Correcting Modification-Mediated Errors in Nanopore Sequencing by Nucleotide Demodification and in silico Correction

Chien-Shun Chiou¹, Bo-Han Chen¹, You-Wun Wang¹, Nang-Ting Kuo²,

Chih-Hsiang Chang², Yao-Ting Huang^{2*}

¹Centers for Disease Control, Taichung, Taiwan.

² Department of Computer Science and Information Engineering,

National Chung Cheng University, Chiayi, Taiwan.

*Corresponding email: <u>ythuang@cs.ccu.edu.tw</u>

1 Abstract

2	The accuracy of Oxford Nanopore Technology (ONT) sequencing has significantly
3	improved thanks to new flowcells, sequencing kits, and basecalling algorithms.
4	However, novel modifications untrained in the basecalling models can seriously reduce
5	the quality. This paper reports a set of ONT-sequenced genomes with unexpected low
6	quality (~Q30) due to extensive new modifications. Demodification by whole-genome
7	amplification (WGA) significantly improved the quality of all genomes (~Q50-60)
8	while losing the epigenome. We developed a computational method, Modpolish, for
9	correcting modification-mediated errors without WGA. Modpolish produced high-
10	quality genomes and uncovered the underlying modification motifs without loss of
11	epigenome. Our results suggested that novel modifications are prone to ONT errors,
12	which are correctable by WGA or Modpolish without additional short-read sequencing.

13 Keywords: DNA modifications, Nanopore Sequencing, Whole-Genome Amplification.

14 Background

15	The Oxford Nanopore Technology (ONT) is a popular long-read sequencing
16	platform that enables real-time sequencing for point-of-care medical applications, such
17	as the diagnosis of infectious and newborn diseases within hospitals [1, 2]. Despite its
18	great potential and popularity, the accuracy of ONT was inferior to those of other
19	platforms (e.g., Illumina and PacBio HiFi). Recently, the quality of ONT sequencing
20	has significantly improved thanks to new flowcells (e.g., R10.4), sequencing kits (e.g.,
21	Kit 14), and basecalling algorithms (e.g., Bonito). For example, by using the R10.4
22	flowcells, near-perfect microbial genomes from isolates or metagenomes can be
23	reconstructed by ONT-only sequencing without short-read polishing [3].
24	However, because the throughput of R10.4 is much lower due to slower
24	However, because the throughput of R10.4 is much lower due to slower
24 25	However, because the throughput of R10.4 is much lower due to slower sequencing speed, most projects rely on the R9.4 flowcells for higher yield. Although
25	sequencing speed, most projects rely on the R9.4 flowcells for higher yield. Although
25 26	sequencing speed, most projects rely on the R9.4 flowcells for higher yield. Although the upcoming sequencing kit will further enhance the accuracy (e.g., Kit 14),
25 26 27	sequencing speed, most projects rely on the R9.4 flowcells for higher yield. Although the upcoming sequencing kit will further enhance the accuracy (e.g., Kit 14), postassembly genome polishing is still compulsory for removing ONT systematic
25 26 27 28	sequencing speed, most projects rely on the R9.4 flowcells for higher yield. Although the upcoming sequencing kit will further enhance the accuracy (e.g., Kit 14), postassembly genome polishing is still compulsory for removing ONT systematic errors regardless of the flowcell or kit versions. Systematic errors are recurrent

3

32	have been significantly reduced by read-based (e.g., Medaka) or reference-based (e.g.,
33	Homopolish) polishing methods [5]. These algorithmic advances have produced high-
34	quality ONT genomes sufficient for downstream analysis (e.g., >Q50) [3, 6].
35	Unfortunately, the ONT signals are ultra-sensitive to various modifications (e.g.,
36	5mC, 6mA). More than 17 and 160 modification types have been found in DNA and
37	RNA, respectively, and the number is still growing (e.g., DNA adducts, N4-
38	acetyldeoxycytosine) [7, 8]. These modifications disturb the electrical current and
39	result in unfixable systematic errors [9]. Note that these modification-mediated errors
40	cannot be eliminated by new flowcells and sequencing kits (e.g., R10.4 and Kit 14)
41	which aim to reduce homopolymer errors. Furthermore, existing basecalling and
42	polishing algorithms (e.g., Guppy and Medaka) were trained for capturing only a few
43	modifications (e.g., 5mC, 5hmc, 6mA). Consequently, the quality of ONT sequencing
44	is unreliable when novel modifications extensively edit the genome.

This paper presents a set of unexpected low-quality genomes due to extensive novel modifications. We show that the removal of modifications by whole-genome amplification (WGA) significantly improves the quality of all genomes. A novel computational method is developed for correcting these modification errors without WGA.

4

50 **Results**

51 Unusual low-quality of ONT genomes due to extensive modifications

52	We sequenced 12 microbial strains of Listeria monocytogenes using Illumina
53	and ONT (~200-990Mbp) (Figure 1(a), Supplementary Tables S1 and S2). The ONT
54	reads were assembled into genomes with sequencing errors further polished by the-
55	state-of-the-art tools (Supplementary Table S3, see Methods). The Illumina and ONT
56	reads were hybrid assembled for evaluation purposes (Supplementary Table S4). When
57	compared with the Illumina/ONT hybrid assemblies (Figure 1(b)), seven ONT-only
58	genomes exhibited high quality (HQ) ranging from Q47 to Q60 (e.g., R19-2905 and
59	R20-0088). However, five isolates (R20-0026, R20-0030, R20-0127, R20-0148, and
60	R20-0150) showed unexpectedly low quality (LQ) varying from Q27 to Q34. The
61	accuracy of these five LQ genomes remained unimproved after replicated ONT
62	sequencing (data not shown). Further investigation of the five LQ genomes revealed
63	excessive amounts of mismatch errors (1,228-5,780) compared with the seven HQ ones
64	(3-36 mismatches) (Figure 1(c)). Homopolymer errors (i.e., indels) were not the source
65	of inferior quality (7-306, Supplementary Table S5).

