
picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/5/20 — page 1 — #1

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Computational Biology

Succinylated lysine residue prediction revisited
Shehab Sarar Ahmed 1,∗, Zaara Tasnim Rifat 1, Mohammad Saifur Rahman 1

and M. Sohel Rahman 1,∗

1Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Lysine succinylation is a kind of post-translational modification (PTM) which plays a crucial role
in regulating the cellular processes. Aberrant succinylation may cause inflammation, cancers, metabolism
diseases and nervous system diseases. The experimental methods to detect succinylation sites are
time-consuming and costly. This thus calls for computational models with high efficacy and attention has
been given in the literature for developing such models, albeit with only moderate success in the context of
different evaluation metrics. One important aspect in this context is the biochemical and physicochemical
properties of amino acids, which appear to be useful as features for such computational predictors.
However, some of the existing computational models did not use the biochemical and physicochemical
properties of amino acids, while some others used them without considering the inter-dependency among
the properties.
Results: The combinations of biochemical and physicochemical properties derived through our
optimization process achieve better results than the results achieved by the combination of all the
properties. We propose three deep learning architectures, CNN+Bi-LSTM (CBL), Bi-LSTM+CNN (BLC)
and their combination (CBL_BLC). We find that CBL_BLC is outperforming the other two. Ensembling of
different models successfully improves the results. Notably, tuning the threshold of the ensemble classifiers
further improves the results. Upon comparing our work with other existing works on two datasets, we find
that we successfully achieve better sensitivity and specificity through varying the threshold value.
Availability: https://github.com/Dariwala/Succinylation-with-biophysico-and-deep-learning
Contact: msrahman@cse.buet.ac.bd
Supplementary information: Supplementary data are available at https://github.com/Dariwala/Succinylation-
with-biophysico-and-deep-learning/Supplementary Information

1 Introduction
Lysine succinylation (addition of succinyl group to the lysine residue)
is an important Post-translational modification (PTM) in regulating
the cellular processes [7]. It can encourace change of charge in the
surroundings and stimulate structural and functional adjustments to
substrate proteins. Succinylation is involved in a variety of core energy
metabolism pathways, including amino acid degradation, tricarboxylic
acid cycle and fatty acid metabolism, TCA cycle, pentose phosphate
pathway, glycolysis/gluconeogenesis, and pyruvate metabolism [20].
Hence, detecting and investigating the succinylated lysine residues (will
be referred to as SLR henceforth) is the key to understand the function of

proteins. Moreover, succinylation may lead to inflammation, tuberculosis
[21]. The dysregulation of succinylations have also been found to cause
diseases including cancers [23] and metabolism diseases [27]. Therefore,
it is crucial to identify SLRs in the field of physiology too.

Although there exist several experimental techniques (e.g., mass
spectrometry, liquid chromatography) for detecting PTM sites, they
are usually costly and time consuming. This thus calls for in silico
computational techniques to provide predictions of SLRs with high
efficacy.

The first SLR predictor, named iSuc-PseAAC, was presented in [26].
It achieved a sensitivity of only 50%. Around the same time, another
group independently developed another predictor named SuccFind [24].
They ranked the biochemical and physicochemical (will be referred to
as biophysico henceforth) properties from AAindex [13] and adopted

© The Author 2015. All rights reserved. 1

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492505
http://creativecommons.org/licenses/by-nc-nd/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/5/20 — page 2 — #2

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

2 Shehab et al.

the best property, i.e., isoelectric point. Another predictor, SucPred [30]
also exploits sequence based features like SuccFind. They reported only
sensitivity score of their proposed model.

One year later, iSuc-PseOpt [11] was proposed which adopted pseudo
amino-acid composition (PseAAC) to encode the peptides surrounding
the lysine residues. However, this work suffers from data leakage problem
(i.e., information of the test set was used to preprocess the dataset). Within
a very short period, the same authors came up with another predictor,
pSuc-Lys [12], which was free from the data leakage issue.

In 2017 and 2018, Dehzangi et al. proposed four succinylation
predictors SucStruct [14], PSSM-Suc [3], Success [15] and SSEvol-Suc
[4]. All four classifiers made the same mistake done by the authors of
iSuc-PseOpt [11].

On the other hand, Hasan et al. proposed three predictors in three
consecutive years, namely, SuccinSite [7], SuccinSite2.0 [5] and GPSuc
[6]. These three works applied several feature selection strategies to reduce
the dimesionality of the feature space. However, the train dataset is not the
same as the ones used by the previous works. So, the comparison made in
these works with the existing works is not valid.

Psucce [16] used one-hot encoding and AAC in addition to top
ten biophysico properties. Inspector [31] incorporated several sequence
based features and achieved an improved sensitivity with respect
to SuccinSite2.0, Psucce and GPSuc. A very recently developed
tool, predML-Site [1] used several sequence-based features including
autocorrelation function (ACF), several biophysico properties, pseudo
amino acid composition (PseAAC) and used the SVM algorithm for
training.

A novel deep-learning based predictor named MUscADEL [2] was
developed using recurrent neural network (RNN) for predicting SLRs.
But, nothing has been clearly mentioned about the independent dataset
that was used to evaluate the performance and compare with other existing
works.

