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Abstract

Privacy-preserving algorithms for genome-wide association studies (GWAS) promise to facilitate data
sharing across silos to accelerate new discoveries. However, existing approaches do not support an im-
portant, prevalent class of methods known as linear mixed model (LMM) association tests or would
provide limited privacy protection, due to the high computational burden of LMMs under existing secure
computation frameworks. Here we introduce SafeGENIE, an e�cient and provably secure algorithm for
LMM-based association studies, which allows multiple entities to securely share their data to jointly
compute association statistics without leaking any intermediary results. We overcome the computational
burden of LMMs by leveraging recent advances in LMMs and secure computation, as well as a novel scal-
able dimensionality reduction technique. Our results show that SafeGENIE obtains accurate association
test results comparable to a state-of-the-art centralized algorithm (REGENIE), and achieves practical
runtimes even for large datasets of up to 100K individuals. Our work unlocks the promise of secure and
distributed algorithms for collaborative genomic studies.1
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1 Introduction

Genome-wide association studies (GWAS) have been a major driving force behind genomics research [1, 2].
Ongoing e↵orts to amass large and diverse collections of genomic data, such as the All of Us Program [3]
and the UK Biobank [4], will continue to bring new discoveries of genetic variants of biological and clinical
importance. However, many of the existing genomic datasets are held in isolated repositories within national
or organizational boundaries under strict data sharing limitations, presenting a key hurdle for collaborative
research [4–6]. Achieving su�cient statistical power for rare diseases and underrepresented populations
(e.g. admixed individuals) requires new strategies to facilitate sharing of genomic data across multiple data
repositories.

To this end, recent studies have proposed a range of privacy-preserving solutions for GWAS. These works
aim to allow analyses to be jointly performed on multiple parties’ datasets without sharing the raw individual-
level data, thus providing a path to circumvent regulatory restrictions. In particular, cryptographic ap-
proaches based on secure computation frameworks [7–10], such as homomorphic encryption (HE) [11, 12]
and secure multiparty computation (MPC) [13], o↵er the strongest notions of data privacy, which state that
any (encrypted) data that is externally shared by each party is statistically indistinguishable from random
(under certain security assumptions, such as the parties do not collude in the case of MPC) [14]. Alterna-
tive approaches based on trusted execution environment (TEE) technology [15,16] or distributed/federated
algorithms [17,18] have also been proposed, albeit providing weaker forms of privacy protection.

A key limitation shared by most existing solutions for privacy-preserving GWAS is that they consider
simplified analysis workflows that do not reflect the current standard practice in genomics. Specifically,
population stratification correction—a crucial step in GWAS for mitigating confounding e↵ects arising from
the implicit association between population structure in the study cohort and the target phenotype [19]—
has long been unaddressed by solutions for privacy-preserving GWAS; the one exception is recent work that
incorporated an approach based on principal components analysis (PCA) [13]. The gap between current
solutions and practical workflows is in part due to the fact that existing techniques for privacy protection
typically incur a computational overhead that grows with the complexity of the algorithm being implemented;
this renders the task of making these sophisticated algorithms secure for modern GWAS highly challenging.
Overcoming this barrier is a necessary step to realize the full potential of emerging privacy techniques.

Linear mixed models (LMMs) are one of two main classes of methods in the literature for addressing
population stratification in GWAS. The other is a more traditional PCA-based approach [20], where the top
principal components of the genotype matrix are included as fixed-e↵ect covariates in the statistical models
of genetic association to control for global population structure. In contrast, LMMs view the ancestry-related
e↵ect on the phenotype as a random e↵ect, whose covariance is determined by the genetic relatedness patterns
in the study cohort, also estimated from the data. LMMs are known to be more e↵ective at capturing
cryptic relatedness and fine-grain population structure within the study cohort [21]. Further enabled by
recent algorithmic advances on reducing the computational burden of LMM computation [21–23], LMMs are
increasingly becoming the preferred approach for GWAS [24]. However, little work exists in the literature
on privacy-preserving LMM-based GWAS over decentralized, or distributed, datasets, which we ascribe to
the complexity of existing LMM algorithms and their high computational cost even with full access to the
data. This severe bottleneck hinders the use of privacy-preserving techniques for a full GWAS pipeline in
practice.

In this work, we present SafeGENIE (secure and federated REGENIE), a privacy-preserving algorithm
for performing LMM-based association tests on distributed genomic datasets. We develop a scalable algo-
rithm for privacy-preserving LMM computation by synthesizing recent advances in cryptography, distributed
algorithms, and population genetics, including: multiparty homomorphic encryption [25], distributed linear
regression models [26], an e�cient stacked ridge regression approach for LMMs (called REGENIE [27]).
SafeGENIE provides formal security guarantees o↵ered by the underlying cryptographic frameworks, in-
cluding protection for all intermediate results, while maintaining e�ciency by maximally leveraging local
computation using plaintext (raw) data. Our work also incorporates new algorithmic strategies (e.g. linear
algebra techniques for low-rank matrix update) to overcome the unique computational bottlenecks that arise
when jointly utilizing the aforementioned techniques in SafeGENIE. To our knowledge, SafeGENIE is the
first privacy-preserving algorithm to fully implement the LMM-based GWAS pipeline.

Our experimental results show that SafeGENIE produces LMM association statistics closely matching
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those of the plaintext algorithm REGENIE, demonstrating its utility for real-world studies. SafeGENIE also
maintains runtimes on the order of days for datasets including up to a hundred thousand individuals and is
e�cient in memory usage. Although this runtime reflects the heavy computational burden of the underlying
LMM computation, we demonstrate that our method is a significant improvement over the state-of-the-art
baseline approaches and can be readily applied to many existing datasets. Our work represents an important
step towards enabling a wide range of genomic analyses to be performed while protecting the private data.

