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Abstract 

Connectome studies have revealed how neurodegenerative diseases like Alzheimer’s disease 

(AD) disrupt functional and structural connectivity among brain regions, but the molecular 

basis of such disruptions is less studied, with most genomic studies focusing on within-brain-

region molecular analyses. We performed an inter-brain-region differential correlation (DC) 

analysis of postmortem human brain RNA-seq data available for four brain regions – frontal 

pole, superior temporal gyrus, parahippocampal gyrus, and inferior frontal gyrus – from Mount 

Sinai Brain Bank for hundreds of AD vs. control samples. For any two brain regions, our DC 

analysis identifies all pairs of genes across these regions whose coexpression/correlation 

strength in the AD group differs significantly from that in the Control group, after adjusting 

for cell type compositional effects to better capture cell-intrinsic changes. Such DC gene pairs 

provided information complementary to known differentially expressed genes in AD, and 

highlighted extensive rewiring of the network of cross-region coexpression-based couplings 

among genes. The most vulnerable region in AD, parahippocampal gyrus, showed the most 

rewiring in its coupling with other brain regions. Decomposing the DC network into bipartite 

(region-region) gene modules revealed enrichment for synaptic signaling and ion transport 

pathways in several modules, revealing the dominance of five genes (BSN, CACNA1B, GRIN1, 

IQSEC2, and SYNGAP1). AD cerebrospinal fluid biomarkers (AD-CSF), neurotransmitters, 
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secretory proteins, ligand and receptors were found to be part of the DC network, suggesting 

how pathways comprising such signaling molecules could mediate region-region 

communication. A module enriched for AD GWAS (Genome-wide Association Studies) 

signals is also enriched for NF-κβ signaling pathway, a key mediator of brain inflammation in 

AD. Beyond modules, we also identified individual genes that act as hubs of AD dysregulation 

across regions, such as ZKSCAN1 (Zinc Finger with KRAB And SCAN Domains) – this gene 

is known to be linked to AD in GWAS studies but via unknown mechanisms, and the specific 

DC interactions of ZKSCAN1 found in this study can be used to dissect these mechanisms. 

Thus, our inter-region DC framework provides a valuable new perspective to comprehend AD 

aetiology. 

Introduction 

The human brain connectome is comprised of a large-scale functional and structural network 

linking distinct brain regions, as evident from different neuroimaging techniques1,2. Brain 

functions in health rely on the connectome map, and disease can lead to its rewiring and 

disruption3. Structural connectome influences functional connectome shaping brain region 

specific activity4. Investigating the brain connectome has helped understand the abnormalies 

in brain connectivity of progressive neurodegenerative diseases such as Alzheimer’s disease 

(AD)5,6, which is characterized by the extracellular amyloid beta (Aβ) plaque development and 

intracellular neurofibrillary tangles (NFTs) formation at the molecular level, and manifests as 

memory loss, cognitive dysfunction, behavioural abnormalities, and social disorders7 at the 

clinical level. Genome-wide association studies (GWAS) of clinically diagnosed AD have been 

performed to identify risk loci and potential causative genes8,9, but which brain regions and 

mechanisms these genes act through is not fully characterized, and hampers therapeutic 

interventions aimed at slowing down or halting neuronal loss associated with AD. 

Genomic studies are becoming instrumental to understand the molecular basis of neural 

circuits10,11 connecting different brain regions in health and disease. Brain functional 

connectivity is known to be under genetic control12,13. Recent studies are trying to link gene 

expression to connectome data14,15,16. Various studies have employed genome-wide gene 

expression (transcriptomic) analysis to elucidate gene regulatory interactions operating within 

brain tissue or regions of healthy/diseased individuals7. The effect of AD on different cortical 

regions has also been studied using gene expression-based molecular network analysis17. There 
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are also several established differential expression (DE) studies, which address disease-induced 

change of expression level of individual genes in a region-specific manner. But these and other 

current AD gene expression studies18,19 have mainly focused on within-tissue/within-region 

analysis to provide insights into disease genes/processes. Therefore, the molecular mechanisms 

supporting inter-brain-region functional and structural connectivity, i.e., gene-expression 

coordination across brain regions, especially in neurodegenerative disease states, remain 

undefined.  

To understand the gene-gene couplings across brain regions under normal conditions and their 

change in disease conditions, we construct a differential correlation (DC) network across 

different brain regions. We account for cellular composition effects in the data to better capture 

cell intrinsic changes in disease. The DC network is comprised of gene pairs whose correlation 

strength is altered (lost or gained) in disease (AD) group compared to control group. 

Interestingly we noted that each brain region uses a unique set of genes while interacting with 

genes of other brain regions. The DC gene pair rewiring is most prominent for coupling of one 

of the regions, parahippocampal gyrus, with other brain regions, in accordance with earlier 

studies on vulnerability20 or white matter degeneration21 of different brain regions.   

By assessing how AD rewires this network of inter-region correlations (gene-gene 

coexpression patterns) through bipartite network analysis, we have uncovered novel 

interactions and identified synaptic signaling and ion transport pathways as the most affected 

biological processes across brain regions. This pair of pathways is found to be enriched in two 

DC modules, one module located in frontal pole and the other being in parahippocampal gyrus, 

revealing the dominance of five genes (BSN, CACNA1B, GRIN1, IQSEC2, and SYNGAP1). 

Systematically screening the DC network for hub genes revealed an AD-GWAS signal 

enriched gene ZKSCAN122 as a dominant connector, indicating its probable role and 

mechanism in AD pathogenesis. In order to formulate mechanistic hypotheses underlying these 

AD-induced DC relations, we performed customized over representation analysis for the 

bipartite modules using molecular components essential for communication between 

proximal/distal cells or regions, such as ligand-receptor molecules, AD-CSF markers (proteins 

that are known to be biomarkers for AD), secreted proteins (secretome), and neurotransmitters-

neuroreceptors (neurotransmission). We detected these different types of signaling molecules, 

specifically neurotransmitter, in our DC network, denoting the plausible mechanism of 

information transfer across brain regions. Further preliminary analyses indicate validation of 
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our DC relations in an independent AD cohort. Taken together, our results furnish with vital 

molecular information about AD pathogenesis that may help in promoting AD therapeutics. 

