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Abstract 20 

Many enhancers exist as clusters in the genome and control cell identity and 21 

disease genes; however, the underlying mechanism remains largely unknown. Here, 22 

we introduce an algorithm, eNet, to build enhancer networks by integrating single-cell 23 

chromatin accessibility and gene expression profiles. Enhancer network is a gene 24 

regulation model we proposed that not only delineates the mapping between 25 

enhancers and target genes, but also quantifies the underlying regulatory relationships 26 

among enhancers. The complexity of enhancer networks is assessed by two metrics: 27 

the number of enhancers and the frequency of predicted enhancer interactions (PEIs) 28 

based on chromatin co-accessibility. We apply eNet algorithm to a human blood 29 

dataset and find cell identity and disease genes tend to be regulated by complex 30 

enhancer networks. The network hub enhancers (enhancers with frequent PEIs) are 31 

the most functionally important in enhancer networks. Compared with super-32 

enhancers, enhancer networks show better performance in predicting cell identity and 33 

disease genes. The establishment of enhancer networks drives gene expression 34 

during lineage commitment. Applying eNet in various datasets in human or mouse 35 

tissues across different single-cell platforms, we demonstrate eNet is robust and widely 36 

applicable. Thus, we propose a model of enhancer networks containing three modes: 37 

Simple, Multiple and Complex, which are distinguished by their complexity in regulating 38 

gene expression. 39 

Taken together, our work provides an unsupervised approach to simultaneously 40 

identify key cell identity and disease genes and explore the underlying regulatory 41 

relationships among enhancers in single cells, without requiring the cell type identity 42 

in advance. 43 

 44 

  45 
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Highlights 50 

• eNet, a computational method to build enhancer network based on scATAC-51 

seq and scRNA-seq data 52 

• Cell identity and disease genes tend to be regulated by complex enhancer 53 

networks, where network hub enhancers are functionally important 54 

• Enhancer network outperforms the existing models in predicting cell identity 55 

and disease genes, such as super-enhancer and enhancer cluster 56 

• We propose a model of enhancer networks in gene regulation containing three 57 

modes: Simple, Multiple and Complex  58 

 59 
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Introduction 63 

Enhancers play a central role in orchestrating spatiotemporal gene expression 64 

programs during development and diseases (Consortium, 2012; Long et al., 2016; 65 

Maurano et al., 2012). Many enhancers exist as clusters in the genome to control gene 66 

expression, termed enhancer clusters, which control the expression of the same target 67 

gene (Blobel et al., 2021). Enhancer clusters are remarkably widespread features in 68 

the genome and provide an effective regulatory buffer for phenotypic robustness during 69 

development (Osterwalder et al., 2018; Perry et al., 2011). Several enhancer clusters 70 

in the genome have been described as super-enhancers (SEs), which exhibit 71 

disproportionately high signals for enhancer marks and control the expression of genes 72 

that define cell identity and diseases (Hnisz et al., 2013).  73 

 Genome editing using the CRISPR/Cas9 system offers an opportunity for 74 

dissecting the functions of enhancer clusters (Jinek et al., 2012). Several groups, 75 

including ours, have utilized genome editing assays to functionally dissect individual 76 

constituent elements of a couple of SEs (Bahr et al., 2018; Cai et al., 2020; Canver et 77 

al., 2015; Fulco et al., 2016; Hay et al., 2016; Huang et al., 2016; Kai et al., 2021; Shin 78 

et al., 2016; Thomas et al., 2021). These studies suggest the diversity of enhancer 79 

cluster regulatory mechanisms, where the individual components may act additively, 80 

redundantly, synergistically, or temporally. Meanwhile, genome-wide chromatin 81 

conformation information has been used to investigate the relationship among the 82 

individual components of enhancer clusters and their effects on target gene expression 83 

(Dixon et al., 2012; Lieberman-Aiden et al., 2009; Liu et al., 2017; Rao et al., 2014; 84 

Schoenfelder and Fraser, 2019; Song et al., 2020). We and other groups uncover hub 85 

enhancers, the enhancers with frequent chromatin interactions, play distinct roles in 86 

chromatin organization and gene activation (Huang et al., 2018; Huang et al., 2015; 87 

Liu et al., 2020; Schmitt et al., 2016).  88 

Single-cell sequencing techniques have been developed to measure molecular 89 

heterogeneity among individual cells, such as single cell RNA sequencing (scRNA-seq) 90 

for gene expression and single-cell Assay for Transposase-Accessible Chromatin 91 
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using sequencing (scATAC-seq) for chromatin accessibility (Buenrostro et al., 2015; 92 

Tang et al., 2009). It can even be used to achieve simultaneous detection of chromatin 93 

accessibility and gene expression in the same cells (Cao et al., 2018; Chen et al., 2019; 94 

Ma et al., 2020; Zhu et al., 2019). A large amount of single cell multi-omics profiles of 95 

chromatin accessibility and gene expression have been generated in various biological 96 

systems (Argelaguet et al., 2019; Granja et al., 2019; Li et al., 2021; Sarropoulos et al., 97 

2021; Trevino et al., 2021; Ziffra et al., 2021), thereby providing ample opportunities to 98 

further understand the functions and mechanisms of enhancer clusters in single cells. 99 

For example, the co-accessible pairs of DNA elements predicted by Cicero from 100 

scATAC-seq data correspond with the chromatin contacts captured via ChIA-PET or 101 

promoter capture Hi-C (Pliner et al., 2018). However, these existing studies have 102 

largely focused on connecting enhancers with their target genes, but rarely on the 103 

regulatory relationship between enhancers. There remains a lack of method 104 

development to quantitatively assess how individual elements work together to 105 

regulate gene expression.  106 

In this study, we proposed the concept of enhancer network complexity, which not 107 

only connects enhancers to putative target genes, but also quantifies how multiple 108 

enhancers interact with each other to regulate precise gene expression. Briefly, we 109 

developed a computational method termed eNet to build enhancer networks based on 110 

single-cell chromatin accessibility and gene expression data. Applying eNet on various 111 

biological systems, we found that the complexity of enhancer networks can predict cell 112 

identity and disease genes. Overall, we proposed a model of enhancer networks, 113 

which is not only useful in predicting cell identity and disease genes, but also provides 114 

a framework to study the general principles of regulatory relationships among 115 

enhancers in gene regulation.   116 
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Results 117 

eNet builds enhancer networks based on single cell multi-omics data 118 

Many enhancers exist as clusters in the genome; however, the underlying mechanism 119 

through which the clustered enhancers work together to regulate the same target gene 120 

remains largely unknown. To this end, we developed an algorithm eNet to build an 121 

enhancer network for each gene to quantitatively assess how multiple enhancers work 122 

together to regulate gene expression based on scATAC-seq and scRNA-seq data 123 

(Methods). The enhancer network we proposed is a gene regulation model that not 124 

only delineates the mapping between enhancers and target genes, but also quantifies 125 

the underlying regulatory relationships among enhancers, which differs from previous 126 

studies (Blobel et al., 2021; Hnisz et al., 2013; Ma et al., 2020; Osterwalder et al., 127 

2018). First, given the scATAC-seq and scRNA-seq profiles, the enhancer accessibility 128 

and gene expression matrix of single cells were prepared as the input of eNet (Figure 129 

1A). Second, a set of enhancers were identified, termed a putative enhancer cluster 130 

hereafter, which putatively regulate a specific target gene within a ±100 kb window 131 

based on the correlation between gene expression and enhancer accessibility in 132 

single-cell data (Figure 1B). Third, we evaluated the enhancer interaction potential 133 

based on their chromatin co-accessibility calculated by Cicero (Pliner et al., 2018), and 134 

determined the enhancer pairs with significantly high co-accessibility as the predicted 135 

enhancer interactions (PEIs) (Figure 1C). Fourth, an enhancer network was built to 136 

delineate how multiple enhancers interact with each other to regulate gene expression, 137 

where nodes represent enhancers and edges represent the PEIs between enhancers 138 

in a putative enhancer cluster (Figure 1D). Fifth, the complexity of the enhancer 139 

network was evaluated by two metrics: 1) the number of enhancers, termed the 140 

network size (x-axis), and 2) the frequency of PEIs, termed the network connectivity 141 

(y-axis), quantified by the average degree of network (Barabasi, 2016) (Figure 1E). 142 

Lastly, based on the network size and network connectivity, we classified the enhancer 143 

networks into several modes: Simple, Multiple, Complex and others (but will not be 144 

discussed due to limited cases) (Figure 1F). Intuitively, the complexity of the enhancer 145 
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network increased from Simple mode to Multiple mode by involving more enhancers 146 

and further to Complex mode by increasing the interactions between enhancers. 147 