2 Problem Definitions and Review of Existing Methods

2.1 Linear Mixed Model (LMM) Association Studies

We start by formally describing the LMMs used for genome-wide association tests. LMMs model the target
phenotype vector y of length N individuals using the following linear model

y = �testxtest + Z↵+ g + e,

where xtest is a vector of allele dosages of the variant being tested across N individuals, Z is a N -by-C
matrix of observed covariates where C denotes the number of covariates, g represents the ambient genetic
e↵ect, and e represents the environmental e↵ect. Both xtest and y are standardized to have zero mean and
unit variance. We let N and M be the number of individuals and the number of variants in the dataset,
respectively.

In this model, �test and ↵ describe the fixed e↵ect sizes associated with the tested variant and the
covariates, respectively, whereas g and e are modeled as random e↵ects (hence the term “mixed” model).
Under the standard infinitesimal model, which posits that the genetic e↵ect on phenotype consists of many
small e↵ect-size variants, we can express

g = XLOCO�

where XLOCO is a N -by-MLOCO matrix consisting of the standardized genotypes of MLOCO variants used to
model the genetic e↵ect based on the standard leave-one-chromosome-out (LOCO) scheme, which excludes
all variants in the same chromosome as the tested variant in order to avoid the e↵ects of linkage disequi-
librium. These ambient variants are associated with e↵ect sizes � ⇠ N (0, (�2

g/MLOCO)IMLOCO
), inducing

a distribution over the genetic e↵ect as g ⇠ N (0,�2
gK). K = XLOCOX

T
LOCO

/MLOCO is referred to as the
genetic relatedness (or empirical kinship) matrix. The environmental e↵ect is modeled as e ⇠ N (0,�2

eIN ).
Note that �g and �e represent the variances of the polygenic and environmental components. The goal of
the association test is to test the null hypothesis H0 : �test = 0.

A standard technique [21,27] is to project the covariates out of the phenotypes and genotypes to simplify
the computation. This results in a modified model

ỹ = �testx̃test + X̃LOCO� + e, (1)

where ỹ = Py, x̃ = Px, and X̃LOCO = PXLOCO with P = IN � Z(ZT
Z)�1

Z
T . Note that P projects a

vector onto the null space of Z.
The LMM-based �2 test statistic is given by

�2 =
(x̃T

test
V

�1

LOCO
ỹ)2

x̃
T
test

V
�1

LOCO
x̃test

, (2)

where VLOCO = �̂2
gK+ �̂2

eIN given the estimates �̂g and �̂e of the variance parameters.

2.2 Review of REGENIE: E�cient Stacked Regression for LMMs

Computing the LMM association statistics is a computationally expensive task, in part because the maximum
likelihood estimation of the variance parameter �g involves costly matrix operations involving the N -by-N
genetic relatedness matrix (GRM), which becomes prohibitively large for large-scale datasets. Much of the
prior algorithmic development e↵orts have focused on speeding up the use of GRM, e.g. by exploiting a
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factorization of the matrix [23]. A recent algorithm called REGENIE [27] introduced a di↵erent strategy
based on stacked regression, resulting in significant scalability improvements for LMM-based association tests,
while achieving comparable accuracy to existing state-of-the-art tools such as BOLT-LMM [21], fastGWA
[22], and SAIGE [28]. Indeed, we observed similar performance between REGENIE and BOLT-LMM on the
benchmark dataset used in our study (Supplementary Figure 1). Moreover, we discovered that REGENIE’s
approach is more amenable to e�cient computation over distributed datasets, thereby forming an important
basis for our SafeGENIE method.

In REGENIE [27], the whole-genome regression model in Equation 1 is estimated in two phases by first
regressing out the contribution of X̃LOCO from ỹ, then fitting �test on the residuals to test for association.
To further reduce the cost of regression over the large genome-wide matrix X̃LOCO, REGENIE employs a
stacked regression approach in the following two steps, referred to as Levels 0 and 1.

Level 0. The genotype matrix is first split into B contiguous blocks of T variants:

X̃LOCO = (X̃(1)

LOCO
, X̃(2)

LOCO
, . . . , X̃(B)

LOCO
).

Then for each block b 2 [B] and di↵erent choices of the regularization parameter �r 2 {�1, . . . ,�R}, where R
represents the number of regularization parameters being tested, the following solution to the ridge regression

problem ỹ ⇡ X̃
(b)
LOCO

� is computed.

�̂
(b)

�r
:= ((X̃(b)

LOCO
)T X̃(b)

LOCO
+ �rIN )�1(X̃(b)

LOCO
)T ỹ, (3)

ŷ
(b,r)
LOCO

:= X̃
(b)
LOCO

�̂
(b)

�r
. (4)

The ŷ
(b,r)
LOCO

is referred to as the predictors, representing the best polygenic prediction of the phenotype
within a given genomic region, accounting for genotype correlations.

Level 1. The local predictors from Level 0 are aggregated to form a N -by-BR global feature matrix

W := (ŷ(1,1)
LOCO

, . . . , ŷ(B,R)

LOCO
). (5)

Then another around of ridge regression is performed (with K-fold cross validation to choose the optimal
regularization parameter ⌘) to obtain the following genome-wide phenotype predictions:

ŷLOCO := W(WT
W + ⌘IN )�1

Wỹ. (6)

Given this global predictor as a proxy for ambient genetic e↵ect, the �2 statistic (with one degree of freedom)
for the variant being tested in Equation 2 can now be formulated as

�2 =
(x̃T

test
(ỹ � ŷLOCO))2

�̂2
e · (x̃T

test
x̃test)

, (7)

where �̂2
e = kỹ � ŷLOCOk22/(N � C) is the estimated variance of the environmental e↵ect.