Manual inspection revealed that these mismatches were ONT basecalling errors
 uncorrected after genome polishing (Figure 1(d) and Supplementary Figure S1). As

68	mismatch errors in ONT are mainly due to epigenetic modifications, we computed the
69	frequency of well-known methylation in these isolates (see Method and Supplementary
70	Table S6). In terms of 5-methylcytosine (5mC), the numbers of modified loci in the
71	five LQ genomes (~240-340k) were not significantly higher than those in the HQ ones
72	(210-345k, P=0.89, Figure 1(e)). Similarly, the numbers of N ⁶ -methyladenine (6mA)
73	modifications also showed no significant difference between the LQ and HQ groups
74	(98-218k v.s. 126-223k, P=0.34, Figure 1(f)). Because the numbers of mismatch errors
75	in LQ genomes are significantly higher than those of HQ ones (P=0.005, Figure 1(g)),
76	we suspected ONT basecalling algorithms failed to distinguish the novel modifications
77	in the LQ isolates.

78 High-quality ONT genomes by WGA demodification

79	We removed the modifications in all microbial samples by WGA (Figure 2(a)),
80	which randomly amplifies the genome fragments without retaining any epigenetic
81	modification (see Methods). The WGA-demodified samples were sequenced by ONT,
82	assembled into chromosomes, and compared with the Illumina/ONT hybrid genomes
83	(Figure 2(a), Supplementary Tables S7 and S8). The five LQ genomes after WGA
84	exhibited significantly higher quality than those without demodifications (e.g., Q27 to
85	Q53 in R20-0026) (Figure 2(b), Supplementary Table S9). In particular, the amounts

of mismatch errors significantly reduced after demodification (e.g., 5,780 to 16 in R200026) (Figure 2(c)). Consequently, the unexpected low quality of ONT was due to
excessive novel modifications untrained in their basecalling model. The demodification
by WGA can produce high-quality ONT genomes without the need for Illumina short
reads.

91	However, while WGA successfully erased these modifications, the sequencing
92	cost increased by two factors. First, WGA required a higher sequencing depth (~100x)
93	for assembling a complete genome when compared with ordinary ONT sequencing
94	(~30x) (Figure 2(d) and Supplementary Figures S2-3). It was due to the uneven
95	amplification of WGA, which led to non-uniform sequencing depth and a fragmented
96	assembly at moderate coverage. Second, the WGA-demodified samples may reduce the
97	ONT yields. We observed the numbers of available/active pores could sometimes
98	decrease quickly (e.g., less than 100 pores after 12h) (Figure 2(e)), which was possibly
99	owing to the hyperbranched structure unresolved after WGA. Consequently, the
100	sequencing cost of WGA-demodified samples using ONT is much higher than ordinary
101	sequencing.

102 *in silico* correction of modification-mediated errors by Modpolish

103	We developed a novel computational method (called Modpolish) for correcting
104	these modification-mediated errors without WGA and prior knowledge of the
105	modifications. Modpolish identifies and corrects the modification-mediated errors by
106	investigating basecalling quality, basecalling consistency, and evolutionary
107	conservation (Figure 3(a), see Method). Briefly, because the ONT signals are disturbed
108	by modifications, the basecalling quality is usually low, and the basecalled nucleotides
109	are often inconsistent at the modified loci. In conjunction with the conservation degree
110	measured by closely-related genomes, only the modified loci with ultra-high
111	conservation will be corrected by Modpolish, avoiding false corrections of strain
112	variations.

113 We assessed the accuracy of Modpolish by comparing the quality of the ONT-114 only genomes (polished by Medaka/Homopolish) with those further polished by 115 Modpolish. The results indicated that Modpolish significantly improved the genome 116 quality of all LQ genomes (Figure 3(b), Supplementary Table S10). For instance, the 117 quality of R20-0030 improved from Q34 to Q60, and the number of mismatches 118 decreased from 1,228 to 33 (Figure (3(c))). We observed that the number of mismatches 119 in R20-0026 reduced dramatically (i.e., from 5,780 to 143). However, the quality 120 improvement (i.e., from Q27 to Q45) was slightly inferior to the others due to the 143

121 uncorrected mismatches. Note that no false corrections were made on the seven HQ

122 genomes, implying the correction specificity of Modpolish is high.

123	The multilocus sequencing typing (MLST) indicated that R20-0026 belonged to
124	the sequence type ST1081 and the remaining four LQ strains (i.e., R20-0030, R20-0127,
125	R20-0148, R20-150) were ST87. Hence, we investigated whether an identical
126	modification system extensively edited the genomes of these two lineages. Sequence
127	analysis of the modified loci revealed that the modifications of ST1081 were on the
128	GCTGG motif (Figure 3(d)). On the other hand, the modification sites of all ST87
129	strains centered on the GCAGC motif (Figure 3(e)). Therefore, two modification
130	systems seem specific to each of the two lineages. In addition, while both motifs are
131	not palindromic, their reverse complements (i.e., CCAGC, GCTGC) were also hotspots
132	of modifications (Supplementary Figure S4). Because the mismatches frequently
133	appeared on both strands at the same loci (Supplementary Figure S5), the unknown
134	modification may symmetrically edit both strands. Although their underlying
135	mechanisms remained unclear, the two systems extensively modified the genomes at
136	specific motifs with high conservation within each lineage, leading to excessive
137	amounts of basecalling yet correctable errors.

