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Background: The possible role of somatic copy number variations
(CNVs) in Alzheimer’s disease (AD) aetiology has been contro-
versial. Although cytogenetic studies suggested increased CNV
loads in AD brains, a recent single-cell whole-genome sequenc-
ing (scWGS) experiment, studying frontal cortex brain samples,
found no such evidence. Here we readdressed this issue using low-
coverage scWGS on pyramidal neurons dissected using laser cap-
ture microdissection (LCM) across five brain regions: entorhinal
cortex, temporal cortex, hippocampal CA1, hippocampal CA3, and
the cerebellum.
Results: Among reliably detected somatic CNVs identified in 1301
cells obtained from the brains of 13 AD patients and 7 healthy con-
trols, deletions were more frequent compared to duplications. In-
terestingly, we observed slightly higher frequencies of CNV events
in cells from AD compared to similar numbers of cells from con-
trols (4.1% vs. 1.4%, or 0.9% vs. 0.7%, using different filtering ap-
proaches), although the differences were not statistically significant.
We also observed that LCM-isolated cells show higher within-cell
read depth variation compared to cells isolated with fluorescence ac-
tivated cell sorting (FACS), which we argue may have both biologi-
cal and technical causes. Furthermore, we found that LCM-isolated
neurons in AD harbour slightly more read depth variability than neu-
rons of controls, which might be related to the reported hyperploid
profiles of some AD-affected neurons. We also propose a princi-
pal component analysis-based denoising approach that significantly
reduces within-cell read depth variation in scWGS data.
Conclusions: We find slightly higher somatic CNV frequencies in
the brains of AD patients, and higher sequencing coverage variabil-
ity, although the effects measured do not reach statistical signifi-
cance. The results call for improved experimental protocols to de-
termine the possible role of CNVs in AD pathogenesis.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease
of multifactorial aetiology, with numerous genetic and en-
vironmental factors each explaining a small proportion of
variance in disease onset and progression (1). One of the
less-studied potential contributors is somatic copy-number
variations (CNVs) in neurons, which can include the gain
or loss of whole chromosomes (aneuploidy) or of chromoso-

mal segments. It is generally accepted that mature neurons in
healthy brains can carry somatic CNVs, but their frequency
is uncertain. Early studies estimated aneuploid neuron fre-
quencies between 4% to 40% in neurotypical brains (2–4),
while analyses using single-cell whole-genome sequencing
(scWGS) estimated aneuploid neuron frequencies at <1% (5).
Beyond aneuploidy, recent scWGS studies also estimated
CNV-carrying neurons at around 30% in young adults and
10% in old adults (6).
Over the last two decades, a number of fluorescence in situ
hybridization (FISH) and cytogenetic-based studies investi-
gated CNV frequencies in AD and healthy control brains
(2, 7–12). Several of these reported extra copies of chromo-
somes in the AD brain (7–12). This, in turn, implies that
the chromosomal imbalance might contribute to AD patho-
genesis via altered gene expression levels. An example of
such imbalance is seen in individuals with Down’s syndrome
(DS); carrying an extra copy of chromosome 21 appears to fa-
cilitate aggregation of amyloid-β (Aβ) plaques in the brains
of DS individuals similar to the AD phenotype (9, 13, 14).
There are various explanations for why post-mitotic neurons
in AD brains could carry high frequencies of somatic CNV
(15). According to one view, the high CNV burden in the
AD brain originates from neurogenesis in the embryonic pe-
riod. This excessive somatic mutation may be pathogenic
and manifest itself as increased AD risk during ageing (16).
However, Abascal et al. recently showed that somatic mu-
tation (single nucleotide change or indel) accumulation in
cells with mitotic capacity and in post-mitotic neurons follow
similar trajectories. That is, mutational processes (possibly
also including CNVs) appear to occur in a time-dependent
manner rather than being division-dependent (17). Accord-
ingly, CNVs in AD brains may have accumulated during their
lifetime. However, this scenario also appears inconsistent
with the observation that CNV-bearing neuron frequencies
decrease from young to old adulthood (6). Another view sug-
gests that AD itself might cause dysregulation in neurons, and
AD-affected mature neurons might re-enter the cell cycle, re-
sulting in increased CNV load (8, 18), which may then be
eliminated at later stages of AD, thus causing neurodegener-
ation (10).
Over the last decade, advances in next-generation sequencing
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(NGS) technologies gave fresh impetus to somatic CNV anal-
yses by allowing variants to be determined at the single-cell
level (19). In one such study, van den Bos and colleagues
used scWGS to compare the prevalence of aneuploidy in neu-
rons from healthy control and AD patients (5). Analyzing
1482 neurons from 10 AD patients and 6 control individuals,
the authors reported aneuploid prevalence at 0.7% and 0.6%
for control and AD neurons, respectively, and concluded that
aneuploid cells are not more common in the AD brain.