Later on, HybridSucc [17] was developed by integrating traditional ML
algorithms with Deep Neural Networks (DNNs). It achieved significantly
better AUC values compared to several existing predictors.

One of the pioneering works in this field, DeepSuccinylSite [22],
experimented with both one hot vectors and embedding vectors and fed
them into a convolutional neural network This tool reported significantly
better performance compared to previously mentioned predictors.

In 2021, LSTMCNNsucc [10] was proposed. It achieved a higher
Matthews Correlation Coefficient (MCC) compared to DeepSuccinylSite.
However, the achieved sensitivity is very low.

Finally, during the write-up stage of this thesis, the publication of a new
predictor, called DeepSucc [29] came to our knowledge. While the reported
performance is significantly better than all other previous predictors, upon
careful scrutiny we found that the codebase shared by the authors contains
multiple discrepancies. This will be elaborately discussed in Section 3.6.

2 Methods

2.1 Datasets

We use two datasets as follows (Table 1). The first dataset (D1) is collected
from the Protein Lysine Modification Database (PLMD) [25]. The authors
of [7] compiled the second dataset (D2) from UniprotKB/SwissProt and
NCBI Protein Sequence Database. The detailed steps of preprocessing the
datasets are described in Section 1 of the Supplementary File.

2.2 Representation of samples

We refer to the SLRs as positive samples and all other lysine residues in the
same proteins as negative samples. Each of the lysine residue is represented
by a number amino acids (say, w) on both its upstream and downstream
(Figure 1 of Supplementary File). We will refer to 2w + 1 as the context

Table 1. Summary statistics of the two datasets, D1 and D2.

Type
D1 D2

Positive Negative Positive Negative
Samples Samples Samples Samples

Training 5816 5826 3790 7460
Validation 696 686 960 2040

Test 1479 16457 254 2977

window. We use 2w + 1 = 33 as has been used by DeepSuccinylSite
[22]. If there are less number of amino acids on any side of the concerned
lysine residue, mirror effect is used to keep the context window fixed for
each sample.

2.3 Selecting a subset of biophysico properties

While we are interested to include biophysico properties as features in our
model, many of the 566 biophysico properties may not be relevant for the
prediction of SLRs. Therefore, for each of them, a Random Forest (RF)
classifier is trained with the training sets of both D1 & D2 by replacing
each amino acid with its value for the corresponding property. The classifier
is then evaluated on the corresponding validation dataset with respect to
Matthews Correlation Coefficient (MCC) (See details about the MCC and
other performance metrics in Section 2 of Supplementary File). The 95%
percentile of the 566 MCC values is computed and only those features are
considered for which the MCC values are greater than the 95% percentile.
So, we are remained with 566 × 0.95 ≈ 29 properties for each dataset.
In what follows, we only focus on these 29 properties.

2.4 Inheritable bi-objective genetic algorithm

Exhaustive search for the best combination is infeasible because there
are 229 − 1 possible non-empty combinations from the 29 biophysico
properties. Therefore, we need to leverage heuristic method to search for
suitable combinations in this big search space. Inheritable bi-objective
genetic algorithm (IBCGA) [8] consists of an intelligent genetic algorithm
[9] with an inheritable mechanism. The algorithm adopts a divide and
conquer strategy with orthogonal array crossover (please refer to Section
3.2 of Supplementary File for details) to solve optimization problems with
large number of parameters.

In the context of IBCGA, each individual will be called a chromosome
containing genes. Each of the biophysico properties works as a binary
gene constructing the chromosome. A value of 1 (0) for any binary gene
means it is being considered (not considered) for the prediction of SLR.
The feature space is constructed by taking the biophysico properties having
value 1 and concatenating the values of these properties for all of the amino
acids in the context window. The centered lysine residue is excluded in this
step because it is the same across all the samples. An RF is trained and
the achieved MCC of the classifier on the corresponding validation dataset
works as the fitness of that individual. The detailed steps to calculate the
fitness of an individual is demonstrated in Figure 1.

At each iteration, the IBCGA algorithm maintains a number of
solutions each having r genes with value 1, where rstart ≤ r ≤ rend.
Here, r is the number of 1’s in each chromosome. The steps of the algorithm
with the given values of rstart and rend are as follows [9].

Step 1. Generate Npop random individuals (chromosomes) each
having r genes with value 1.
Step 2. Evaluate the fitness of the individuals using the procedure
described in Figure 1.
Step 3. Select Pc × Npop individuals from the current population
by the 2-way tournament selection algorithm in pairs and perform
orthogonal array crossover on each of these pairs. Here, Pc is the
crossover probability.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492505
http://creativecommons.org/licenses/by-nc-nd/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/5/20 — page 3 — #3

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

3

0 1 0 1

Biophysico Properties Working as Binary Genes

0.38 0.18 0.03 0.17 0.6

A P K H I

Context window = 33

Accessible and Buried
Surfaces in Proteins

0.18 -0.2 -2.53 -1.48 0.37

A P K H I

Context window = 33

Hydrophobic Bonding
of Small Peptides

Concatenate features

Random Forest
Classifier

Matthews Correlation
CoefficientFitness

Fig. 1. Evaluation of fitness value for an individual from the chromosome. An individual
consists of a number of amino acids, the amino acids from the upstream and downstream
of the lysine residue. The lysine residue itself is ignored because it is the same across all
the samples. The biophysico properties corresponding to the binary genes having value 1
are considered for each of these amino acids. These features are concatenated and an RF is
trained on the feature space of training samples. The MCC on the corresponding validation
set is considered the fitness of the individual.