Results 

Gene pairs between brain regions are rewired in AD pathology 

Study of the rewiring of the coexpression network observed in the diseased group compared 

with the healthy control group is a great starting point for understanding the gene level 

disruption caused by the disease condition23. The differential correlation analysis identifies 

such gene pairs that have either significantly gained or lost correlation in disease compared to 

the control group. Using RNA-seq data from Mount Sinai Brain Bank (MSBB) of four brain 

regions, namely Brodmann Area (BM10) - frontal pole (FP), BM22 - superior temporal gyrus 

(STG), BM36 - parahippocampal gyrus (PHG), and BM44 - inferior frontal gyrus (IFG); and 

inter-region DC analysis (Fig. 1a), we noted significant rewiring of gene pairs between two 

brain regions in AD compared to CTL samples (Table 1, Fig. 1b).  

Table 1. For each inter-brain-region comparison, number of DC gene pairs (edges) and unique 

DC genes (nodes) in the DC network detected at FDR 1% are reported (A DC gene is any gene 

participating in a DC relation; BR1 and BR2 stands for Brain Region 1 and 2 respectively; and 

DC Dysregulation index is the percentage of detected DC pairs out of all tested gene pairs). 

Brain Region 

Pairs (BR1-BR2) 

Total DC 

edges 

BR1- # DC 

Genes 

BR2- # DC 

Genes 

DC 

Dysregulation 

index 

FP-STG 2961 2013 1844 2.54 

FP-PHG 2629 1597 1409 5.41 

FP-IFG 9962 4609 4235 3.40 

STG-PHG 6274 2580 2549 8.94 

STG-IFG 8179 3297 3548 5.24 

PHG-IFG 12979 3642 4202 14.01 

 

Interestingly, our inter-region comparison of PHG-IFG, the two most vulnerable of these four 

regions according to an earlier study20, shows the maximum rewiring of gene pairs (12,979) 

compared to the other five inter-region comparisons. Additionally, the DC Dysregulation 
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index, which captures the prevalence of DC pairs, attained a maximum of 14.01 for the PHG-

IFG region pair, and minimum of 2.54 for FP-STG. This indicates that gene interactions 

between the two most vulnerable brain regions in AD are most affected, whereas those between 

less vulnerable regions (FP-STG) are the least affected (Table 1). Notably, the DC 

dysregulation index also declined depending on the decreasing vulnerability rank of the brain 

regions interacting with PHG. Note that PHG was reported as the most vulnerable site in AD20, 

and also exhibited prominent white matter tract degeneration21. 

For each significant DC gene pair, we observed that the gene pair has either lost or gained 

correlation in AD compared to CTL (Fig. 1b). Further, delineating a DC pair based on a z-

score threshold yielded 4 categories (Fig. 1c, Suppl. Fig. 1b & Suppl. Table 1), which can be 

grouped into 3 classes: gained positive correlation, lost correlation, and gained negative 

correlation. The position and the class of DC for the gene pairs, IRF8-C3 and NRXN3-CCKBR 

from PHG & IFG, are highlighted in Fig 1c. NRXN3 and C3 are already reported as AD-CSF 

(Cerebrospinal Fluid) biomarkers. This indicates that CSF biomarkers, which are known to 

help in brain communications along with ISF (Interstitial Fluid), may help in rewiring gene 

pairs in AD24. Further, assessing the overlap of DC gene sets from all six inter-region 

comparisons, we realized only a few gene pairs are common across these comparisons (Suppl. 

Fig. 1d). This indicates that the rewiring of gene pairs varies based on which pair of brain 

regions are taken under consideration for DC analysis. 
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Figure 1. Gene pairs are differentially correlated (DC) in brain inter-region comparison 

in AD pathology. 

a. Schematic summary of the methodology - To understand inter-brain region dysregulation 

we obtained bulk tissue gene-expression datasets from MSBB for four different brain 

regions (for details see text); grouped them into AD (Alzheimer Disease) and healthy 

(control, CTL) samples based on CERAD score, and computed gene-gene Spearman’s 

correlation between every pair of brain regions separately in the AD group and CTL group. 

By correcting the expression data for cell-type composition effects (cellular 

deconvolution) before DC analysis, the confounding influence of cell-type proportions 

causing DC patterns is mitigated.   

b. We note that gene pairs are rewired between AD and CTL, leading to altered gene 

networks in AD pathogenesis. Two categories of changes, a gain of correlation (IRF8 -

C3) and loss of correlation (NRXN3-CCKBR) were detected.  

c. The DC pairs form four distinct clusters in a scatter plot representing the different 

categories of changes detected from DC analysis between AD and CTL. Comparing the 

size of the two gained correlation clusters (both positively and negatively gained) with the 

lost correlation clusters, there are more gained correlation gene pairs (here, absolute 

correlation cut-off of at least 0.4 is used to call a gene pair correlated). 

DE genes do not drive DC gene pairing. 

Since DE-based vulnerability index from an earlier study and our DC-based dysregulation 

index provide similar rankings for how the different brain regions are affected by AD, we 

wanted to check if DC results are driven by DE or if they complement DE. We checked the 

overlap between DC and DE genes for every inter-region comparison. In this study, we have 

used cell type corrected (CTC) DEGs for comparison since CTC data is also used for 

computing DC. Significantly altered CTC-DEGs are compared with DC genes participating in 

all six inter-region comparisons at FDR 0.05, 0.1, and 0.2. Even at a relaxed cut-off of FDR 

0.2, more than 90% of DC gene pairs are not driven by DEG (Table 2). While testing how 

many DC edges overlap with DEGs, it became evident that 9% of edges are driven by DEG for 

FP-STG comparison, whereas for PHG-IFG, only 1% are affected. This ensures that DEGs do 

not confound DC relations. 
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Table 2. DC (FDR 1%) vs. DEG (FDR 20%) overlap- A DC edge is said to be driven by DE 

if any of the two genes in this DC edge or both genes are DE.  

