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Abstract 
Developability issues, such as aggregation, low expression yield, or instability over long-term 
storage often hamper the development of biologics. Developability is underpinned by a 
complex interplay of biophysical properties, including conformational stability and solubility. 
Advances have been made in the optimisation of individual properties, however, multi-trait 
optimisation remains highly challenging, as mutations that improve one property often 
negatively impact the others. Here, we introduce a fully automated computational strategy for 
the rational design of conformationally stable and soluble protein and antibody variants 
harbouring multiple mutations. This pipeline, called CamSol Combination, leverages 
phylogenetic information to reduce false positive predictions, and combines a rapid method of 
predicting solubility changes with an empirical energy function. We experimentally validate 
the method’s predictions on a nanobody isolated with yeast-display from a synthetic library, 
by producing 12 designs ranging from single-point mutants to a quadruple mutant. All 12 
designed variants retained antigen binding, had improved thermal stability, and decreased 
propensity to precipitate (increased relative solubility), and 8 also had reduced cross-reactivity. 
The melting temperature was improved by 13.6 ºC with 4 rationally designed mutations. We 
make the method available as a webserver at www-cohsoftware.ch.cam.ac.uk 
 
 
Significance 
Protein-based biologics, such as antibodies and enzymes, are crucial reagents in research, 
industrial biotechnology, and diagnostics, and are increasingly used to treat a wide range of 
diseases as biotherapeutics. Often, biologics with suitable functionality are discovered, but 
their development into practically useful molecules is impeded by developability issues. 
Conformational stability and solubility are arguably the most important biophysical properties 
underpinning developability potential, as they determine colloidal stability and aggregation, 
and correlate with expression yield and poly-specificity. Here we introduce and experimentally 
validate a fully automated computational method and associated webserver for the rational 
design of proteins and antibodies with improved stability and solubility. Computational 
methods are rapid, inexpensive, and have no material requirements, which makes their 
implementation into biologic development pipelines particularly attractive. 
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Introduction 
Over the past few decades, protein-based biologics have risen to become a key class of 
therapeutic molecules (1, 2). These biologics offer a range of favourable characteristics, such 
as high specificity, low toxicity and immunogenicity, and the possibility of replacing or 
supplementing endogenous proteins and hormones, which make them very valuable for drug 
development purposes (3). Furthermore, proteins and antibodies are also key reagents in 
biomedical research and diagnostics, and enzymes find crucial applications in industrial 
biotechnology. 
 
However, proteins and antibodies destined to research, diagnostic, biotechnology, and 
especially therapeutic applications are required to endure a wide range of stresses related to 
manufacturing, development, shipping, storage, and administration. As these stresses are not 
present in vivo, natural proteins and antibodies have not evolved to withstand them (4). 
Besides, therapeutic applications, in particular, have stringent requirements, which include 
strong biological activity at relatively low administration dosage and frequency, high 
concentration formulations, and long product shelf-life (5). 
 
Taken together, the stresses that biologics must endure, and the requirements they need to meet 
imply that in most cases all biophysical properties must be optimised beyond their typical 
natural levels (5). While methods of in vitro directed evolution are routinely employed to 
optimise binding affinity, the simultaneous optimisation of multiple biophysical traits remains 
highly challenging (6). Functional proteins and antibodies exhibit a balance of different 
biophysical traits, including conformational stability, solubility, interaction affinity, and 
selectivity. As the fundamental forces that drive protein folding, aggregation, and binding are 
ultimately the same, such traits are often conflicting, in the sense that mutations that improve 
one of them tend to worsen the others (5, 7–9).  This process of multi-traits optimization can 
be compared to solving a Rubik’s cube, where each face represents one biophysical property. 
Changing one face will affect other faces, perhaps detrimentally, and solving a single face is 
much simpler than completing the puzzle. In protein engineering, it remains highly challenging 
to select mutations that selectively improve properties of interest while leaving the others 
unaffected, and there is an unmet need to develop technologies that enable the simultaneous 
optimisation of different traits.  
 
Computational approaches offer a promising avenue to generate such technologies, as at least 
in principle they allow for highly controlled parallel screenings of multiple biophysical 
properties. Moreover, computer calculations are rapid, inexpensive, and have no material 
requirements, which makes their implementation in antibody and protein development 
pipelines particularly attractive.  
 
In this work, we contribute to addressing this challenge by introducing a fully automated 
computational strategy for the simultaneous optimisation of solubility and conformational 
stability, which have often been reported to be conflicting (5, 10–12). Our approach leverages 
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phylogenetic information to reduce false positive predictions and to prevent the modification 
of functionally relevant sites. Furthermore, the pipeline relies on the CamSol method (13) to 
carry out predictions of solubility changes upon mutation, and on the energy function Fold-X 
(14) for the predictions of the associated stability changes. Both algorithms have separately 
been extensively validated on experimental data for a wide range of proteins and antibodies 
(CamSol Refs (4, 13, 15–21) and FoldX Refs (10, 22–26)). Our pipeline also includes an ad-
hoc recipe to obtain and exploit suitable phylogenetic information for immunoglobulin variable 
domains, as these are a key class of biologics that, because of their modular nature, cannot be 
handled with standard tools for searching homologs. In the case of antibodies, our method 
exploits custom-built multiple sequence alignments (MSAs) selectable depending on the user’s 
requirements and representing the mutational space observed in human antibodies, mouse 
antibodies, nanobodies, and post-phase-I clinical-stage antibodies. 
 
Solubility and conformational stability are among the most important properties underpinning 
the developability potential of biologics, which is defined as the likelihood of a drug candidate 
with suitable functionality to be developed into a manufacturable, stable, safe, and effective 
drug that can be formulated to high concentrations while retaining a long shelf-life (27–29). 
Poor solubility is a major bottleneck for manufacturing (28, 30), quality, and safety of 
pharmaceutical formulations (27, 30, 31), and it has also been linked to diminished binding 
specificity (32, 33). Similarly, high conformational stability is essential to ensure efficacy and 
safety during manufacturing, formulation, storage, shipping, and administration (28, 34). 
Various studies have reported a correlation between conformational stability and recombinant 
expression yield (24, 35, 36), and high stability translates into enhanced ability to withstand 
the physical or chemical stresses encountered during manufacturing and formulation (37).  
 