Table 2. Number of trainable parameters in each of the deep learning
architectures.

Model CBL BLC CBL_BLC
Trainable parameters 5489 8465 19025

Step 4. Two genes’ values are swapped as part of mutation for Pm ×
Npop individuals. This mutation is not applied on the best individual
for any specific r in order to preserve the best fitness value.
Step 5. Repeat Steps 2 to 4 Niter times. In the (Niter + 1)th time,
go to Step 6.
Step 6. Randomly change one binary gene’s value from 0 to 1 for each
of the Npop individuals in order to increase the value of r by 1. If
r ≤ rend go to Step 2. Else, terminate the algorithm.

2.5 Deep Learning Architecures

2.5.1 Model Overview
We consider only simpler architectures with lesser parameters (Table 2).
We initially experiment with two different architectures, where we leverage
the power of CNN and Bi-LSTM architectures. Our two basic settings
are Bi-LSTM+CNN (BLC) and CNN+Bi-LSTM (CBL). As the name
indicates, the main difference between BLC and CBL models lies in
the order the two constituent deep neural network architectures have
been connected to each other. We then use the combination of these
two architectures to build a better predictor (referred to as CBL_BLC
henceforth).

The reason for choosing CNN and Bi-LSTM as our fundamental
models is not arbitrary. As protein sequence is a sequential data, both 1D-
CNN and LSTM can extract features from the protein sequence. However,
CNN’s main function is to extract local features whereas LSTM can
capture the long-range dependency in the sequence. Notably, Zhang et
al. experimented with CNN-LSTM, LSTM-CNN architectures in [29] for
building SLR predictors. The architectures of CBL, BLC and CBL_BLC
are shown in Figure 2. The None in each cell represents the batch size.

2.5.2 Loss functions and Checkpoints
We experimented with three loss functions (appropriate for binary
classification), namely, binary cross-entropy, hinge loss and squared hinge
loss (see Section 5 of Supplementary File for details of these loss functions)

and choose binary cross-entropy as this gives better results than the other
two. During training the deep learning architectures with D2 dataset, we
use weighted binary cross-entropy (see Section 5.1 of Supplementary File)
because the number of negative samples is twice the number of positive
samples. So, we penalize the model two times more for predicting a 1 as 0
than predicting a 0 as 1 by setting (w0, w1) = (1, 2). We run our model
with batch size set to 128 and for 80 epochs. We monitor the loss on the
validation dataset after each epoch and save a checkpoint of the model if
the calculated loss is smaller than the smallest loss found so far. After the
training is complete, we use the model that has had the smallest validation
loss across the 80 epochs.

2.5.3 Ensembling of different models
We train each of the three architectures for 5 times. This results in
5 different versions for each architecture. We calculate the average
probability of a sample’s belonging to class 1 according to the following
equation:

Probability =
1

N

N∑
i=1

pi, (1)

where, pi is the predicted probability from the ith classifier. If this
probability is less than a pre-defined threshold, the ensemble classifier
classifies the sample as 0, otherwise the sample is classified as 1. We
initially set the threshold value to 0.5 to evaluate the performance of the
ensemble classifiers.

2.5.4 Tuning the threshold for ensemble classifiers
As has been discussed in Section 2.5.3, we have a parameter called
threshold which is initially set to 0.5. However, if we decrease (increase)
the threshold value, the SN (SP) will increase compromising the SP (SN).
Hence, this parameter can be tuned to produce ‘better’ results under
different circumstances where it may be more desirable to achieve a better
SP or SN for that matter. We use differential evolution algorithm (see
Section 6 of Supplementary File for details) to find an optimal value for
the threshold to improve the performance. Each individual in this algorithm
refers to a threshold value. The fitness of an individual is the MCC value
obtained by the ensemble classifier on the validation dataset.

3 Results and Discussions

3.1 Performance of combination of biophysico properties

The 29 properties derived from Section 2.3 is the universal set of properties
for the IBCGA algorithm. We set rstart = 1, rend = 20, Npop =

50, Niter = 5. We take the values of both Pm and Pc from the set
{0.5, 0.6, 0.7, 0.8, 0.9} resulting in 25 different combinations of Pm and
Pc. The best MCC values obtained on both the validation datasets of D1
and D2 for each value of r is shown in Figure 3.

We observe that using all the top 29 biophysico properties is giving
us comparatively poorer performance if compared with the performances
of r = 2 to r = 20. This proves the necessity of searching for suitable
combinations rather than using all the better performing properties as has
been done by several works in the literature [7, 6, 16, 29]. Hence, we
obtain 19 models trained by RF for r = 2 to r = 20 for both D1 and D2
datasets.