These findings by van den Bos and colleagues implied that
CNVs may have no relationship to AD pathogenesis, in con-
trast with earlier finds from FISH and cytometry. However,
the study by van den Bos and colleagues had a number of
limitations. One was that the authors only estimated aneu-
ploidy (full chromosome gain or loss), while large CNVs,
which could also contribute to pathogenesis, remained un-
characterized. Another limitation was that only one brain
region was examined, the frontal cortex, while atrophy of
the medial temporal lobe and specifically the hippocampus
is generally considered to be a strong predictor of AD (20).
The study did not distinguish among neuron types that may
carry differentially sensitivity to AD (21). Thirdly, the study
discarded a large fraction of cells (39%) for showing high
within-cell variability in genome coverage, although it was
unclear to what extent these represented pure technical error
versus cells with complex karyotypes. Fourthly, only NeuN
positive neurons were included, which substantially restricts
the significance of this study due to different reasons: (1) Re-
cently, up to 30% of cortical neurons have been reported be-
ing NeuN-negative following diffuse brain injury and which
are more vulnerable to membrane disruption (22), a process
recently associated with AD (23, 24). (2) Considerable or
even complete loss of NeuN immunoreactivity was also re-
ported for neurons affected by ischemic insults (middle cere-
bral artery occlusion) without significant cell loss (25) or in
neurons that just entered the cell death process (26). Inter-
estingly, these neuronal populations are of special interest
because energy and nutritional deficiency and cell loss are
essential characteristics of the AD brain (27). (3) The inten-
sity of NeuN staining is reported to be lower in AD samples
(28), and further (4) due to many NeuN negative cortical neu-
rons in FTLD-TDP (frontotemporal lobar degeneration with
TDP-43 inclusions) patients, Yousef et al. suggested NeuN
staining as an indicator of healthy neurons (29). However, if
NeuN reflects a neuron’s health, any selection of NeuN pos-
itive cells would lead to a substantial bias for studying any
neurodegenerative disease.

These methodological issues could potentially explain the
discrepancies between the findings by van den Bos et al.
and those based on FISH and cytogenetic studies (7–12).
Notably, a recent technical comparison between FISH and
scWGS using mock aneuploid cells reported a tendency of
the latter to severely underestimate aneuploidy (30). It is thus
possible that both neurons with CNV and nuclei thereof dis-
play altered physico-chemical properties. This may result in
selection bias against abnormal nuclei with high CNV loads
when using the fluorescence activated cell/nuclei sorting

(FACS, FANS) isolation method (exerting mechanical stress
(31)) and high hydrodynamic pressure (32), applied by van
den Bos and colleagues, and artificially inflate euploidy fre-
quencies. Moreover, besides restriction to NeuN positive
cells, usage of only intact nuclei could preclude or bias AD
neurons with nuclear envelope stress or rupture (33).
These observations call for additional data and approaches to
tackle this issue. Accordingly, here we generated and ana-
lyzed scWGS data to establish the frequency of CNVs (both
full chromosome aneuploidies and sub-chromosomal CNVs)
in five different brain regions that differ in vulnerability to
AD (34). We employed two different single-cell isolation
methods, laser capture microdissection (LCM) and FACS, to
isolate neuronal nuclei. LCM, despite being technically chal-
lenging, has the advantages of allowing for specific neuron
types to be chosen, and being neutral towards normal and ab-
normal nuclei. We further employed a principal component
analysis-based denoising approach to eliminate false positive
CNV calls that might result from either systematic experi-
mental biases or repetitive regions in the human genome. Fi-
nally, we analyzed published datasets to replicate our main
results and check the sensitivity and specificity of our bioin-
formatics pipeline.

Results
Summary of the dataset. We used scWGS to determine the
frequency of CNVs in the temporal cortex, hippocampal sub-
fields cornu ammonis (CA) 1, hippocampal subfields cornu
ammonis (CA) 3, cerebellum (CB) and entorhinal cortex
(EC) of 13 AD patients and 7 age-matched healthy controls
(Fig. 1A-C, Additional file 1: Table S1). The Braak stages
of AD patients ranged between III and VI (Fig. 1D). Neu-
ronal nuclei were isolated using either FACS (sorted with
propidium iodide, n = 12) or LCM (sorted with cresyl vi-
olet, n = 1552), the latter performed on frozen brain slices
(see Methods). LCM-isolated non-neuronal "blank" regions
were used as negative control (n = 10). The LCM method,
although more difficult to implement than FACS, was cho-
sen to ensure the selection of nuclei of pyramidal neurons for
sequencing, known to be particularly sensitive to AD (21).
For technical comparison, neurons of a single individual were
collected both using FACS (n= 12) and LCM (n= 64) (see
Methods). scWGS libraries were prepared using Genome-
Plex whole-genome amplification and specific adapters were
inserted using Phusion® PCR. Paired-end reads were mapped
to the human reference genome, followed by stringent filter-
ing to obtain uniquely mapped reads. This resulted in a me-
dian of 276,446 reads, corresponding to a coverage of 0.006X
per LCM-isolated cell (range: [133 - 1,909,016] reads and
[0.000003X - 0.04X] coverage) (Fig. 2A-B).
CNVs were predicted using the Ginkgo algorithm, which
uses circular binary segmentation (CBS) to estimate deletion
or duplication events (35). Negative controls (n = 10) and
FACS-isolated neurons (n = 12) were analyzed separately
and are not included in the main results. Ginkgo was run
on our dataset with n = 1542 cells, while in parallel, two
published scWGS datasets were also analyzed: one by van
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Fig. 1. Schematic of the workflow and information about the samples. A The pipeline of NGS data analysis and CNV detection. B Bar plot showing the number of cells that
have been sequenced for each brain region. C Boxplot showing the age distribution of samples for each brain region. D The tables contain additional information about the
sex, diagnoses and Braak level of the samples. E Images from a frozen hippocampal brain slice stained with cresyl-violet showing a pyramidal cell before (E1) and after (E2)
laser capture microdissection-based isolation process using the PALM device. Circles in E1 indicate positions where two pyramidal cells have already been isolated just prior
to the picture being taken. Bar, 50 µm.
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den Bos and colleagues ("van den Bos 2016"), comprising
n = 1469 cells from healthy and AD brains (median cov-
erage 0.005X), and another by McConnell and colleagues
("McConnell 2013"), comprising n= 110 cells from healthy
brains (median coverage 0.047X) (Fig. 2D) (5, 36). Note
that the van den Bos 2016 dataset includes only 61% of cells
produced in that study, because data from cells filtered for
high noise levels were not published and thus could not be
included here.