Fully or partially unfolded proteins and antibodies not only lose their activity, but can readily 
aggregate, as the solubility of the unfolded state is typically much lower than that of the native 
state (15). Aggregation from partially unfolded states can be irreversible, and aggregated 
biologics have been reported to induce immunogenicity upon injection (38, 39), which can be 
fatal in some cases (40). Although it is still not clear which types of aggregates mediate 
immunogenicity, regulatory agencies require formulations with minimal amount of aggregates 
at the end of the formulation shelf-life to grant market approval (41, 42).  
 
Solubility and conformational stability ultimately depend on the amino acid sequence of the 
protein under scrutiny, as well as on some extrinsic properties of the buffer such as pH, 
temperature, and the presence of excipients (4). Together, they influence other essential 
properties that underpin developability potential, including viscosity and colloidal stability, 
which also strongly depend on the protein concentration of the formulation. Colloidal stability 
is a kinetic property that depends on the height of the free energy barrier that separates the 
native state from the aggregated states (4). While solubility is defined as the critical 
concentration observed when soluble and insoluble phases are in equilibrium, colloidal stability 
is defined by the long-term integrity of a formulation, and hence by the time it takes for 
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aggregation to occur (4). Solubility and conformational stability determine colloidal stability 
through their link with aggregation. Self-association can be triggered via two main pathways. 
In one, aggregation hotspots on molecular surfaces drive the assembly of two or more 
molecules, forming aggregates that then may act as seeds to drive further aggregation and may 
also increase viscosity (43, 44). In the other, the presence of partially or fully unfolded states 
lead to the transient exposure of hydrophobic patches that can elicit the formation of misfolded 
aggregates (15). Therefore, maximising solubility and conformational stability can be expected 
to translate into increased colloidal stability and hence lower aggregation rates. 
 
As aggregation is the most common of the various degradation reactions that a protein can 
experience during its biotechnological or biotherapeutic development (45), effective 
computational methods to rationally design mutations that reduce aggregation without 
hampering other properties can be expected to substantially streamline biologics development 
pipelines. The automated rational design pipeline that we introduce here works by removing 
surface-exposed aggregation hotspots leading to poor solubility, and by proposing mutations 
expected to increase conformational stability and solubility, thus decreasing the population of 
partially or fully unfolded states in solution. We validate this pipeline experimentally by using 
it to design mutational variants of an anti-human serum albumin (HSA) nanobody derived from 
a yeast-display naïve synthetic library (46). 
 
Results 
The goal of the computational pipeline is to design protein or antibody variants by predicting 
combinations of mutations that increase both stability and solubility, or one of the two without 
affecting the other. The method relies on the knowledge of the native structure of the target 
protein, or on the availability of a good structural model, and on a multiple sequence alignment 
(MSA) of homologous sequences. A position specific scoring matrix (PSSM) is then extracted 
from the MSA, to provide information on the frequency of the amino acids observed among 
homologous proteins at each position of the input structure.  
The algorithm is built to handle input proteins consisting of multiple polypeptide chains, as 
well as bound structures where the binding partner can be excluded from the design. 
Furthermore, in the case of antibody variable domains (Fvs), a custom pipeline is provided to 
automatically generate PSSMs from the input sequences, based on user-selectable databases of 
species-specific antibodies or therapeutic antibodies. Users are also allowed to provide 
additional input parameters as explained below in the Algorithm Pipeline section.  
 
Phylogenetic information reduces false positive predictions of stability change 
The phylogenetic information is used in the pipeline to enable the identification of potential 
mutations based on their observed frequencies in natural variants of the protein or antibody 
under scrutiny. Therefore, these mutations are more likely to be well-tolerated, and thus less 
likely to disrupt stability (47). We hypothesized that restricting the mutational space to those 
mutations that are enriched in natural variants will greatly decrease the number of False 
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Positive (FP) predictions, which can be quantified through the False Discovery Rate (FDR, see 
Supplementary Methods).  
 
For stability predictions, we define False Positives those mutations predicted to be stabilizing, 
while being destabilizing in practice, and False Negatives (FN) as the opposite (see Fig. 1A). 
In the context of computational design, and in particular of algorithms aimed at yielding 
mutational variants that improve one or more biophysical properties, FNs can be regarded as 
missed opportunities. These mutations will not be suggested by the algorithm, even if they 
would be beneficial. However, provided that at least some beneficial mutations are identified, 
FNs are not the main concern. FP mutations on the other hand will be suggested by the 
algorithm, leading to a potential waste of time and resources in the experimental production 
and characterization of designs containing such prediction mistakes.   
 
It is therefore of paramount importance that a method for the automated design of mutational 
variants has the lowest possible FDR (48). We decided to assess the performance using a 
recently published database of experimentally characterized mutations (49), which is a curated 
subset of the ProTherm database where inaccuracies and biases have been removed (49–51). 
This database contains thermodynamic information on the stability changes caused by 755 
point mutations within 81 different proteins, and it was developed for the specific purpose of 
benchmarking computational methods of predicting stability changes (49). 
 
The results of our analysis show that the FDR of the FoldX energy function can be decreased 
in a statistically significant way by incorporating filters based on phylogenetic information 
(Fig. 1B). More specifically, we have screened different parameters for the search of 
homologous sequences and different implementations of the PSSM (see Supplementary 
Methods and Fig. S1). Our results show that the FDR of the stability predictions can be 
decreased from ~26% to ~21% (p<0.0001) by restricting the search space to mutations with 
positive log-likelihood, that is mutations that are observed at that position more often than their 
background probability (i.e., more often than expected by random chance). The FDR can then 
be further improved to ~15% (p<0.00001) by only considering mutations that both have a 
positive log-likelihood and increase the frequency over that of the WT residue (i.e., positive 
Δlog-likelihood, Fig. 1B). These results are in line with strategies of consensus designs (52, 
53), as well as with previously reported findings for different forcefields (24, 36). All p-values 
were calculated explicitly through random resampling (see Supplementary Methods), which 
demonstrates that it is the specific choice of phylogenetic filtering that is behind this 
performance improvement, and not a generic restriction of the database size. We also verified 
that the observed performance improvement is not a consequence of simply removing many of 
those mutations with predicted ΔΔG close to 0, which would be within the expected error of 
FoldX (see Supplementary Methods and Fig. S3).  
 