138 Comparison of phylogeny reliability under extensive modifications

139	Because sequencing errors alter the genetic distances between strains, we assessed
140	the reliability of phylogeny using ONT with or without modification-error removal. We
141	reconstructed the core-genome MLST (cgMLST) phylogeny of the five LQ strains
142	sequenced and assembled by four methods: ONT-only sequencing, WGA-demodified
143	ONT, ONT with Modpolish, and hybrid ONT/Illumina sequencing (Figure 4(a)). The
144	WGA-demodified genomes perfectly clustered with the ONT/Illumina hybrid for each
145	strain in both clades (ST87 and ST1081). The ONT genomes corrected by Modpolish
146	clustered with the hybrid and WGA-demodified genomes in both clades. But the
147	genetic distance slightly deviated from them, especially in the ST1081 clade. The ONT-
148	only genomes were phylogenetic distant from the others due to excessive amounts of
149	modification-mediated errors.
149 150	modification-mediated errors. When comparing each method in the seven HQ isolates, ONT with WGA was
150	When comparing each method in the seven HQ isolates, ONT with WGA was
150 151	When comparing each method in the seven HQ isolates, ONT with WGA was slightly worse than the original ONT and Modpolish in six strains (e.g., 47 v.s. 6
150 151 152	When comparing each method in the seven HQ isolates, ONT with WGA was slightly worse than the original ONT and Modpolish in six strains (e.g., 47 v.s. 6 mismatches in R20-0088) (Figure 4(b)), except for the R19-2905 isolate (i.e., 12 v.s.
150 151 152 153	When comparing each method in the seven HQ isolates, ONT with WGA was slightly worse than the original ONT and Modpolish in six strains (e.g., 47 v.s. 6 mismatches in R20-0088) (Figure 4(b)), except for the R19-2905 isolate (i.e., 12 v.s. 36 mismatches). These mismatches slightly increased the genetic distance to the others
150 151 152 153 154	When comparing each method in the seven HQ isolates, ONT with WGA was slightly worse than the original ONT and Modpolish in six strains (e.g., 47 v.s. 6 mismatches in R20-0088) (Figure 4(b)), except for the R19-2905 isolate (i.e., 12 v.s. 36 mismatches). These mismatches slightly increased the genetic distance to the others (Supplementary Figure S6). Nevertheless, phylogenetic analysis indicated that the

modifications. But when new modifications extensively edit the genome, only ONT
with WGA or Modpolish can provide sufficient typing accuracy without additional
Illumina sequencing.

161 **Discussion**

162 This paper presented a set of unexpected low-quality ONT genomes due to extensive 163 modifications untrained in the basecalling models. Demodification by WGA 164 successfully improved the genome quality while losing the epigenome. The in silico 165 method, Modpolish, removed these modification-mediated errors without prior 166 knowledge of modifications and uncovered the modified motifs while retaining the 167 epigenome. When unknown modifications extensively shaped the genome, ONT with 168 WGA or Modpolish produced nearly identical cgMLST profiles as hybrid 169 ONT/Illumina did. On the other hand, the phylogeny of ONT-only genomes was 170 disturbed by modification-mediated errors. Therefore, ONT with WGA or Modpolish 171 is robust to modification-mediated errors without the need for additional Illumina 172 sequencing.

173 Quality reduction of ONT on novel modifications

Existing ONT basecalling algorithms only capture a few methylations (e.g., 5mC,
5 hmc, 6mA) and ignore the vast amount of other modifications. Theoretically, species-

176	specific modifications can be distinguished by training bespoke models for one
177	organism (e.g., Taiyaki). But practically, it is infeasible to train models for hundreds of
178	modifications in the biosphere. Especially in metagenomic sequencing, the usage of
179	any particular model is biased against other modifications. For instance, a meta-
180	epigenomic sequencing uncovered 22 methylation systems in a single microbial
181	community [10]. Hence, if WGA is not an option, modification-mediated errors are
182	better removed at the postassembly stage as each assembled contig can be polished
183	independently.

184 Limitations of ONT with WGA

The cost of WGA ONT is higher than ordinary sequencing due to several side 185 186 effects of the amplification protocol. First, the amplified DNA may still contain a 187 hyperbranched structure after Flap endonuclease (e.g., T7) cleavage. The 188 hyperbranched DNA may block the pores during ONT sequencing and reduce the 189 available pores and yields. In addition, the usage of endonuclease cleavage also 190 decreased the read lengths. In conjunction with the uneven amplification, WGA 191 requires higher coverage ($\sim 100x$) for reconstructing a complete genome than ordinary 192 ONT sequencing (~30x). Notably, the usage of WGA discards the entire methylome. 193 The loss of modifications would prohibit any epigenetic study using ONT.

194 Limitations of ONT with Modpolish

195	While Modpolish eliminated most modification-mediated errors, the correction
196	power was lower in the ST1081 isolate. The lack of ST1081 genomes in NCBI RefSeq
197	decreased the sensitivity of Modpolish. As the algorithm only corrects the loci of high
198	evolutionary conservation, a sufficient number of closely-related genomes is necessary.
199	Therefore, Modpolish is more suitable for common instead of rare lineages.
200	Nevertheless, Modpolish retains all modifications after ONT sequencing while
201	WGA loses the epigenome. Epigenetic methylation has been thought to contribute to
202 203	the rapid adaptation of resistance [11]. For instance, phase-variable adenine DNA methyltransferases (e.g., ModA11 and ModA12) increase susceptibility to cloxacillin
203	and ciprofloxacin in <i>Neisseria meningitidis</i> [12]. The resistance due to overexpression
205	of efflux pumps (e.g., sugE) has been linked to the lack of the Dcm-mediated 5mC
206	silencing [13]. Therefore, Modpolish should be used when the epigenome is the focus
207	of the study.

208 Functional implications of the two modification systems

We discovered two pentanucleotide motifs, GCTGG (CCAGC) and GCAGC (GCTGC), specific to each of the two lineages (ST1081 and ST87). In ST1081, the GCTGG (CCAGC) motif is part of *chi* sites, hotspots of homologous recombination mediated by the RecBC enzyme [14, 15]. As phages cut by restriction enzymes are

213	further degraded by RecBC [16], modifications on the GCTGG motif may be part of
214	the defending system of ST1081, which protect itself against the RecBC cleavage.
215	In ST87 strains, the GCAGC/GCTGC (i.e., GCWGC) motif was the known target
216	of the orphan methyltransferase M.BatI [17]. M.BatI produced fully-methylation on 5'-
217	GCWGC-3' and hemimethylation on 5'-GCSGC-3'. Reinvestigation of the modified
218	sites in ST87 showed the existence of both GCWGC and GCSGC (Supplementary
219	Figure S4). Interestingly, M.BatI increased toxicity when expressed in <i>E coli</i> in their
220	study, which was concordant with the elevated virulence of ST87 strains.
221	Hence, the two lineages possessed two distinct modification systems for defensive
222	purposes and increasing virulence. Although further investigations are required to
223	assess their biological function, modifications that have acquired regulatory effects in
224	bacteria are usually conservative within a clade [18]. Consequently, our in silico
225	algorithm successfully utilize the conservation for correcting modification errors.