Altogether, eNet builds enhancer networks to clarify how a putative enhancer cluster 148 

regulates gene expression based on scATAC-seq and scRNA-seq data. 149 

 150 

Cell identity and disease genes tend to be regulated by complex enhancer 151 

networks during human hematopoiesis 152 

We first applied eNet to build enhancer networks during human hematopoiesis using 153 

a human blood dataset (Granja et al., 2019), including the single cell chromatin 154 

accessibility and transcriptional landscapes in human bone marrow and peripheral 155 

blood mononuclear cells (Figure 2A). In total, we built 11,438 enhancer networks 156 

during human hematopoiesis (Figure 2B). The number of enhancers in enhancer 157 

networks ranged from 1 to 50, with a median of 4 (Figure S1A). We noticed several 158 

blood-related cell identity or disease genes, such as BCL11B, ETS1, CCR7 and IL7R 159 

displayed obviously large network size and high network connectivity (Figure 2B). This 160 

inspired the question that whether cell identity genes tend to be regulated by complex 161 

enhancer networks. To test this hypothesis, we classified these enhancer networks into 162 

three modes: Simple (controlled by one or few enhancers), Multiple (multiple 163 

enhancers but limited PEIs), and Complex (multiple enhancers and frequent PEIs). It 164 

resulted in 6,894 Simple, 2,992 Multiple and 1,552 Complex enhancer networks 165 

(Figure 2B, Table S2 and Methods). For example, the CD3E gene, encoding a 166 

subunit of the T-cell receptor-CD3 complex, was controlled by an enhancer network 167 

consisting of 14 PEIs among 9 enhancers (Figure 2C). In contrast, the SERPINE2 168 

gene, encoding a member of the serpin family of proteins that inhibit serine proteases, 169 

was controlled by an enhancer network containing the same number of enhancers but 170 

only 2 PEIs. Interestingly, the CD3E enhancer network showed significant higher 171 

chromatin co-accessibility than SERPINE2, irrespective of their indistinguishable 172 

chromatin accessibility and similar enhancer number (Figure S1B and S1C). 173 

Next, we curated a list of known cell identity genes in the blood system (Methods, 174 
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Table S3) and calculated their enrichment in the genes regulated by three enhancer 175 

network modes (Figure 2E). We observed that genes regulated by Multiple mode 176 

showed higher enrichment in cell identity genes than those by Simple mode, which is 177 

consistent with previous reports that developmentally expressed genes are commonly 178 

associated with multiple enhancers (Ma et al., 2020; Osterwalder et al., 2018; Tsai et 179 

al., 2019). In addition, we found that genes regulated by Complex mode exhibited the 180 

highest enrichment in cell identity genes, 8.7-fold using the whole genome as the 181 

background (Figure 2E). Similarly, genes regulated by Complex mode displayed a 182 

higher enrichment in blood-related disease genes curated from DisGeNET (Pinero et 183 

al., 2017) than those by Multiple mode (4.8-fold vs. 2.4-fold, p = 3.4E-20, binomial test, 184 

Figure 2F). Notably, these observations were robust to various threshold values of 185 

network size and network connectivity (Figure S2). We also clarified that Complex 186 

mode enhancer network not mainly represents the enhancer networks with a stronger 187 

chromatin accessibility or larger enhancer number (network size) (Figure S3 andS4). 188 

These results suggested that cell identity and disease genes tend to be regulated by 189 

complex enhancer networks.  190 

 191 

Complexity of enhancer networks predicts cell identity and disease genes 192 

To systematically evaluate the performance of the complexity of enhancer networks in 193 

predicting cell identity and disease genes, we ranked enhancer networks by the 194 

properties of enhancer networks, including network size, network connectivity, and 195 

overall chromatin accessibility. We then calculated the enrichment of cell identity and 196 

disease genes in the list of top ranked enhancer networks related genes, using the 197 

whole genome as the background (Figure 2G and 2H). We found that the genes 198 

controlled by enhancer networks with more enhancers were overall preferentially more 199 

enriched for cell identity genes (Figure 2G), which concurs with previous studies 200 

(Hnisz et al., 2013; Ma et al., 2020; Osterwalder et al., 2018). Meanwhile, we observed 201 

an obvious correlation between network connectivity and the enrichment of cell identity 202 

genes. Importantly, network connectivity displayed better performance in predicting 203 
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cell identity genes than the network size. For example, the top 50 genes ranked by 204 

network connectivity were 77.7-fold enriched of cell identity genes, compared with 205 

those by network size (29.9-fold), using the whole genome as the background. Both 206 

the network connectivity and network size showed remarkably better performance in 207 

predicting cell identity genes than the chromatin accessibility of enhancers in the 208 

network. Similarly, network connectivity displayed the best performance in predicting 209 

blood-related disease genes (6.8-fold in the top 50 genes, Figure 2H). Therefore, 210 

these analyses suggest complexity of enhancer networks can predict cell identity and 211 

disease genes. 212 

 213 

Network hub enhancers are functionally important 214 

Enhancer networks provide an opportunity to study how individual elements work and 215 

then how they interact with each other to control gene expression. Toward this end, we 216 

focused on the enhancers with frequent PEIs in enhancer networks in Complex mode, 217 

termed network hub enhancers (Methods). To gain insight into the function of network 218 

hub enhancers in enhancer networks, we first compared the phastCons conservation 219 

scores (Siepel et al., 2005) of enhancers in Complex (hub and non-hub) and found 220 

that network hub enhancers displayed significantly higher level of sequence 221 

conservation than non-hub enhancers (p = 3.8E-8, Student’s t-test, Figure S1D), 222 

suggesting network hub enhancers might be more functionally important. Next, we 223 

assessed the enrichment of single-nucleotide polymorphisms (SNPs) linked to diverse 224 

phenotypic traits and diseases in the genome-wide association study (GWAS) catalog 225 

(Welter et al., 2014), in enhancers in Complex (hub and non-hub), Multiple, and Simple 226 

modes. We observed significantly higher enrichment of blood-associated GWAS SNPs 227 

in enhancers in Multiple mode than those in Simple mode (p = 2.8E-4, binomial test, 228 

Figure 2I and 2J), which is consistent with previous studies (Hnisz et al., 2013; 229 

Osterwalder et al., 2018). Additionally, the enhancers in Complex mode (hub and non-230 

hub) showed higher enrichment in GWAS SNPs associated with blood traits than those 231 

in Multiple mode. In particular, in Complex mode, hub enhancers displayed higher 232 
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enrichment of GWAS SNPs associated with blood traits than non-hub enhancers (6.7-233 

fold vs. 5.3-fold, p = 5.8E-3, binomial test, Figure 2J), suggesting hub enhancers might 234 

play important roles in enhancer networks. These results suggest that compared with 235 

Multiple and Simple modes, enhancers in Complex mode might be more important in 236 

diseases, where hub enhancers are major functional constituents.  237 

 238 

Enhancer network outperforms super-enhancer in predicting cell identity and 239 

disease genes 240 

Super-enhancers (SEs) are clustered enhancers with a high density of transcriptional 241 

apparatus to drive robust expression of cell identity and disease genes (Hnisz et al., 242 

2013). We next compared the performance of predicting cell identity and disease 243 

genes by enhancer networks and SEs. To this end, we downloaded a list of SEs 244 

associated with hematopoiesis-related cell types from the dbSUPER database (Khan 245 

and Zhang, 2016) and curated a catalog of hematopoiesis-related SEs containing 246 

2,306 SEs (Table S4). We identified 2,159 potential target genes regulated by these 247 

SEs using ROSE algorithm (Hnisz et al., 2013). Comparing the genes regulated by 248 

SEs or by enhancer networks in Complex mode, we separated them into three groups: 249 

Complex-only (836), SE-only (1,443) and Complex SE (716) (Figure 3A). The 250 

constituent enhancers in these two groups (SE-only vs. Complex SE) showed 251 

significantly different chromatin co-accessibility, but indistinguishable chromatin 252 

accessibility (Figure 3B and 3C). It might explain the diverse and heterogeneous 253 

mechanisms of SEs, such as cooperative, redundant and hierarchical revealed by 254 

CRISPR/Cas9 genome editing assays. Strikingly, genes in Complex-only group 255 

displayed significantly higher enrichment in cell identity and disease genes than those 256 

in SE-only group, while genes in Complex SE group showed the highest enrichment 257 

(Figure 3D and 3E). Moreover, we observed similar patterns in GM12878 cell line that 258 

enhancer networks precede SEs in predicting cell identity and disease genes (Figure 259 

S5A-S5C). We further ranked genes by network connectivity, network size, chromatin 260 

accessibility or SE ranks based on H3K27ac signal, and found that network 261 
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connectivity showed the best performance in predicting both cell identity and disease 262 

genes, comparing with network size, chromatin accessibility and SE ranks (Figure 3F 263 

and 3G). These results suggested that the enhancer networks precede SEs in 264 

predicting cell identity and disease genes. 265 

 266 

Enhancer networks based on PEIs remedy the resolution limitations in Hi-C 267 

chromatin interactions 268 

The proximity ligation-based methods to capture genome-wide chromatin interactions 269 

at high-resolution for the analysis of enhancer interactions remains difficult and costly 270 