We further verified that similar results can be obtained when using a PSSM containing only 
raw frequency counts, as opposed to log-likelihood scores (Fig. S1). Such PSSM of raw 
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frequencies is often referred to as Position Probability Matrix (PPM) or Position Weight Matrix 
(PWM). While log-likelihood scores are generally preferable, as they correct the observed 
frequencies for the expected background probability of observing each amino acid at a given 
position by random chance, their calculations are often unreliable for alignments containing 
small numbers of sequences (e.g., < 50). Therefore, in cases where the input protein only has 
a few homologs, the employment of a PWM provides more reliable information, and our 
algorithm automatically switches to it when less than 50 sequences are contained in the input 
MSA. 
 
We note that a similar analysis was not possible for the solubility prediction, as a dataset of 
experimentally measured solubility changes upon mutation, which is large enough to draw any 
statistically significant conclusions on changes in FDR, is not currently available. Moreover, 
though all globular proteins must retain good stability to function, one may expect to find an 
evolutionary pressure towards maintaining high solubility only for those proteins that are 
expressed to high concentrations, suggesting that the phylogenetic filtering we implemented 
may not be as beneficial for solubility predictions (15, 54). However, the typical performance 
of the CamSol method in ranking protein and antibody mutational variants is high (Pearson 
R≳0.9) (4, 13, 16, 18, 21, 33), thus indicating that the FDR of CamSol predictions is already 
low.  
 
In summary, implementing phylogenetic filtering can reduce the FDR of stability predictions 
by about 10%, at the expense of being left with a smaller – but typically large enough – 
mutational space to sample. A reduced mutational space means that sometimes potentially 
beneficial mutations will be left out, but also that the overall pipeline will run much faster, as 
it only needs to sample a sub-region of the mutational space that is evolutionarily grounded.  
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Figure 1. (A) Comparison of the experimental ΔΔG against the FoldX-predicted ΔΔG values. Labels are applied 
to the four quadrants of the graph. (FN: False Negatives, TN: True Negatives, TP: True Positives, FP: False 
Positives). We define positive mutations those that result in a negative ΔΔG value, and hence are stabilizing. The 
Pearson correlation coefficient (R) for the dataset is also shown. The green quadrants identify mutations whose 
overall effect (stabilizing or destabilizing) is correctly predicted. (B) Bar plot of the FDR of the FoldX prediction 
obtained by applying different filtering based on phylogenetic information (see legend). The PSSMs employed 
were obtained with HHblits(55) using a coverage parameter of 60 and identity of 95. Statistical significance was 
calculated explicitly with random resampling (see Supplementary Methods, **** p < 0.0001 and ***** p < 
0.00001). 
 
 
Algorithm pipeline 
 
(i) Input processing  
The method is implemented as a webserver (www-cohsoftware.ch.cam.ac.uk/index.php/ 
camsolcombination). Therefore, the user interacts with it through an input form. The required 
input consists of a protein structure in pdb format, its type (antibody Fv/nanobody or other 
protein) and the alignment file(s) to use in the pipeline. If the input protein is not an antibody 
or nanobody, the user must provide .hhm or .a3m files obtained with HHblits for each chain in 
the input protein that is not manually excluded from the design. Such files may be obtained by 
running a HHblits search with a local installation (55), or more straightforwardly from the MPI 
Bioinformatics Toolkit webserver (56) by following the instructions linked on the CamSol 
combination webserver homepage.  
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If the input protein is an antibody or nanobody, the user can choose between a set of pre-
compiled alignments of species-specific antibodies (human or mouse), or therapeutic 
antibodies (post phase-I clinical trial) (57, 58), or single-domain antibodies obtained from 
multiple camelid species (59) (see Supplementary Methods). The need for special alignments 
for antibodies is due to their modularity, and high degree of conservation in the framework 
regions coupled with high variability in the binding loops. These features make standard 
alignment tools unsuitable for antibodies, as an excessive number of gaps is typically 
introduced in loop regions. Furthermore, especially when antibodies are destined to therapeutic 
applications, it is important to be able to select candidate substitutions that are observed in the 
relevant species (e.g., from sequences of human origins) to reduce the chances of introducing 
immunogenic motifs. Similarly, for single-domain antibodies, candidate substitutions must be 
selected based on alignments of VH sequences known to be able to autonomously fold and 
remain soluble in the absence of a VL partner. 
 
The user can also provide optional parameters to the design calculations. These include residue 
positions or whole chains to exclude from the design, the maximum number of mutations to 
try simultaneously, and residues to exclude from the list of potential substitution targets. For 
example, the default procedure is to exclude cysteines and methionines, as these are known 
oxidation sites, and solvent-exposed cysteines may trigger covalent dimerization. Users may 
also consider excluding asparagines, as these are often prone to deamidation or glycosylation. 
 
The algorithm automatically identifies groups of identical chains that may be present in the 
input structure. In this way, different mutations are never carried out on chains that are identical 
in sequence, as in practice such chains would be encoded by the same gene. Identical chains 
are identified from the seqres field in the header of the input PDB file, and from the atom 
sequence only if the seqres field is not present. In the PDB format, the seqres sequence 
corresponds to the sequence that was used in the structural determination experiment, while 
the atom sequence is the one for which 3D coordinates have been obtained. The two sequences 
may differ for example when there are regions of missing electron density. An option is also 
provided to manually input sequence identity specifications, as groups of chain IDs of identical 
polypeptide chains, so to offer maximum flexibility to accommodate ‘non-canonical’ PDB 
structures. 
 
