
A Novel Strategy for Dynamic Modelling of  
Genome-Scale Interaction Networks 

Abstract 
Background: 

Modern medicine is equipped with huge amounts of big biological datasets and a wide range of 
computational methods to understand the molecular events underlying complex disorders. The 
recent availability of omics data allows a holistic view towards the interactions of various 
biomolecule types. However, the constructed maps are static, ignoring the dynamicity of 
molecular processes. On the other hand, the dynamic models of biological systems are commonly 
generated in small scales. Hence, the construction of large scale dynamic models that can 
quantitatively predict the time-course cellular behaviors is a big challenge. This study was aimed 
at developing a pipeline for automatic construction of such models from time-course 
experimental data.  

Results: 

Information of interactions between input genes is retrieved from SIGNORE 2.0 database and an 
interaction network is constructed which then is translated to biochemistry language and 
converted to a biochemical reactions network. In the next step, a large-scale ODE system is 
constructed by generating the ODE equivalent of each biochemical reaction. To estimate the 
kinetics parameters of the ODE model, a novel large-scale parameter approximation method is 
proposed. This method gives an estimation of system parameters by fitting model outputs to 
time-course experimental measurements. The total pipeline is provided as a MATLAB toolbox 
called SPADAN, standing for Systematic Protein Association Dynamic ANalyzer. Using multilayer 
time-series experimental data, the performance of the pipeline was checked by modeling 4379 
regulatory interactions between 768 molecules in colon cancer cells exposed to chemotherapy 
agents.  

Conclusion: 

Starting from time-series experimental data, SPADAN automatically constructs map of 
interactions, generates an ODE system, and performs a parameter approximation procedure. It 
constructs genome-scale dynamic models, filling the gap between large-scale static and small-
scale dynamic modeling strategies. This simulation approach allows for holistic quantitative 
predictions which is critical for the simulation of therapeutic interventions in precision medicine.  
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 Introduction 
Although in the past decades, medicine has experienced great success in different areas such as 
infectious diseases, surgical procedures, imaging techniques, and diagnostic tests, efficient 
management of most non-communicable disorders (NCDs) is yet an unmet goal. The recent 
availability of huge amount of data has led to the understanding that most disorders are not 
caused by malperformance of a few genes or proteins, but alteration of the interactions between 
a large number of biomolecules [1]. The emergence of systems biology has raised hopes to 
approach the complexity of the underlying mechanisms of chronic diseases and pave the way for 
more satisfying therapeutic strategies. 

In the top-down approach of systems biology, graph theory is employed to analyze the map of 
interactions between large numbers of biomolecules[2]. However, these networks are static and 
provide only a snapshot of the system, ignoring the time-dependency nature of biomedical 
processes. On the other hand, dynamic modeling strategies employed in the bottom-up approach 
of systems biology allow the generation of quantitative and predictive models which incorporate 
the dynamism of such processes[3], [4]. Although such models are valuable tools to analyze and 
forecast the functions of biological systems, they are generally constructed in small scales. 
Indeed, the generation of predictive models of diseases which are both dynamic and holistic is 
yet a major challenge.   

The generation of large-scale dynamic models of metabolic systems has been attempted by some 
investigators; Smallbone et al developed a dynamic model of yeast metabolic machinery 
consisting of 820 metabolites and 956 metabolic reactions[5]. The model structure was 
constructed by appending some previous dynamic models and the kinetic parameters were 
harvested from the Biomodels database repository [5]. To overcome the problems related to the 
large-scale of genome-wide metabolic networks, Smith et al presented a python package, named 
DMPy, which uses metabolic networks (containing the details of biochemical reactions) as input 
and automatically converts it to a large set of differential equations. Then, the parameter values 
are collected from different databases to construct the dynamic model [6]. In addition to ODEs, 
constraint-based modeling which imposes known biological constraints to limit the solution 
space [7], has also been employed to model large-scale metabolic networks [8], [9].   

The partial adequacy of knowledge on the rate of enzymatic reactions in metabolic networks has 
made the generation of genome-wide dynamic models feasible. However, to the best of our 
knowledge, such models are not yet developed for protein-protein interaction (PPI) networks. 
Not only the lack of sufficient experimental evidence on the rate of reactions, but also the 
unavailability of large-scale biochemical information of the reactions has hindered the conversion 
of big PPI networks to dynamic models.  
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In this paper, we introduce a novel strategy to automatically convert PPI networks to genome-
wide dynamic models. In this pipeline, for a given list of proteins, the PPI network is constructed 
and then the details of reactions are considered in order to translate the network data to the 
biochemical language. This biochemical network is then automatically converted to an ODE 
system. In the next step of the pipeline, a parameter estimation algorithm based on a large-scale 
and distributed approach is proposed to provide system parameters according to high 
throughput time-series experimental data. This strategy, which is called SPADAN, allows a holistic 
insight into the dynamism of protein interactions and provides quantitative predictions of system 
behavior. We have assessed the applicability of this approach to model the interactions of 
proteins in colorectal cancer and to predict response to specific chemotherapy agents.   