The above approach substantially improves the speed of LMM computation by decomposing the problem
into B separate local ridge regression problems, which can be performed in parallel in high performance
computing environments. Importantly, by formulating the problem as a series of ridge regression tasks, the
problem becomes more tractable for secure distributed computation, an aspect we exploit in our design of
SafeGENIE to achieve e�ciency.

2.3 Review of Privacy-Preserving GWAS Algorithms and Their Limitations

Prior works have developed privacy-aware algorithms for conducting GWAS over private datasets to facil-
itate genomic data sharing and collaboration. These methods leverage a range of di↵erent computational
techniques with di↵erent strengths and weaknesses. Methods based on cryptographic frameworks such as
secure multiparty computation (MPC) [7,29] and homomorphic encryption (HE) [9,30] aim to directly allow
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computation over encrypted data. MPC relies on interactive protocols among multiple parties to carry out
the joint computation without revealing the private data, whereas HE enables non-interactive computation
over the ciphertexts, albeit incurring higher computational overhead. GWAS algorithms based on both
approaches have been developed [11–13], but they do not support LMM-based analyses.

Another branch of methods follow a distributed or federated algorithm design [17, 18], leveraging local
computation performed by each party on their respective dataset combined with aggregation steps that
exchange information among the parties to move towards a global solution. Although these methods enjoy
higher computational flexibility and e�ciency compared to cryptographic approaches, there is a general lack
of understanding of the extent to which private information is leaked in the intermediate results shared
among the parties, thus providing limited privacy protection. Notably, a recent work in this line presented
a promising solution for distributed training of generalized LMMs [31], which is closely related to our work.
However, we note that the prior method did not address association testing and supports only a single
covariate, thus the LMM-based GWAS remains an open problem. Approaches based on trusted execution
environments, such as the Intel SGX enclave, have also been proposed [15,16]. They perform computation on
private data securely within a secure hardware component that is isolated from the rest of the host operating
system. Similar to the plaintext distributed approach, these methods are e�cient but o↵er limited privacy
protection due to various security vulnerabilities that security researchers continue to discover, necessitating
careful mitigation strategies (e.g. [32]). In this work, we adopt the cryptographic paradigm for secure
computation, which o↵ers the strongest notion of privacy, and focus on e�cient algorithm design to address
the associated computational burden.

3 Our Method: SafeGENIE

3.1 Overview of SafeGENIE

SafeGENIE is a privacy-preserving algorithm for LMM association analysis, which jointly analyzes private
datasets held by di↵erent entities without leaking individual-level information. The results of SafeGENIE, by
design, closely match those of running REGENIE on a pooled dataset with minimal loss in precision, while
additionally protecting data privacy. The core computational framework of SafeGENIE is a hybrid of secure
multiparty computation (MPC) and homomorphic encryption (HE), building upon the recently introduced
framework of multiparty homomorphic encryption (MHE) [25,33–35]. Combining the ability of HE to perform
non-interactive secure computation at each site with e�cient MPC protocols for high-complexity operations
such as comparison and inverse square root [13], our hybrid approach enables SafeGENIE to leverage e�cient
local plaintext computation while maintaining flexibility and accuracy in computational capabilities. In
addition, our framework provides formal privacy guarantees by only exchanging encrypted forms of all
intermediate results in accordance with established HE and MPC techniques throughout the protocol to
facilitate the distributed computation (in contrast to other federated approaches that leak intermediate
results and therefore sensitive data). Using these cryptographic tools, SafeGENIE implements our distributed
algorithm for stacked regression for LMMs, inspired by the success of the centralized plaintext algorithm
introduced by REGENIE. We introduce new algorithmic techniques for maximizing local computation that
allow SafeGENIE to achieve near-constant scalability to larger datasets as we show in our results. We provide
a graphical illustration of SafeGENIE in Figure 1.

3.2 Our Secure Computation Model

In our application setting, we consider P independent parties, each with a local GWAS dataset, who wish
to jointly perform LMM association analysis on the pooled data without revealing private data. Our core
approach is to keep these local datasets in plaintext and to encrypt, using MHE, only the intermediate
results that need to be aggregated across the parties. MHE [25] is an extension of homomorphic encryption
(HE) schemes where the decryption key is split among multiple parties using secret sharing, which ensures
that encryption and homomorphic operations (performing computation over the secrets without decrypting
the data) can be performed locally, while decryption requires all parties to cooperate, thus giving each party
control over which pieces of results (such as the final association statistics) are revealed to other parties.
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Figure 1: Overview of SafeGENIE. SafeGENIE implements a stacked ridge regression approach [27] to LMM
association testing, whereby regression models trained on local genomic blocks are combined in another round of
regression to produce estimated background genetic e↵ects for the association tests. (Left) Both levels of ridge
regression are performed using secure distributed algorithms we developed (CGD and ADMM-Woodbury), which
leverage both homomorphic encryption and secure multiparty computation frameworks to provide privacy protection.

Importantly, MHE enables our distributed approach to secure computation, where we iterate between
(1) a local computation phase, where each party computes local results leveraging both local plaintext
data and encrypted shared data, and (2) an aggregation phase, where the parties interact to update the
encrypted shared data, to perform the desired analysis. We additionally incorporate secret sharing-based
MPC routines into our protocol by securely switching data representation between HE and secret shares.
Secret shared data allow us to leverage e�cient interactive protocols for more complex operations at the
expense of higher communication. In our protocols, we securely perform comparison, inverse square root,
and eigendecomposition over a small matrix using interactive MPC subroutines, while relying on HE for
the rest. Note that, following the prior work on MPC-based GWAS [13], we adopt an e�cient server-aided
model for MPC, in which a coordinating party facilitates the computation by supplying the main parties
with random numbers satisfying a certain structure. The coordinating party does not receive any portion of
the private data other than the knowledge of data dimensions.