Upon submission, a unique identifier is assigned to the web server job to track its calculation 
and correctly handle its output files. The job is then added to a job queue. When started, the 
algorithm first calculates a log-likelihood Position Specific Scoring Matrix (PSSM) from the 
MSA (Fig. 2). If the number of aligned sequences is below 50, a simpler raw frequency PWM 
is used instead. The PSSM provides information on which residues are most conserved at each 
position in the protein sequence, and which mutations are observed in natural variants at each 
site.  
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As an example, Supplementary File 1 is the final report of a run on bacillus licheniformis 
alpha-amylase (PDB ID 1bli). The PSSM plotted therein, calculated from an alignment of 
homologs obtained from the HHblits web server by simply uploading the sequence (56), 
reveals that the active site of the enzyme (Asp 231, Glu 261 and Asp 328) is highly conserved, 
and so are known ion-binding sites on its surface. Given the high conservation in the PSSM, 
no mutation would be tried at these positions in the automated pipeline. This example shows 
that incorporating phylogenetic information can preserve functionally relevant residues in 
automated computational design pipelines, without the need to manually exclude them from 
the calculation, which, depending on the case, may require high domain expertise. 
 
 

 
Figure 2. Schematic representation of the algorithm pipeline. Roman numbers refer to the subsections of the 
algorithm pipeline section in the main text. Coloured in white are the input processing steps, in blue the tools 
included in the algorithm, in yellow the core algorithm steps, and in red the output. 
 
(ii) Selection of candidate mutation sites 
After processing the input, the algorithm automatically identifies candidate mutation sites. 
Candidate sites for mutation are identified based on their contribution to solubility, as predicted 
with the CamSol method (13), and their level of conservation, as obtained from the PSSM (Fig. 
2).  
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First, CamSol is used to calculate intrinsic solubility profiles for each chain of the input 
structure. These profiles associate each residue with a number that reflects its impact on the 
overall solubility (13, 15). This calculation relies solely on the knowledge of the amino acid 
sequence, which is extracted from the seqres field of the input pdb file (if present, otherwise 
from the atom sequence) to account for the contributions to the solubility of possible regions 
with unassigned 3D coordinates. CamSol predictions rely on a combination of physicochemical 
properties of amino acids, including charge, hydrophobicity, and propensity to form secondary 
structure elements (13). These properties are first considered at the individual residue level, 
then averaged locally across sequence regions to account for the influence of neighbouring 
residues, and finally considered globally to yield a solubility score (15, 16). This score, which 
is one number for the whole sequence or multiple sequences in the case of a complex (16), will 
later be used to rank different mutational variants. Intrinsic profiles are used to identify 
candidate mutation sites (i.e., residues in the sequence) that contribute strongly to poor 
solubility of the unfolded state of the protein. At this step, only those sites that are solvent-
exposed on the protein surface are flagged as possible candidate mutation sites, as buried 
poorly soluble residues are expected within the hydrophobic core of globular proteins. More 
specifically, residues are considered solvent-exposed if they have a solvent exposure of at least 
10%, calculated by dividing the observed solvent accessible surface area of each residue by 
that of the amino acid type under scrutiny in the context of a fully extended Gly-Xxx-Gly three-
peptide (13). Typically, a relatively low solvent exposure results in structurally corrected 
solubility scores close to zero, because of the effect of the exposure weight in the CamSol 
structurally corrected calculations (see Ref. (13)). However, thermal fluctuations may 
transiently expose such poorly soluble motifs, thus leading to aggregation. It is therefore 
important to identify poorly soluble sites that are close to the surface and may therefore become 
exposed through thermal fluctuations. We refer to this group of candidate mutation sites as 
identified from the solubility of the sequence.  
 
Second, the algorithm focuses on predicting potential aggregation hotspots on the protein 
surface itself, which are defined as groups of residues on the surface that create patches of poor 
solubility. The prediction is based on the CamSol structurally corrected calculation as 
described in detail in Ref. (13). In this calculation, the intrinsic profiles are modified to account 
for the proximity of amino acids in the 3D structure and for their solvent exposure. The 
corrected profiles are used to identify those mutation sites that contribute most to the overall 
aggregation propensity of possible surface hotspots. We refer to this group of candidate 
mutation sites as identified from the solubility of the structure.  
 
Third, also those sites that are relatively well conserved (with conservation index greater than 
0.25, see Supplementary Methods), and where the frequency of the WT residue is low (log-
likelihood ≤ 0, or in case of a PWM frequency < 0.05) are added to the list of candidate 
mutation sites, since they may be stability liabilities and represent good candidate sites to 
further optimize solubility and stability. The lower bound on the conservation index is 
necessary to avoid flagging positions that are intrinsically poorly conserved (e.g. within the 
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CDR3 of an antibody). We refer to this group of candidate mutation sites as identified from 
conservation. 
 
Fourth, those residues that are exposed on the surface, and that have PSSM-permitted 
mutations predicted to increase the solubility are also added to the list of candidate mutation 
sites, unless the position has a conservation index greater than 0.7 and the wild-type residue is 
already the consensus residue. This group of candidate mutation sites is referred to as identified 
from exposed solubility, as mutations here can be exploited to increase the solubility even if 
the sites are not predicted as liabilities. If the input protein has already got many candidate 
mutation sites in the previous three classes (maximum total number currently set to 100), then 
sites in this latest class are discarded from the list of candidates to safeguard computational 
efficiency. 
 
Finally, an option is provided for the user to input custom mutation sites, which, if given, are 
considered in the next steps of the pipeline alongside those identified automatically. 
 
 
(iii) Single mutational scanning 
Once the candidate mutation sites are identified, all possible amino acid substitutions allowed 
by the PSSM are tested as candidate mutations at each site. The user can decide which criterion 
to use for allowed substitutions from the filtering in Fig. 1B. The two options are either all 
substitutions with log-likelihood > 0 (i.e. observed more than random, positively enriched), or 
only those that also increase the frequency from the WT residues (log-likelihood > 0 & Δlog-
likelihood > 0), which is the default. Based on the results in Fig. 1B, the first option should be 
used in those cases where too few or no mutations are suggested by the algorithm at the end of 
the pipeline when running with the default log-likelihood > 0 & Δlog-likelihood > 0.  
 