Brain Region Pairs 
Total 

DC edges 

DC edges not 

driven by DE 

DC edges 

driven by DE 

FP-STG 2961 2695 (91%) 266 (9%) 

FP-PHG 2629 2460 (94%) 169 (6%) 

FP-IFG 9962 9221 (93%) 741 (7%) 

STG-PHG 6274 6056 (97%) 218 (3%) 

STG-IFG 8179 8006 (98%) 173 (2%) 

PHG-IFG 12979 12838 (99%) 141 (1%) 

FP-centred set of DC gene pairs replicates in an independent cohort 

After determining the significant rewiring of gene pairs in inter-brain regions from MSBB 

cohort, we wanted to validate the DC patterns in another independent cohort to gain confidence 

in our findings. We tested for replication using another cohort data from Harvard Brain Tissue 

Resource Center (HBTRC), where different regions have been profiled25; specifically two 

cortical regions, visual cortex (VC, BM17) and dorsolateral prefrontal cortex (DLPFC, BM9), 

profiled across 300 samples from HBTRC (116 CTL and 184 AD) were used for replication. 

Only FP region was common between the two cohorts, i.e., DLPFC in HBTRC was closet to 

FP in MSBB. So, we focussed on FP-centred DC pairs and tested only them for replication in 

the HBTRC cohort. We followed this strategy as we couldn’t find another human cohort with 

transcriptomic data on the same brain regions as MSBB at sufficient sample sizes (>= 30). 

Another challenge we faced during replication is that DC gene pairs in MSBB cohort across 

brain inter-region comparison share almost no similarity at FDR 1% (Suppl. Fig. 1d). So, we 

decided to relax the cut-off from 1% to 30% to obtain sufficient number of common DC pairs 
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between FP-STG and FP-PHG (see detailed schematic of replication in Suppl. Fig. 2). This 

resulting set of observed FP-centered DC edges (195,102 edges at FDR 30%) had an overlap 

of 407 pairs against HBTRC DC pairs (105,249 DC pairs at FDR 1%), and this replication 

overlap was significantly better than that of random gene pairs with the same size and network 

structure as the observed DC pairs (p<0.0009). This replication study using an independent 

cohort generated using different technology (microarray), indeed reinforces the robustness of 

our methodology and findings, and lends confidence to proceed with further downstream 

analyses. 

DC network contains region-exclusive interactions, and few hubs of AD dysregulation 

For each inter-region BR1-BR2 comparison, we sought to identify whether the DC genes 

(Table 1) were exclusive to or shared among the two regions. We detected only 7%-21% gene 

overlap between the BR1 vs. BR2 DC genes (Suppl. Fig. 3), with the least vulnerable FP-STG 

brain region pair having the fewest gene overlaps of 7%, whereas the most vulnerable PHG-

IFG having the highest 21% overlap (Suppl. Fig 2). Next, we wanted to check if these common 

genes in each inter-region analysis had the same gene neighbours in both brain regions, and 

found it not to be the case surprisingly (Suppl. Table 2). 

Quantifying the pool of genes each brain region, say FP, uses to interact with three other brain 

regions under study (STG, PHG, and IFG), we realized that 10-50% of interactions are 

exclusive and only 20-30% interactions are shared across at least two regions (Fig. 2a). It seems 

a complex interplay between genes and region-specificity influences the activity of genes and 

their involvement in disease pathology. Together these analyses reinforce the importance of 

focussing on multiple brain regions and studying gene-gene interactions to understand AD 

aetiology. 

After finding the exclusivity of inter-brain interaction, we aimed to identify the hub genes 

which participate in a large number of DC relations, and test if they are shared or exclusive 

across inter-region analyses. We are interested in gene hubs as they can underpin connectome 

hubs, which are well-connected brain network nodes that form a vital communication point for 

cohesive neuronal dynamics10. When examining the degree (number of DC interaction 

partners) of each gene for each inter-region comparison (Suppl. Fig. 4), we observed only a 

few hub genes, with more than 50% being non-hub having unit degree (single DC interaction). 

Moreover, the highest degree of hub gene in each brain region ranges from 20 (FP in FP-STG) 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492888doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492888
http://creativecommons.org/licenses/by/4.0/


 9 

to 113 (IFG in FP-IFG) (Suppl. Table 3). However, we noticed that a few hub genes with the 

highest degree are lncRNAs, pseudogenes, and antisense RNAs. Since their functionality is not 

well documented, we decided to select the protein-coding genes for our hub-gene analysis 

(Table 3). Interestingly, gene ZKSCAN1 (Zinc Finger With KRAB And SCAN Domains) is 

found to act as a hub gene for different inter-region comparisons. ZKSCAN1 is reported to have 

a role as a transcription factor that modulates GABA type-A receptor expression in the brain26. 

Exploring DC partners of ZKSCAN1, we realized it has region exclusive partners mostly. Two 

of its DC partner genes, SGK2 (Serum/Glucocorticoid Regulated Kinase 2) and TCF12 

(Transcription Factor 12), are found in four inter-brain region comparisons (FP-IFG, STG-

PHG, STG-IFG and PHG-IFG), where the DC edge ZKSCAN1-SGK2 is positively gained in 

all four and ZKSCAN1-TCF12 is negatively gained in all four analyses. While SGK2 is known 

to regulate ion channel transport and transport of glucose, metal ions27, etc., its involvement in 

AD is not known. On the other hand, TCF12, required for the initiation of neuronal 

differentiation28, is known to be dysregulated in AD29. Moreover, NTM (Neurotrimin), LZTS1 

(Leucine Zipper Tumor Suppressor 1), FSD1 (Fibronectin Type III And SPRY Domain 

Containing 1), etc., are among a few other hub genes detected. The many DC partners of the 

hub gene NTM from FP-STG comparison is shown in Fig. 2b. Interestingly, in PHG-IFG 

comparison, NTM in PHG is DC with only one gene, ALMS1 (ALMS1 Centrosome And Basal 

Body Associated Protein) in IFG (Fig. 2c). This observation highlights that even the same gene 

from different regions have distinctive interactions. We reinstate that the same genes in 

multiple brain regions will have differing degrees of coupled expression with genes from 

another region, possibly due to the different spatial and molecular context they are in, and 

potentially have dominant region-exclusive effects. 
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Figure 2. In the DC network, each brain region uses a unique gene profile to interact 

with other brain regions, and only a few genes act as hub genes. 

a. Stacked bar graph denotes that each brain region has an exclusive set of genes (12-51%) 

for interacting with other brain regions in the DC network. 

b. Hub gene NTM from STG is DC with 35 genes in FP. The edge colour represents a z-

score. Green represents positively gained, and red represents negatively gained. 

c. In this network, NTM from PHG is differentially correlated to only one gene ALMS1 in 

IFG. 