(Lieberman-Aiden et al., 2009; Mumbach et al., 2017; Tang et al., 2015). We wonder 271 

to what extent the PEIs in eNet analysis resolve the resolution limitations in Hi-C data. 272 

To this end, we compared enhancer networks based on PEIs and Hi-C data in 273 

GM12878 cell line (human B-lymphoblastoid cells), where scATAC-seq (Ma et al., 274 

2020), H3K27ac ChIP-seq (Consortium, 2012) and high-resolution Hi-C data (Rao et 275 

al., 2014) are available. We observed the high co-accessible enhancer pairs (PEIs) 276 

showed significant enrichment of Hi-C chromatin interactions (Figure 4A), indicating 277 

the overall concordance between co-accessible pairs and proximity ligation-based 278 

chromatin interactions (Pliner et al., 2018). For example, at the locus controlling CCR7, 279 

a gene expressed in various lymphoid tissues and activates B and T lymphocytes, we 280 

predicted 20 PEIs based on scATAC-seq data, while only 10 chromatin interactions 281 

were detected via Hi-C probably due to the limited resolution at 5kb level (Figure 4B-282 

C). We systematically compared the enhancer networks based on scATAC-seq and 283 

Hi-C data by replacing PEIs with Hi-C interactions and re-built enhancer networks. We 284 

observed a significant overlap between the genes controlled by the complex enhancer 285 

networks based on PEIs and Hi-C data (Figure 4D, p < 2.2E-16, Fisher’s exact test). 286 

Interestingly, PEI-only group showed significant higher enrichment of cell identity and 287 

disease genes than HiC-only group, where PEI-with-HiC showed the highest 288 

enrichment (Figure 4E and 4F). Moreover, we found the network hub enhancers 289 

derived from PEIs showed significant higher enrichment of GWAS SNPs than those 290 
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from Hi-C data (Figure S5D-S5F). Taken together, these results suggested enhancer 291 

networks based on PEIs remedy the resolution limitations of chromatin interactions in 292 

Hi-C data. 293 

 294 

Dynamics of PAX5 enhancer network drives gene expression during B cell 295 

lineage commitment 296 

Enhancer networks were built based on single cell multi-omics data, providing an 297 

opportunity to investigate the dynamic role of enhancer networks in determining gene 298 

expression during cell differentiation. To this end, we focused on B cell differentiation, 299 

from hematopoietic stem cell (HSC), lymphoid-primed multipotent progenitor (LMPP), 300 

common lymphoid progenitor (CLP), pre-B, to B cells (Figure 5A and Methods). The 301 

PAX5 gene, a known key regulator for B cell differentiation, specifically expressed in 302 

pre-B and B cells, was controlled by a putative enhancer cluster consisting of 24 303 

enhancers (Figure 5B and 5C). To understand the relationship between these 304 

constituent enhancers and their roles in regulating gene expression during cell 305 

differentiation, we built cell-type-specific enhancer networks by constructing the 306 

enhancer networks for each cell type independently (Methods). Comparing the 307 

enhancer networks specific for HSC, LMPP, CLP, pre-B, and B cells, we observed the 308 

sequential changes in the constituent enhancers during B cell differentiation, in terms 309 

of both chromatin accessibility and network interactions (Figure 5D). Within the PAX5 310 

enhancer network, we noticed that enhancer E14, constitutively accessible from HSC 311 

to B cells, functions as a network hub enhancer to coordinate enhancer network 312 

interactions to establish the enhancer network gradually during B cell differentiation 313 

(Figure 5D). Interestingly, we found that the PAX5 enhancer network was almost fully 314 

established in the CLP and pre-B stages, which preceded the gene expression of PAX5 315 

in pre-B and B cells (Figure 5C and 5D). It suggests the establishment of an enhancer 316 

network may drive gene expression during lineage commitment. 317 

 To test this hypothesis, we performed trajectory analysis for B cell differentiation 318 

using the method described before (Satpathy et al., 2019) to order cells in pseudotime 319 
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based on scATAC-seq data in HSC, LMPP, CLP, pre-B, and B cells (Figure S5G). We 320 

then systematically compared gene expression, chromatin accessibility, and enhancer 321 

network connectivity along the B cell differentiation pseudotime (Figure S5H). We 322 

quantified the differences in pseudotime of B cell differentiation between the onset of 323 

gene expression and establishment of the enhancer network (Methods). Notably, 324 

there was a lag of pseudotime between the onset of gene expression and chromatin 325 

accessibility (p = 2.8E-2, Student’s t-test, Figure S5H and S5I), which supports the 326 

hypothesis that chromatin accessibility is a marker for lineage-priming (Lara-Astiaso 327 

et al., 2014; Ma et al., 2020; Rada-Iglesias et al., 2011). More importantly, we found 328 

enhancer networks were established earlier than gene expression occurred (p = 2.9E-329 

6, Student’s t-test, Figure S5H and S5I), even prior to the change in chromatin 330 

accessibility, suggesting the dynamics of enhancer networks drive gene expression 331 

during cell differentiation. Taken together, we demonstrate that enhancer networks are 332 

established gradually during lineage commitment, which drives the expression of cell 333 

identity genes. 334 

 335 

eNet is robust and broadly applicable  336 

To investigate the broad applicability of eNet, we applied it to various datasets in 337 

human or mouse tissues across different single-cell platforms, including SHARE-seq 338 

mouse skin dataset (Ma et al., 2020), SNARE-seq mouse cerebral cortex dataset 339 

(Chen et al., 2019) and sci-ATAC-seq3 human fetal kidney and heart datasets 340 

(Domcke et al., 2020). Similar to the above findings, we found cell identity and disease 341 

genes tended to be regulated by complex enhancer networks (Figure S6A, S6C, S6E, 342 

and S6G). The network connectivity showed the best performance in predicting cell 343 

identity genes and disease genes (Figure 6A, 6C, 6E, 6G, S6B, S6D, S6F and S6H). 344 

Hub enhancers in Complex mode displayed the highest enrichment of tissue-related 345 

GWAS SNPs (Figure 6B, 6D, 6F and 6H). These analyses in various human or mouse 346 

tissues datasets (Figure 2, 6 and S6) support the conclusion that eNet is robust and 347 

broadly applicable in various biological systems and different single-cell platforms. 348 
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 349 

Model of enhancer networks in gene regulation 350 

Our analysis revealed three modes of enhancer networks in regulating gene 351 

expression according to their network complexity: Complex, Multiple, and Simple. To 352 

further understand the underlying biological functions and mechanisms, we evaluated 353 

the functional enrichment of genes regulated by these three modes (Figure 7A). We 354 

found genes regulated by the Simple mode were primarily enriched in housekeeping 355 

functions, such as RNA modification and DNA repair (Figure 7A). In contrast, genes 356 

regulated by the Complex mode were enriched in key genes related to cell fate 357 

commitment, such as the regulation of leukocyte differentiation in human blood, skin 358 

development in mouse skin and cerebellar cortex formation in mouse cerebral datasets. 359 

Meanwhile, genes in Multiple mode were enriched in a mixture of both housekeeping 360 

and cell identity functions. In addition, Complex mode preferentially regulated 361 

upstream regulators, such as transcription factors (Lambert et al., 2018), which was 362 

observed in all three datasets (Figure S7A).  363 

Therefore, we proposed a model of enhancer networks containing three modes 364 

according to their network complexity: Simple, Multiple, and Complex (Figure 7B). By 365 

definition, in Simple mode, gene regulation was controlled simply by one or a limited 366 

number of enhancers; we speculated it provided a quick response to control a large 367 

amount of regular genes, such as housekeeping genes, at a low cost. Meanwhile, in 368 

Multiple mode, gene regulation was controlled by multiple enhancers but limited PEIs; 369 

this might increase the strength of regulation and redundancy of gene expression at 370 

the cost of involving more enhancers. Lastly, gene regulation was controlled by multiple 371 

enhancers and frequent PEIs in Complex mode, perhaps the most robust to random 372 

failures of individual enhancers (transcriptional noise or genetic mutation), at the cost 373 

of connecting enhancers and primarily controls key cell identity genes. Enhancer 374 

networks are established gradually during lineage commitment and drive the 375 

expression of cell identity genes, where network hub enhancers play central roles to 376 

coordinate the network system. 377 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492770
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

  378 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492770
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Discussion 379 