226 Conclusion

This paper reported a set of unexpectedly low-quality genomes due to novel modifications untrained in the ONT basecalling model. The increasing number of new modifications found by single-molecular sequencing or high-resolution mass spectrometry will unavoidably reduce the ONT accuracy. New ONT flowcells,

14

sequencing kits, and basecalling algorithms aim to resolve the homopolymer issue but
not modification-mediated errors. Our study showed that these modification-mediated
errors can be effectively corrected by preassembly amplification or postassembly
polishing without additional short-read sequencing, producing high-quality genomes
reliable for downstream analysis.

236 Materials and Methods

237 Bacterial isolates. Twelve Listeria monocytogenes isolates used in this study were

238 obtained from hospitals recovered from listeriosis patients in Taiwan between 2019 and

- 239 2020. The isolates were submitted to the Taiwan Centers for Disease Control for further
- 240 identification and genotyping. The isolates belonged to serogroups IIa (5 isolates), IIb
- 241 (6 isolates), and IVb (1 isolate) and sequence type (ST) 1, ST5 (2 isolates), ST87 (4
- 242 isolates), ST101, ST155, ST378, ST1081, and ST1532.

Whole genome sequencing. WGS of bacterial isolates was conducted in the Central Region laboratory of Taiwan CDC using the Illumina MiSeq sequencing platform (Illumina Co., USA) and the Nanopore sequencing platform (Oxford Nanopore Technologies, Inc., UK). DNA of bacterial isolates was extracted using the Qiagen DNeasy blood and tissue kit (Qiagen Co., Germany). Illumina DNA library construction was performed using the Illumina DNA Prep, (M) Tagmentation system (Illumina Co.), and sequencing was run with the MiSeq reagent kit version 3 (2X 300
bp), manipulated according to the manufacturer's instructions. Nanopore DNA library
construction was performed using the Rapid Barcoding Kit and sequencing was run
using the MinION device and R9.4 chemistry.

253 Removal of modifications of nucleotides using whole-genome amplification. DNA

254 Bacterial Genomic DNA was amplified using the REPLI-g Advanced DNA Single Cell

255 Kit (Qiagen, Hilden, Germany), manipulated according to the manufacturer's

256 instructions. The amplified DNA was purified using the KAPA HyperPure Beads

257 (Roche, Basel, Switzerland) before subjecting to Nanopore sequencing.

258 Assembly of sequence reads. Illumina sequence reads for each isolate were assembled 259 using the SPAdes assembler version 3.12.0 (http://cab.spbu .ru/software/spades/) [19]; 260 both Illumina sequence reads and Nanopore sequence reads for each isolates together 261 were assembled to complete the full genomic sequences using the Unicycler Assembler 262 [20]. The Nanopore reads for each isolate (in FAST5 file) were subjected to basecalling 263 using the Guppy basecaller (https://nanoporetech.com/). In the ONT-only assembly, the 264 sequences (in FASTQ file) assembled using Flye were 265 (https://github.com/fenderglass/Flye)[21], then polished using Racon the 266 (https://github.com/lbcb-sci/racon) [4], the Medaka

267	(<u>https://</u>	github.com/nan/	oporetech/meda	<u>aka</u>),	and	the	Homopolish
268	(<u>https://</u>	github.com/ythu	uang0522/home	o <u>polish</u>) [5]	. Methylati	ons (i.e.,	5mC, 6mA) in
269	the	ONT-only	genomes	were	called	by	Megalodon
270	(<u>https://</u>	/github.com/nan	oporetech/mega	alodon). The	e Integrativ	e Genome	e Viewer (IGV)
271	was use	ed for visualizin	g the ONT mo	dification e	rrors [22].	The geno	me quality was
272	assesse	d by fastmer (<u>ht</u>	tps://github.con	<u>n/jts/assemb</u>	oly_accurac	<u>y</u>).	

273 cgMLST analysis. Assembled Illumina contigs, assembled and polished Nanopore 274 contigs, and assembled complete genomic sequence (obtained from assembling 275 Illumina sequences and Nanopore sequences) for each isolate were used to generate 276 core-gene multilocus sequence typing (cgMLST) profiles (based on 2,172 core genes) 277 using an in-house-developed cgMLST profiling tool available the on 278 cgMLST@Taiwan website (http://rdvd.cdc.gov.tw/cgMLST). Phylogenetic trees were 279 constructed with cgMLST profiles using the minimum spanning tree algorithm and the 280 tool provided on the cgMLST@Taiwan website.

Overview of Modpolish. The proposed computational method, Modpolish, aims to remove modification-mediated errors by investigating the inconsistency of basecalled nucleotides, qualities of basecalled alleles, and evolutionary conservation at the modified loci. Modpolish is an extension from Homopolish, a polishing algorithm

285	designed for correcting ONT homopolymer errors [5]. Figure 5 depicts the workflow
286	of Modpolish. The closely-related genomes are first identified by screening against a
287	compressed representation of microbial genomes. The genome sequences are then
288	retrieved on the fly and compared with the draft genome. We only retain closely-related
289	genomes of high nucleotide and structural similarity. Given the alignment matrix of
290	reads, qualities, and homologs, Modpolish identifies potential-modified loci of
291	inconsistent basecalling and low quality and only corrects the mismatch errors highly
292	conserved in homologs. The details are described in the following sections.
293	Collection of homologs by nucleotide and structural similarity. The draft genome
294	(to be polished) is scanned against the virus, bacteria, or fungus genomes compressed
294 295	(to be polished) is scanned against the virus, bacteria, or fungus genomes compressed by Mash as (MinHash) sketches, which is a reduced representation of all microbial
295	by Mash as (MinHash) sketches, which is a reduced representation of all microbial
295 296	by Mash as (MinHash) sketches, which is a reduced representation of all microbial genomes in NCBI RefSeq [23]. Subsequently, top <i>t</i> (default 20) closely related genomes
295 296 297	by Mash as (MinHash) sketches, which is a reduced representation of all microbial genomes in NCBI RefSeq [23]. Subsequently, top t (default 20) closely related genomes will be retrieved on the fly. Mash estimated the Jaccard similarity between the draft and
295 296 297 298	by Mash as (MinHash) sketches, which is a reduced representation of all microbial genomes in NCBI RefSeq [23]. Subsequently, top t (default 20) closely related genomes will be retrieved on the fly. Mash estimated the Jaccard similarity between the draft and related genomes over a subset of k -mers. Though very fast, this method has low
295 296 297 298 299	by Mash as (MinHash) sketches, which is a reduced representation of all microbial genomes in NCBI RefSeq [23]. Subsequently, top t (default 20) closely related genomes will be retrieved on the fly. Mash estimated the Jaccard similarity between the draft and related genomes over a subset of k -mers. Though very fast, this method has low resolution at distinguishing closely-related genomes because the small subset of k -mers