3.2 Performance of deep learning architectures

We use Adam optimizer to train CBL, BLC and CBL_BLC. We perform
the training of each of the architectures 5 times and report the average
performance on the validation dataset in Figure 4. We observe that the
CBL_BLC is the winner with respect to SP, ACC & MCC for both datasets.
CBL achieves the highest SN for both datasets at the cost of the lowest
SP. From SN-SP trade-off point of view, CBL_BLC is the best for D1
and BLC is the best for D2 because they achieve very good SN without
compromising SP.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492505
http://creativecommons.org/licenses/by-nc-nd/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/5/20 — page 4 — #4

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

4 Shehab et al.

Fig. 2. The CBL_BLC architecture has two branches. The left branch corresponds to the architecture of BLC. The one-hot encoded (details of one-hot encoding is discussed in Section 4
of Supplementary File) protein sequences are first fed into bidirectional LSTM layer. 1D-CNN layer follows this layer. The output of the CNN layer goes through a flatten layer. The right
branch corresponds to the architecture of CBL. Here, the one-hot encoded protein sequences are first fed into 1D convolution layer. The local features extracted from the CNN layer are
then fed into the Bidirectional LSTM layer. In CBL_BLC, the features from these two architectures are concatenated and passed through two densely connected layers.

0.408

0.386 0.38
0.392

0.409
0.397

0.373

0.396 0.4
0.39 0.383 0.389 0.388

0.396 0.389
0.4

0.389
0.407 0.4

0.372

0.0

0.1

0.2

0.3

0.4

r =
 2

r =
 3

r =
 4

r =
 5

r =
 6

r =
 7

r =
 8

r =
 9

r =
 1

0

r =
 1

1

r =
 1

2

r =
 1

3

r =
 1

4

r =
 1

5

r =
 1

6

r =
 1

7

r =
 1

8

r =
 1

9

r =
 2

0

r =
 2

9

Number of properties

M
C

C

0.364 0.369 0.373
0.36 0.357 0.36 0.366 0.365

0.357 0.357 0.355 0.36 0.36 0.356 0.356 0.362 0.363 0.364
0.356 0.35

0.0

0.1

0.2

0.3

r =
 2

r =
 3

r =
 4

r =
 5

r =
 6

r =
 7

r =
 8

r =
 9

r =
 1

0

r =
 1

1

r =
 1

2

r =
 1

3

r =
 1

4

r =
 1

5

r =
 1

6

r =
 1

7

r =
 1

8

r =
 1

9

r =
 2

0

r =
 2

9

Number of properties

M
C

C

Fig. 3. The IBCGA algorithm was run for 25 different pairs of values for Pc and Pm . The
best MCC value obtained among the 25 values for each value of r is recorded. These are
the histogram plots of the best MCC values for D1 and D2 against each value of r from 2
to 20. r = 29 means we are using all the 29 biophysico properties.

3.3 Performance of ensemble classifiers

As has been already mentioned in Section 2.5.3, we have run each of the
models for 5 times. We can ensemble these 5 models as we expect that
even if some of the 5 models misclassify a sample, majority will correctly
classify that one. We have obtained 19 models from the combination of
biophysico properties (see Section 3.1). We will refer to the collection of
these models as BP. We denote the ensemble classifier of any architecture
by appending ‘-E’ to the respective name. Hence, CBL-E will represent
the ensemble classifier of CBL and so on. Similarly, the ensemble of CBL
and BLC classifiers will be denoted as (CBL+BLC)-E. The performance
of the ensemble classifiers are shown in Table 3.

CBL_BLC-E dominates CBL-E and BLC-E on both D1 and
D2 datasets except with respect to SN. In case of (CBL+BLC)-E,
(BLC+CBL_BLC)-E and (CBL+BLC+CBL_BLC)-E, the performances
are not improving much from the individual ensemble classifiers (i.e.,
CBL-E, BLC-E and CBL_BLC-E). If we observe the performance of BP-
E both on D1 and D2 datasets, we note that the SN (0.745 on validation
set of D1, 0.705 on validation set of D2) is competitive if compared to
the SNs of CBL-E, BLC-E and CBL_BLC-E. However, BP-E is lagging
way behind with respect to SP which makes the other metrics (ACC and
MCC) poor too. However, we achieve the highest SN, ACC and MCC
on the dataset D1 with (CBL+BLC+CBL_BLC+BP)-E which shows the
usefulness of the suitable combinations of biophysico properties. Although
(CBL+BLC+CBL_BLC+BP)-E is not the best with respect to any metric
on the dataset D2, the SN is almost touching the highest value (i.e., 0.724).

3.4 Tuning the threshold parameter

We use the differential evolution class from the scipy.optimize (scipy
version 1.2.0) package to optimize the MCC value. We keep the lower
bound of the threshold as 0.4 and upper bound as 0.6. The tol (tolerance)
parameter is set to 1e-7. Other parameters are kept as the default ones.
The algorithm is run 10 times and the threshold value that gives the best
MCC value is recorded. The comparison of the tuned models along with
the untuned models are shown in Figure 5. We observe that with the tuned
threshold values, the ensemble classifiers are able to achieve better MCC
compared to the MCC achieved by the ensemble classifiers with default
threshold (i.e., 0.5).