For the purposes of describing our distributed LMM algorithm implemented in SafeGENIE, we view
our secure computation framework as a collection of building block protocols, each implementing a simple
operation such as matrix multiplication or square root, which we compose to implement an end-to-end secure
protocol that implements the LMM computation. As the focus of this work is on distributed algorithm
design, in particular on optimizing the use of secure subroutines to e�ciently perform LMM computation,
we refer to relevant prior works on MPC and MHE for detailed descriptions of the subroutines used in
SafeGENIE [12,13].

3.3 Key Challenges of Distributed LMM Computation

To motivate our novel algorithmic techniques, we first describe the computational challenges in distributing
the LMM computation. Recall that state-of-the-art LMM-based GWAS algorithms (e.g. BOLT-LMM [21])
account for population stratification by using the N -by-N genetic relatedness matrix (GRM) K, which
intuitively captures how individuals within a dataset are related to one another. A core computational step
in the estimation of variance parameters or the calculation of association statistics is calculating a quantity
of the form

(K+ �IN )�1
v = (X̃X̃

T /M + �IN )�1
v, (8)
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for some length-N vector v. Because the size of K scales with the number of individuals in the dataset,
for large-scale GWAS, this computation inherently incurs an overwhelming computational cost. As such,
addressing this challenge has been the focus of recent algorithmic development e↵orts for LMM.

In our setting, the fact that the o↵-diagonal blocks of K describe relatedness between individuals in
di↵erent collaborating sites introduces a unique di�culty in distributing the computation. When näıvely
implemented, those interactive terms in K are bound to require heavy communication among parties to
account for their contributions. Even recently proposed iterative approaches for e�ciently solving this linear
system of equations without the inverse (e.g. conjugate gradient descent used by BOLT-LMM [21]) presents a
similar challenge, as it involves repeated multiplications of K with a candidate solution vector. Moreover, we
note that K is typically defined over covariate-corrected genotypes X̃ = PX, where P denotes a projection
matrix for removing the covariate e↵ect, which introduces another layer of entanglement between the private
datasets at di↵erent sites, making distributed computation further challenging.

3.4 Our Approach: Secure Distributed Ridge Regression with Covariates

SafeGENIE approaches this problem di↵erently. Following the methodology of REGENIE [27], instead of
using the notion of a GRM, we train ridge regression models for local genomic windows to use as a proxy
for ambient genetic e↵ect on phenotype. Correcting for these polygenic predictions by testing for a variant’s
association with the phenotype residuals, our approach implicitly accounts for population stratification under
the LMM formulation.

Our work identifies this alternative approach for LMMs as a key enabling factor for distributing the
computation. Let X̃

(b) be a subset of columns from a genotype matrix corresponding to a genomic block
with Mb variants. The ridge regression problem for LMM reduces to computing the expression

((X̃(b))T X̃(b) + �IMb)
�1(X̃(b))T ỹ. (9)

In contrast to Equation 8, we see that the inverse operation is for a matrix of size Mb-by-Mb, which is
significantly smaller than K (note Mb is typically 1000). Furthermore, for horizontally distributed X̃

(b),

where each party p holds a subset of rows in this matrix denoted X̃
(b)
p , we have the following decomposition

(X̃(b))T X̃(b) =
PX

p=1

(X̃(b)
p )T X̃(b)

p . (10)

This property allows SafeGENIE to distribute the computation more e�ciently across the parties and max-
imally leverage plaintext data that is available locally. In the following section, we describe how we exploit
this insight to design secure and distributed algorithms for conjugate gradient descent (CGD) and alternating
direction method of multipliers (ADMM) approaches for ridge regression, which are used by SafeGENIE to
carry out the Level 1 and Level 0 steps of REGENIE, respectively.

3.5 SafeGENIE Algorithm Details

Recall from Section 2.2 that stacked regression approach to LMM involves solving the following two ridge
regression problems in Levels 0 and 1.

�̂
(b)

�r
:= ((X̃(b)

LOCO
)T X̃(b)

LOCO
+ �rIN )�1(X̃(b)

LOCO
)T ỹ, (Level 0) (11)

ŷLOCO := W(WT
W + ⌘IN )�1

Wỹ. (Level 1) (12)

The first is solved KBR times for each pair of a block b 2 [B] and a regularization parameter �r for r 2 [R]
using K-fold cross validation, and the second is solved KR times for each of R values of ⌘ using the same
K-fold cross validation. The challenging step in both is the multiplication by the inverse matrix, which is
infeasible to solve directly when the matrix is only available in encrypted form. This is unlike REGENIE,
which explicitly solves for the inverse using eigenfactorization. Explicitly computing the inverse for a large,
homomorphically encrypted matrix imposes a considerable computational burden, which we aim to avoid.
To address this, we develop two algorithms described below.
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3.5.1 Secure Distributed Conjugate Gradient Descent (CGD)

Conjugate Gradient Descent (CGD) [36] is a well-known iterative algorithm for solving a system of linear
equations without explicitly constructing the inverse of the design matrix. Notably, BOLT-LMM heavily
utilizes the CGD algorithm to avoid working with the inverse of GRM. A requirement of CGD is that the
design matrix be positive definite and well conditioned; in our setting, the regularization term in ridge
regression ensures this property [37]. Hence, CGD can be applied to any of the ridge regression problems in
our task. The central step in CGD is a multiplication of a candidate solution vector with the design matrix
(not the inverse), which lends itself to e�cient distributed computation. We outline our distributed CGD
algorithm in Algorithm 1.

Algorithm 1 Distributed Conjugate Gradient Descent for Ridge Regression

Input: Number of parties P , horizontally distributed input matrix A = [AT
1 , . . . ,A

T
P ]

T , target vector b, regulariza-
tion parameter �, number of iterations ⌧ .