303 using FastANI for computing the average nucleotide identity (ANI) at a higher

304	resolution than Mash [24]. FastANI chops the two genomes into pieces and aligns them
305	against each other for speedup. However, it only considers the aligned segments for
306	ANI estimation and ignores the unaligned portions (Supplementary Figure S8(a)). The
307	unaligned segments imply these two genomes differ by structural variations (i.e.,
308	vertically-/horizontally-transferred genes). As small and large variants are both genetic
309	footprints of strain variations during evolution, Modpolish also computes the structural
310	similarity (average-structural identity, ASI), defined as the percentage of aligned
311	segments. We only retain the related genomes with sufficient ANI (>99%) and ASI
312	(>90%) for subsequent error correction. These emprical cutoffs were determined by
313	investigating the distributions of ANI and ASI in real microbial genomes.
313 314	investigating the distributions of ANI and ASI in real microbial genomes. Correction of modification-mediated errors by reads and homologs. These closely-
314	Correction of modification-mediated errors by reads and homologs. These closely-
314 315	Correction of modification-mediated errors by reads and homologs. These closely- related genomes with sufficient ANI and ASI are aligned against the draft genome via
314315316	Correction of modification-mediated errors by reads and homologs. These closely- related genomes with sufficient ANI and ASI are aligned against the draft genome via minimap2 (with asm5 option) [25]. The raw ONT reads are also mapped against the
314315316317	Correction of modification-mediated errors by reads and homologs. These closely- related genomes with sufficient ANI and ASI are aligned against the draft genome via minimap2 (with asm5 option) [25]. The raw ONT reads are also mapped against the draft genome by minimap2 (with map-ont option). We extract the basecalled
 314 315 316 317 318 	Correction of modification-mediated errors by reads and homologs. These closely- related genomes with sufficient ANI and ASI are aligned against the draft genome via minimap2 (with asm5 option) [25]. The raw ONT reads are also mapped against the draft genome by minimap2 (with map-ont option). We extract the basecalled nucleotides, basecalling qualities, and homologous alleles from the alignments. The

322 homologs and ONT reads, ignoring the insertion and deletion gaps. We identify the

 alternative alleles (i.e., non-major ones) at one locus. The average quality w computed by averaging the qscores from all read bases at the same locus. A potentiall modified locus is defined as the allele discordancy greater than 5% and the averag quality score below 15, which were empirically observed from the modification mediated errors. For each potentially-modified locus, if all the homologous alleles are 100 conserved, we will correct the erroneous nucleotide into the alternative alle concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional 	323	potentially modified sites according to the allele discordancy and average quality (see
 computed by averaging the qscores from all read bases at the same locus. A potentiall modified locus is defined as the allele discordancy greater than 5% and the avera quality score below 15, which were empirically observed from the modificatio mediated errors. For each potentially-modified locus, if all the homologous alleles are 100 conserved, we will correct the erroneous nucleotide into the alternative alle concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation 	324	also Supplementary Figure S8(b)). The allele discordancy is the frequency of
 modified locus is defined as the allele discordancy greater than 5% and the average quality score below 15, which were empirically observed from the modification mediated errors. For each potentially-modified locus, if all the homologous alleles are 100 conserved, we will correct the erroneous nucleotide into the alternative alle concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation 	325	alternative alleles (i.e., non-major ones) at one locus. The average quality was
quality score below 15, which were empirically observed from the modificatio mediated errors. For each potentially-modified locus, if all the homologous alleles are 100 conserved, we will correct the erroneous nucleotide into the alternative alle concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation	326	computed by averaging the qscores from all read bases at the same locus. A potentially-
mediated errors. For each potentially-modified locus, if all the homologous alleles are 100 conserved, we will correct the erroneous nucleotide into the alternative alle concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation	327	modified locus is defined as the allele discordancy greater than 5% and the average
For each potentially-modified locus, if all the homologous alleles are 100 conserved, we will correct the erroneous nucleotide into the alternative alle concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation	328	quality score below 15, which were empirically observed from the modification-
conserved, we will correct the erroneous nucleotide into the alternative alle concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation	329	mediated errors.
concordant with the homologs. These stringent criteria aimed for specificity instead sensitivity, ensuring little or no false corrections would be made. We also implement a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation	330	For each potentially-modified locus, if all the homologous alleles are 100%
333 sensitivity, ensuring little or no false corrections would be made. We also implement 334 a motif-aware mode when the modification system is known in advance. If the us 335 specifies a known modification motif (e.g., CCGAC), the program will additional 336 correct loci according to the provided pattern by lowering the homologous conservation	331	conserved, we will correct the erroneous nucleotide into the alternative allele
 a motif-aware mode when the modification system is known in advance. If the us specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation 	332	concordant with the homologs. These stringent criteria aimed for specificity instead of
 specifies a known modification motif (e.g., CCGAC), the program will additional correct loci according to the provided pattern by lowering the homologous conservation 	333	sensitivity, ensuring little or no false corrections would be made. We also implemented
336 correct loci according to the provided pattern by lowering the homologous conservation	334	a motif-aware mode when the modification system is known in advance. If the user
	335	specifies a known modification motif (e.g., CCGAC), the program will additionally
337 ratio from 100% to 80%.	336	correct loci according to the provided pattern by lowering the homologous conservation
	337	ratio from 100% to 80%.

338 Data and software availability

339 The genomes sequenced and assembled by Illumina, ONT, and WGA ONT are
340 deposited in the NCBI with BioProject (xxxxx). Modpolish was implemented as a

341 subcommand in the Homopolish package, which is freely available at

342 (https://github.com/ythuang0522/homopolish/).