Allowed substitutions at each site are then singly ranked using the CamSol intrinsic solubility 
score, as this calculation is extremely fast (4). Except for mutations happening at non-solvent-
exposed sites identified from conservation, all mutations predicted to decrease solubility are 
discarded at this step. The output of this first part of the algorithm thus consists of a longlist of 
all PSSM-permitted mutations at all identified sites, comprising only solubility-improving 
mutations at those sites identified based on their low solubility.  
 
This longlist is then used as the starting point for the calculation of stability change upon 
mutation with the energy-function Fold-X (14). The energy-function is used to calculate for 
each longlisted mutation a ΔΔG score. This is the predicted difference in stability (ΔG) between 
the wild type and the mutant (60). Only mutations with calculated ΔΔG < 0 are predicted to be 
stabilizing (or at least not de-stabilizing), and consequently further considered in the method 
pipeline. Therefore, the shortlist of candidate mutations contains single-point mutants 
characterized by the difference in CamSol solubility score between mutant and WT (Δ CamSol 
score), the difference in calculated stability (ΔΔG), and the difference in frequency (Δlog-
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likelihood). We are thus left with a list of mutations that are singly predicted to increase protein 
solubility and/or conformational stability.  
 
If identical chains were identified in the input processing, the effect of the shortlisted point 
mutations is propagated to all chains identical to the chains on which they had been modelled. 
This means that the CamSol score is re-calculated after mutating the sequence of identical 
chains, and that the ΔΔG, initially calculated on only one chain for computational efficiency, 
is multiplied by the number of chains in the same group. 
 
Finally, these scores reflecting the changes in solubility, stability, and conservation are 
combined into the Mutation Score (see Supplementary Methods), which is used to provide a 
preliminary ranking of the single mutations. An intermediate output table is produced, 
containing the results of the single-mutational scanning. This table lists all the “beneficial” 
single-point mutations identified and all their aforementioned scores. Mutations are named 
with a single string concatenating WT amino acid, Chain ID, pdb residue number, and mutated 
amino acid (e.g. LA24D to denote a leucine to aspartic acid substitution at residue number 24 
of chain A). 
 
(iv) Combining multiple mutations 
The shortlisted mutations are then combined to create designs harbouring multiple mutations. 
Before beginning the combination, the single-point mutants with a negative Mutation Score (if 
any) are discarded, and after that, all Δlog-likelihood listed in the single mutational scanning 
output table are normalized to make them comparable across different chains. This 
normalization consists in dividing the Δlog-likelihood by the standard deviation of the log-
likelihood from the PSSM of the chain in which the mutation was carried out. Afterwards, the 
Mutation Score is recalculated with the updated Δlog-likelihood. To increase computational 
efficiency, the mutation combination process does not re-run all calculations for each possible 
combination of mutations, as in particular FoldX takes a while to run. In the first instance, point 
mutations are combined together by summing their ΔΔGs and Δlog-likelihoods, while the 
intrinsic solubility score is re-calculated from the sequences harbouring all mutations, as the 
CamSol intrinsic calculation is adequately fast (~200 sequences/seconds on a single core (15)). 
A combination of mutations is flagged as “potentially interacting” if at least two of its mutation 
sites in proximity in the input structure, as assessed from the contact map that was calculated 
at the beginning in the CamSol structurally corrected solubility calculation (13) (see 
Supplementary Methods). The underlying assumption for this procedure is that mutations that 
are distant in the structure may be expected to yield an addictive contribution to the stability, 
or in other words that the overall stability change can be calculated by summing the stability 
changes of the individual mutations. However, this assumption breaks down when the 
mutations are close to each other in the structure. Therefore, combinations containing at least 
two mutations in proximity are flagged so that, if they occur in the final shortlist, their predicted 
stability can be recalculated by explicitly modelling these combinations (see step (v)). Once 
the three metrics (ΔCamSol score, FoldX ΔΔG, and Δlog-likelihood) are computed for all 
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combinations, the Mutation Score is calculated. If multiple identical chains are present in the 
input structure, the CamSol and ΔΔG scores are re-calculated as explained in section (iii). Point 
mutations are combined recursively in this way until the maximum number of simultaneous 
mutations decided by the user is reached, or until all identified suitable mutation sites have 
been combined together, whichever happens first.  
 
In the first step of combining the mutations, the single-point mutants are combined to generate 
double mutants. At each recursive step, the single-point mutants are combined with the mutant 
combinations generated in the preceding step. Care is taken to ensure that each mutation site is 
represented only once in a combination, and that identical combinations are never re-assessed 
(e.g., HA52P, TA54G and TA54G, HA52P). To preserve computational efficiency, the 
combinatorial space is gradually reduced during the combination process. Starting from the 
triple combinations onward, the algorithm considers only the top-ranking substitution for each 
candidate mutation site from the single-mutational scanning, as ranked by their Mutation Score.  
 
We define a group of combinations as the ensemble of all combinations with the same total 
number of mutations (e.g. double mutants, triple mutants, etc.). Within each group, 
combinations are ranked according to their Mutation Score. The predicted top-ranking 
combination across all groups is almost certainly in the group with the maximum number of 
mutations attempted. However, this may not be beneficial in practice, as with each new 
mutation the chances of introducing a false positive in the combination increase. Therefore, a 
procedure is implemented to select those groups that embody the best balance between the 
number of mutations and predicted gain in solubility and/or stability.  
 
The best groups are identified by those points in the recursive combination process, where the 
gain of carrying out an additional mutation becomes less favourable than it has been for the 
preceding mutations, as assessed by the growth of the Mutation Score as a function of the 
number of mutations (see Supplementary Methods). This procedure thus identifies one or more 
groups that embody the maximum gain with the minimum number of mutations (Fig. S4). 
Then, the algorithm creates a final shortlist of designed variants, which contains the three top-
ranking combinations for each of these best groups, as well as the top-ranking combination 
from all other groups, so that at least one combination per total number of mutations is proposed 
in the final output for the user to consider. 
 