Output: A vector x that satisfies (ATA+ �I)x ⇡ b.
Initialize: x0  0, y0  b, r0  b
for k 2 {0, . . . , ⌧ � 1} do

Each party p locally computes zp  AT
p Apyk

z SumAggregate({z1, . . . , zP })
u z+ �yk . u = (ATA+ �I)yk

↵ (rTk rk)/(y
T
k z)

xk+1  xk + ↵yk

rk+1  rk � ↵z
�  (rTk+1rk+1)/(r

T
k rk)

yk+1  rk + �yk

end for
return x⌧

We highlighted in blue the modified step in the distributed approach. As explained in Section 3.4, the
fact that the design matrix A

T
A in our setting decomposes as a sum of local design matrices AT

p Ap allows
this step to be performed independently, then aggregated after both multiplications (the SumAggregate step).
Thus, the required communication scales with the number of predictive features (variants), not the number
of samples held by each party, thereby o↵ering better scaling to large datasets. To apply this algorithm
to encrypted datasets, each of the calculations, namely matrix-vector multiplication, inner products, and
addition/subtraction, are implemented using HE routines, with the exception of division, for which we switch
to a secret sharing-based MPC routine. Note that the SumAggregate step involves each party broadcasting
their share to others and adding up all shares (homomorphically), which does not involve any decryption.
For e�ciency, this procedure is implemented over a star network where a central coordinator aggregates all
data and in turn relays the result to all parties.

3.5.2 Secure ADMM for Ridge Regression with Covariates

Although CGD o↵ers a natural distributed solution for ridge regression, it is still computationally burdensome
for large input matrices. For instance, consider applying CGD to Level 0 of REGENIE, where the input is
given as

A = X̃
(b) = [(X̃(b)

1
)T , . . . , (X̃(b)

P )T ]T . (13)

When each party performs the following local computation in Algorithm 1

zp  (X̃(b)
p )T X̃(b)

p yk, (14)

they first need to multiply yk with X̃
(b)
p , which has an output dimension of Np (number of individuals in

party p’s dataset), followed by another multiplication with (X̃(b)
p )T , finally resulting in a vector of length Mb.

This is due to the fact that (X̃(b)
p )T X̃(b)

p cannot be precomputed in plaintext, since X̃
(b)
p requires covariate

correction involving all parties covariate data. Note that Mb, the block size, is a user parameter typically set
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to a small value (e.g. 1000) whereas Np can grow much larger for large-scale datasets. Therefore, CGD does
not benefit from any dimension reduction (to Mb) that is otherwise exhibited in the plaintext formulation.

SafeGENIE overcomes this challenge by leveraging the alternating direction method of multipliers (ADMM)
technique [38], which is a powerful method for transforming convex optimization problems into distributed
optimization problems that can be more e�ciently solved. Intuitively, ADMM relaxes the global objective
by decoupling the terms involving each individual dataset, which in turn can be jointly optimized using local
update equations that, in our case, involve plaintext matrices of size Mb as desired. Our techniques draw
inspiration from a recent work in security literature, which introduced a secure multiparty ADMM algorithm
for distributed linear regression [26]. Our work extends this work to the setting where the design matrix
must be covariate-corrected, which introduces additional challenges as we describe below.

Here we describe how we apply ADMM to the ridge regression problem in Level 0 of REGENIE. Recall
that the ridge regression of ỹ onto X̃

(b) with regularization parameter � can be equivalently formulated as
the following optimization problem:

minimizew
1

2
kX̃(b)

w � ỹk2
2
+

1

2
�kwk2

2
. (15)

To apply ADMM, we first decouple the two terms using a slack variable z with an equality constraint as
follows.

minimizew,z
1

2
kX̃(b)

w � ỹk2
2
+

1

2
�kzk2

2
, (16)

s.t. w � z = 0. (17)

Next, we note that the first objective term can be written as a sum of squared loss computed over each
party’s dataset as

kX̃(b)
w � ỹk2

2
=

PX

p=1

kX̃(b)
p w � ỹpk22, (18)

where we partition ỹ = [ỹ1, . . . , ỹP ] in the same manner as X̃(b). Finally, further decoupling thew parameters
across parties for distributed optimization, we obtain

minimizewp,z
1

2

PX

p=1

kX̃(b)
p wp � ỹpk22 +

1

2
�kzk2

2
, (19)

s.t. wp � z = 0, 8p. (20)

The resulting iterative optimization procedure based on the standard ADMM derivation, for general local
matrices A1,. . . ,AP , is shown in Algorithm 2.

Algorithm 2 Standard ADMM Algorithm for Ridge Regression (adapted from [38])

Input: Number of parties P , horizontally distributed input matrix A = [AT
1 , . . . ,A

T
P ]

T , target vector b =
[bT

1 , . . . ,b
T
P ]

T , regularization parameter �, learning rate ⇢, number of iterations ⌧ .
Output: A vector z that satisfies (ATA+ �I)z ⇡ b.