 

Table 3. Hub protein-coding genes along with their degree from inter-region comparison (see 

also Suppl. Table 3) 
Regions BR1 BR2  

Highest 

Degree 

Gene Symbol Gene Name Highest 

Degree 

Gene Symbol Gene Name 

FP-STG 17 TBC1D30 TBC1 Domain 

Family Member 30 

35 NTM Neurotrimin 

FP-PHG 27 BFAR Bifunctional 

Apoptosis Regulator 

42 LZTS1 Leucine Zipper 

Tumor 

Suppressor 1 

FP-IFG 54 LDB3 LIM Domain 

Binding 3 

76 ZKSCAN1 Zinc Finger With 

KRAB And 

SCAN Domains 
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STG-PHG 42 PPDPF Pancreatic 

Progenitor Cell 

Differentiation And 

Proliferation Factor 

55 ZKSCAN1 Zinc Finger With 

KRAB And 

SCAN Domains 

STG-IFG 48 FSD1 Fibronectin Type III 

And SPRY Domain 

Containing 1  

86 PLK3 Polo Like Kinase 

3 

PHG-IFG 111 IL17RB Interleukin 17 

Receptor B 

82 ZKSCAN1 Zinc Finger With 

KRAB And 

SCAN Domains 

Bipartite network clustering reveals pathways with disrupted inter-region connectivity 

DC genes are expected to provide valuable insights into the underlying biological processes of 

the clinical development of AD. To identify such biological processes, we partitioned the DC 

network into smaller bipartite (two-region) communities using the Louvain algorithm, such 

that genes within each community are more tightly connected among themselves than with 

genes in other communities. We excluded the “communities” comprised of singleton gene 

pairs, and finalized 19-34 communities per inter-region comparison, each of size of at least 20 

genes. (Fig. 3a, Suppl. Table 4). Biological processes and pathways are controlled by vast 

interacting molecules whose expression levels are frequently co-regulated or co-expressed. 

After identifying tightly correlated DC modules, we performed over-representation analysis 

(ORA) to test if a set of DC genes is enriched for genes belonging to known Gene Ontology 

(GO) categories.  

Enrichment tests for GO biological processes (GO-BP) showed that most communities are 

enriched for response to stimulus, synaptic signaling, and transporter activities (Fig. 3b). The 

rest of the enriched functional profiles are highlighted in Suppl. Fig. 5. Among all the 

communities enriched, gene sets of community number 715 (hereafter referred to as com715) 

from both the brain regions in the FP-PHG pair were enriched for all three GO categories and 

KEGG pathways, with synaptic signaling being very prevalent. The top ten GO-BPs enriched 

from both brain regions are displayed as a hierarchical clustering tree along with the genes 

enriched for each process (Suppl. Fig. 6). Interestingly, GO-BP 'Synaptic signaling' and its 

related terms have different enriched gene sets from FP and PHG, respectively, except for five 

genes (BSN, CACNA1B, GRIN1, IQSEC2, and SYNGAP1). This reinforces our previous 

observation that every brain region’s dysregulated gene sets are distinctive. Among these five 
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genes, BSN (Bassoon) is a component of the presynaptic active zone (AZ) involved in 

organizing the presynaptic cytoskeleton30. In contrast, voltage-dependent N-type calcium 

channel subunit alpha-1B (CACNA1B) mediates the ingress of calcium ions (Ca2+) into 

excitable cells, thus controlling the neurotransmitter release from the presynaptic 

compartment31. On the other hand, GRIN1 encoding the essential subunit GluN1 that is present 

in all NMDARs (N-methyl-d-aspartate, receptors) found in the postsynaptic membrane, 

regulates the flow of Ca2+ through the channel32. Lastly, IQSEC2 (IQ Motif And Sec7 Domain 

ArfGEF 2) and SYNGAP1 (Synaptic Ras GTPase Activating Protein 1) form components of 

the postsynaptic density at excitatory synapses and are critical for the development of cognition 

and proper synapse function33,34. Except for GRIN1, none of the other genes are till date 

reported to be involved in AD pathology35. Since all these genes are involved in maintaining 

synaptic signaling, dysregulation of these genes will lead to neurodegeneration in a variety of 

disorders, including Alzheimer's disease. As from our result, it is clear that these genes are 

differentially correlated in AD; it will be interesting to study whether the gene and protein 

expression levels of BSN, CACNA1B, IQSEC2, and SYNGAP1 are altered in AD and, if so, 

how they contribute to AD pathology. 

Further, we depicted the DC relation between only the synaptic signaling annotated genes in 

com715 in Fig. 3c. WNK2 (WNK lysine deficient protein kinase 2) from FP and LZTS1 

(Leucine Zipper Tumor Suppressor 1) from PHG have the highest degree in PHG and FP, 

respectively. As evident from ‘The Human Protein Atlas’36, both genes and their corresponding 

proteins are expressed in the cerebral cortex. Studies have shown WNK2 is present in cerebral 

cortex as well as cerebellum of mouse brains, enriched in neurons, and a regulator of 

GABAergic signaling37. Recently, it has been reported that Lzts1 is associated with microtubule 

formation, contributes to the increasing intricacy of the cerebral architecture during evolution 

in mouse, and is mainly enriched in glial cells38. Their links to the brain is a motivation to find 

their connection with AD pathology. Moreover, we noted that most of the gene-gene 

correlations are lost in AD compared to CTL in com715. This probably indicates that synaptic 

signaling between FP and PHG is disrupted in AD. 
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Figure 3. Bipartite DC modules provide insights into the inter-region biological processes 

affected by AD 

 

a. Schematic diagram represents that correlated pairs from AD and CTL are used to 

calculate DC gene pairs, forming a bipartite network. This network is further partitioned 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492888doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492888
http://creativecommons.org/licenses/by/4.0/


 14 

into communities using the Louvain method (See Methods). Using the community 

genes as query genes and background gene list, over representation analysis is 

performed (see Methods). 

b. Alluvial plot represents the significant biological processes (BP) enriched in 

communities. The thickness of the edge represent the number of communities enriched 

for each BP for each brain inter-region comparison. 

c. Network connectivity between the enriched genes in com715 of FP-PHG is represented 

in the form of a heatmap, where the colour of the cell represents the z score of DC. 