The concept of complexity of enhancer networks 380 

The term ‘enhancer’ first appeared to describe the effects of SV40 DNA sequences on 381 

the expression of a β-globin gene (Banerji et al., 1981). Since then, hundreds of 382 

thousands of enhancers have been nominated via genome-wide biochemical 383 

annotations (Gasperini et al., 2020; Neph et al., 2012). However, only a small number 384 

of enhancers have been functionally tested. While multiple enhancers existing as 385 

clusters in the genome to regulate the same target gene is prevalent, which are known 386 

to provide phenotypic robustness in development (Osterwalder et al., 2018; Perry et 387 

al., 2011), the underlying mechanisms remain largely unknown. 388 

Enhancer networks have been reported in previous studies. For example, Malin 389 

et al. constructed enhancer network based on the correlated DNase hypersensitivity 390 

of enhancers across 72 cell types (Malin et al., 2013). Chen et al. built tissue-specific 391 

enhancer functional networks for associating distal regulatory regions to disease by 392 

integrating thousands of epigenetics and functional genomics data sets (Chen et al., 393 

2021). Carleton et al. discovered the enhancer combinations by targeting a set of 10 394 

enhancers by simultaneous deactivation of multiple enhancers using CRISPR-based 395 

technique (Carleton et al., 2017). However, it is infeasible to scale up this approach to 396 

rigorously test a wide range of enhancers due to technical difficulties. Proximity 397 

ligation-based methods, including ChIA-PET and Hi-C (Lieberman-Aiden et al., 2009; 398 

Mumbach et al., 2017; Tang et al., 2015), capture chromatin interactions, but  limited 399 

to the resolution. Most of ChIA-PET or Hi-C data can only achieve a resolution at 5-400 

20kb, which is not sophisticate enough for enhancer studies at ~500bp (the median of 401 

enhancer length). In this study, we reported an algorithm eNet to build enhancer 402 

network per gene based on the rich source of single-cell multi-omics data and greatly 403 

extended these previous findings in understanding the biological relevance and 404 

implications of enhancer network. Most importantly, to our knowledge, we for the first 405 

time propose the concept of “complexity of enhancer network” and establish its 406 

functional links with cell identity or disease. Furthermore, our study overcomes the 407 
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above limitations on resolution and scalability by integrating single-cell multiple omics 408 

data to quantify enhancer interactions. 409 

Chromatin co-accessibility based on scATAC-seq data has been used before, but 410 

mainly for connecting enhancers to their putative target genes (Pliner et al., 2018). We 411 

quantified the complexity of the enhancer network by two metrics: network size and 412 

network connectivity. The first metric, network size (the number of enhancers) is 413 

equivalent or similar to the sum of the individual constituent enhancers in an enhancer 414 

cluster reported in previous studies, such as multiple enhancers (Osterwalder et al., 415 

2018), domains of regulatory chromatin (DORCs) (Ma et al., 2020), regulatory locus 416 

complexity (Gonzalez et al., 2015) or super-enhancers (Hnisz et al., 2013). However, 417 

the second metric, network connectivity (the frequency of PEIs), measuring the 418 

potential enhancer interactions based on their chromatin co-accessibility, differs from 419 

these existing studies. Thus, the enhancer network not only delineates the mapping 420 

between enhancers and the target gene, but also clarifies the underlying regulatory 421 

relationship between enhancers. We applied eNet in various biological systems and 422 

found the number of enhancers in the network was correlated with the importance of 423 

target genes, which was expected and consistent with previous studies (Gonzalez et 424 

al., 2015; Hnisz et al., 2013; Ma et al., 2020; Osterwalder et al., 2018). Strikingly, we 425 

further found that network connectivity had the best performance in predicting cell 426 

identity and disease genes, where the network hub enhancers are the most 427 

functionally important in the network. The enhancer networks concept might be also 428 

helpful to interpret the phase separation model for gene regulation (Sabari et al., 2018), 429 

e.g. whether the genes regulated by Complex mode are more likely to form the phase 430 

separation or whether network hub enhancers play a role in mediating the phase 431 

separation. 432 

In network science, the hierarchical organization, or hub-and-spoke network, is 433 

robust to random failures, as only the failure of its central hub node can break the 434 

network into isolated components (Barabasi, 2016). However, it has a low tolerance to 435 

an attack that removes its central hub. Thus, we wondered whether connections 436 
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between non-hub enhancers are dispensable in enhancer networks. To this end, we 437 

quantified the network connectivity in an alternative way by maximum degrees of 438 

nodes in the network, which represented the importance of the central hub node in a 439 

network, termed as network connectivity (maximum), instead of by average degrees 440 

of nodes in the network as described above, termed as network connectivity (average). 441 

Surprisingly, we observed that the performance of the network connectivity (maximum) 442 

markedly decreased in the prediction of both cell identity and disease genes, 443 

compared to network connectivity (average) (Figure S7B and S7C). It suggested that 444 

the connections between non-hub enhancers are also indispensable in the enhancer 445 

network, which further complements our previous model based on Hi-C chromatin 446 

interactions(Huang et al., 2018). We speculated that by connecting some of non-hub 447 

nodes, the reinforced network model has a higher tolerance to targeted attacks, where 448 

the removal of the hub does not fragment the network. In this way, enhancer networks 449 

provide the robustness in biological systems to random failures (e.g. transcriptional 450 

noise) as well as attack on the central network hub enhancers (e.g. genetic mutation). 451 

Taken together, the concept of complexity of enhancer networks allows us to 452 

identify key cell identity and disease genes and to explore the underlying mechanisms, 453 

such as how constituent enhancers interact with each other to regulate gene 454 

expression. 455 

 456 

Super-enhancers in gene regulation 457 

Super-enhancers exhibit disproportionately higher signals for the enhancer marks 458 

(such as H3K27ac and binding of Mediator and TFs), which control cell identity and 459 

disease genes (Hnisz et al., 2013). While SEs have attracted enormous interest in 460 

further studying these interesting regulatory elements, it remains datable on how 461 

functionally and mechanistically distinct a super-enhancer is from a typical enhancer 462 

as they are defined operationally but not functionally (Blobel et al., 2021; Pott and Lieb, 463 

2015). For example, the current dissection of individual enhancers suggests that the 464 

mechanistic relationships among constituent enhancers of SEs are highly diverse and 465 
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heterogeneous, such as cooperative, redundant, hierarchical, or temporal (Bahr et al., 466 

2018; Cai et al., 2020; Canver et al., 2015; Fulco et al., 2016; Hay et al., 2016; Huang 467 

et al., 2016; Kai et al., 2021; Shin et al., 2016). Here, we found SEs can be subdivided 468 

into two groups SE-only (SEs without network structure) and Complex SEs (SEs with 469 

network structure), which displayed different in chromatin co-accessibility between the 470 

constituent enhancers, irrespective of their indistinguishable chromatin accessibility. 471 

Thus, this distinct feature, with or without network structure, might explain their diverse 472 

and heterogeneous mechanisms. Furthermore, SEs are identified computationally by 473 

the linear clustering of individual components in the genome (Hnisz et al., 2013). This 474 

ignores the observation that a gene can be regulated by multiple enhancers which are 475 

not constrained by linear genome distances. In contrast, eNet assigns each individual 476 

enhancer to its potential target gene based on the correlation between gene 477 

expression and enhancer accessibility across various cells (Figure 1B). This approach 478 

identifies a more complete set of the enhancers that regulate a specific gene, 479 

irrespective of the distance between enhancers. 480 

 481 

Enhancer networks in single cells 482 

Currently, most studies on enhancer clusters rely on chromatin marks and the binding 483 

of Mediator and TFs at bulk population (Hnisz et al., 2013). It remains largely unknown 484 

whether enhancer clusters control robust gene expression simply through population 485 

averaging. The development of scATAC-seq and scRNA-seq technologies generated 486 

a large amount of single cell multi-omics profiles in various biological systems 487 

(Argelaguet et al., 2019; Granja et al., 2019; Sarropoulos et al., 2021; Trevino et al., 488 

2021) could be leveraged towards addressing this question. However, these studies 489 

have largely focused on connecting distal enhancers with their target genes, but rarely 490 

on exploring the underlying regulatory relationships among enhancers regulating the 491 

same gene, namely, the enhancer networks in this study. Here, as the primary feature 492 

distinguishing our work from these studies, eNet allows us to explore how individual 493 

elements interact with each other to control gene expression during lineage 494 
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commitment at single-cell resolution, as illustrating by the example of PAX5 enhancer 495 

network. As the second advantage, by building enhancer networks based on single 496 

cell multi-omics data, eNet is an unsupervised approach to simultaneously identify key 497 

cell identity and disease genes and the underlying enhancer regulatory relationships. 498 