LCM-isolated cells show a high frequency of depth
variability. We first evaluated the sensitivity and speci-
ficity of our bioinformatics pipeline on scWGS data using
trisomy-21 in DS and monosomy-X in males in published
data. Analyzing n= 34 neuronal nuclei from DS individuals
(5), trisomy-21 was correctly predicted across all samples
without any false positive or false negative calls. In addition,
monosomy-X was accurately predicted in 94.2% (338 of
359) of cells from males across the two published datasets
(5, 36).

Ginkgo includes an algorithm that uses the distribution of
read depth across the genome to infer the average DNA copy
number of each cell, which is estimated within a range of 1.5
to 6. It would be expected that the majority of human neu-
rons would carry on average two copies of each autosome.
Indeed, applying Ginkgo on the two published datasets, we
found that for 99.9% (1577 of 1579) of cells the estimated
average copy number lies within [1.9-2]. Using the same al-
gorithm on our dataset, however, only 45% (687 of 1542)
of the cells had average copy numbers estimated within the
[1.9-2] range; i.e. 55% were non-euploid. Although hyper-
ploid neurons have been described in control brains at ∼10%
frequency using FISH (10), the observed non-euploidy esti-
mates suggest that our dataset carries particularly high levels
of variability in read depth. These differences, in turn, could
be related to the LCM protocol used, as the published scWGS
experiments had used FACS.

To investigate this possibility, we compared the quality met-
rics of cells we had collected using FACS or LCM for this
study. These metrics were mapping proportion (the number
of mapped reads/ the total number of reads), coverage, and in-
dex of dispersion (IOD, the ratio between the variance of read
coverage and the mean). FACS-isolated cells had higher se-
quencing coverage and mapping proportions than the LCM-
isolated ones (Wilcoxon two-sided rank-sum test, p < 0.0001
and p < 0.001 for coverage and mapping proportion, respec-
tively) (Fig. 2A-C). In addition, FACS-isolated cells had low
IOD values, indicating less variation in sequence depth than
the rest of the samples (Kruskal–Wallis test, p = 1.5e− 07)
(Fig. 2C). We note that the higher noise observed in LCM
data was not solely due to higher genome coverage, as the
FACS-based data from the van den Bos 2016 dataset had a
median coverage comparable to ours (0.005X vs. 0.006X),
but did not show comparable variability as in our LCM data
(Fig 2D). These differences in IOD between LCM and FACS
could be potentially explained by the higher sensitivity of the
LCM procedure to experimental noise, compared to FACS.

Alternatively, they could partly represent abnormal nuclei se-
lected out in FACS but captured by LCM.

We next investigated the possibility that underlying variation
may be caused by technical and/or biological factors. For
this, we used a generalized linear mixed model (GLMM)
to explain IOD (the response variable) per LCM-isolated
cell (n = 1542) as a function of diagnosis (AD vs. control),
genome coverage, and brain region as fixed factors, and
individual as a random factor (see Methods; Fig. 2F-H). We
found that coverage has a significant negative effect on IOD
(z = −21.06, p < 0.0001). Compared to the cerebellum, the
region least affected by neurodegenerative diseases (Xu et al.
2019), we found a significantly high IOD for the entorhinal
cortex (z = 2.61, p < 0.05), hippocampal CA1 (z = 3.34,
p < 0.001) and hippocampal CA3 (z = 3.75, p < 0.001),
but not for the temporal cortex (z = −0.28, p = 0.78).
Finally, neurons from control individuals have slightly less
IOD than AD patients (z = −1.93, p = 0.054). This result
might suggest a tendency for neurons of AD patients to carry
more variable DNA content and is consistent with cytometry
analyses reporting a high occurrence of hyperploid neurons
in the AD brain (10). Although these findings imply a role
of biological factors in read count variation within cells,
it still remains possible that confounding technical factors
influence our data. Given this uncertainty about the source of
variability, we continued the analyses by filtering our dataset
to remove the most variable cells.

No significant difference in CNV frequency between
AD and control in the "uncorrected-filtered" dataset. We
then used Ginkgo to call CNV events from "uncorrected-
filtered" dataset (n = 882 cells from 13 AD patients, and
n = 660 cells from 7 healthy controls). We found 19,608
events in 882 cells from AD patients (22.2 per cell), and
14,844 events in 660 cells from healthy controls (22.5 per
cell). We then tested the observed frequency difference
between AD and control using a GLMM with a negative
binomial error distribution (see Methods). The response
variable (the frequency of CNVs) was predicted using a
combination of fixed factors, including diagnoses, chro-
mosomes, brain regions, sex and coverage (Fig. 4D). The
individual effect was added as a random factor. We found no
statistically significant difference between AD and control
across all tested combinations (GLMM, p≥ 0.17; Additional
file 3: Table S3).