(v) Check for potentially interacting mutations 
If any design flagged as “potentially interacting” ends up in the final shortlist, then its mutations 
are explicitly modelled one by one to make sure that the stability of the variant is not 
compromised by unfavourable interactions between different mutations. This process enables 
to test the assumption that the ΔΔG for a combination can be calculated as the sum of the ΔΔGs 
of its single-point mutations. Operationally, this is achieved by carrying out each mutation in 
the combination under scrutiny subsequently, using the output model of the previous step as 
input, so that the final model contains all mutations.   
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All mutations considered up to now where singly predicted to be stabilising (ΔΔG < 0). 
Therefore, if this test discovers a mutation predicted to be destabilizing (ΔΔG ≥ 0), it indicates 
unfavourable interactions with other mutations that have already been modelled at nearby 
positions. If such mutation is found, the algorithm tries to replace it with another substitution 
among those that were shortlisted for the same position by the single mutational scanning step. 
If applying this replacement results in a ΔΔG < 0, then the alternative mutation is kept. If this 
is not the case, the process is repeated to explore up to three alternative substitutions per 
position. If no suitable alternative is found, the disruptive mutation site is removed from the 
combination under scrutiny.  
 
After this check, the Mutation Score of the combination is updated with the new ΔΔG that has 
been explicitly calculated. If the new score is lower than that initially predicted by summing 
the ΔΔG of the point mutations, a comparison is carried out with all other designs in the same 
group, as now a different combination with a higher Mutation Score might exist. If this is the 
case, the new top-ranking design is shortlisted, and the mutation-interaction check is repeated 
on it. If needed, this procedure is repeated up to three times for each group. Ultimately, the best 
ranking design among those combinations that have been checked (or one without the 
“potentially interacting” flag) is returned as the best for its group. This process therefore 
updates the final shortlist and the predicted best designs. 
 
The final output consists of an html report with the description of the top-ranking designs, and 
the key results of each step of the pipeline, including graphs and descriptions (see for example 
Supplementary files 1 and 2). A zip folder is also provided containing detailed csv tables with 
the results of all calculations, and the modelled structure of all top-ranking designs in PDB 
format. 
 
Experimental validation on a nanobody 
After developing the pipeline, we applied it to a nanobody that was isolated from a recently 
introduced naïve yeast-display library (46). This nanobody, called Nb.b201 in the original work 
(46), binds to human serum albumin with a KD in the high nanomolar range. The automated 
design procedure was run by allowing a maximum of 6 simultaneous mutations, with the 
phylogenetic filtering of log-likelihood>0 only, and by using the pre-compiled MSA of single-
domain antibody sequences (see Supplementary Methods). As input, we used the structure of 
Nb.b201 (chain C of PDB ID 5vnw), and paratope residues were excluded from the list of 
candidate mutation sites (PDB residue numbers: 33,50,52,58,98,102-105).  
 
The first step of the method is to compare the input sequence with the PSSM of the single-
domain antibody MSA (Fig. 3A). Nb.b201 originated from a library based on the consensus 
sequence of nanobodies observed in the PDB (46). Therefore, we find that the framework 
regions are mostly identical to the consensus sequence (top row of the matrix), which focuses 
the candidate mutation sites to the CDR regions. The CamSol structurally corrected profile 
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(Fig. 3B) reveals some small aggregation hotspots that cluster together on the surface (Fig. 
3C), the larger of which comes from a paratope region in the CDR3, around residue F105. 
However, because the paratope regions were excluded from the design, the algorithm did not 
directly flag these sites for mutation. Conversely, using the criteria described in section “(ii) 
Selection of candidate mutation sites”, the algorithm identified a total of 30 possible sites for 
mutation (Fig. 3C and Supplementary File 2), some of which are relatively close to the 
hotspots and may thus provide compensatory mutations. Of these 30 sites, 7 were shortlisted 
at the end of the single mutational scanning step, yielding a total of 17 different point mutations 
(Fig. 3D). The other sites were discarded because either no mutation was allowed by the PSSM 
at that position, or none of the allowed mutations was predicted to be solubilising by CamSol, 
or none had a negative FoldX ΔΔG. All mutations at these seven sites were then combined into 
multiple designs harbouring up to 6 simultaneous mutations and, following the check for 
potentially interacting mutations, the best designs were returned (Fig. 3E). 

 
Figure 3. Main pipeline steps and returned designs for the nanobody Nb.b201. (A) Representation of the 
PSSM calculated from an alignment of 1396 single-domain antibody sequences. The observed residue log-
likelihood at each position (colour-bar) is used to select candidate amino acid substitutions (allowed only log-
likelihood > 0). The sequence above the panels is the wild-type Nb.b201 sequence. The red line is the conservation 
index of each position (high means position more conserved). X-axis labels are residue numbers from the PDB 
file, and AHo scheme immunoglobulin numbers, which are used to align the single domain antibody sequences; 
grey boxes denote CDR positions. Green or gold triangles point to mutation sites where at least one candidate 
mutation was identified by the single-mutational scanning step (panel D). The last two residues (LE) don’t have 
PSSM information as these are not part of the Fv region, but rather come from a cloning restriction site present in 
the input structure. (B) CamSol profiles of Nb.b201. The CamSol intrinsic profile is coloured red to blue, where 
red means aggregation-prone and blue aggregation-resistant. It is common for globular proteins to have large 
aggregation-prone regions in their intrinsic profile that typically drive the hydrophobic collapse during folding. 
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The structurally corrected profile is coloured in grey/green/magenta, regions of low negative scores (magenta) are 
potential aggregation hotspots, regions of high score (green) are solubility promoting. (C) The CamSol 
structurally corrected profile is colour-coded (see colour-bar) on the surface of Nb.B201 (PDB ID 5vnw chain C, 
which is given as input to the pipeline). Sidechains shown as “ball & stick” are identified candidate mutation sites, 
those labelled in gold or green are sites where at least one mutation was predicted to increase both stability and 
solubility at the single mutational scanning step, those labelled in green are also found among the top-ranking 
designs returned at the end. Figure made with UCSF Chimera. (D) Results of the single mutational scanning step 
as a scatter plot of ΔCamSol score (x-axis) against FoldX ΔΔG (y-axis) for all mutations predicted to improve 
both properties (ΔCamSol>0 & ΔΔG<0). (E) Final designs returned by the pipeline, ranked as described in the 
main text. 
 