Further, the GO-BP associated with each gene is represented using a colour label (GO-

BP names are shortened, and their full names are in Suppl. Fig. 6). 

Genetic factors underpinning inter-brain region AD communication 

Our DC analysis framework can help recapitulate current genetic/molecular understanding of 

AD pathology and open up new avenues to enhance this understanding further. Over the last 

decade, Genome-wide Association Studies (GWAS) have revealed many risk loci for AD, 

implicating many potential causative genes and SNPs (single nucleotide polymorphisms), 

beyond the well-established APOE association39,40. After identifying DC genes and the gene 

sets from the bipartite community, we wanted to check if these genes or gene sets are enriched 

in AD-GWAS signal using MAGMA, a tool for analysing GWAS data (Suppl. Fig. 7). Gene 

analysis yielded 208 significant AD-GWAS signal enriched genes, i.e., genes for which SNPs 

in their genomic vicinity are enriched for AD GWAS associations. A small set of genes overlap 

between 208 significant AD-GWAS signal enriched genes and DC genes from all six brain 

inter-region comparisons. However, interestingly our previously identified hub-gene 

ZKSCAN1 is also enriched for AD-GWAS signal, making it an excellent novel candidate for 

AD pathogenesis that can be studied further in the context of its DC partners. Other than that, 

CARF (Calcium Responsive Transcription Factor) and PLEKHA1 (Pleckstrin Homology 

Domain Containing A1) also enriched for AD-GWAS signals; being involved in the rewiring 

of gene coexpression networks in AD and further based on their functional relevance in the 

brain, they may also be considered as promising candidates for AD pathogenesis.  

We then performed gene set analysis using MAGMA on 302 gene sets belonging to 151 

communities, and two gene sets, namely com349 (present in FP of FP-IFG comparison) and 

com869 (present in IFG of FP-IFG comparison), were found to be significant. com869 

comprises 54 genes, of which genes NDUFS2, RAPGEF2, and PLEKHA1 are found to be 
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significantly enriched for AD GWAS signal. Performing ORA on com349 gene set we found 

it to be further enriched at FDR 5% for nuclear factor (NF)-kappa β signaling pathway using 

KEGG as functional database. NF-κβ signaling pathway helps balance between learning and 

memory via its effect on synaptic plasticity, and disruption of this signaling module leads to 

neuroinflammation, oxidative stress, microglial activation, and apoptosis, all of which could 

promote AD41,42. Further, using the 208 significant AD-GWAS genes as functional database 

category and performing ORA revealed that six communities, four from FP and IFG 

interaction, and two from STG and PHG interactions, are enriched for AD-GWAS signals (Fig. 

4a).  

Distribution of signaling molecules in brain inter-region communities leads to molecular 

hypothesis of AD dysregulation  

We predicted the rewiring of the gene network in AD via de-coupling and re-coupling of genes 

across different brain regions using RNA-sequencing gene expression data. However, the 

molecular mechanisms supporting this functional organization and re-organization remain 

elusive. Here, we tried to predict the functional nature of genes, which act as nodes of the 

rewired gene network. We selected those signaling molecules which are essential for 

communication between cells or regions near or far, such as ligand-receptor molecules, CSF 

markers, secreted proteins (secretome), and neurotransmitters-neuroreceptors 

(neurotransmission), and checked whether they are over-represented in communities derived 

from bipartite network partition. Using the above-mentioned molecules as functional 

categories in ORA, we could uncover 27 biologically meaningful, significant gene sets 

belonging to 23 communities at 5% FDR (Fig. 4b).  

Gene sets from FP-IFG are most enriched for molecules responsible for communication. This 

may be due to their close proximity as both FP and IFG are located in the frontal cortex. We 

also found enrichment of secretome (com916), CSF (com979, com1087), ligand (com979) and 

receptor (com756, com979, com1087) molecules. Across all DC communities, 35 ligands and 

61 receptors are found along with only 7 CSF and 9 secreted proteins. Finally, a total of 73 

neurotransmitter genes out of 466 known neurotransmitters are found in different gene sets; 

and it is quite interesting that 12 gene sets while all being enriched for the same 

neurotransmission set of genes, do not overlap significantly in the specific neurotransmitters 

they contain, thereby reinforcing the exclusivity of the DC patterns to different regions and 

modules. Brain cells are known to communicate by passing neurotransmitters at the synapse, 
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thereby transferring information throughout the brain. Noteworthy is that the previously 

determined com715, which is enriched for synaptic signaling and ion transport, is also enriched 

for neurotransmission in the FP side and neuroreceptor on the PHG side. The specific signaling 

molecules and interactions within the DC module com715 can thereby lead to specific 

hypothesis of how this module is affected in multiple regions in AD 

 

Figure 4. Genetic factors and signaling molecules underpinning brain inter-region 

communication and disease dysregulation.  

a) Communities (gene sets) enriched in MAGMA and ORA for genetic factors associated 

with AD.  

b) Heatmap indicating the type of functional categories for which a gene set is enriched. 

Gene sets (indicated with community number, details in Suppl. Table 5)  are 

represented in the Y-axis.  

c) DC partners of ZKSCAN1 are composed of AD biomarkers and signaling molecules. 

(edges in gray scale represents positively gained edge and in red scale represents 

negatively gained edge, according to z score) 
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Discussion 

We have presented here a new DC-based approach to study gene-gene correlation across brain 

regions and find the gene pairs that are functionally coupled and contribute to AD pathology. 

These analyses based on brain inter-region enable us to find the genic effect of one brain region 

on another brain region. We could further decipher genes that are not yet designated as AD 

biomarkers, but from our analyses, we could clearly observe that they are involved in gene pair 

rewiring in AD compared to CTL. Partitioning DC network into robust communities 

highlighted that gene pair rewiring is tightly linked to synaptic signaling and ion transport. 

Enrichment of these communities further for AD-GWAS signal as well as signaling molecules, 

helped us to build mechanistic hypotheses supporting the brain molecular connectivity. 

Further, hub gene analysis resulted in unveiling ZKSCAN1 as key DC gene for most of the 

brain inter-region comparisons. 