CNV estimation from low coverage scWGS data is known
to be highly sensitive to technical noise, and a large pro-
portion of the called CNV events likely represent false pos-
itives. We thus decided to filter both cells and CNV events
in our dataset to obtain a more reliable dataset (6, 37, 38).
We started by removing the most highly variable cells among
the LCM-isolated ones (n= 1542) using the following crite-
ria. First, 13% (205 of 1542) of the cells with a low number
of reads (< 50,000) were discarded from the analysis (see
Methods). Second, as most cells are expected to be diploid,
and also given that theGinkgo-estimated copy number (CN)
profiles of 99% of cells in the McConnell 2013 and van den
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rank-sum test between groups. D Violin plot showing the distribution of coverage among different datasets. This study, including only LCM: blue; van den Bos 2016: brown;
McConnell 2013: purple. E A principal components analysis (PCA) was performed using the normalized read counts across autosomal bins (n= 5243) in published datasets
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Across all tested brain regions, differences were only marginally significant (p = 0.069). H The distribution of IOD across individuals (n = 20). Box plots were ordered by
the median. Y-axes illustrate the IOD values on the log10 scale. I Boxplots showing the distribution of median CN of chromosome 1 (chr1, upper part of the figure) and
chromosome 21 (chr21, lower part of the figure) across bins (n = 440 and n = 68 for chr1 and chr21, respectively). Each point corresponds to the median CN of each cell.
Minimum ("Min"), median ("Med"), maximum ("Max") and standard deviation ("sd") of each distribution were shown on the boxplot. Cells that deviated from the [1.9-2] range
were excluded from the analyses to be consistent with our filtering criteria (except for the uncorrected datasets). This study [Uncorrected (n = 1337), Uncorrected-filtered
(n = 588), PCA-corrected (n = 1301)]: blue; van den Bos 2016 (n = 1468): brown; McConnell 2013 (n = 109): purple.
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Bos 2016 datasets were observed to lie between [1.9-2], we
excluded those cells with CN values beyond this range (54%
excluded, 726 of 1337). Third, we filtered out 23 of the re-
maining 611 cells (4%) that showed extreme CNV intensity,
which we defined as three or more chromosomes of a cell car-
rying predicted CNVs that cover >70% of their length (Fig.
4A). Information about the remaining cells (n= 588) is pro-
vided in Additional file 2: Table S2 and Additional file 4:
Fig. S1.

From these 588 cells, we called 3521 CNVs (∼5.9 events per
cell) in the uncorrected data, which we call the "uncorrected-
filtered" dataset. We further applied a number of conserva-
tive filtering criteria to remove potential false positives: (1)
We only included megabase scale CNVs (≥ 10 Mb), consid-
ering that detection of small events with low coverage data
will be unreliable. (2) We limited the analyses to 1-somy and
3-somy events, assuming that most somatic CNVs involving
chromosomes or chromosome segments would involve loss
or duplication of a single copy. (3) We only included CNVs
with unique boundaries across all analysed cells, assuming
that somatic CNV breakpoint boundaries should be generally
randomly distributed across the human genome. (4) We re-
moved CNVs on the proximal portion of the chr19 p-arm,
where frequently observed duplications were previously re-
ported as low coverage sequencing artifacts (39). (5) To en-
sure the reliability of the CNV signal, we calculated a stan-
dard Z-score for each CNV that reflects the deviation in read
count distribution in that region compared to the rest of the
cell (called Z1, see Methods), and only accepted CNVs with
absolute values of Z1-scores ≥2. (6) We reasoned that read
counts in a real CNV should be closely clustered around ex-
pected integer values (e.g. 1 or 3). To assess this, we calcu-
lated a Z-score for the deviation from the expectation (called
Z2), and only accepted events with absolute values of Z2-
scores ≤ 0.5 (see Methods, Fig. 4A, Additional file 4: Fig.
S3).

After CNV filtering, we found 12 CNV events across 295
cells in 13 AD individuals and 4 CNV events across 293
cells in 7 controls. Among the 295 pyramidal neurons
analyzed from the 13 AD patients, we found 10 deletions
(3.39% per cell) and 2 duplications (0.68% per cell). These
events ranged in size from about 10.14 to 77.01 Mb (median:
19.31 Mb) and were observed in the temporal cortex and the
entorhinal cortex. Of the 293 neurons from 7 control brains,
1 deletion (0.34% per cell) and 3 duplications (1.02% per
cell) were detected in the temporal cortex with a size range
of 10.81 to 54.67 Mb (median: 14.51 Mb). Again testing the
CNV frequency differences between AD and control brains
using a GLMM, we found no statistically significant effect
(GLMM, p≥0.88) (Fig. 4B, Additional file 2: Table S2,
Additional file 3: Table S3).

A PCA-based denoising approach minimizes within-
cell depth variability. To gain further insight into
within-cell variability in our dataset (the uncorrected-filtered
version) compared to the two published scWGS datasets,
we calculated the median CN of chr1 and chr21 (the largest

and smallest chromosomes) across all three datasets. We
still found conspicuously higher within-cell variation in our
dataset, despite having discarded highly variable cells (Fig.
2I). We then used the autosomal normalized read counts to
perform a PCA on the uncorrected-filtered data and pub-
lished datasets. We also included blank (negative control)
samples and FACS-isolated cells to illustrate how reads
counts from these two groups relate to others. According
to the PCA, LCM-isolated uncorrected-filtered data and
blank samples were separated from the published datasets
and FACS-isolated cells (Fig. 2E). This result might also
highlight distinct profiles of LCM-isolated cells.

We then sought an approach that could reduce this elevated
within-cell variability in read depth, assuming it is of tech-
nical origin and possibly related to the LCM procedure. Ex-
perimental biases could involve cross-contamination across
cells during isolation, or biases that arise during DNA ampli-
fication. Although the former should be mainly random, the
latter may follow systematic patterns, such as some chromo-
some segments being more or less prone to be amplified.

We thus devised a procedure for removing putative patterns
of systematic read depth variation across cells (see Methods).
The algorithm starts by choosing a focal cell x in the dataset,
and calculating principal components (PCs) from the normal-
ized read counts per autosome across the rest of the cells (ex-
cept cell x). It then collects all PCs explaining ≥90% of the
variance. Treating these as representatives of systematic vari-
ation, it removes their values from the normalized read counts
of cell x using multiple regression analysis. These steps
are performed on all cells individually, creating a denoised
dataset. The final dataset contains residuals from the multi-
ple regressions instead of the normalized read counts. No-
tably, this procedure should remove experimentally-induced
variation in read depth shared among cells, and also any re-
currently occurring somatic CNVs. Rare somatic CNVs, in-
stead, would be mostly unique to each cell and randomly dis-
tributed in the genome, and thus would not be affected.