Each party p:
Locally computes R�1

p  (AT
p Ap + ⇢I)�1

Initializes w0
p  0,u0

p  0 and a global vector z0  0
for k 2 {0, ..., ⌧ � 1} do

Each party p locally computes wk+1
p  R�1

p (b+ ⇢zk � uk
p)

w̄k+1  SumAggregate({wk+1
1 , . . . ,wk+1

P })/P
ūk  SumAggregate({uk

1 , . . . ,u
k
P })/P

Each party p locally computes:
zk+1  (⇢w̄k+1 + ūk)/(�/P + ⇢)
uk+1
p  uk

p + ⇢(wk+1
p � zk+1)

end for
return z⌧
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However, we note that our given Ap = X̃
(b)
p is not available in plaintext, as it is meant to be standardized

and covariate-corrected based on the global matrix X̃
(b). Therefore, although each party has access to their

own raw genotype martix X
(b)
p , they are not able to precompute the following matrix shown in Algorithm 2

in plaintext:
R

�1

p = ((X̃(b)
p )T X̃(b)

p + ⇢IMb)
�1. (21)

In SafeGENIE, we introduce a technique to resolve this issue by using the Woodbury matrix identity [39]
to perform covariate correction in the computation of R�1

p on the fly as follows. First, recall that

X̃
(b) = (IN � Z(ZT

Z)�1
Z

T )X(b)
S
(b), (22)

where Z is an N -by-C covariate matrix, and S represents a diagonal matrix with inverse standard deviations
for each column of X(b). We include an all-ones vector as a covariate in Z, which implicitly accounts for
mean centering of X(b). With one round of aggregation, we precompute a small C-by-Mb matrix

H
(b) = Z

T
X

(b) =
PX

p=1

Z
T
p X

(b)
p , (23)

where each summand is computed locally using plaintext matrices then aggregated in an encrypted form.
Next, noting that

X̃
(b) = (X(b) � Z(ZT

Z)�1
H

(b))S(b), (24)

we are able to express R�1
p (Equation 21) as

R
�1

p = S
�1(([(X(b)

p )TX(b)
p + ⇢IMb ] +UpEpVp)

�1
S
�1, (25)

for some matrices Up,VT
p 2 RMb⇥2C and Ep 2 R2C⇥2C (see Appendix for full derivation; note the inner

dimension of 2C). Finally, using the Woodbury identity and letting Q := (X(b)
p )TX(b)

p + ⇢IMb to simplify
the notation, we can expand the inverse as

(Qp +UpEpVp)
�1 = Q

�1

p �Q
�1

p Up(E
�1

p +VpQ
�1

p Up)
�1

VpQ
�1

p . (26)

We have successfully reformulated the computation of R�1
p as one involving an inverse of a plaintext matrix

Qp and several matrix multiplications with a small inner dimension of 2C. Note that the new composite
inverse matrix

Lp := (E�1

p +VpQ
�1

p Up)
�1 (27)

can be e�ciently computed using secure MPC protocols, using the eigenfactorization routine introduced in
prior work [13].

As a result, we can compute a key matrix Q
�1
p completely locally in plaintext, then use Equations 7 and

2 to compute the multiplication with R
�1
p on the fly using the plaintext Q

�1
p . Note that this step is the

only expensive matrix multiplication in the ADMM algorithm, and as such our reformulated ADMM o↵ers
significant reduction in computational cost. Moreover, we emphasize that, aside from the precomputation of
H

(b) and Q
�1
p , none of the matrix operations in our ADMM algorithm scales with the number of individuals

in the dataset, and thus scales very e�ciently to datasets with many samples, as our results show. Our
final ADMM algorithm for ridge regression with covariates, leveraging the Woodbury identity technique, is
presented in Algorithm 3 (changes with respect to the standard formulation are shown in blue).

3.6 Computational Complexity of SafeGENIE

SafeGENIE greatly reduces the runtime of a direct implementation of REGENIE in a distributed setting. By
using our improved ADMM algorithm, we delegate large matrix inverse operations to be performed locally in
plaintext. Since in practice the overhead of cryptographic operations greatly overshadows that of plaintext
computation, in our complexity analysis we only consider homomorphic operations over the encrypted data.

The implementation of ADMM with our Woodbury optimization is separated into two components, the
precomputation of a small matrix inverse in the Woodbury identity and the main ADMM iterations. For
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Algorithm 3 Our Improved ADMM Algorithm for Ridge Regression with Covariates

Input: Number of parties P , horizontally distributed input matrix X = [XT
1 , . . . ,X

T
P ]

T and a covariate matrix
Z = [ZT

1 , . . . ,Z
T
P ]

T , a diagonal matrix S with inverse standard deviations of columns of X, target vector b =
[bT

1 , . . . ,b
T
P ]

T , regularization parameter �, learning rate ⇢, number of iterations ⌧ .
Output: A vector z that satisfies (ATA+ �I)z ⇡ b, where A := (I� Z(ZTZ)�1ZT )XS

Each party p locally computes Hp  ZT
p Xp

H SumAggregate({H1, . . . ,HP })
Each party p:

Initializes w0
p  0,u0

p  0 and a global vector z0  0
Locally computes Q�1

p  (XT
p Xp + ⇢IMb)

�1

Precompute Lp := (E�1
p +VpQ

�1
p Up)

�1 in Equation 27 for all parties
for k 2 {0, ..., ⌧ � 1} do

Each party p:
Locally computes h Q�1

p S�1(b+ ⇢zk � uk
p)

Locally computes wk+1
p  S�1(h�Q�1

p UpLpVph)
w̄k+1  SumAggregate({wk+1

1 , . . . ,wk+1
P })/P

ūk  SumAggregate({uk
1 , . . . ,u

k
P })/P

Each party p locally computes:
zk+1  (⇢w̄k+1 + ūk)/(�/P + ⇢)
uk+1
p  uk

p + ⇢(wk+1
p � zk+1)

end for
return z⌧

the precomputation of the Lp matrix (Equation 27), each party performs a Mb-by-Mb matrix multiplication
around 2C times where C is the number of covariates, where Mb is the blocksize. Each main iteration is
dominated by the work of multiplying a Mb-by-Mb plaintext matrix Q

�1
p twice with a ciphervector, combined

with cipher-cipher multiplications with precomputed matrices Up, Lp, and Vp. Like in the plaintext setting,
matrix vector multiplication in HE scales linearly with the size of the matrix. Since ridge regression in Level
0 is computed for each block (B), cross-validation fold (K), and regularization parameter (R), the complexity
of Level 0 is O(KBRT 2⌧) where ⌧ is the number of iterations in ADMM. Since M = BMb by definition, this
can be expressed as O(MbKRM⌧). We note that this is a much better asymptotic runtime than naively using
CGD for Level 0. Each iteration of CGD scales linearly with the size of the matrix being multiplied, which is
N -by-Mb in our case. Therefore, the total runtime of Level 0 with CGD is O(MbKBRN⌧), or equivalently
O(KRMN⌧), which is a factor of N/Mb larger than our ADMM method. For a dataset of N = 105 and
Mb = 103, this amounts to a factor of 100 improvement using our ADMM solution, asymptotically.