While this approach presents new facts about brain region functioning, particularly in AD 

pathology, it is worth pointing out that the results are limited by the brain regions for which 

data is available and further should be viewed as in-silico driven hypotheses that require 

experimental validation. We will get a better view once genomic data specific for brain regions 

is available, and experiments are pursued in future around the most promising lead 

genes/pathways from this study. Further, while CTC helps to reduce confounding effects of 

cellular composition, the CT frequencies are estimated and that too only for four major brain 

cell types. Nevertheless, we get meaningful results that are not enriched for CT specific marker 

genes. Despite some caveats, the result showing gene-pair rewiring across brain inter-region is 

of much interest and may help to study AD pathology in a new light. 

From our analysis we realized that more than one aspect of synaptic function are affected such 

as synaptic vesicle trafficking, trans-synaptic signaling, chemical synaptic transmission, and 

regulation of synaptic plasticity. Interestingly, we noted that even if two brain regions e.g., FP 

and PHG, are coupled for synaptic signaling, they use a different set of genes to exert their 

effect. Downregulation of synaptic genes in AD and their specificity to brain regions have been 

previously reported43. However, the usage of different synaptic genes by different brain regions 

and their functional coupling across brain regions have not been reported before. Shifts in 

harmony of brain molecular connectivity involving synaptic genes is expected to compromise 
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communication processes between brain regions leading to neurodegeneration, thus causing 

Alzheimer's disease. 

There remains a lack of detailed mechanistic knowledge about how the brain neural network 

is controlled. This is complicated by the fact that different brain regions are affected variedly 

by AD pathology, adding a spatial element to the disease. However, using the DC framework, 

we could identify communities of genes, whose gene network architecture between brain 

regions is altered in AD group relative to controls. We tried to hypothesize and visualize the 

cause and consequence of gene network dysregulation in AD pathogenesis using these 

communities of genes. We used SNP-based enrichment analysis and customized gene set 

analysis to confect our hypothesis. We found that 33 communities are enriched for several 

molecular factors such as AD biomarkers, CSF, neurotransmitters, ligand-receptors, AD 

enriched SNPs, and secretome proteins. Interestingly, com715 is enriched for neurotransmitters 

on the FP side, whereas on the PHG side, it is also enriched for neurotransmitters but not at a 

significant cut-off. This reinforces our finding that genes in com715 are enriched in the synaptic 

signaling biological process. Out of 35 communities, 12 communities are enriched for 

neurotransmitters. This probably indicates that synaptic signaling is most compromised during 

genetic rewiring. All these analyses help us to hypothesize possible mechanisms around inter-

region regulation. It seems that a milieu of regulatory elements maintains the gene network of 

the brain underlying the neuronal network, and disruption of any or all factors rewires this 

network in AD patients. 

Finally, hub gene analysis and AD SNP enrichments revealed that ZKSCAN1, located in 

chromosome 7, is a prominent node in the gene network functionally connecting different brain 

regions and has 310 unique DC partners. ZKSCAN1, when located in IFG, differentially 

correlates with the largest number of genes in other regions in AD. The pairing of ZKSCAN1 

with genes from different regions is either positively or negatively gained in AD compared to 

CTL. Previous literature indicates that ZKSCAN1 can act as a transcription factor44. Hence, we 

looked for a known ZKSCAN1 motif in the transcription start site of genes pairing with the 

ZKSCAN1 gene using the HOMER motif analysis algorithm. However, none of the genes 

participating in DC relation with ZKSCAN1 has its’ corresponding transcription factor motif. 

This suggests that ZKSCAN1 uses a different mechanism to maintain correlation with genes 

from different brain regions, or there is not sufficient statistical power to detect ZKSCAN1 

motifs in its DC partner genes. Conversely, many of the ZKSCAN1 DC partners are AD 
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biomarkers (34), ligand (5), receptors (7) and secreted proteins (2). This indicates a plausible 

way how ZKSCAN1 by controlling these signaling molecules (Fig. 4c) enacts its’ role in AD 

pathogenesis. 

Comprehending AD pathology is not easy, however understanding brain connectivity 

alterations can give a better perspective. While functional and structural brain connectomes 

with respect to AD have been studied for a while now, focus on the molecular basis of these 

connectomes (molecular connectivity) is rare. Our inter-region DC framework addresses this 

gap by enlightening us with new findings and hypotheses on how AD affects the coupling 

between genes or biological processes in different brain regions. These results demonstrate the 

value of brain inter-region analysis in AD, and encourage its application to different 

neurological diseases and extension to inter-organ/inter-tissue analysis to understand the 

molecular connectome of the whole body. 

Materials and Methods 

Data collection 

The covariate-adjusted RNA-sequencing data with the following synapse ids - syn16795931 – 

Brodmann Area (BM10) – frontal pole (FP), syn16795934 - BM22 - superior temporal gyrus 

(STG), syn16795937 - BM36 - parahippocampal gyrus (PHG), syn16795940 – BM44 - inferior 

frontal gyrus (IFG), were downloaded from AD Knowledge Portal – The Mount Sinai/JJ Peters 

VA Medical Center Brain Bank cohort (MSBB) study45 (10.7303/syn3159438). The pre-

processed data is corrected for library size differences using the trimmed mean of M-values 

normalization (TMM method – edge R package) and linearly corrected for sex, race, age, RIN 

(RNA Integrity Number), PMI (Post-Mortem Interval), sequencing batch, exonic rate and 

rRNA (ribosomal RNA) rate. As in the earlier study45, normalization was performed on the 

concatenated data from all four brain regions to avoid any artificial regional difference.  

 

The clinical (MSBB_clinical.csv) and experimental metadata 

(MSBB_RNAseq_covariates_November2018Update.csv) files available on the portal are used 

to classify the samples into control (CTL) and Alzheimer's disease (AD) based on CERAD 

score (Consortium to Establish a Registry for AD; funded by NIA, 1986)46. CERAD score 1 

was used to define CTL samples, and 2 ('Definite AD') was used for defining AD samples. 

Probable AD (CERAD = 3) and Possible AD (CERAD = 4) samples were not considered for 
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this study. Sample sizes are noted in Suppl. Table 6. These samples were divided according 

to the four brain regions (Suppl. Table 7). Further, we considered the brain regions two at a 

time for our analyses and selected the samples accordingly to handle missing data (Suppl. 

Table 8; note that not all individuals had all four brain regions sampled). 

 

The genes in the gene expression data are denoted in the hg37 ENSEMBL gene identifier (ENS. 