Thus, it is not necessary to know the cell identity in advance from primary samples or 499 

conduct challenging experimental steps, such as cell subpopulation isolation and 500 

chromatin immunoprecipitation sequencing (ChIP-seq).  501 

 502 

Limitations 503 

The primary limitation of our work is the lack of experimental validation on the 504 

regulatory role of enhancer networks during development and disease. In a parallel 505 

study, Shu et al. performed LacZ transgenic mouse assay and in vivo enhancer 506 

perturbation by CRISPR/Cas9-mediated genome editing and found that the network 507 

hub enhancers played a central role in orchestrating spatiotemporal gene expression 508 

programs of Atoh1 during spinal cord development (also see “related manuscript file” 509 

for details). Fully determining the regulatory roles of enhancer networks requires more 510 

comprehensive investigations in future, such as combining epigenetic features, 511 

chromatin looping, reporter assays, and enhancer perturbations in relevant cell lines, 512 

and in vivo models. Moreover, one of the motivations of our study is that it currently 513 

remains difficult and costly to capture genome-wide chromatin interactions at high-514 

resolution by proximity ligation-based methods for the analysis of enhancer 515 

interactions (Lieberman-Aiden et al., 2009; Mumbach et al., 2017; Tang et al., 2015). 516 

To address this question, eNet builds enhancer networks based on the assumption 517 

that the Cicero-detected significant co-accessible pairs (Pliner et al., 2018), the 518 

predicted enhancer interactions (PEIs) used in this study, are overall concordant with 519 

proximity ligation-based chromatin interactions. Analysis in GM12878 cell line revealed 520 

network hub enhancers overlapped with part of Hi-C hub enhancers. Meanwhile, it 521 

captured significant fraction of distinct enhancers, which were functionally important. 522 

While it might be due to the limited resolution of current Hi-C data (Rao et al., 2014), it 523 
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is also important to recognize that inconsistencies exist between these two 524 

measurements. Thus, it is important to systematically compare the coherence of the 525 

enhancer networks from scATAC-seq with those from proximity ligation-based 526 

chromatin interactions at higher resolution. In this sense, eNet can be easily applied 527 

to high-resolution chromatin interaction data, if available in the future. 528 

 529 

 530 

  531 
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Materials and Methods 532 

Data Sources 533 

The scATAC-seq and scRNA-seq datasets used in this study were obtained from 534 

the literature. The human blood dataset includes single cell profiling of gene 535 

expression and chromatin accessibility in human primary bone marrow and peripheral 536 

blood mononuclear cells measured by the Chromium platform (10x Genomics)(Granja 537 

et al., 2019). The mouse skin dataset contains the single cell profiling of gene 538 

expression and chromatin accessibility during mouse skin development measured by 539 

SHARE-seq(Ma et al., 2020). The mouse cerebral cortex dataset consists of the single 540 

cell profiling of gene expression and chromatin accessibility of developing mouse 541 

cerebral cortex measured by SNARE-seq(Chen et al., 2019). The human fetal kidney 542 

and heart datasets include single cell profiling of gene expression and chromatin 543 

accessibility of human fetal kidney and heart measured by sci-ATAC-seq3(Domcke et 544 

al., 2020) and sci-RNA-seq3(Cao et al., 2020).A list of all used datasets and accession 545 

numbers are summarized in Table S1.  546 

 547 

eNet 548 

eNet is an algorithm to build enhancer networks for clustered enhancers 549 

controlling the same gene based on scATAC-seq and scRNA-seq datasets. Briefly, it 550 

contains the following six steps. 551 

Step 1. Preparing input matrix (Input) 552 

In this study, the processed single cell chromatin accessibility and gene 553 

expression matrix data were downloaded directly from public literatures and used as 554 

the input for eNet.  555 

Step 2. Identifying the putative enhancer cluster (Node) 556 

The chromatin accessible regions outside of ± 2 kb of transcriptional start sites 557 

(TSS) were considered enhancers. We identified a set of enhancers, as the nodes in 558 

the network, which putatively regulate a specific target gene based on the correlation 559 
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between gene expression and enhancer accessibility across various cells by adapting 560 

the method previously described (Li et al., 2021; Ma et al., 2020), with some 561 

modifications. Briefly, given a gene, we first selected the enhancers located within a ± 562 

100 kb window around each annotated TSS as enhancer candidates. For each gene-563 

enhancer pair, we then calculated the Spearman correlation between enhancer 564 

chromatin accessibility and gene expression. The Spearman correlations were z-score 565 

normalized using genome-wide gene-enhancer pairs as the background. Lastly, by 566 

defining a cut-off at the z-score with an empirically defined significance threshold of p-567 

value < 0.01 (one-sided Student’s t-test), we identified a putative enhancer cluster 568 

regulating the specific target gene.  569 

Step 3. Identifying the predicted enhancer interactions (Edge) 570 

We determined the potential chromatin interactions between enhancers within 571 

each putative enhancer cluster as the edges of the network. The chromatin co-572 

accessibility of enhancer pairs across various cells was calculated using Cicero (Pliner 573 

et al., 2018), a method that predicts cis-regulatory DNA interactions from single-cell 574 

chromatin accessibility data. By applying a threshold value of the co-accessibility 575 

calculated, we determined the significant co-accessible enhancer pairs, termed as the 576 

predicted enhancer interactions (PEIs).   577 

Step 4. Building enhancer networks (Network) 578 

We built a binary adjacency matrix to represent the predicted enhancer 579 

interactions for each putative enhancer cluster, where 1 or 0 represent two enhancers 580 

with or without predicted enhancer interactions, respectively. Thus, the adjacency 581 

matrix can be visualized as an enhancer network, where nodes represent enhancers 582 

and the edges represent PEIs.  583 

Step 5. Calculating network complexity (Network complexity) 584 

We evaluated the complexity of the enhancer networks by the network size and 585 

connectivity. Network size was quantified by the quantity of nodes in the network. 586 

Network connectivity was quantified by the average degree (Barabasi, 2016), which 587 

were calculated as two-fold of the number of edges and divided by the number of 588 
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nodes.  589 

Step 6. Classification of enhancer networks (Mode) 590 

We built the enhancer network for each gene genome-wide by repeating from 591 

steps 1-5. Then, by applying a threshold value of network size and connectivity, we 592 

can classify the enhancer networks into several groups: Complex (large size and high 593 

connectivity), Multiple (large size but low connectivity), Simple (small size and low 594 

connectivity) and others (small size but high connectivity, not discussed due to limited 595 

cases).  596 

 597 

Defining network hub enhancers for enhancer networks in Complex mode 598 

In Complex mode, we calculated the node degree for each enhancer and 599 

normalized them by the total number of edges in network, termed as normalized node 600 

degree. By applying a threshold value of the normalized node degree, we divided the 601 

enhancers into two groups, termed as network hub enhancers and non-hub enhancers, 602 

where network hub enhancers are those with high frequency of PEIs.  603 

 604 

Robustness analysis of eNet  605 

Building weighted enhancer network in Step 4  606 

In additional to the binary adjacency matrix in Step 4, we also built the weighted 607 

co-accessibility enhancer networks and evaluated the performance of the complexity 608 

of weighted network connectivity in predicting cell identity and disease genes. It 609 

resulted in not obvious difference between two methods (Figure S1E-S1G).  610 

Quantifying network connectivity in Step 5 611 

In Figure S7B and S7C, we quantified the network connectivity by an alternative 612 

method using the maximum degrees of nodes in network, termed the network 613 

connectivity (maximum) hereafter. Algorithmically, these two metrics, network 614 

connectivity (average) and network connectivity (maximum), are distinguished by in 615 

without or with considering the connections between non-hub enhancers. 616 

Thresholds to classify enhancer networks in Step 6 617 
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To test the robustness of thresholds of network size and network connectivity in 618 

defining Complex, Multiple and Simple mode, we set different thresholds and 619 

calculated the enrichment of cell identity and disease genes (Figure S2). 620 

The relationship of the network connectivity and network size 621 

To decouple the network size and network connectivity, we ranked the enhancer 622 

networks based on the network size and separated them into 5 groups from high to 623 

low, which resulted in similar network size level within each group (Figure S3A). 624 

Then we compared the network connectivity and cell identity/disease genes 625 

enrichment of the Complex and Multiple networks in each group (Figure S3B-S3D). 626 

The relationship of the network connectivity and chromatin accessibility 627 

To decouple the chromatin accessibility and network connectivity, we grouped the 628 

enhancer networks into 5 groups based on the average chromatin accessibility of the 629 

enhancers within each network from high to low, which resulted in similar chromatin 630 

accessibility level within each group (Figure S4A). Then we compared the network 631 

connectivity and cell identity/disease genes enrichment of the Complex and Multiple 632 

networks in each group (Figure S4B-S4D). 633 

 634 

Retrieval of cell identity and disease genes  635 

The blood-related cell identity genes were retrieved from the website 636 

(https://www.biolegend.com/cell_markers) and (Ranzoni et al., 2021). The blood-637 

related disease genes were from DisGeNET (Pinero et al., 2017). The skin-related cell 638 

identity genes were from (Ma et al., 2020). The skin-related disease genes were from 639 