343 **Conflict of interests**

344 The authors declare no conflict of interests.

345

346 **Reference**

Gorzynski JE, Goenka SD, Shafin K, Jensen TD, Fisk DG, Grove ME, Spiteri E,
 Pesout T, Monlong J, Baid G *et al*: Ultrarapid Nanopore Genome
 Sequencing in a Critical Care Setting. New England Journal of Medicine
 2022, 386(7):700-702.

- Gu W, Deng X, Lee M, Sucu YD, Arevalo S, Stryke D, Federman S, Gopez A,
 Reyes K, Zorn K *et al*: Rapid pathogen detection by metagenomic next generation sequencing of infected body fluids. *Nat Med* 2021,
 27(1):115-124.
- Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA,
 Wollenberg RD, Albertsen M: Oxford Nanopore R10.4 long-read
 sequencing enables near-perfect bacterial genomes from pure
 cultures and metagenomes without short-read or reference polishing.
 bioRxiv 2021:2021.2010.2027.466057.
- Vaser R, Sović I, Nagarajan N, Šikić M: Fast and accurate de novo genome
 assembly from long uncorrected reads. *Genome Res* 2017, 27(5):737 746.
- 363 5. Huang Y-T, Liu P-Y, Shih P-W: Homopolish: a method for the removal of
 364 systematic errors in nanopore sequencing by homologous polishing.
 365 *Genome biology* 2021, 22(1):1-17.
- 366 6. Zhang P, Jiang D, Wang Y, Yao X, Luo Y, Yang Z: Comparison of De Novo
 367 Assembly Strategies for Bacterial Genomes. International Journal of
 368 Molecular Sciences 2021, 22(14):7668.

2.00	_	
369	7.	Wang S, Xie H, Mao F, Wang H, Wang S, Chen Z, Zhang Y, Xu Z, Xing J, Cui Z
370		<i>et al</i> : N4-acetyldeoxycytosine DNA modification marks euchromatin
371	0	regions in Arabidopsis thaliana. Genome Biology 2022, 23(1):5.
372	8.	Xu L, Seki M: Recent advances in the detection of base modifications
373		using the Nanopore sequencer. Journal of Human Genetics 2020,
374		65 (1):25-33.
375	9.	Schatz MC: Nanopore sequencing meets epigenetics. Nature Methods
376		2017, 14 (4):347-348.
377	10.	Hiraoka S, Okazaki Y, Anda M, Toyoda A, Nakano S-i, Iwasaki W:
378		Metaepigenomic analysis reveals the unexplored diversity of DNA
379		methylation in an environmental prokaryotic community. Nature
380		Communications 2019, 10 (1):159.
381	11.	Ghosh D, Veeraraghavan B, Elangovan R, Vivekanandan P: Antibiotic
382		Resistance and Epigenetics: More to It than Meets the Eye.
383		Antimicrobial Agents and Chemotherapy 2020, 64 (2):e02225-02219.
384	12.	Jen FE-C, Seib KL, Jennings MP: Phasevarions Mediate Epigenetic
385		Regulation of Antimicrobial Susceptibility in Neisseria meningitidis.
386		Antimicrobial Agents and Chemotherapy 2014, 58 (7):4219-4221.
387	13.	He G-X, Zhang C, Crow RR, Thorpe C, Chen H, Kumar S, Tsuchiya T, Varela
388		MF: SugE, a New Member of the SMR Family of Transporters,
389		Contributes to Antimicrobial Resistance in <i>Enterobacter</i>
390		cloacae. Antimicrobial Agents and Chemotherapy 2011, 55(8):3954-
391		3957.
392	14.	Aoki H, Kajino K, Arakawa Y, Hino O: Molecular cloning of a rat
393		chromosome putative recombinogenic sequence homologous to the
394		hepatitis B virus encapsidation signal. Proceedings of the National
395		Academy of Sciences 1996, 93 (14):7300-7304.
396	15.	Ponticelli AS, Schultz DW, Taylor AF, Smith GR: Chi-dependent DNA
397		strand cleavage by RecBC enzyme. Cell 1985, 41(1):145-151.
398	16.	Simmon VF, Lederberg S: Degradation of bacteriophage lambda
399		deoxyribonucleic acid after restriction by Escherichia coli K-12.
400		Bacteriol 1972, 112 (1):161-169.
401	17.	Furuta Y, Miura F, Ichise T, Nakayama SMM, Ikenaka Y, Zorigt T,
402	17.	Tsujinouchi M, Ishizuka M, Ito T, Higashi H: A GCDGC-specific DNA
403		(cytosine-5) methyltransferase that methylates the GCWGC sequence
403		on both strands and the GCSGC sequence on one strand. PLOS ONE
404		2022, 17 (3):e0265225.
1 05		2022, 17 (3).00203223.

406 18. Seshasayee ASN, Singh P, Krishna S: Context-dependent conservation of 407 DNA methyltransferases in bacteria. Nucleic acids research 2012, 408 **40**(15):7066-7073. 409 19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin 410 VM, Nikolenko SI, Pham S, Prjibelski AD et al: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. / 411 412 *Comput Biol* 2012, **19**(5):455-477. 413 20. Wick RR, Judd LM, Gorrie CL, Holt KE: Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS 414 415 Comput Biol 2017, 13(6):e1005595. 416 21. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J, Polevikov E, Smith TPL *et al*: **metaFlye**: **scalable long-read** 417 418 metagenome assembly using repeat graphs. Nature Methods 2020, 419 **17**(11):1103-1110. 420 22. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz 421 G, Mesirov JP: Integrative genomics viewer. *Nature biotechnology* 2011, 422 **29**(1):24-26. 23. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, 423 424 Phillippy AM: Mash: fast genome and metagenome distance estimation 425 using MinHash. Genome Biology 2016, **17**(1):132. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S: High 426 24. 427 throughput ANI analysis of 90K prokaryotic genomes reveals clear 428 species boundaries. *Nature Communications* 2018, 9(1):5114. 429 25. Li H: Minimap2: pairwise alignment for nucleotide sequences. 430 *Bioinformatics* 2018, **34**(18):3094-3100. 431