3.5 Comparison with existing works

We choose the (CBL+BLC+CBL_BLC+BP)-E for dataset D1 to compare
with the existing works as this achieves the best MCC value. For dataset D2
we consider both CBL_BLC-E and (CBL+BLC+CBL_BLC)-E models
for the following two reasons: (a) both are quite competitive with each
other and (b) although second best, (CBL+BLC+CBL_BLC)-E is the
ensemble of higher number of classifiers. Hence, the probability of the
unseen samples from the test dataset to be correctly classified is higher
with (CBL+BLC+CBL_BLC)-E.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492505
http://creativecommons.org/licenses/by-nc-nd/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/5/20 — page 5 — #5

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

5

0.752

0.698
0.73

0.62

0.679 0.684 0.6860.688
0.707

0.3750.377
0.415

0.7030.6985 0.685

0.736

0.78
0.8

0.725
0.753 0.76

0.421

0.466 0.475

D1 D2

SN SP ACC MCC SN SP ACC MCC

0.0

0.2

0.4

0.6

0.8

Performance metrics

V
al

ue

model

CBL

BLC

CBL_BLC

Fig. 4. Performance of CBL, BLC and CBL_BLC on the validation dataset of D1 and D2. Five independent runs are conducted for each architecture and dataset combination, and the
average performance values are reported. The SN of CBL is the best for both datasets. For the other three metrics, CBL_BLC is the winner for both datasets.

Table 3. Performance of different ensemble classifiers on the validation dataset of D1 and D2. (CBL+BLC+CBL_BLC+BP)-E achieves best SN, ACC, MCC in
D1. (CBL+BLC)-E achieves best SN in D2. (BLC+CBL_BLC)-E achieves best SP in D1. CBL_BLC-E achieves best SP, ACC, MCC in D2.

Architecture
D1 D2

SN SP ACC MCC SN SP ACC MCC
CBL-E 0.764 0.624 0.695 0.392 0.702 0.744 0.73 0.429
BLC-E 0.717 0.685 0.701 0.402 0.712 0.791 0.765 0.49

CBL_BLC-E 0.744 0.691 0.718 0.436 0.6985 0.81 0.772 0.498
BP-E 0.745 0.64 0.695 0.391 0.721 0.66 0.681 0.361

(CBL+BLC)-E 0.759 0.657 0.708 0.418 0.724 0.775 0.758 0.483
(BLC+CBL_BLC)-E 0.7299 0.692 0.711 0.423 0.707 0.8 0.769 0.496

(CBL+BLC+CBL_BLC)-E 0.748 0.678 0.713 0.428 0.717 0.787 0.764 0.49
(CBL+BLC+CBL_BLC+BP)-E 0.772 0.681 0.726 0.454 0.723 0.766 0.752 0.472

Note that, if the comparison is being conducted on the same dataset
(i.e., both training and test datasets are same), we directly use the reported
results from the respective paper. In the case when we have to compute
the results for a predictor on a different dataset, we re-implement the
predictor and train with the same training data that is being used to
train our model. The training and testing dataset of D1 has been directly
used by LSTMCNNsucc [10]. Although DeepSuccinylSite [22] used
solely the training and testing dataset of D2, we re-implemented this
predictor to re-calculate the performance of DeepSuccinylSite because
it undersampled the test dataset before evaluation but other previous

works didn’t. Hence, we are able to calculate its performance on D1
too. The results of these predictors along with the performance of both
(CBL+BLC+CBL_BLC+BP)-E and tuned (CBL+BLC+CBL_BLC+BP)-
E on the test dataset of D1 are shown in Table 4. We observe that both
of our models are performing better than DeepSuccinylSite. However,
LSTMCNNSucc has a significantly better SP at the cost of a very poor SN
indicating that this method is performing poorly on the actual task, which
is to predict the positive sites as positive.

The tools Succinsite, SuccinSite2.0, GpSuc, Psucce, Inspector,
DeepSuccinylSite and DeepSucc used the training and testing dataset

0.392
0.408 0.402

0.42
0.436 0.441

0.391
0.414 0.418 0.42 0.423

0.442
0.428 0.436

0.454
0.465

0.429
0.448

0.49 0.494 0.498 0.506

0.361
0.376

0.483 0.488 0.496 0.502
0.49

0.505

0.472
0.49

D1 D2

C
B

L−
E

B
LC

−
E

C
B

L_
B

LC
−

E

B
P

−
E

(C
B

L+
B

LC
)−

E

(B
LC

+
C

B
L_

B
LC

)−
E

(C
B

L+
B

LC
+

C
B

L_
B

LC
)−

E

(C
B

L+
B

LC
+

C
B

L_
B

LC
+

B
P

)−
E

C
B

L−
E

B
LC

−
E

C
B

L_
B

LC
−

E

B
P

−
E

(C
B

L+
B

LC
)−

E

(B
LC

+
C

B
L_

B
LC

)−
E

(C
B

L+
B

LC
+

C
B

L_
B

LC
)−

E

(C
B

L+
B

LC
+

C
B

L_
B

LC
+

B
P

)−
E

0.0

0.1

0.2

0.3

0.4

0.5

Models

M
C

C

Not tuned

Tuned

Fig. 5. Performance of tuned and untuned ensemble classifiers. For all the models on both datasets, we see an improvement in MCC with the tuned value compared to the untuned value of
the threshold.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492505
http://creativecommons.org/licenses/by-nc-nd/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/5/20 — page 6 — #6