ID) format. The initial analysis is performed using the ENS. ID. For the downstream analyses 

(visualization/enrichment), the ENS. IDs are mapped to the HGNC gene symbols using the 

comprehensive gene annotation file for Release 19 (GRCh37.p13) downloaded from Gencode 

- https://www.gencodegenes.org/human/release_19.html (h37).  

The Wang et al., 2016 study20 ranked 19 brain regions for their vulnerability to AD based on 

how many genes in these regions are associated with disease status (DE genes) and disease 

traits like the accumulation of NFT and Aβ. The brain regions used in this study are sorted 

based on the same ranking, such as BM36: rank 1, BM44: rank 2, BM22: rank 7, and BM10: 

rank 14, with rank 1 being the most vulnerable region in AD, and other ranks being 

proportionately less vulnerable. 

Data for replication in independent cohort is retrieved from HBTRC25. Two brain regions - 

visual cortex (VC, BM17) and dorsolateral prefrontal cortex (DLPFC, BM9) - comprising of 

300 samples (116 CTL and 184 AD) was used for our study. Gene expression data has been 

linearly adjusted for these covariates: age, gender, RIN, Batch, PMI and pH. Missing value of 

any covariate has been imputed with the respective mean value. Adjusted data is subjected to 

CTC as is done for MSBB; and same protocol for DC analysis is followed in this case also 

(explained below). 

Cell Type Correction (CTC) 

The expression of a gene in a bulk tissue can be captured by the proportion of different cell 

types in the tissue and the expression of the gene in these cell types. Our ideal aim is to remove 

the former contribution and study the latter to reveal cell-intrinsic changes in gene pair 

correlation structure between disease vs. control group. Towards this, we corrected the bulk 

gene expression data for cell-type proportions, which were in turn estimated from bulk data 

using a cellular deconvolution method. Specifically, we estimated the frequencies of four major 

brain cell types, astrocytes, microglia, neuron, and oligodendrocytes, using a cellular 
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deconvolution method implemented in the getAllSPVs function from the CellCODE (Cell-type 

Computational Differential Estimation) R package47. CellCODE is a singular value 

decomposition (SVD) based reference-free method to perform cellular deconvolution. It only 

requires the RNA-seq expression matrix of a set of marker genes. Human marker genes 

(markers_df_human_brain data frame) for the four major cell-types were obtained from the 

BRETIGEA (BRain cEll Type specIfic Gene Expression Analysis) meta-analysis study48. 

CellCODE performs F-tests on the supplied set of marker gene expression data to identify 

robust marker genes i.e., marker genes, which are not differentially expressed between the 

disease group vs. control groups. Only these robust marker genes are used to estimate cell-type 

proportions. The cell-type corrected gene expression data is obtained by linearly adjusting the 

bulk RNA-seq data for the cell-type proportions estimated using CellCODE. 

We evaluated two different methods of cellular deconvolution, namely BRETIGEA and 

CellCODE on the cortical gene expression data set from Patrick et al. 2020  to identify the best 

performing model, i.e., the model with the highest correlation with the Immunohistochemistry 

(IHC) estimated cell-type proportions – which can be considered the ground truth data. For 

BRETIGEA, we used the function call: brainCells(geneExpmatrix, nMarker = 20, species = 

"human"), where nMarker is the number of markers that will be considered for each cell type 

to build the model. For CellCODE, we used the getAllSPVs function with input arguments: 

data, dataTag, grp, method, and mix.par, to build the model. Data is the gene expression data 

of the marker genes, dataTag is a binary matrix (# marker genes (MG) X # cell-types) which 

indicates which marker genes are associated with which cell type, and grp is the CERAD 

classification of each sample considered. Mixed method at the CellCODE-suggested 0.3 

mix.par cutoff was used. The models for BRETIGEA and CellCODE were built using different 

sets of top 20, 40, 80, 200, 500, and 1000 marker genes sets for each of the four cell types to 

arrive at the best model.   

Through this analysis, CellCODE 80 MG (i.e, 20 MG each of the four major cell types) was 

identified as the best performing model and hence used for the cell-type correction. Using 

CellCODE, we built one cellular deconvolution model for each brain tissue. By correcting DC 

interactions for cell-type composition effects, the confounding influence of cell-type 

proportions on the differential correlation results is mitigated49,50. The effect of applying the 

cellular deconvolution model is projected in Suppl. Fig. 1a, where the change in the number of 
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correlated edges before and after CTC is highlighted for both AD and CTL samples using a bar 

chart. CTC has reduced the number of gene pairs compared to before CTC. 

Differential Correlation (DC) analysis 

We are interested in identifying gene pairs across brain regions whose correlation strength in 

the disease group (AD) is significantly different from that in the control group of individuals 

(CTL) and call such pairs as differentially correlated or co-expressed (DC) pairs.   

 

Gene-gene spearman correlation coefficients (ρ or r) for each of the gene pair combinations 

possible across brain regions are calculated for the AD group and CTL group separately. The 

Spearman correlation p-values are corrected for multiple testing using the Benjamini-Hochberg 

(BH) FDR method, and the resulting BH corrected p-values are subject to a 1% FDR cutoff to 

identify statistically significant correlation coefficients. All gene pairs significantly correlated 

either in the AD or Control group are considered for the DC analysis51. Note that we are not 

considering gene-gene interaction within a particular tissue. The union of correlated gene pairs 

of AD and CTL groups for any inter-region comparison is referred to as correlated pairs 

throughout the manuscript. Only these correlated pairs are tested for DC.  

 

We use the r.test function from the psych R package to test a gene pair for DC. The r.test 

function transforms the AD as well as CTL gene-gene correlation coefficient values obtained 

for each gene pair into their corresponding z scores, known as the Fisher's r to z transformation. 

The difference between the Fisher z transformed correlation coefficients, divided by the 

standard error of the difference, yields the final z-scores and associated DC p-values to be 

tested. For any inter-region comparison BR1-BR2 (Brain Region 1-2), we subject the DC p-

values of all correlated gene pairs in BR1-BR2 to multiple testing correction using the 

Benjamini-Hochberg FDR method, and use 1% FDR cut-off to report significant DC pairs. For 

any given inter-region comparison, the DC Dsyregulation Index is the ratio of the number of 

significant DC gene pairs detected for that region pair to the number of all gene pairs tested for 

DC (i.e., all correlated pairs) for the same region pair. Note that the sign of a (DC) z-score 

indicates whether a particular DC gene pair’s correlation coefficient increased (positive z 

score) or decreased (negative z score) in the AD group relative to the CTL samples. 
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In addition, to check whether the sets of DC gene pairs in two inter-region comparisons are 

similar, the Jaccard similarity index, which is the ratio of the intersection of two sets to the size 

of their union, was calculated52.  