For Level 1, since we evaluate the CGD subroutine lazily without explicitly constructing the design
matrix, we distribute the work in a way where each party multiplies their respective plaintext genotype
matrix with a vector. Since the size of the matrix is N -by-BR, and there are KR di↵erent ridge regressions
that must be performed, the runtime complexity of Level 1 is O(KR2NB⌧), where ⌧ is the number of
iterations in CGD (typically 30), and K and R are small numbers (default values of 5 in REGENIE).

Lastly, to compute association statistics, much of the work can be done in plaintext. The chromosome-
specific LOCO residual vectors (observed phenotypes minus the LOCO predictors of genetic e↵ect) must be
covariate corrected and then multiplied by the genotype matrix for the corresponding chromosome. This is
equivalent to one matrix-vector multiplication between the full genotype matrix (plaintext) and a residual
vector (ciphertext). While this leads to an asymptotic complexity of O(NM), in practice since only one such
multiplication is needed and because cipher-plain multiplications are considerably more e�cient than cipher-
cipher multiplications, computing association statistics is the quickest of the three levels of computation.

3.7 Numerical Stability of SafeGENIE

There are several hyperparameters and statistics to take note of with SafeGENIE’s use of iterative methods
for ridge regression that factor into the numerical stability and convergence time of SafeGENIE. Our ADMM
algorithm for Level 0 depends on the hyperparameter ⇢, which represents the step size used in the ADMM
iterations. We have found that in practice, an e↵ective ⇢ can be determined as a function of the number of
individuals, since the genomic block size is typically chosen within a fixed range of 1K to 5K variants for
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REGENIE. In our experiments, we set ⇢ to the number of individuals in the local dataset divided by the
number of cross-validation folds.

Another hyperparameter of interest for both CGD and ADMM is the number of iterations. The conver-
gence of both methods are generally dependent on the condition number of the input matrix [37, 40] and
thus rely heavily on the magnitude of the regularization parameter relative to the input matrix. There-
fore, we implemented an adaptive approach that checks for convergence at regular intervals and terminates
when a suitable solution has been obtained. We also employed a warm start strategy whereby solutions
from a higher value of the regularization parameter is used to initialize the run with a lower value, which
considerably improved convergence overall.

We also note that precision is challenging to maintain in general in secure computation protocols given
their dependence on fixed-point representation of continuous numbers and the possibilities of numerical
under/overflow. Throughout our algorithm, we carefully managed the range of data values by scaling inter-
mediate results accordingly (e.g. dividing by

p
n when computing the sum of n values for large n). As our

results show, the combination of these strategies allow SafeGENIE to obtain accurate association analysis
results.

3.8 Implementation Details

SafeGENIE is implemented using the distributed CKKS framework in Lattigo [33], which is an open source
library in Golang for homomorphic encryption schemes. We extended the library by implementing secret
sharing-based MPC functionalities based on our prior work [13]. In addition, SafeGENIE was implemented
using Golang’s built in multi-threading framework and networking protocols, which allow interactive com-
putation over encrypted data to be performed in a parallel manner across multiple machines. Our imple-
mentation also features e�cient streaming pipelines for accessing blocks of the genotype matrix, which helps
ensures that the memory usage of the program stays low regardless of the size of the dataset.

4 Experimental Results

4.1 SafeGENIE obtains accurate association statistics

To demonstrate the performance of SafeGENIE on a real GWAS dataset, we obtained a dataset of 9,178
East Asian lung cancer patients (5,054) and control individuals (4,053) from the dbGaP repository (accesion
phs000716.v1.p1). After a quality control filter excluding individuals with missingness rate higher than 10%,
we retained 9,098 individuals. We included in the analysis 378,482 single nucleotide polymorphisms (SNPs)
that passed minor allele frequency (>0.1) and Hardy-Weinberg equilibirum (�2 < 28.374) filters. We used
a block size of 3000 SNPs for local ridge regressions in Level 0. For the association tests, we applied the
standard leave-one-chromosome-out (LOCO) scheme, leaving out one chromosome at a time where the tested
variant resides to correct for the background genetic e↵ect.

For experimental setup, we created a set of three VM instances in the Google Cloud Platform, each with
128 RAM and 16 virtual CPUs, located in the same geographic zone. One VM served the role of a coordi-
nating party for server-aided MPC routines, with the other two as main data holders participating in the
collaborative LMM analysis. We split the GWAS data into two sets of individuals (4550 and 4548 individ-
uals, respectively) and individually uploaded the corresponding genotype, phenotype, and covariate data to
the two main parties’ VMs. We then executed the SafeGENIE program with point-to-point communication
channels between pairs of parties for interactive steps of the protocol. For Level 0, we used additional sets
of VMs to further parallelize the computation over the blocks, the results of which were later combined (and
the reported runtime appropriately aggregated) before proceeding with the rest of the protocol. We used 12
threads on each machine to leverage parallelism in each step of the pipeline.