 
Based on these predictions, we set out to produce some Nb.b201 variants and measure their 
stability and solubility (see Supplementary Methods). More specifically, we decided to test 
seven different single mutational variants, so to singly cover more of the mutations predicted 
to be beneficial, three double mutants and the best predicted triple and quadruple mutants 
(Table 1). Although the top-ranking designs contained five mutations (Fig. 3E), we excluded 
Q1E from experimental testing, as the nanobody were produced in HEK293 cells, which yields 
N-terminal pyroglutaminated glutamine (see Table S2 and Supplementary Methods). 
Therefore, had we tested this mutation, we would have measured the difference between 
pyroglutamine and glutamic acid, instead of the predicted difference between glutamine and 
glutamic acid. We note, however, that the mutation Q1E is well-known in the nanobody field, 
and it was previously shown to be stabilising or neutral in a highly diverse set of eight 
nanobodies (mean sequence identity = 0.67) (61), thus suggesting that this prediction is 
unlikely to be wrong. 
 
All nanobody variants were obtained at high purity (Table S2). The circular dichroism (CD) 
spectra of triple and quadruple mutants, as well as those of the single mutants not contained in 
the quadruple mutant, were undistinguishable from that of the WT and fully compatible with a 
well-folded VHH domain (Fig. S5).  A biolayer interferometry (BLI) experiment confirmed 
that all variants bound their antigen (HSA) with KD values in the high nanomolar range in 
agreement with previous reports for Nb.b201 (46) (Fig. S6 and Table S2). 
 
Conformational stability was measured with heat denaturation using nano differential scanning 
fluorimetry (nanoDSF, see Supplementary Methods). Strikingly, all variants had an apparent 
melting temperature greater than that of the WT (Fig. 4 and Table 1). In particular, the most 
stable variant was the quadruple mutant, with an apparent melting temperature measured to be 
13.6 ºC above that of the WT. 
 
We then attempted to measure relative solubility with polyethylene glycol (PEG) precipitation, 
using a recently introduced method that only requires roughly 270 µg of purified protein 
material (62). However, a first experiment carried out with WT and quadruple mutant revealed 
that these nanobodies do not precipitate in PEG-6K at PEG concentrations up to 30% 
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(weight/volume). A mild drop in soluble concentration was observed only for the WT at 33% 
PEG (Fig. S7), a concentration at which the pipetting of the automated robot starts to become 
less accurate because of the very high viscosity of the PEG solution (62). While this result hints 
at a higher relative solubility of the quadruple mutant, it shows that PEG precipitation cannot 
be used to measure the relative solubility of all designed variants. Therefore, we resorted to 
using ammonium sulphate (AMS) instead of PEG as a precipitant in the assay. While the two 
precipitants work through different principles, good correlations between these two types of 
protein precipitation measurements are reported in the literature (63), and AMS has been used 
to assess the relative solubility of monoclonal antibodies (33). Our results reveal that all 
designed variants had a midpoint of AMS precipitation greater than that of the WT (Fig. 4A 
and S8). The assay, however, was not accurate enough to determine the rank-order of all 
variants with certainty, and the confidence intervals of the fitted AMS50% are typically very 
broad (Fig. 4A, S8 and Table 1). 
 
To get more accurate estimates, we also carried out measurements of cross interaction 
chromatography (CIC).  In CIC, bulk IgGs purified from human serum are chemically coupled 
to an NHS-activated chromatography resin (64, 65) (see Supplementary Methods). Higher 
retention times in this chromatography technique indicate a higher degree of non-specific 
interactions with this IgG mixture or increased ‘stickiness’. Owing to the strong correlation 
observed with solubility measurement, CIC was originally proposed as an assay to identify 
highly soluble antibody candidates (64). A similar correlation was also reported more recently 
for a library of monoclonal antibodies (17). We find that, unlike AMS-precipitation 
measurements, CIC measurements were highly accurate. For example, the measured retention 
times from duplicate experiments carried out on subsequent days were virtually identical (Fig. 
4B). 
 
Our results reveal that 8 designs, including triple and quadruple mutants, had better CIC 
performance than the WT, showing up to 49 seconds decrease in retention time (Fig. 4B). Two 
variants, H53P and H53P T55G, showed similar performance to the WT, and two others, H53R 
and T100R, showed worse performance by 10.1 and 4.1 seconds, respectively. Notably, these 
two variants with higher CIC retention times than that of the WT are both mutations to arginine. 
Arginine residues in antibody CDRs have been associated with reduced specificity by several 
investigations (58, 66–68). Therefore, it is perhaps not surprising that these arginine variants 
perform worse in cross-interaction assays than they do in relative solubility assays such as the 
AMS precipitation. 
 
Taken together, the results of this validation show that all designed variants tested 
experimentally had improved stability and relative solubility, and most of these designs also 
reduced cross interactions. We also observed statistically significant correlations between the 
in-silico predictions underpinning variant selection in our pipeline (FoldX and CamSol) and 
the corresponding experimental measurements (Fig. S9). 
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Figure 4. Experimental characterisation of designed nanobody variants. (A) Scatter plot of the melting 
temperature (Tm) against the ammonium sulphate midpoint of precipitation (AMS50%, used as a proxy for relative 
solubility). Vertical error bars are the 95% confidence interval on the fitted AMS50%, horizontal error bars, which 
are often smaller than the data point, are standard deviation over two independent melting experiments (shown 
individually in B). (B) Scatter plot of the measured Tm against the cross-interaction chromatography (CIC) 
retention time. Data from two independent experiments (black points) are reported. In both panels the dashed lines 
are drawn across the mean measurements of the WT Nb.b201 (red marker). 
 