MalaCards (https://www.malacards.org), OMIM (https://omim.org) and DisGeNET 640 

(Pinero et al., 2017). The neuron-related cell identity genes were retrieved from (Chen 641 

et al., 2019; Zhu et al., 2019). The neuron-related disease genes were from DisGeNET 642 

(Pinero et al., 2017). The kidney-related and heart-related cell identity genes were 643 

retrieved from (Domcke et al., 2020). The kidney-related and heart-related disease 644 

genes were from DisGeNET (Pinero et al., 2017). The skin-related cell identity genes 645 

were from (Ma et al., 2020). All these cell identity and disease genes are provided in 646 
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Table S3. 647 

 648 

Enrichment analysis of cell identity and disease genes 649 

We performed cell identity and disease genes enrichment analysis for gene 650 

groups in Complex, Multiple and Simple modes. Briefly, given a gene group, the 651 

enrichment score was calculated as the fold enrichment relative to the genome 652 

background. The computing method was determined as:  653 

(m/n)/(M/N) 654 

where m and M represent the number of cell identity genes within the group and 655 

genome-wide, respectively, and n and N represent the number of genes within the 656 

group and genome-wide, respectively.  657 

 658 

Performance evaluation in predicting cell identity and disease genes 659 

To evaluate the performance of enhancer networks in predicting the cell identity 660 

and disease genes, we ranked all genes by various scoring methods, including 661 

network connectivity, network size, and overall chromatin accessibility. We then 662 

calculated the fold-enrichment of cell identity or disease genes in top ranked genes 663 

with a moving window of 50, using the whole genome as the background. The p-value, 664 

indicating the significance of the difference in performance between the two scoring 665 

methods, was determined based on the enrichment in the top 50 genes.  666 

 667 

Enrichment analysis of GWAS SNPs 668 

The SNPs curated in the GWAS Catalog (Welter et al., 2014) were downloaded 669 

through the UCSC Table Browser (http://genome.ucsc.edu/). In addition, we curated a 670 

list of cell type related GWAS SNPs using a semi-automatic text mining method as 671 

described below. 672 

Blood-related GWAS SNPs 673 

The subset of blood-related GWAS SNPs was selected as those associated with 674 

at least one of the following keywords in the ‘trait’ field: ‘Erythrocyte’, ‘F-cell’, ‘HbA2’, 675 
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‘Hematocrit’, ‘Hematological’, ‘Hematology’, ‘Hemoglobin’, ‘Platelet’, ‘Blood’, ‘Anemia’,676 

‘Sickle cell disease’, ‘Thalassemia’, ‘Leukemia’, ‘Lymphoma’, ‘Lymphocyte’, ‘B cell ‘,‘B-677 

cell’, ‘Lymphoma’, ‘Lymphocyte’, and ‘White blood cell’. 678 

B cell-related GWAS SNPs 679 

The subset of blood-related GWAS SNPs was selected as those associated with 680 

at least one of the following keywords in the ‘trait’ field: ‘Blood’, ‘B cell ‘, ‘B-cell’, 681 

‘Lymphoma’, ‘Lymphocyte’. 682 

Skin-related GWAS SNPs 683 

The subset of skin-related GWAS SNPs was selected as those associated with at 684 

least one of the following keywords in the ‘trait’ field: 'Skin', 'Acne', 'Areata', 'Dermatitis', 685 

'Pemphigus', 'Psoriasis', 'Rosacea', 'Scleroderma', 'Vitiligo'. 686 

Cerebral-related GWAS SNPs 687 

The subset of neuron-related GWAS SNPs was selected as those associated with 688 

at least one of the following keywords in the ‘trait’ field: 'Amyotrophic lateral sclerosis', 689 

'Parkinson's disease',  'Attention deficit',  'Anorexia', 'Type 1 diabetes', 'Ulcerative 690 

colitis', 'Menarche', 'Depressed affect', 'Intelligence', 'sclerosis', 'Insomnia', 691 

'Menopause', 'Artery disease', 'Educational attainment', 'Cerebral', 'Ischemic', 'Spastic 692 

Diplegia', 'Malaria', 'Aneurysm', 'Cortex', 'Spastic Quadriplegia', 'Band Heterotopia', 693 

'Cerebrovascular Disease', 'Arteriovenous Malformations of the Brain', 'Spastic 694 

Hemiplegia', 'Intracranial Embolism', 'Brain Edema', 'Brain Injury', 695 

'Adrenoleukodystrophy', 'Intracranial Thrombosis', 'Seizure Disorder', 'Depression', 696 

'Encephalopathy', 'Arteriovenous Malformation', 'Cardiac Arrest', 'Cerebritis', 697 

'Mitochondrial DNA Depletion Syndrome 4a', 'Hypoxia', 'Thrombosis', 'Developmental 698 

and Epileptic Encephalopathy 39', 'Hemorrhage’, ‘Intracerebral', 'Schizophrenia', and 699 

'Spasticity'. 700 

Kidney-related GWAS SNPs 701 

The subset of kidney-related GWAS SNPs was selected as those associated with 702 

at least one of the following keywords in the ‘trait’ field: 'Kidney', 'Kidney Disease', 703 

'nephridium', 'Renal', 'Renal Cell Carcinoma', 'Nonpapillary', 'Kidney Cancer', 704 
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'Autosomal Dominant Polycystic Kidney Disease', 'Tukel Syndrome', 705 

'Leiomyosarcoma', 'Muscle Cancer', 'Smooth Muscle Tumor', 'Nephrolithiasis', 'Kidney 706 

stones', 'Membranous nephropathy', 'Urinary metabolite levels in chronic kidney 707 

disease', 'Estimated glomerular filtration rate'.  708 

Heart-related GWAS SNPs 709 

The subset of heart-related GWAS SNPs was selected as those associated with 710 

at least one of the following keywords in the ‘trait’ field: 'heart Disease', 'Dry heart 711 

Syndrome Cataract', 'Fish-heart Disease', 'Aland Island heart Disease Cat heart 712 

Syndrome', 'Muscle heart Brain Disease', 'Ocular Cancer Myopia', 'Myopia', 713 

'Keratoconjunctivitis Sicca', 'Conjunctivitis', 'Sjogren Syndrome' , 'Retinal Detachment', 714 

'Microvascular Complications of Diabetes 5', 'Open-Angle Glaucoma Refractive Error'.  715 

Enrichment analysis 716 

For each dataset, the enhancers were converted to hg38 genomic coordinates 717 

using the liftOver software from the UCSC Genome Browser 718 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver). The overlap between loci and GWAS 719 

SNPs was performed using bedtools intersect (Quinlan and Hall, 2010). In short, for 720 

enhancers in each group, the enrichment score was calculated as the fold enrichment 721 

relative to the genome background. The computing method was listed as following:  722 

(m/n)/(M/N) 723 

where m and M represent the number of SNPs within the group and genome-wide, 724 

respectively, and n and N represent the number of loci within the group and genome-725 

wide, respectively. The genome-wide background is generated from a list of loci 726 

obtained by randomly shuffling the list of regular enhancers.  727 

 728 

Sequence conservation score  729 

PhastCons 100-way vertebrate conservation scores were downloaded from the 730 

UCSC Genome Browser (Siepel et al., 2005). We calculated the mean PhastCons 731 

score for each enhancer as previously described (Sarropoulos et al., 2021). 732 

 733 
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Comparison of PEIs and Hi-C chromatin interactions 734 

High-resolution Hi-C data in GM12878 cell was obtained from the literature (Rao 735 

et al., 2014). The statistically significant chromatin interactions were detected as 736 

previously described (Huang et al., 2018). We compared the enrichment of chromatin 737 

interactions detected by Hi-C in enhancer pairs with different co-accessibility (Figure 738 

4A).  739 

 740 

Comparison of enhancer networks based on PEIs and Hi-C chromatin 741 

interactions in GM12878 cell line 742 

We mapped Hi-C chromatin interactions to the enhancer clusters defined by single 743 

cell GM12878 data to replace the PEIs by using bedtools map, then built enhancer 744 

networks, evaluated the complexity of enhancer networks and defined network hub 745 

enhancers following the workflow in eNet analysis. 746 

 747 

Trajectory analysis 748 

We performed trajectory analysis for B cell differentiation using the method 749 

previously described (Satpathy et al., 2019) to order cells in pseudotime.  750 

 751 

Cell type-specific enhancer networks 752 

To build cell type specific enhancer networks (Figure 5), we used the enhancer 753 

accessibility and gene expression matrix from a specific cell type as the input for eNet 754 

algorithm. The gene expression and chromatin accessibility of cell type-specific 755 

enhancer network, were represented by their average across all cells per cell type, 756 

followed by min-max normalization. 757 

 758 

Pseudotime difference between gene expression and enhancer networks 759 

To compare the dynamics of gene expression enhancer networks, we quantified 760 

the difference of the pseudotime of B cell differentiation between the onset of gene 761 

expression and establishment of the enhancer network. We focused on genes highly 762 
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expressed in preB or B cells and controlled by enhancer networks in Complex mode 763 

across B cell differentiation pseudotime. First, for each single cell, we assigned the 764 

gene expression, network connectivity, and chromatin accessibility based on their cell 765 

type annotations, which were further smoothed by applying a sliding window of 50 cells 766 

along the pseudotime. We then defined the time of gene expression onset and 767 

enhancer network establishment, measured by chromatin accessibility or network 768 

connections, at the first instance of the smoothed value being larger than the 769 

predefined value. Finally, the pseudotime lag was calculated as the time of gene 770 

expression onset subtracted by the time of enhancer network establishment.  771 

 772 

Blood-related SEs 773 

The SEs list associated with blood-related cell types from the dbSUPER database 774 