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

6 Shehab et al.

Table 4. Performance of some existing works on the testing dataset of D1 along with the performance of (CBL+BLC+CBL_BLC+BP)-E (with threshold=0.5 and
tuned threshold)

Method Threshold SN SP ACC MCC Remarks
LSTMCNNSucc - 0.592 0.796 0.779 0.251 Low SN
DeepSuccinylSite - 0.725 0.593 0.604 0.176 Low SP

(CBL+BLC+CBL_BLC+BP)-E 0.5 0.751 0.677 0.683 0.246 High SN
Tuned (CBL+BLC+CBL_BLC+BP)-E 0.491 0.769 0.658 0.668 0.24 Highest SN,low SP

of D2. The results of these predictors along with the performance of
(CBL+BLC+CBL_BLC)-E (with different thresholds) on the test dataset
of D2 are shown in Table 5. We observe that (CBL+BLC+CBL_BLC)-E
with a threshold of 0.5 achieves a moderate SN and SP and as a result, has
a higher MCC value than the MCC value of all other methods except the
MCC achieved by DeepSucc. Unfortunately, as is marked in Table 5, the
results reported in [29] is unreliable at best; Section 3.6 discusses several
issues with this predictor.

Tuned (CBL+BLC+CBL_BLC)-E achieves the highest SN among the
existing works at the cost of a low SP. CBL_BLC-E achieves a better SP
and MCC compared to the SP and MCC of (CBL+BLC+CBL_BLC)-E.
However, the tuned CBL_BLC-E does not achieve a good SN if compared
with the SN of tuned (CBL+BLC+CBL_BLC)-E. It is evident from the
result of tuned (CBL+BLC+CBL_BLC)-E that if we increase the threshold
a little from the tuned value, SN will decrease and SP will increase. We have
shown an example in Table 5 with a threshold value that produces better
result than DeepSuccinylSite with respect to both SN and SP. Although
unrealiable, we have to note that the performance of DeepSucc is better
in all cases due to a very high SP at the cost of a moderate SN. We will
present a more detailed discussion on this method in the following section.

3.6 A Discussion on DeepSucc [29]

During the write-up stage of this paper, the publication of a new predictor,
called DeepSucc [29] came to our knowledge. We thoroughly investigated
the codebase shared by the paper and found some issues which are
discussed below.

• They performed cross-validation to compare among different
architectures. But in their code, we find that after each fold of cross-
validation was performed, the authors mistakenly did not re-initialize
the variables which has resulted in a data leakage. Hence, the claimed
results are completely unreliable. And our repeated communications
with the authors did not get any response.

• The code which was used for performing testing on the dataset D2 is
completely absent in the repository. Although there is a folder named
“Test" inside the repository, all the codes correspond to the cross-
validation codes.

• We re-implemented their architectures from the provided code
removing the errors but the produced results were far worse than the
claimed ones.

For the above-mentioned reasons, the DeepSucc’s results seem
unreliable at best. Therefore, although we have reported the results of
DeepSucc (as reported in their paper), we actually exclude those from our
comparative analysis and discussion.

3.7 SN-SP tradeoff

It is evident from earlier discussion that increasing the threshold will
increase (decrease) the SP (SN) and vice versa. The SN and SP of three of
our ensemble classifiers for different threshold values ranging from 0.4 to
0.6 along with the SN and SP of some of the notable existing classifiers
are shown in Figure 6.

D1 D2

0.4 0.6 0.8 0.4 0.6 0.8

0.4

0.6

0.8

SP

S
N

model

(CBL+BLC+CBL_BLC)−E

(CBL+BLC+CBL_BLC+BP)−E

BP−E

DeepSucc

DeepSuccinylSite

Inspector

LSTMCNNSucc

Fig. 6. SN vs SP of several ensemble classifiers and of some notable existing predictors for
different threshold values ranging from 0.4 to 0.6 for both D1 and D2. The circles focus
the existing classifiers.

We observe that our best classifiers (i.e., (CBL+BLC+CBL_BLC+BP)-
E for D1, (CBL+BLC+CBL_BLC)-E for D2) are better than all of the
existing predictors. Although BP-E is lagging far behind the other two
classifiers for both datasets, we can see a sharper increase in SP and sharper
decrease in SN as the threshold increases for BP-E compared to the other
two classifiers.

4 Conclusion
In this paper, we have proposed an optimization algorithm to search
for suitable combinations of biophysico properties for better prediction
of succinylated lysine residues. We have achieved better performance
with a few properties compared to the performance achieved through
combining all the top performing properties. We have experimented with
some simple deep learning architectures CBL, BLC and CBL_BLC with
lesser number of trainable parameters. We have also employed different
ensembling techniques to improve upon the performance of our models,
which included heterogeneous ensembling of traditional ML models with
deep learning architectures as well. Finally, we have applied differential
evolution to tune the threshold of ensemble classifiers thereby providing
the biologists and practitioners with a knob to balance the SN and SP.
We have showed that our models have achieved better results than the
existing state-of-the-arts through varying the threshold value. We believe
that our methodology, if applied on state-of-the-art giant models like
XLNet [28], MPNet [19] will produce even better results, albeit at the
cost of huge money, energy and time which is against the concept of
GreenAI [18]. Also, the models will have to be re-trained for different
datasets which would be infeasible in most cases. The main motivation
of constructing computational models for detecting PTM sites is that
the wet lab experimental methods are costly and time-consuming. If the
proposed computational model is also time consuming and costly to train,
the purpose is not served. We believe that our simple deep learning models
along with the suitable combinations of biophysico properties will serve as
a useful tool for the biologists to filter the lysine residues on which further
wet lab experiments will be conducted.