After filtering cells with a low number of reads (n = 205)
and denoising our dataset with this approach, CN and
CNV prediction were performed using Ginkgo. We fur-
ther compared the results between the PCA-corrected and
"uncorrected-filtered" datasets. Examples of cells having
"noisy" profiles before and after correction are shown in Fig.
3A-C, which suggests a dramatic reduction in within-cell
variability. Beyond visual inspection, we also analyzed
three statistics. First, we studied the CN profile of cells
after PCA correction. We found 97% (1302 of 1337) now
lie between 1.9 and 2 (Fig. 4C). This result is comparable
to the two published datasets described above and much
higher than uncorrected data (45%). Second, we calculated
the number of CNV events per cell (sum of the number of
CNV/ number of cells) across datasets. In the van den Bos
2016 and McConnell 2013 datasets, we estimated 5.6 and
8.1 CNVs per cell, respectively (Fig. 3E). In our dataset,
in the uncorrected version, we found 23.9 CNVs per cell,
in the "uncorrected-filtered" data 6.0 CNVs per cell, and in
the PCA-corrected data, we estimated on average 1.0 CNV
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Fig. 3. A PCA-based denoising approach helps eliminate technical noise. A-C Examples of CN estimates of cells using uncorrected data (upper panels) and using data after
PCA-based correction (lower panels). The x-axes show chromosomes and the y-axes show the CN profile of chromosomes estimated byGinkgo. Each grey dot represents
the scaled and normalized read counts per bin. Amplifications (CN>2) are shown in red; deletions (CN<2) in blue; disomy (CN=2) in black. Our denoising approach did not
work well for three cells and the CN profiles of them are shown in Additional file 4: Fig. S2. D Distributions of the number of CN before (n = 3,521) and after correction
(n= 1298) across autosomes. For illustration purposes, the bar plot includes up to 10-somy. E Bar plot showing the number of CNVs per cell across datasets. The datasets
from our study include cells from both AD and control (Uncorrected, Uncorrected-filtered, PCA-corrected): blue; van den Bos 2016 (including cells from both AD and control):
brown; McConnell 2013: purple). The number of cells that were used to calculate CNVs per cell was shown on the X-axis label.

event per cell. The correction leads to lower CNV estimates
in our data, which is more conservative and possibly more
realistic than the higher estimates without correction. Third,
we estimated the standard deviation in CN among cells for
chr1 and chr21. For chr1 and chr21, the standard deviations
in the PCA-based data were 4 and 2.3 times lower than in
the "uncorrected-filtered" data, respectively, and compa-
rable to CN standard deviations in the two published datasets.

Subchromosomal CNVs are enriched in deletions in the
PCA-corrected data. Based on these three statistics, we
decided to study this PCA-corrected version of our datasets.
For downstream analysis, we further eliminated cells that de-
viated from the ploidy range of [1.9-2] (2.6%, 35 of 1337)
or showed extreme CNV intensity (0.08%, 1 of 1302) (Fig.
4A). We thus created a denoised dataset of 1301 pyramidal
neurons from 20 individuals.
Estimating CNVs in this dataset using Ginkgo, we found
1298 CNVs in total (∼1 event per cell). To remove false
positives, we also performed the same CNV prediction and
downstream analyses on our PCA-corrected data (Additional
file 4: Fig. S3). After these steps, we found a total of
9 deletion events (0.7% per cell) and 1 duplication event
(0.08% per cell) across 1301 cells in 20 individuals among
all tested brain regions (except for the hippocampal CA1
where no CNV event was found). This excess of deletions
is unexpected under the null hypothesis of equal expecta-
tion of duplication and deletions (two-sided binomial test
p = 0.021), but consistent with previous observations of
more deletions than duplications among somatic mutations
(6, 36, 38, 40).

No significant difference between AD and control after
PCA-correction or in the van den Bos dataset. Studying
CNV frequencies with respect to diagnosis, we found 6 CNV
events across 688 cells in 13 AD individuals and 4 CNV
events across 613 cells in 7 controls (Fig. 4E). Performing
the formal test for the hypothesis of AD versus control differ-
ences with this data, we again found no significant difference
between the groups (GLMM, p≥0.80; Additional file 3: Ta-
ble S3). Information about the CNVs and cells can be found
in Additional file 2: Table S2.
We also repeated the same analysis on the van den Bos 2016
dataset, from which originally only aneuploidy was reported.
Here we identified 11 CNV events across 883 cells in 10 AD
individuals and 3 CNV events across 585 cells in 6 controls.
The difference was in the same direction as in our dataset, but
again not significant (GLMM, p≥0.79) (Fig. 4B, Additional
file 2: Table S2, Additional file 3: Table S3).

Discussion
To the best of our knowledge, this is the first study to use
LCM to collect neuronal nuclei for scWGS. Our results
showed that LCM-isolated cells suffered from significantly
higher within-cell read depth variation compared to FACS-
isolated ones. One random source of high variation could
be cross-contamination of LCM-isolated cells during the iso-
lation (41), which in turn might be reflected in the down-
stream analysis as duplications. In line with this possibil-
ity, we found that the number of duplications (≥3-somy) is
higher than the number of deletions (0- and 1-somy) in the
uncorrected data (deletion to duplication ratio: 0.39). We ap-
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Each row shows a cell and each column shows a chromosome.

plied several elimination steps to remove "noisy" cells and to
filter nominally false positive CNVs. After these elimination
steps, the deletion to duplication ratio increased to 6.46 in the
uncorrected-filtered data.