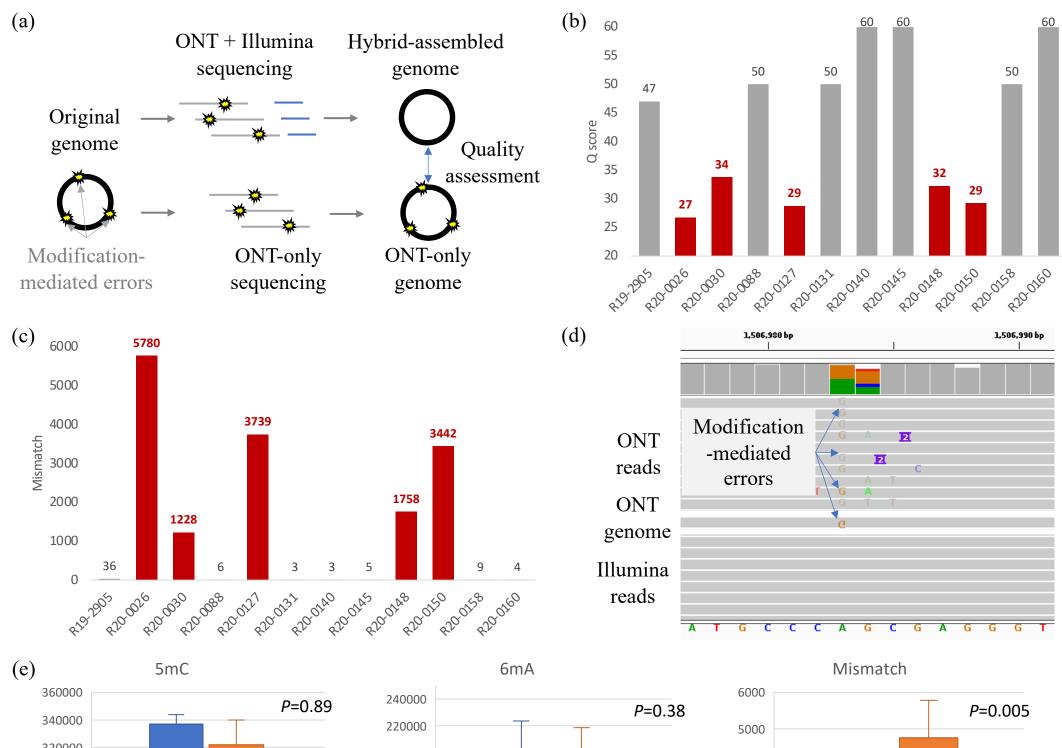
432 Figure Legends

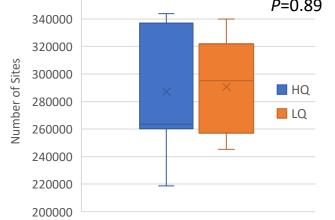
433	Figure 1. Quality comparison of 12 microbial strains using ONT-only and
434	ONT/Illumina hybrid sequencing. (a) Workflow of ONT-only and ONT/Illumina
435	hybrid assembly; (b) Q scores; (c) number of mismatches; (d) comparison of ONT and
436	Illumina reads by IGV; (e) numbers of 5mC, 6mA, and mismatches between HQ/LQ
437	strains.

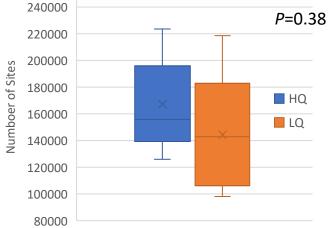
Figure 2. Quality improvement of ONT by WGA demodification. (a) Wor	flow of
--	---------

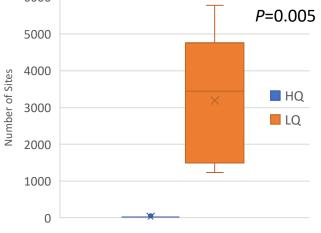
439 WGA-demodified ONT; (b) Q scores of the WGA-demodified and ONT-only genomes;

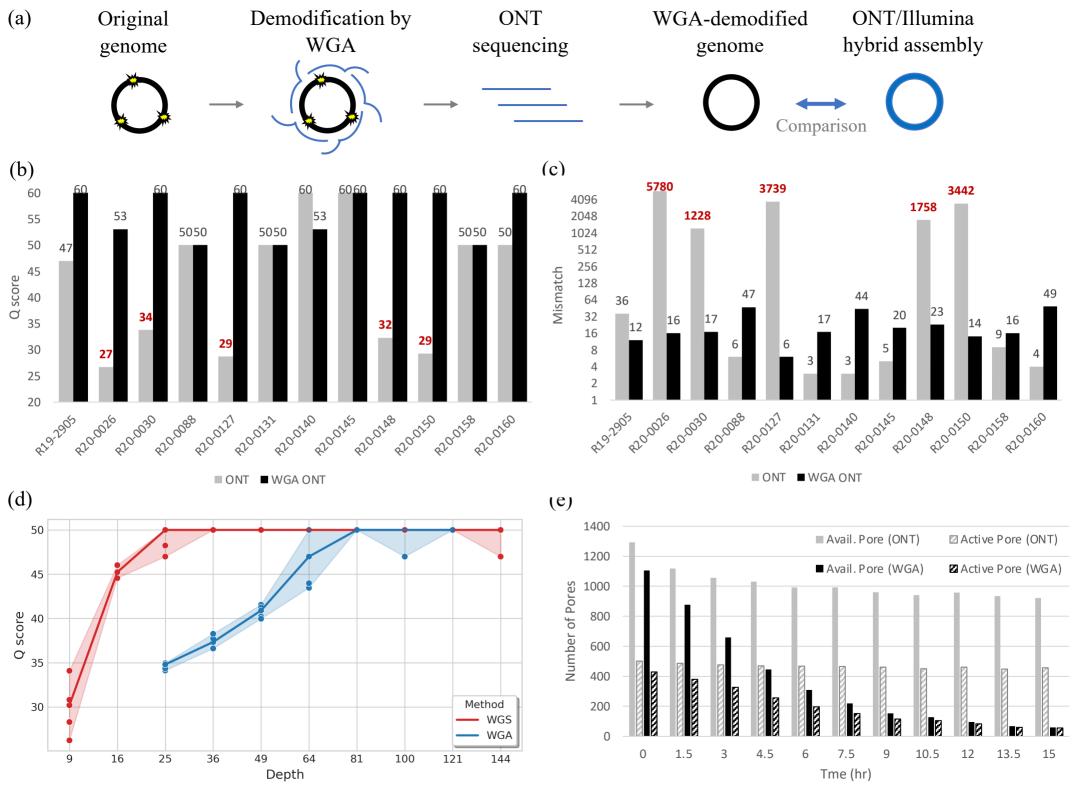
- 440 (c) numbers of mismatches of the WGA-demodified and ONT-only genomes; (d) WGA
- 441 genome quality with respect to sequencing depth; (e) numbers of active/available pores
- 442 during WGA-demodified and ordinary ONT sequencing.
- Figure 3. Correction of modification-mediated errors by Modpolish. (a) Workflow of
 Modpolish; (b) Q scores before and after Modpolish; (c) numbers of mismatchs before
 and after Modpolish; (d) the sequence motif of modification on ST1081; (e) the
 sequence motif of modifications on ST87.
- Figure 4. Comparison of phylogeny reliability of four methods. (a) The cgMLST
 phylogeny of the five LQ strains sequenced and assembled by four methods: ONT-only
 sequencing (ONT), WGA-demodified ONT (ONT WGA), ONT with Modpolish