Differential Gene Expression Analysis 

In this study, Differentially Expressed Genes (DEGs) were identified from CTC (cell type 

corrected) bulk RNA-seq data using a Wilcoxon rank-sum test for each of the four brain 

regions. DEGs identified at FDR cut-off 0.05, 0.1, and 0.2 were used to check whether the DC 

relation between each gene pair is driven by DEGs or not. 

Identification of bi-partite (two-region) modules or communities 

The set of gene pairs identified as DC for two given brain regions (BR1 and BR2) can be 

viewed as a bipartite (two-layered) network of DC relations. We are interested in identifying a 

module or community comprising one set of genes in the first region (BR1) and another in the 

second region (BR2) that participates in many DC relations among themselves. We would also 

prefer that the communities be tightly-knit modules such that genes within a community are 

more likely to be related to one another than they are to the rest of the network. These 

preferences can be expressed as a modularity objective function. The bipartite network can be 

partitioned into a collection of modules or communities that maximize this modularity function 

using a heuristic method called the Louvain method53. The cluster_louvain function under the 

R package igraph was used for this purpose. Using the ' modularity ' function, we calculated 

the modularity score for each bipartite network (inter-region DC gene set). FP-STG has the 

highest modularity score of 0.95 and PHG-IFG the lowest, 0.63. To detect the communities 

enriched for significant Gene Ontology (GO) biological categories and pathways, we set a 

threshold that at least 20 genes must be present in each community. Partitioning each DC gene 

pair list from each inter-region comparison resulted in multiple communities. Each community 

comprises two gene sets, one from BR1 and one from BR2. 

Over Representation Analysis (ORA) 

Over Representation Analysis (ORA) is a method that tests if genes from pre-defined functional 

sets (such as those belonging to a specific GO term or KEGG pathway) are enriched or over-

represented (i.e., present more than would be expected by chance) in a given query set of genes. 
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To identify the potential biological functions associated with the gene sets or communities we 

identified, we performed ORA using the WebGestaltR package54. We performed this 

enrichment analysis only on communities of reasonable size (specifically those with at least 20 

genes). A correlated gene list corresponding to each brain region (union of AD group and CTL 

group) was used as the background genes for this analysis, whereas the DC genes from each 

community acted as query genes. WebGestaltRBatch function was used to run the enrichment 

analysis so that the gene lists for multiple communities can be submitted at the same time. 

Under the 'Functional database category', Gene Ontology, GO (Biological process, cellular 

component, and molecular function), and pathways  (KEGG & REACTOME) were selected 

for enrichment. We used FDR thresholds of 0.05  and used redundancy reduction methods 

(affinity propagation and weighted set cover) to find the most significantly enriched terms.  

For the enriched communities, we ran the ORA with ShinyGO v0.6655 to generate the 

hierarchical clustering tree. This tree groups related GO terms together based on how many 

genes they share. The top 10 processes were selected for hierarchical clustering tree 

representation. 

We also used customized functional categories, including genes enriched for AD GWAS 

signal, ligand-receptor molecules, CSF markers, secreted proteins, and neurotransmitters for 

ORA. The AD GWAS enriched genes are retrieved from MAGMA analysis (explained below). 

Ligand-Receptor pairs are assembled by combining the latest data of the year 2020 from 

GitHub repositories (https://github.com/LewisLabUCSD/Ligand-Receptor-Pairs). CSF 

markers are extracted from literature mining. Secreted proteins and neurotransmitters are 

downloaded using AmiGo56. 

Further, for each hub gene from one brain region, we retrieved the connected genes from the 

respective brain region with which it interacted and performed over representation analysis 

(ORA) using WebGestalt, using the respective background gene list. However, none of the 

gene lists were enriched for any Gene Ontology (GO) processes. This prompted us to partition 

each bipartite network (inter-region comparison) into more meaningful gene communities.  

SNP enrichment analysis 

GWAS studies have revealed numerous risk loci associated with AD, which harbor putative 

causative genes and variants. We aimed to check if DC genes or DC community gene sets are 
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enriched for such GWAS-detected AD associations. The AD GWAS association signals in the 

form of SNP summary statistics are available for a comprehensive set of SNPs from a recent 

meta-analysis study of four major AD GWAS studies - the Psychiatric Genomics Consortium 

(PGC-ALZ), the International Genomics of Alzheimer's Project (IGAP), the Alzheimer's 

Disease Sequencing Project (ADSP), and UK Biobank (UKB). This study assessed the effect 

of 9,862,738 SNPs in 71,880 AD samples and 383,378 controls samples12. We would now like 

to test whether a given gene (or set of genes) is in the vicinity of many SNPs associated with 

AD in the above meta-analysis study. For this purpose, we use MAGMA, a tool for gene 

analysis and generalized gene-set analysis of GWAS data, in order to predict gene and gene-

set level p-values using SNP-level p-values57. Inputs to MAGMA include SNP summary 

statistics of the meta-analysis study12 (downloaded from the CNCR/CTG LAB (Center for 

Neurogenomics and Cognitive Research/Complex Trait Genetics) website), and European 

1000 Genomes reference data as described next. 22,665,064 SNPs retrieved from European 

1,000 Genomes data files were first annotated to 19,354 genes from the hg19 genetic reference 

(human genome Build 37), using a 10 kb annotation window on either side of the gene. Next, 

using SNP p-value and European 1000 Genomes reference data, 18,445 genes were mapped to 

SNPs, of which genes significantly enriched for AD GWAS signal at  FDR<0.05 (Benjamini 

Hochberg, BH p adjustment) were retained. Further, gene set analysis was performed on 302 

gene sets, and significantly enriched gene sets for AD GWAS signal at FDR 0.05 (BH adjusted 

p<0.05) was reported. 

Code Availability 

Code used in this study is provided here: https://github.com/BIRDSgroup/InterTissueDC. 
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