In addition to filtering the uncorrected data, we devised a
PCA-based denoising approach to remove systematic vari-
ation across the genome, which could be experimentally-
induced, but could also reflect convergent somatic CNVs also
shared among different individuals. Segments systematically
deviating from the genome average have also been described
in other neuronal scWGS datasets (6). Our results showed
that PCA-based denoising can strongly reduce within-cell
variance in CN among cells. If the noise that was removed is
experimentally-induced, then our result means that this noise
was partly shared among cells and not entirely random. One
source of systematic bias might be genome-wide variation

in the propensity to DNA degradation and/or DNA ampli-
fication, perhaps due to GC content, chromatin structure or
nuclear location of chromosomal segments (40). Such bi-
ases would be shared among cells and effectively removed
by PCA.

Beyond the technical biases, biological factors could also ex-
plain the higher read-depth variability in LCM-isolated than
FACS-isolated neurons. Chronister and colleagues reported
that CNV frequencies in neurons (4%–23.1%) are higher than
non-neuronal cells (4.7%–8.7%) (6). Moreover, cytological
studies suggested that AD brains harbour hyperploid neurons
more frequently than healthy controls (10). Consistent with
the latter report, we found that neurons from AD patients tend
to have higher IOD than control individuals. Also, the cere-
bellum, which is relatively spared from AD, had lower IOD
than the entorhinal cortex and hippocampal areas (but not
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the temporal cortex). This might be interpreted as a reflec-
tion of biological factors on the read-depth variation which
is captured efficiently in LCM data. Indeed, if the FACS
procedure eliminated cells having abnormal karyotypes, this
would result in a cell population with artificially uniform and
"clean" ploidy levels. In conclusion, we predict that although
random factors (e.g. contamination) and systematic biases
most likely contribute to relatively high variation in LCM-
collected scWGS data, biological variation may also be a
contributor.

scWGS is a promising method for predicting CNVs with lim-
ited sequencing per cell. However, as in our study, within-cell
variation that may represent false-positive CNVs hinder anal-
yses in low coverage data. Our PCA-based denoising method
can be used as a practical solution for in silico cleaning of
such data. The approach is based on the idea that somatic
CNVs are randomly distributed in the human genome and
are particular to each cell. One possible drawback of this
approach is that if some neurons from the same individual
share the same CNV due to shared developmental ancestry,
our method will eliminate such real signals. A more subtle
approach could take into account possible clonal relatedness
among cells (42). Another drawback could arise if certain
genomic regions are predisposed to undergo copy number
changes; in that case, our method may cause overcorrection.
In our dataset, observing an unexpectedly high frequency of
CNVs (23.9 events) per cell in the uncorrected version, we
chose to remove ≥90% of the common variance. After apply-
ing PCA-based correction, the CNV rate per cell decreased
by 95.8% (Fig. 3E). This, in turn, resulted in a lower num-
ber of CNVs per cell in the corrected data, even compared to
published datasets. This difference might be attributable to
the overcorrection of normalized read counts.

We note that our PCA-based approach could also be used to
detect recurrent breakpoints in single-cell cancer genomics.
Because clonal cancer cells would also inherit the same
CNVs, shared CNV breakpoints identified in PCAs can be
used to study clonal evolution.

Our study has several limitations. First, we only focused on
relatively large (≥10 Mb) CNVs for sake of sensitivity. How-
ever, smaller CNVs may still be much more common and
could have contributions to neurodegenerative disease. Fu-
ture studies on somatic genomic variation in AD might there-
fore focus on a smaller scale (<10 Mb) CNVs, for which im-
provement of experimental protocols and/or the use of higher
coverage data appears to be needed (43). Second, our PCA-
based denoising is expected to have removed any CNVs and
aneuploidies that are shared among neurons (instead of be-
ing cell-specific), due to common origin in the same indi-
vidual or due to recurrent mutations. Therefore our results
only pertain to single cell-specific CNVs. Third, our analysis
of published data from van den Bos et al. (2016) could not
include a large fraction of cells that they had discarded for
showing high depth variability. Finally, recent work has sug-
gested that CNV-bearing neurons may be eliminated through
a lifetime in neurotypical individuals (6), and work on hy-
perploid neurons has also suggested selection against hyper-

ploidy during AD progression (10). This raises the possibil-
ity that dynamic elimination may have obscured a possible
signal of AD-control difference in neuronal CNV loads, be-
cause our sample size did not allow studying disease stage as
a separate factor.

Conclusion

Our main motivation in this study was to describe the rel-
ative prevalence of CNVs in the AD brain, where the ev-
idence has been equivocal. Contrary to earlier cytogenetic
work, a scWGS study had reported no difference in neuronal
aneuploidy levels in the frontal cortex of AD patients versus
controls (5). However, the CNV load in different brain re-
gions and relative frequency to the healthy age-matched con-
trols had remained unclear. For example, the entorhinal cor-
tex and hippocampal CA1 have roles in memory formation
and learning and are the earliest and most heavily affected
regions in AD (44). On the other hand, hippocampal CA3
is less affected, and neurons in the cerebellum are thought
to be relatively spared from neurodegenerative disease (34).
Here we tackled the same question by comparing AD patients
and controls using LCM-isolated cells across five different
brain regions, either using the raw data (n = 588 cells after
filtering) or using a denoising approach (n = 1301 cells af-
ter filtering). To our knowledge, this is the first dataset that
includes scWGS data from pyramidal neurons isolated from
AD and control brains in multiple brain regions. Although
our AD sample contained slightly higher CNV frequencies
than the control sample, none of the comparisons was sta-
tistically significant. Our analysis of the van den Bos 2016
dataset yielded a qualitatively similar result, also consistent
with the original observation of no significant difference in
aneuploidy levels in this dataset (5). Overall, our results call
for further research into the possible role of CNVs in AD
pathogenesis.

Methods

Tissue sources. Frozen postmortem human brain tissues
-temporal cortex, hippocampal subfields cornu ammonis
(CA) 1, hippocampal subfields cornu ammonis (CA) 3,
cerebellum (CB) and entorhinal cortex (EC)- from a total
of 13 AD patients and 7 healthy age-matched controls were
obtained from the GIE NeuroCEB Brain Bank (France).
The Braak stages of the samples were provided by the GIE
NeuroCEB Brain Bank. All experiments were conducted at
Paul-Flechsig-Institute (Leipzig University, Germany).