References
[1]Sabit Ahmed, Afrida Rahman, Md Al Mehedi Hasan, Julia Rahman,

Md Khaled Ben Islam, and Shamim Ahmad. predml-site: Predicting multiple

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492505
http://creativecommons.org/licenses/by-nc-nd/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/5/20 — page 7 — #7

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

7

Table 5. Performance of several existing works on the testing dataset of D2 along with the performance of CBL_BLC-E (with threshold=0.5, tuned threshold) and
(CBL+BLC+CBL_BLC)-E (with threshold=0.5, tuned threshold and for another example threshold, namely, 0.438)

Method Threshold SN SP ACC MCC Remarks
Succinsite - 0.371 0.882 0.842 0.199 Low SN

Succinsite2.0 - 0.457 0.884 0.85 0.263 Low SN
GPsuc - 0.499 0.883 0.853 0.296 Low SN
Psucce - 0.375 0.886 0.845 0.204 Low SN

Inspector - 0.693 0.717 0.715 0.238 Average SN,SP
predML-Site - 0.094 0.918 0.854 0.013 Extremely Low SN

DeepSuccinylSite - 0.7874 0.687 0.695 0.268 Good SN,average SP
DeepSucc - 0.705 0.823 0.814 0.3437 Unreliable

CBL_BLC-E 0.5 0.693 0.771 0.764 0.282 Average SN,Good SP
Tuned CBL_BLC-E 0.435 0.76 0.707 0.711 0.267 Good SN,average SP

(CBL+BLC+CBL_BLC)-E 0.5 0.697 0.753 0.748 0.269 Average SN,Good SP
Tuned (CBL+BLC+CBL_BLC)-E 0.402 0.811 0.653 0.665 0.257 High SN,Low SP

(CBL+BLC+CBL_BLC)-E 0.438 0.791 0.688 0.696 0.271 High SN,average SP

lysine ptm sites with optimal feature representation and data imbalance
minimization. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2021.

[2]Zhen Chen, Xuhan Liu, Fuyi Li, Chen Li, Tatiana Marquez-Lago, André Leier,
Tatsuya Akutsu, Geoffrey I Webb, Dakang Xu, Alexander Ian Smith, et al.
Large-scale comparative assessment of computational predictors for lysine post-
translational modification sites. Briefings in bioinformatics, 20(6):2267–2290,
2019.

[3]Abdollah Dehzangi, Yosvany López, Sunil Pranit Lal, Ghazaleh Taherzadeh,
Jacob Michaelson, Abdul Sattar, Tatsuhiko Tsunoda, and Alok Sharma. Pssm-
suc: Accurately predicting succinylation using position specific scoring matrix
into bigram for feature extraction. Journal of theoretical biology, 425:97–102,
2017.

[4]Abdollah Dehzangi, Yosvany López, Sunil Pranit Lal, Ghazaleh Taherzadeh,
Abdul Sattar, Tatsuhiko Tsunoda, and Alok Sharma. Improving succinylation
prediction accuracy by incorporating the secondary structure via helix, strand
and coil, and evolutionary information from profile bigrams. PloS one,
13(2):e0191900, 2018.

[5]Md Mehedi Hasan, Mst Shamima Khatun, Md Nurul Haque Mollah, Cao
Yong, and Dianjing Guo. A systematic identification of species-specific protein
succinylation sites using joint element features information. International
journal of nanomedicine, 12:6303, 2017.

[6]Md Mehedi Hasan and Hiroyuki Kurata. Gpsuc: Global prediction of generic and
species-specific succinylation sites by aggregating multiple sequence features.
PloS one, 13(10):e0200283, 2018.

[7]Md Mehedi Hasan, Shiping Yang, Yuan Zhou, and Md Nurul Haque Mollah.
Succinsite: a computational tool for the prediction of protein succinylation sites
by exploiting the amino acid patterns and properties. Molecular bioSystems,
12(3):786–795, 2016.

[8]Shinn-Ying Ho, Jian-Hung Chen, and Meng-Hsun Huang. Inheritable genetic
algorithm for biobjective 0/1 combinatorial optimization problems and its
applications. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 34(1):609–620, 2004.

[9]Shinn-Ying Ho, Li-Sun Shu, and Jian-Hung Chen. Intelligent evolutionary
algorithms for large parameter optimization problems. IEEE Transactions on
evolutionary computation, 8(6):522–541, 2004.

[10]Guohua Huang, Qingfeng Shen, Guiyang Zhang, Pan Wang, and Zu-Guo Yu.
Lstmcnnsucc: A bidirectional lstm and cnn-based deep learning method for
predicting lysine succinylation sites. BioMed research international, 2021,
2021.