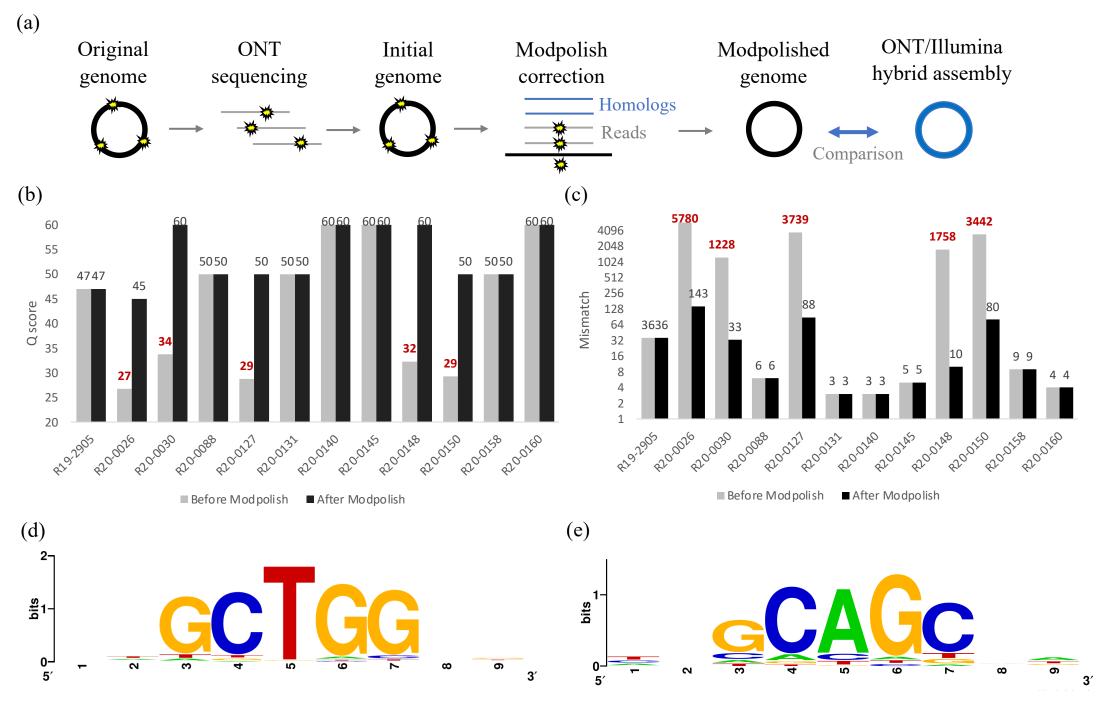

450	(ONT_Modpolish), and hybrid ONT/Illumina sequencing (Hybrid_WGS); (b) the
451	cgMLST distances of ONT, ONT_WGA, and ONT_Modpolish to the Hybrid_WGS
452	assembled genomes.
453	Figure 5. Illustration of Modpolish workflow. A set of closely-related genomes are first
454	retrieved by screening the compressed sketches of RefSeq genomes. We retain the
455	genomes with sufficient nucleotide and structural similarity. The selected genomes and
456	ONT reads are aligned onto the draft genome, generating a pileup matrix of homologs,
457	reads, and qualites. Modpolish only corrects modification-mediated errors with
458	inconsistent read alleles, low quality, and high conservation in homologs.
459	
460	Supplementary Information


461 Additional file 1

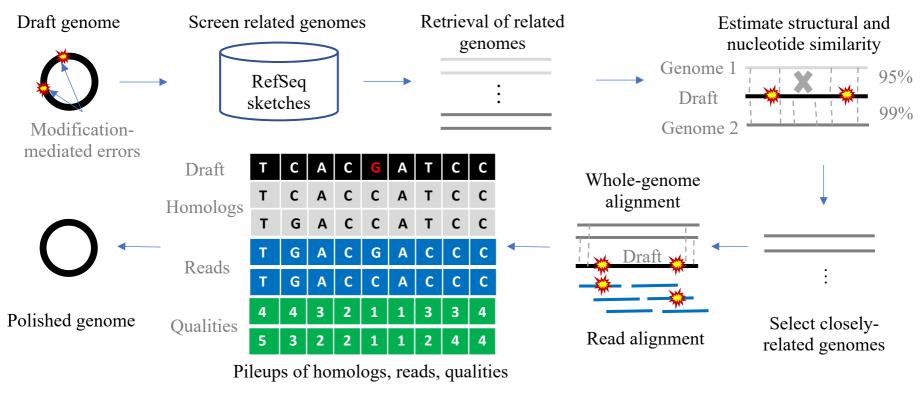

462 Additional file 1 includes Supplementary Figures S1-8.


463 Additional file 2


464 Additional file 2 includes Supplementary Tables S1-10.







ST1081

ST87