Figure 2 shows the resulting LMM-based association statistics from SafeGENIE compared against the
output from running REGENIE (obtained from https://rgcgithub.github.io/regenie/) on a pooled
dataset. The first two Manhattan plots show the genome-wide association signals are nearly identical between
the two approaches, suggesting that SafeGENIE successfully replicates the analysis performed by REGENIE
in a centralized setting. Note that SafeGENIE never has access to the whole data in one site; it only jointly
analyzes distributed datasets in a secure manner using our cryptographic protocols. We observe that in
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this dataset a particularly strong association is identified for SNP rs2736100, which is associated with the
TERT gene, a known cancer gene whose expression is associated with general increased cancer risk and is
hypothesized to impair telomere maintenance [41]. Quantitatively measuring the agreement between the
two outputs resulted in a correlation coe�cient of 0.9845 (Figure 2C). We also observed a strong agreement
in the genome-wide polygenic predictions of the phenotype (Figure 2D), which represent a key intermediate
result in the LMM analysis.

Figure 2: SafeGENIE closely reproduces REGENIE association statistics while securely analyzing
distributed GWAS datasets. We evaluated SafeGENIE on a real lung cancer GWAS dataset including 9,098
individuals and 378,482 SNPs split between two parties. The Manhattan plot for SafeGENIE mirrors the Manhattan
plot obtained from running the centralized REGENIE on the same lung cancer dataset (A,B). (C) Comparison of
the negative log p-values for all variants in the dataset generated by REGENIE and by SafeGENIE. (D) Plot of the
genome-wide phenotype prediction vectors obtained by both methods, which are provided as input to the association
testing pipeline. Both show that the results from SafeGENIE are highly correlated to those of REGENIE with an
R2 value over 0.98 in both plots.

4.2 SafeGENIE e�ciently scales to large datasets

The total runtime of SafeGENIE on the lung cancer dataset was 68.3 hours with a communication of 11 TB
using 12 threads. Most of the runtime as well as communication can be attributed to Level 0 (61.4 hours and
11 TB; compared to 6.33 hours and 44.3 GB of Level 1), which fits many local ridge regression models across
genomic blocks. We note that this step is embarrassingly parallel and thus can be sped up with more cores.
In contrast, a baseline CGD solution for Level 0 without our ADMM-Woodbury algorithm, is estimated to
take 216.75 hours of runtime (3.5 times slower) on 12 threads and 7.5 TB of communication (0.7 times less).
Our runtime improvement is expected to be even greater at larger scales given our reduced dependence on
N as described in Section 3.6.

We next evaluated the scalability of SafeGENIE on upsampled lung cancer datasets up to ten times its
original size (91K individuals for the largest dataset) (Figure 2). We observed that the runtime of SafeGENIE
is dominated by Level 0, whose runtime remained near-constant over the range of data sizes we tested. This
incredible scalability is a result of the dimensionality reduction that is evident in our ADMM-Woodbury
algorithm. Recall that to perform ridge regression over a genomic block, our algorithm calculates the inverse
of a Mb-by-Mb matrix in plaintext (where Mb is the block size) and perform all subsequent operations using
this matrix, e↵ectively removing dependence of runtime on the dataset size N . In contrast, the baseline
conjugate gradient descent (CGD) solution for Level 0 ridge regressions (see Algorithm 1) grows linearly
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Figure 3: SafeGENIE achieves near-constant scalability with respect to runtime to larger datasets. We
show the runtime of SafeGENIE on upsampled lung cancer datasets including up to 91K thousand individuals (ten
times the original dataset). Runtimes shown are estimated based on a smaller number of blocks or iterations across
which the computational load is expected to be identical. Measurements are based on a network of three co-located
machines on Google Cloud with 12 cores each for parallelization. SafeGENIE’s runtime remains near-constant as the
size of the dataset grows, enabled by the e�cient distributed algorithms introduced in SafeGENIE, which maximize
the use of local plaintext computation. Right subfigure shows the comparison of our ADMM-Woodbury algorithm
for Level 0 with the baseline CGD algorithm (which we also newly developed for the secure distributed setting),
demonstrating the improved asymptotic complexity of our approach. For the largest dataset, our approach achieves
a 9.6-fold speedup over the baseline.

with N , resulting in a wider gap in performance compared to our algorithm for larger datasets (Figure 2); on
the largest dataset, our ADMM-Woodbury solution achieves a factor of 9.6 speedup over CGD. Note that,
while plaintext CGD is a widely used technique for ridge regression (also used in BOLT-LMM [21]), here
we compared to our novel secure distributed implementation of CGD, which we used in Level 1. Since the
majority of work in Level 0 consists of separate invocations of ridge regression on genomic blocks, this step
can also be parallelized across multiple CPUs and machines to further reduce the runtime in practice. These
results demonstrate the practical feasibility of SafeGENIE for large GWAS datasets including hundreds of
thousands of individuals.

5 Discussion

We introduced SafeGENIE, a privacy-preserving and distributed approach to LMM association studies.
Leveraging the insight that a recent stacked regression approach to LMM presents a path for e�cient dis-
tributed computation, we developed e�cient distributed algorithms for ridge regression with covariates for
use as core routines in SafeGENIE. Our results show that SafeGENIE produces nearly identical associa-
tion results compared to REGENIE, a centralized LMM algorithm, while demonstrating e�cient runtime
performance (in the order of days) with near-constant scalability to larger datasets. Directions for future
work include evaluation on biobank-scale cohorts; increasing the robustness of SafeGENIE to a wide range
of parameter settings (e.g. including extreme values of variance estimates); and further developing methods
to support other types of association tests based on LMM beyond the quantitative trait model addressed in
this work. We expect the insights introduced in our work on how to design e�cient distributed algorithms
for secure computation to be of broad interest to enhancing privacy in other genomic analysis workflows.
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