 
 

Nanobody variant Apparent Tm (ºC) AMS50% (M) CIC RT (min) 

WT 70.1 ± 0.05 0.76 in (0.75,0.79) 11.859 ± 0.003 

A31D 72.7 ± 0.1 1.25 in (1.20,1.28) 11.543 ± 0.014 

H53P 70.5 ± 0.05 0.94 in (0.82,1.19) 11.889 ± 0.001 

H53R 71.3 ± 0.05 1.40 in (1.31,1.42) 12.033 ± 0.002 

T55D 76.6 ± 0.3 1.37 in (1.16,1.47) 11.399 ± 0.003 

T55G 80.7 ± 0.1 1.22 in (1.04,1.35) 11.588 ± 0.003 
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T100K 74.7 ± 0.1 1.47 in (1.45,1.48) 11.736 ± 0.001 

T100R 73.1 ± 0.05 1.25 in (1.07,1.39) 11.932 ± 0.002 

A31D T55D 78.5 ± 0.1 1.27 in (1.09,1.42) 11.045 ± 0.001 

A31D T55G 82.9 ± 0.2 1.49 in (1.45,1.51) 11.204 ± 0.001 

H53P T55G 80.4 ± 0.1 1.61 in (1.58,1.65) 11.872 ± 0.002 

A31D H53P T55G 82.0 ± 0.1 1.18 in (1.08,1.22) 11.444 ± 0.003 

A31D H53P T55G T100K 83.7 ± 0.1 1.19 in (1.06,1.38) 11.120 ± 0.001 

Table 1. Experimentally characterised designed variants. WT and rationally designed mutational variants with 
their measured conformational stability (apparent melting temperature, Tm; apparent because heat denaturation is 
not reversible), relative solubility in ammonium sulphate precipitation (AMS50%) and cross-reactivity as assessed 
with cross interaction chromatography retention time (CIC RT). Values are mean ± standard deviation, except for 
the relative solubility column, which reports fitted AMS50% and lower and upper 95% confidence interval on this 
fitting parameter (see Fig. S8). Tm was measured in duplicates and reported at a 0.1 ºC resolution, when the two 
measurements were identical a standard deviation of 0.05 was arbitrarily assigned. 
 
 
Discussion 
In this work we have presented a fully automated computational pipeline and associated 
webserver for the design of conformationally stable and soluble protein variants.  
 
The simultaneous improvement of stability and solubility is of high relevance, as these two 
properties underpin many potential liabilities that can hamper the development of biologics, 
such as aggregation, low expression yield, or instability upon long-term storage.  
 
The novelty of our approach is in the simultaneous optimisation of these two biophysical 
properties in combination with the inclusion of phylogenetic information. We have shown that 
including phylogenetic information significantly reduces the false discovery rate of stability 
predictions by analysing a large database of experimental data (Fig. 1). Furthermore, all 12 
designs we tested experimentally had a melting temperature greater than that of the WT, 
confirming a low FDR (Fig. 4 and S9). Our algorithm can handle input proteins comprising 
multiple polypeptide chains, takes into consideration residues with missing coordinates in its 
solubility predictions (using the seqres sequence), and handles immunoglobulin variable 
domains using custom-built precompiled MSAs. 
 
The pipeline is slightly different depending on whether the input is an immunoglobulin variable 
region or a generic protein. For a generic protein like an enzyme, a MSA is constructed from 
homologs found with the HHblits algorithm. In this case, the inclusion of phylogenetic 
information also safeguards against predicting mutations at functionally relevant sites, as these 
are typically conserved by evolution and as such would not be touched by our algorithm. 
Conversely, different pre-compiled MSAs are provided for immunoglobulin variable domains, 
representing the mutational space observed in human antibodies, mouse antibodies, 
nanobodies, and post-phase-I clinical-stage antibodies. Functionally relevant antibody residues 
(i.e., the paratope) are found within hypervariable regions and therefore cannot be inferred 
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from phylogenetic information. However, when bound structures or mutational studies are not 
available to determine paratope residues, paratope predictors can be used. These algorithms 
predict those residues most likely to be directly involved in antigen binding from the antibody 
sequence. Many such predictors are available and their accuracy has been steadily increasing 
(69–73), and one, called Parapred (69), can be accessed directly on our webserver. Whether 
predicted or experimentally determined, functionally relevant positions can be excluded from 
the design, as we have done for Nb.b201 in this work. 
 
Our pipeline is fully automated and accessible via a user-friendly webserver. The input page 
enables the customisation of various parameters and settings, thus making the design highly 
tuneable to accommodate user-specific needs. Users can decide on target residues to exclude, 
sites or whole chains that should not be touched, can input extra “custom” mutation sites to 
test, choose between different PSSM thresholding and pre-compiled antibody MSA, and even 
upload user-built MSAs. The web server implementation of the method is complemented by 
an easy-to-use graphical interface that guides the user, including a simple guide on how to 
generate and download suitable alignments of homolog sequences from the HHblits webserver 
(56). 
 
The required input is the structure of the protein to be optimised. While an experimentally 
determined structure may not always be available, great advances have been made in the de 
novo modelling of proteins (74, 75) and unbound antibody structures (76–79). Models 
generated with such software, or simpler homology models, can readily be used as input for 
our algorithm, albeit it remains to be seen whether they provide sufficient accuracy for 
atomistic stability-design calculations. 
 
We experimentally validated the predictions of the algorithm in the case of a yeast-display-
derived nanobody. We tested 12 designs consisting of seven different single mutants, three 
double, one triple, and one quadruple mutants. Remarkably, all variants tested had increased 
stability and relative solubility, assessed respectively through apparent melting temperatures 
and midpoints of AMS precipitation. Furthermore, most variants also had reduced retention 
times in CIC columns, which shows they also have diminished cross-reactivity.  
 
We also noted that the two variants with worsened CIC retention times were both mutations to 
arginine, which are well-known to contribute to poor specificity (58, 66–68). This type of 
liabilities are easy to spot, as most software for molecular viewing can highlight patches of 
positive charges, and these can also be identified directly from the CDR sequences, and are 
tabulated in various publications (66, 68). The assessment of sequence-based liabilities will be 
the first area of improvement for future versions of the method, including known drivers of 
cross-reactivity (e.g. number of CDR arginines & tryptophans) as well as chemical liabilities 
(e.g. deamidation sites or post-translational-modification sites).  
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In conclusion, we have introduced and experimentally validated a fully automated 
computational method that provides a time- and cost-effective way to improve the stability and 
solubility of proteins and antibodies, through the rational design of mutations. We anticipate 
that this algorithm will find broad applicability in the optimisation of the developability 
potential of lead proteins and antibodies destined to applications in research, biotechnology, 
diagnostics, and therapeutics. 
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