(Khan and Zhang, 2016) was curated into a catalog of blood-related SEs (Table S4). 775 

We first downloaded the corresponding SE list from dbSUPER, sorted, and merged 776 

into an SE list using bedtools (Quinlan and Hall, 2010). In this way, we generated 2,306 777 

human blood-related SEs in total.  778 

 779 

Gene Ontology (GO) enrichment analysis  780 

Gene Ontology (GO) enrichment analysis of enhancer network target genes was 781 

performed by clusterProfiler package (Yu et al., 2012).  782 

 783 

Data availability 784 

All datasets analyzed in this study were published previously. The corresponding 785 

descriptions and GEO number are described in the Table S1. 786 

 787 

Code availability 788 

The full code of eNet was provided in the Supplementary material and made 789 

available via GitHub, see https://github.com/xmuhuanglab/eNet. 790 

 791 
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Figure Legends 985 

Figure 1. eNet, an algorithm to build enhancer networks based on scATAC-seq 986 

and scRNA-seq data. 987 

(A) Input: Preparation of the enhancer accessibility and gene expression matrix from 988 

scATAC-seq and scRNA-seq data. Each row represents an enhancer or a gene, while 989 

each column represents a cell. 990 

(B) Node: Identification of putative enhancer clusters regulating a specific target gene 991 

based on the correlation between gene expression and enhancer accessibility. 992 

(C) Edge: Determination of the predicted enhancer interactions (PEIs), the enhancer 993 

pairs with significantly high co-accessibility calculated using Cicero. 994 

(D) Network: Construct enhancer network to represent the PEIs among enhancers in 995 

a putative enhancer cluster, where nodes represent enhancers and edges represent 996 

PEIs. 997 

(E) Network complexity: Calculation of the network complexity by 1) network size, the 998 

number of enhancers (x-axis); and 2) network connectivity, the PEIs frequency, 999 

quantified by the average degree of network (y-axis).  1000 

(F) Mode: Classification of the enhancer networks into three modes based on network 1001 

complexity: Complex, Multiple and Simple, with representative examples shown in the 1002 

cartoon.  1003 

 1004 

Figure 2. Enhancer networks during human hematopoiesis. 1005 

(A) The human blood dataset.  1006 

(B) Scatter plot of the enhancer networks during hematopoiesis, where the x-axis 1007 

represents the network size (log2-scaled) and the y-axis represents network 1008 

connectivity. Top 10 genes ranked by network connectivity are labelled, where known 1009 

blood-related cell identity or disease genes are red-highlighted. 1010 

(C) Representative enhancer networks in Complex or Multiple mode.  1011 

(D) Chromatin co-accessibility of predicted enhancer interactions (PEIs) calculated 1012 

using Cicero in Complex, Multiple and Simple modes. p-values were calculated using 1013 
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the Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 1014 

(E and F) Enrichment of cell identity (E) and disease genes (F) in genes in Complex, 1015 

Multiple and Simple modes, using the whole genome as the background. The number 1016 

of cell identity or disease genes and total genes in each group are labelled on each 1017 

bar. p-values were calculated using the binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; 1018 

n.s., not significant. 1019 

(G and H) Enrichment of cell identity (G) and disease genes (H) (y-axis) is plotted for 1020 

top genes (x-axis) ranked by different properties of enhancer networks, including 1021 

network connectivity (the frequency of PEIs in this study), network size (equivalent to 1022 

the enhancer number in multiple enhancers (Osterwalder et al., 2018), DORCs (Ma et 1023 

al., 2020)), or overall chromatin accessibility of enhancers (similar to the sum of the 1024 

individual constituent enhancers in super-enhancers (Hnisz et al., 2013)). 1025 

(I) Enrichment of the diseases/traits-related SNPs curated in the GWAS catalog for 1026 

enhancers in Complex (hub and non-hub), Multiple, and Simple modes, using 1027 

randomly selected genomic regions as the control. p-values were calculated using the 1028 

binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 1029 

(J) Enrichment of blood related GWAS SNPs.  1030 

 1031 

Figure 3. Enhancer network outperforms super-enhancer in predicting cell 1032 

identity and disease genes. 1033 

(A) Venn diagram showing the overlap between genes in Complex mode in Figure 2 1034 

in blood dataset and hematopoiesis-related SEs, resulting in three groups, Complex-1035 

only, Complex SE (SEs with network structure) and SE-only (SEs without network 1036 

structure) 1037 

(B, C) Co-accessibility (B) and chromatin accessibility (C) of the constituent enhancers 1038 

in three groups, using regular enhancers as control. p-values were calculated using 1039 

Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 1040 

(D and E) Enrichment of cell identity (D) and disease genes (E) in genes in three 1041 

groups, using the whole genome as the background. p-values were calculated using 1042 
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the binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 1043 

(F and G) Enrichment of cell identity (F) and disease genes (G) (y-axis) for the genes 1044 

in (A), ranked by the network complexity (x-axis), measured by 1) network connectivity, 1045 

as well as the overall enhancer activity, 2) network size as well as enhancer number, 1046 

3) chromatin accessibility and 4) SE ranks based on H3K27ac signals calculated by 1047 

ROSE (Hnisz et al., 2013). 1048 

 1049 

Figure 4. Comparison of enhancer networks based on PEIs and Hi-C chromatin 1050 

interactions in GM12878 cell line. 1051 

(A) Enrichment of chromatin interactions detected by Hi-C in three groups of enhancer 1052 

pairs ranked by chromatin co-accessibility: High (PEIs), Middle and Low, using the 1053 

group Low as the background. p-values were calculated using binomial test. *p < 0.05; 1054 

**p < 0.01; ***p < 0.001; n.s., not significant.  1055 

(B) Cicero connections for the CCR7 locus compared to Hi-C (Rao et al., 2014). Link 1056 

heights for Hi-C are the interaction frequency of each chromatin interaction. 1057 

(C) CCR7 enhancer networks built based on PEIs (above) or Hi-C chromatin 1058 

interactions (bottom). 1059 

(D) Venn diagram showing the overlap of genes regulated by the Complex enhancer 1060 

networks defined based on PEIs and Hi-C data, resulting in three groups: PEIs-with-1061 

HiC, PEIs-only, and HiC-only.  1062 

(E and F) Enrichment of cell identity (E) and disease genes (F) in three groups, using 1063 

the whole genome as the background. p-values were calculated using the binomial 1064 

test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant.  1065 

 1066 

Figure 5. Dynamics of enhancer networks during B cell differentiation. 1067 

(A) UMAP of B cell differentiation colored by cell type annotation, the dash-line 1068 

indicates the pseudotime during B cell differentiation inferred based on scATAC-seq 1069 

data. 1070 

(B) Genome browser track of PAX5 putative enhancer cluster (n=24) that are 1071 

accessible at any one of the developmental stages of HSC, LMPP, CLP, pre-B, and B 1072 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492770
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

cell types. 1073 

(C) Violin plot showing PAX5 expression. 1074 

(D) The PAX5 enhancer networks in HSC, LMPP, CLP, pre-B, and B cells, where the 1075 

colored nodes represent accessible enhancers while the empty nodes represent 1076 

closed enhancers. The edges represent PEIs. 1077 

 1078 

Figure 6. Enhancer networks in various human or mouse tissues across 1079 

different single-cell platforms.  1080 

(A, C, E, G) Enrichment of cell identity genes (y-axis) is plotted for top genes ranked 1081 

by various scoring methods (x-axis) in different tissues and approaches. (A) mouse 1082 

skin dataset (SHARE-seq) (Ma et al., 2020), (C) mouse cerebral cortex dataset 1083 

(SNARE-seq) (Chen et al., 2019), (E) human fetal kidney dataset (sci-ATAC-seq3) 1084 

