left) and NABA sites (on the right). Plots for Shapiro sites are shown with decreasing 1285 

elevation (cooler colors are montane sites) and colored to match the elevational profile of 1286 

Northern California shown below the map of the western US. The y-axes for Shapiro plots are 1287 

the fraction of days a species was seen at a site in a year. Plots for NABA sites are shown with 1288 

decreasing latitude (starting with the most northern sites), with symbols matching the locations 1289 

shown in the central map. Values shown in NABA plots have been adjusted for variation in 1290 

sampling effort, and values plotted are total counts of individuals on a natural log scale. Finally, 1291 

the light gray triangles on the central map are locations of iNaturalist records within the last 15 1292 

years that were used to estimate the difference between expert-derived geographic range and 1293 

community scientist-derived area of occupancy (based on the iNaturalist records). Adult and 1294 

caterpillar images by Camryn Maher, copyright 2022. 1295 

 1296 

FIGURE 7  The geography of risk for species with values in the upper 75th quantile of risk 1297 

indices as shown in Figure 3 (i.e., combining "medium" and "high" risk categories treated 1298 

separately in Figure 8). Panels (a) and (b) show average risk values among those high risk 1299 

species, separately for the A and B group species, while panels (c) and (d) show species richness 1300 

again for the A group and B group species. 1301 

 1302 

FIGURE 8  The phylogenetic distribution of risk, here shown as three categories: high risk 1303 

(upper 90th quantile), medium risk (75th to 90th quantiles), and low risk (below the 75th 1304 

quantile). Species names in black are the A group species, other are B group. Butterfly images as 1305 

follows: (A) Apodemia mormo (Riodinidae); (B) Euphilotes pallescens arenamontana 1306 
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(Lycaenidae); (C) Euchloe ausonides (Pieridae); (D) Polites sabuleti (Hesperiidae); (E) Adelpha 1307 

bredowii (Nymphalidae); (F) Papilio rutulus (Papilionidae). Photo credits go to CAH (panels A, 1308 

C, E, and F); MLF (panels B and D). Bootstrap support is not shown but the vast majority of 1309 

nodes have support above 0.95; see Zhang et al. (2019) for additional details.  1310 
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