Ethics Statement. The samples were obtained from brains
collected in a Brain Donation Program of the Brain Bank
NeuroCEB run by a consortium of Patients Associations:
ARSEP (association for research on multiple sclerosis),
CSC (cerebellar ataxias), LECMA (European league against
Alzheimer disease) and France Parkinson. The consents, that
have been validated by the Ethical Committee Ile de France
6, were signed by the patients themselves or their next of
kin in their name, in accordance with the French Bioethical
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Laws. The Brain Bank NeuroCEB has been declared at the
Ministry of Higher Education and Research and has received
approval to distribute samples (agreement AC-2013-1887).
The autopsy protocol has been approved by the Biomedicine
Agency as requested by the French Law.

Fluorescence-activated cell sorting (FACS). Neuronal
nuclei were extracted following the protocol described in
(45). Briefly, frozen brain samples were thawed in the
hypotonic lysis buffer. Neuronal nuclei were stained with
propidium iodide and sorted using BD FACSAria II SORP
(BD Biosciences). Genomic DNA was then isolated and
amplified as described below (see scWGS library preparation
and sequencing).

Laser capture microdissection (LCM). Frozen brain
samples at –80°C were thawed to -20°C, sliced using Cry-
oCut Freezing Microtome at 30 µm thickness, and mounted
on a membrane slide (Carl Zeiss). After staining with cresyl
violet, single cells were cut out and placed into an adhesive
cap by PALM MicroBeam (Carl Zeiss). Neurons of the
individual 5603 were collected using both FACS (n = 12)
and LCM (n= 64).

scWGS library preparation and sequencing. Ge-
nomic DNA was amplified using WGA4 (GenomePlex®

Single Cell Whole Genome Amplification Kit) and then
purified using the MinElute PCR Purification Kit (Qiagen).
The specific adapters were added to the DNA via Phusion®

PCR followed by purification with the MinElute PCR Pu-
rification Kit (Qiagen). Sample quality was evaluated using
agarose gel electrophoresis. Sequencing was performed on
the HiSeq2500 platform (Illumina) with paired-end 100 bp
(PE100) or 150 bp (PE150) modes.

Read quality control and alignment. The FastQC tool
(version 0.11.9) was used to check the quality of the raw Illu-
mina reads. The results of FastQC were summarized using
MultiQC (version 1.9) (46). The mean sequence lengths of
the reads (ranging between 101 and 151) were inspected us-
ing the output of the MultiQC (general_stats_table). To
avoid biases that would affect the interpretation of the results,
all reads were trimmed to a length of 66 (the longest possible
length in all reads). Illumina adapter and low-quality bases
(the first 35 bp) were removed using Trimmomatic (47)
with the following parameters: "ILLUMINACLIP:TruSeq3-
PE-2.fa:2:30:10:8:TRUE HEADCROP:35 MINLEN:66
CROP:66". The quality of the trimmed reads was checked
again using both FastQC and MultiQC. Adapter-trimmed
paired-end FASTQ files were mapped to the hg19 human
reference genome (/ftp://ftp.ensembl.org/pub/
release-75/fasta/homo_sapiens/dna/) using
Burrows-Wheeler Alignment (BWA v.0.7.17) (48) with
"aln" and "sampe" options.

Filtering. The output of the BWA aligner in Sequence
Alignment/Map (SAM) format was further processed by

SAMtools v1.10 (49) to obtain high-quality uniquely
aligned reads. The applied steps are as follows:
(1) keep reads mapped in proper pair and discard reads
marked with SAM flag 3852:
samtools view -f 2 -F 3852 -b file.sam > file.bam

(2) extract uniquely mapped reads from BAM files:
samtools view -h file.bam | egrep -i "^@ | XT:A:U" |
samtools view -Shu - > file.bam2 (39)
(3) obtain reads having MAPQ scores 60:
samtools view -h -q 60 file.bam2 > file.bam3

(4) sort BAM files:
samtools sort file.bam3 > file.sorted.bam

(5) filter out PCR duplicates:
samtools rmdup -S file.sorted.bam file_rm.sorted.bam

(6) index BAM files:
samtools index -b file_rm.sorted.bam

(7) convert BAM file into BED format using the Bedtools
"bamToBed" command (Bedtools v2.27.1) (50).

Coverage. Bedtools v2.27.1 algorithm "genomeCov-
erageBed" was used to obtain coverage of the bases on each
BAM file. Then the output file was used to calculate the
coverage of each sample.

CNV prediction and cell elimination. CNV calling
was performed using Ginkgo (35). The command-
line version of Ginkgo was downloaded from https:
//github.com/robertaboukhalil/ginkgo. The
tool was run under the following settings: (1) variable size
of 500 kb bins (39) based on simulations of 76 bp reads
aligned with BWA, (2) independent segmentation method,
(3) ward and euclidean options for the clustering method and
clustering distance metric, respectively. Before the segmen-
tation step, GC correction was performed by Ginkgo using
the R function "LOWESS" (see (35)). For segmentation,
Ginkgo uses the CBS algorithm implemented in DNAcopy
in R (51). DNAcopy runs with the following parameters:
alpha=0.0001, undo.SD=1, min.width=5 (40).

The number of reads was divided into the variable size of
500 kb bins that correspond to 5578 genomic windows.
Only cells with > 50,000 reads were kept in downstream
analyses (approximately nine reads per window), resulting
in n= 1337 cells.

Published datasets.