(Domcke et al., 2020), and (G) human fetal heart dataset (sci-ATAC-seq3) (Domcke et 1085 

al., 2020).    1086 

(B, D, F, H) Enrichment of tissue-related diseases/traits SNPs curated in GWAS 1087 

catalog in enhancers in Complex (hub and non-hub), Multiple, and Simple modes, 1088 

using randomly selected genomic regions as the control. (B) mouse skin dataset, (D) 1089 

mouse cerebral cortex dataset, (F) human fetal kidney dataset, and (H) human fetal 1090 

heart dataset. p-values were calculated using the binomial test. *p < 0.05; **p < 0.01; 1091 

***p < 0.001; n.s., not significant. 1092 

 1093 

Figure 7: Model of enhancer networks in gene regulation.  1094 

(A) Functional enrichment of genes regulated by enhancer networks in Simple, 1095 

Multiple, and Complex modes in human blood, mouse skin, and mouse cerebral cortex 1096 

datasets.  1097 

(B) Three modes of enhancer networks. Simple mode, involving one or very few 1098 

enhancers, provides quick response to control a large amount of regular genes, such 1099 

as housekeeping genes, at low cost; Multiple mode, involving multiple enhancers but 1100 

limited PEIs, increases regulation strength as well as redundancy at the cost of the 1101 
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number of enhancers (nodes); Complex mode, involving multiple enhancers and 1102 

frequent PEIs, provides robustness of gene regulation for key genes, such as cell 1103 

identity and disease genes, at the cost of edges, where hub enhancers are functionally 1104 

important. 1105 
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Supplemental Figures and Legends 1107 

Figure S1. Enhancer networks during human hematopoiesis, related to Figure 2. 1108 

(A) Distribution of network size for the enhancer networks during human 1109 

hematopoiesis, where the dash line indicates the median of network size. 1110 

(B and C) The co-accessibility (B) and chromatin accessibility (C) of the constituent 1111 

enhancers in the example of Fig 2C. p-values were calculated using Student’s t-test. 1112 

(D) PhastCons conservation score of enhancers in Complex (hub and non-hub), 1113 

Multiple and Simple groups. 1114 

(E) Scatter plot of the weighted enhancer networks during hematopoiesis, where the 1115 

x-axis represents the network size (log2-scaled) and the y-axis represents network 1116 

connectivity. Top 10 genes ranked by network connectivity were labelled, where known 1117 

blood-related cell identity or disease genes were red-highlighted. 1118 

(F and G) Enrichment of cell identity (F) and disease genes (G) (y-axis) is plotted for 1119 

top genes (x-axis) ranked by different properties of the weighted enhancer networks in 1120 

(E), including network connectivity (the frequency of PEIs in this study), network size 1121 

(equivalent to the enhancer number in multiple enhancers, or overall chromatin 1122 

accessibility of enhancers. 1123 

 1124 

Figure S2. Classification of the enhancer networks using various threshold 1125 

values of network connectivity and network size in human blood dataset, 1126 

related to Figure 2.  1127 

(A and B) Various threshold values of network connectivity (A) and network size (B). 1128 

Enrichment of cell identity (left) and disease genes (middle) in genes in Complex, 1129 

Multiple, and Simple modes, using the whole genome as the background. Enrichment 1130 

of the diseases/traits-related SNPs curated in the GWAS catalog (right) in enhancers 1131 

in Complex (hub and non-hub), Multiple, and Simple modes, using randomly selected 1132 

genomic regions as the control. p-values were calculated using the binomial test. *p < 1133 

0.05; **p < 0.01; ***p < 0.001; n.s., not significant.  1134 

 1135 

Figure S3. The relationship of the network connectivity and network size, 1136 
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related to Figure 2.  1137 

(A and B) The network size (A) and network connectivity (B) in genes regulated by 1138 

Complex and Multiple enhancer networks with a similar network size level. p-values 1139 

were calculated using Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not 1140 

significant. 1141 

(C and D) Enrichment of blood-related cell identity genes (C) and disease genes (D) 1142 

in genes regulated by Complex and Multiple enhancer networks with a similar network 1143 

size level, using whole genome as the background. p-values were calculated using the 1144 

binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant.  1145 

 1146 

Figure S4. The relationship of the network connectivity and chromatin 1147 

accessibility, related to Figure 2.  1148 

(A and B) The chromatin accessibility (A) and network connectivity (B) in genes 1149 

regulated by Complex and Multiple enhancer networks with a similar chromatin 1150 

accessibility level. p-values were calculated using Student’s t-test. *p < 0.05; **p < 0.01; 1151 

***p < 0.001; n.s., not significant. 1152 

(C and D) Enrichment of blood-related cell identity genes (C) and disease genes (D) 1153 

in genes regulated by Complex and Multiple enhancer networks with a similar 1154 

chromatin accessibility level, using whole genome as the background. p-values were 1155 

calculated using the binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not 1156 

significant.  1157 

 1158 

Figure S5. The SEs and Hi-C in GM12878 cell line and dynamic of enhancer 1159 

networks during B cell differentiation, related to Figure 3-5. 1160 

(A) Venn diagram showing the overlap of genes regulated by enhancer networks in 1161 

Complex mode and SEs in GM12878 dataset, resulting in three groups: Complex SE, 1162 

Complex-only, and SE-only. 1163 

(B and C) Enrichment of cell identity (B) and disease genes (C) in genes in three 1164 

groups, using the whole genome as the background. p-values were calculated using 1165 
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the binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 1166 

(D) Venn diagram showing the overlap between the network hub enhancers based on 1167 

PEI and Hi-C data in the enhancer networks in PEI-with-HiC group in Figure 4D.  1168 

(E and F) Enrichment of all GWAS SNPs (E) and B cell-related GWAS SNPs (F) in 1169 

three groups of hub enhancers: PEI-only, Hi-C-only and PEI-with-Hi-C. p-values were 1170 

calculated using the binomial test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not 1171 

significant. 1172 

(G) The pseudotime during B cell differentiation inferred based on scATAC-seq data. 1173 

(H) Dynamics of gene expression (left), chromatin accessibility (middle), and enhancer 1174 

network connectivity (right) across the B cell differentiation pseudotime (column). 1175 

Genes highly expressed in pre-B or B cells and controlled by enhancer networks in the 1176 

Complex mode are included (row), where some known cell identity genes are labelled.  1177 

(I) Difference of the pseudotime of B cell differentiation between onset of gene 1178 

expression and establishment of enhancer networks. p-values were calculated using 1179 

one-sided paired Student’s t-test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 1180 

 1181 

Figure S6. eNet analysis in various human or mouse tissues across different 1182 

single-cell platforms, related to Figure 6. 1183 

(A, C, E, G) Enrichment of cell identity (left) and disease genes (right) in genes in 1184 

Complex, Multiple and Simple modes, using the whole genome as the background. (A) 1185 

mouse skin dataset (SHARE-seq) (Ma et al., 2020), (C) mouse cerebral cortex dataset 1186 

(SNARE-seq) (Chen et al., 2019), (E) human fetal kidney dataset (sci-ATAC-seq3) 1187 

(Domcke et al., 2020), and (G) human fetal heart dataset (sci-ATAC-seq3) (Domcke et 1188 

al., 2020). The number of cell identity or disease genes and total genes in each group 1189 

are labelled on each bar. p-values were calculated using the binomial test. *p < 0.05; 1190 

**p < 0.01; ***p < 0.001; n.s., not significant.    1191 

(B, D, F, H) Enrichment of disease genes (y-axis) is plotted for top genes ranked by 1192 

various scoring methods (x-axis) in different tissues and approaches. (B) mouse skin 1193 

dataset, (D) mouse cerebral cortex dataset, (F) human fetal kidney dataset, and (H) 1194 
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human fetal heart dataset.    1195 

 1196 

Figure S7. Three modes of enhancer networks in gene regulation, related to 1197 

Figure 7. 1198 

(A) Percentage of transcription factors (TFs) in genes regulated by enhancer networks 1199 

in the Simple, Multiple and Complex modes. p-values were calculated using the 1200 

binomial-test. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. 1201 

(B and C) Enrichment of cell identity (B) and disease genes (C) ranked by two network 1202 

connectivity metrics: enhancer network connectivity (average) and network 1203 

connectivity (maximum) in the human blood, mouse skin, and mouse cerebral cortex 1204 

datasets.  1205 
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Supplementary Tables 1207 

Table S1 1208 

A list of all used datasets and accession numbers, related to Figure 2-6. 1209 

Table S2 1210 

List of enhancer networks in human blood, mouse skin, cerebral cortex, human fetal 1211 

kidney and heart datasets, related to Figure 2-6. 1212 

Table S3 1213 

The list of cell identity and disease genes for human blood, mouse skin, cerebral 1214 

cortex, human fetal kidney and heart datasets, related to Figure 2-6. 1215 

Table S4 1216 

The list of blood-related SEs catalog, related to Figure 3 and 4. 1217 

 1218 
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Figure 3. Enhancer network outperforms super-enhancer in predicting cell identity and disease genes. 
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