[11]Jianhua Jia, Zi Liu, Xuan Xiao, Bingxiang Liu, and Kuo-Chen Chou. isuc-
pseopt: identifying lysine succinylation sites in proteins by incorporating
sequence-coupling effects into pseudo components and optimizing imbalanced
training dataset. Analytical biochemistry, 497:48–56, 2016.

[12]Jianhua Jia, Zi Liu, Xuan Xiao, Bingxiang Liu, and Kuo-Chen Chou. psuc-lys:
predict lysine succinylation sites in proteins with pseaac and ensemble random
forest approach. Journal of theoretical biology, 394:223–230, 2016.

[13]Shuichi Kawashima and Minoru Kanehisa. Aaindex: amino acid index database.
Nucleic acids research, 28(1):374–374, 2000.

[14]Yosvany López, Abdollah Dehzangi, Sunil Pranit Lal, Ghazaleh Taherzadeh,
Jacob Michaelson, Abdul Sattar, Tatsuhiko Tsunoda, and Alok Sharma.
Sucstruct: prediction of succinylated lysine residues by using structural
properties of amino acids. Analytical biochemistry, 527:24–32, 2017.

[15]Yosvany López, Alok Sharma, Abdollah Dehzangi, Sunil Pranit Lal, Ghazaleh
Taherzadeh, Abdul Sattar, and Tatsuhiko Tsunoda. Success: evolutionary
and structural properties of amino acids prove effective for succinylation site
prediction. BMC genomics, 19(1):105–114, 2018.

[16]Qiao Ning, Xiaosa Zhao, Lingling Bao, Zhiqiang Ma, and Xiaowei Zhao.
Detecting succinylation sites from protein sequences using ensemble support
vector machine. BMC bioinformatics, 19(1):1–9, 2018.

[17]Wanshan Ning, Haodong Xu, Peiran Jiang, Han Cheng, Wankun Deng, Yaping
Guo, and Yu Xue. Hybridsucc: a hybrid-learning architecture for general
and species-specific succinylation site prediction. Genomics, proteomics &
bioinformatics, 18(2):194–207, 2020.

[18]Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai.
Communications of the ACM, 63(12):54–63, 2020.

[19]Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked
and permuted pre-training for language understanding. Advances in Neural
Information Processing Systems, 33:16857–16867, 2020.

[20]Annapoorna Sreedhar, Elizabeth K Wiese, and Taro Hitosugi. Enzymatic and
metabolic regulation of lysine succinylation. Genes & Diseases, 7(2):166–171,
2020.

[21]GM Tannahill, AM Curtis, J Adamik, EM Palsson-McDermott, AF McGettrick,
Goel Goel, C Frezza, NJ Bernard, B Kelly, NH Foley, et al. Succinate is an
inflammatory signal that induces il-1β through hif-1α. Nature, 496(7444):238–
242, 2013.

[22]Niraj Thapa, Meenal Chaudhari, Sean McManus, Kaushik Roy, Robert H
Newman, Hiroto Saigo, and Dukka B Kc. Deepsuccinylsite: a deep learning
based approach for protein succinylation site prediction. BMC bioinformatics,
21(3):1–10, 2020.

[23]Ye Xiangyun, Niu Xiaomin, et al. Desuccinylation of pyruvate kinase m2 by sirt5
contributes to antioxidant response and tumor growth. Oncotarget, 8(4):6984,
2017.

[24]Hao-Dong Xu, Shao-Ping Shi, Ping-Ping Wen, and Jian-Ding Qiu. Succfind:
a novel succinylation sites online prediction tool via enhanced characteristic
strategy. Bioinformatics, 31(23):3748–3750, 2015.

[25]Haodong Xu, Jiaqi Zhou, Shaofeng Lin, Wankun Deng, Ying Zhang, and
Yu Xue. Plmd: an updated data resource of protein lysine modifications. Journal
of Genetics and Genomics, 44(5):243–250, 2017.

[26]Yan Xu, Ya-Xin Ding, Jun Ding, Ya-Hui Lei, Ling-Yun Wu, and Nai-Yang
Deng. isuc-pseaac: predicting lysine succinylation in proteins by incorporating
peptide position-specific propensity. Scientific reports, 5(1):1–6, 2015.

[27]Yun Yang and Gary E Gibson. Succinylation links metabolism to protein
functions. Neurochemical research, 44(10):2346–2359, 2019.

[28]Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems, 32, 2019.

[29]Die Zhang and Shunfang Wang. A protein succinylation sites prediction
method based on the hybrid architecture of lstm network and cnn. Journal
of Bioinformatics and Computational Biology, p. 2250003, 2022.

[30]Xiaowei Zhao, Qiao Ning, Haiting Chai, and Zhiqiang Ma. Accurate in silico
identification of protein succinylation sites using an iterative semi-supervised
learning technique. Journal of theoretical biology, 374:60–65, 2015.

[31]Yan Zhu, Cangzhi Jia, Fuyi Li, and Jiangning Song. Inspector: a lysine
succinylation predictor based on edited nearest-neighbor undersampling and
adaptive synthetic oversampling. Analytical Biochemistry, 593:113592, 2020.

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.492505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.492505
http://creativecommons.org/licenses/by-nc-nd/4.0/