The van den Bos 2016 dataset: Data was downloaded from
EBI ArrayExpress with the accession numbers E-MTAB-
4184 and E-MTAB-4185 (5). Only the cells that were re-
ported as having good quality libraries were included in
the analysis (AD:883; control:586; Down’s syndrome:34).
Adapter sequences were trimmed with the following
parameters: "ILLUMINACLIP:adapter.fa:2:30:10:8:TRUE
MINLEN:51". Single end reads were aligned to the hg19 hu-
man reference genome using BWA with "aln" and "samse"
options. The remaining steps are the same as those described
in sections Filtering, except that here we used the SAM flag
3844 (because this dataset was single-end sequenced) and
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used MAPQ scores 20 (because this dataset did not have
enough reads which having the MAPQ 60). Note that due
to the missing sample information in the database, the num-
ber of analyzed cells in this work does not match what van
den Bos and colleagues reported in their original publication.
The McConnell 2013 dataset: FASTQ files of 110 cells
were downloaded from the NCBI SRA database with
accession number SRP030642 (36). Adapter sequence was
trimmed with the following parameters: "ILLUMINA-
CLIP:adapter.fa:2:30:10:8:TRUE MINLEN:39". Paired-end
reads were aligned to the hg19 human reference genome
using BWA with "aln" and "sampe" options. The remain-
ing steps are the same as those described in sections Filtering.

Statistical modeling of CNV frequencies and IOD
levels. When modelling CNV frequencies, our null hypoth-
esis was no difference in the frequency of CNVs in the AD
brain when compared to healthy controls. The overdispersed
and zero-dominated nature of the response variable, i.e.
the frequency of CNVs, suggested that the data should be
fitted using a zero-inflated negative binomial model. For
this reason, we used the "glmmadmb" function (package:
glmmADMB)(52) in R 3.6.3 with the following parameters:
"zero-inflated = TRUE" and "family = nbinom1". The fixed
factors of the model were diagnoses (AD and control),
chromosomes (autosomes), sex (male and female), brain
regions (temporal cortex, hippocampus CA1, hippocampus
CA3, cerebellum, entorhinal cortex), and coverage per cell.
The individual effect was added as a random factor. Note
that sex could not be used as a fixed factor in the van den
Bos 2016 dataset because cells that remained after filtering
only belonged to females.
When modelling the IOD data, we used the same approach as
above. Levels of the response variable, IOD, was predicted
using diagnoses (AD and control), brain regions (temporal
cortex, hippocampus CA1, hippocampus CA3, cerebellum,
entorhinal cortex) and coverage as explanatory variables us-
ing the "glmmadmb" function (package: glmmADMB) (52)
in R 3.6.3. Individual effects were added as a random factor.
The distribution of the IOD was right-skewed and the model
was run with the "family = gamma" parameter.
To compare the IOD across different brain regions, we
used "lme" function (package: nlme) in R 3.6.3 with di-
agnoses as fixed effects and the individual as a random effect.

Copy number statistics. After reads were mapped
into the bins, read counts in each bin were divided by the
mean read counts across bins for each cell. This value
corresponds to the normalized read counts as calculated by
Ginkgo (see (35)).
A Z1-score for each CNV was calculated using the normal-
ized read counts. It was calculated as the cell mean (mean
normalized read counts across autosomes) minus the CNV
mean (mean read counts between CNV boundaries) divided
by the standard deviation (sd) of CNV:

Z1-score =
meancell−meanCNV

sdCNV

The Z2-score of each CNV was calculated by calculating the
difference between the Ginkgo-estimated integer copy num-
ber state (1 or 3) and the observed normalized read count, di-
viding by the standard deviation (sd) of the normalized read
counts:

Z2-score =
estimated_stateCNV −mean(observed_readcountCNV )

sdCNV

CNVs with two standard deviations below or above the
cell’s mean and CNVs with Z2-score smaller than or equal
to 0.5 were kept in the analysis. Using these combinations,
monosomy X (≥90% of the chromosome’s length) was
correctly predicted in 58.1% (217 of 373) of males in the
uncorrected data.

Principal component analysis (PCA). To remove ex-
perimental noise from the data, the following steps were
applied for every cell: (1) one cell (x) at a time was discarded
from the analysis. For the remaining cells, PCA was applied
on the normalized read counts using the "prcomp" function
with the parameter "scale.=TRUE" in R 3.6.3. (2) n PCs that
explained at least 90% of the variance in total was chosen.
(3) To remove the effect of the chosen PCs from the focal
cell x, a linear regression model with normalized read counts
from cell x as a response, and the n PCs as explanatory
variables was constructed using the R "lm" function. (4)
Residuals from this model were calculated. (5) To prevent
errors during a lowess fit of GC content (log transformation
of negative residuals produces NaNs), plus one was added to
the residuals. If there still remained values less than or equal
to zero, those values were replaced with the smallest positive
number for the focal cell x. (6) The resulting value was set
as a new value of the focal cell x, and Ginkgo was run with
the new values.
Also, PCA of the normalized read counts across different
datasets was performed in R 3.6.3 using the "prcomp"
function with the parameter "scale.=FALSE".
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Additional Files
Additional file 1 — Table S1. Sample information.

Additional file 2 — Table S2. Information about the cells and significant CNVs. A-B: Uncorrected data. C-D corrected data.
E-F: van den Bos

Additional file 3 — Table S3. Tables show the GLMM results across different datasets and models. Note that we did not
apply any multiple testing correction. A-G: Uncorrected filtered data. H-N: PCA-corrected data. O-Q: van den Bos. R-X:
Uncorrected data.

Additional file 4. Figures S1: Information about the samples of uncorrected and PCA-corrected data. Figures S2: CN profiles
of three cells deviating from the range of 1.9 and 2 after correction. Figures S3: Examples of CNVs that failed to pass and
passed the filtering criteria in the uncorrected-filtered data and PCA-corrected data.
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