 

Methods 
Data acquisition  
A proteomics dataset (PXD007740) pertinent to the time-course exploration of proteomics and 
phosphoproteomics of colorectal cancer cells produced by Anna Ressa et al [10]. was retrieved 
from the ProteomeXchange database1. The analyzed RNAseq data of these cells were also 
obtained as a supplementary file of this report [10].  
Proteomics and Phosphoproteomics data analysis  
Raw MS data were analyzed with MaxQuant version (1.6.8.0) integrated with Andromeda search 
engine against human-reviewed proteome from UniProt FASTA database. Trypsin was configured 
as a specific enzyme with a maximum of two missed cleavages. For proteomics data, cysteine 
carbamidomethylation was considered as fixed modification and methionine oxidation and N-
terminal acetylation as variable modifications. For phosphopeptides, cysteine 
carbamidomethylation and phospho (STY) were selected. Proteins were quantified based on 
unique+razor peptides and two minimum ratio counts. A significance threshold of 0.1 was 
considered both for peptide spectrum match and protein false discovery rates. The “match 
between runs” was enabled for all analyses. All quantified peptides and phosphopeptides were 
filtered for reverse, contaminant, and only identified by sites. Also, phosphosites were retained 
if they were below a localization probability rate of 75%. To estimate the absolute abundance of 
proteins “proteomic ruler” plugin of Perseus was employed. 
 
Hardware description 
SPADAN was written and developed in MATLAB 2015b. The SPADAN computation procedure is performed 
by a PC with16GB RAM and Intel(R) Core(™) i3-6100 CPU. 

  

                                                            
1  http://proteomecentral.proteomexchange.org 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.491854doi: bioRxiv preprint 

http://proteomecentral.proteomexchange.org/
https://doi.org/10.1101/2022.05.20.491854


Results  
This study is aimed at developing a strategy to generate dynamic insights of interactions at the 
proteome scale. Starting from time-series experimental data, the developed algorithm generates 
a PPI network and then translates the interactions into a biochemical language. This biochemical 
network is then converted to a series of ODEs and parameters are estimated using a novel large-
scale and distributed parameter estimation technique. The algorithm performs all of these steps 
automatically. This pipeline is schematically depicted in Fig. 1 and the steps are described below.  

 

 

Fig. 1. SPADAN modeling procedure pipeline. SPADAN toolbox uses high throughput time-series experimental data 
from cells to make an ODE model from them. From step I to step III, SPADAN only uses IDs of gene elements 
detected in the considered cell. In step IV, the values of time-series concentrations are used to estimate unknown 
parameters of the ODE model.    

 

 

Step I: Harvesting network interactions 
After getting the list of proteins, SPADAN harvests interactions from the SIGNORE database 
(ppr83), which includes experimentally validated protein interactions. For the scale of feasibility, 
we focused on common interaction types including phosphorylation, dephosphorylation, 
ubiquitination, binding, and transcriptional regulation. An advantage of the SIGNORE database is 
that the effect of interactions on involved proteins (activation, inhibition, upregulation, or 
downregulation) is known which is essential for the construction of biochemical networks. The 
PPI network from SPADAN gives a holistic static view of the interactions between given proteins.  
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Step II: Converting PPI network to biochemical reaction network 
The construction of PPI networks is a way to schematically illustrate the interactions between 
proteins. This depiction mode is concise and mainly focused on outcomes rather than processes. 
For instance, phosphorylation of protein A by protein B is simply shown with a single edge, 
ignoring different underlying molecular processes. However, in terms of biochemical processes, 
this interaction is a set of reactions each with a different parameter. Similarly, other molecular 
interactions can be considered as a series of biochemical reactions (Table 2). This translation from 
network language to biochemical reactions is an essential step in the construction of the model 
structure. In order to include transcriptional regulations, the participating genes are considered 
at DNA and RNA levels in addition to the protein level. For instance, in transcriptional 
upregulation, regulatory protein A binds the DNA of gene B and activates the transcription of B 
RNA which then is translated to protein B. For genes without transcriptional regulation edges, a 
basal level of protein production is assumed.  In addition, a degradation rate is assumed for all 
reactants and products. An example of converting a small PPI network to biochemical reactions 
network is shown in Fig. 2. 

 

Fig. 2. An example from converting PPI network to biochemical reactions network. The shown procedure is performed by 
SPADAN automatically to use the biochemical reactions network in further modeling steps.  

 

Using the data harvested from SIGNORE, SPADAN generates an “active mode table” showing 
different forms of proteins in terms of PTM modifications and indicates which PTM mode is the 
active state of each protein (Table 1). We acknowledge that this is a simplification of the real 
world in which PTM modifications do not necessarily result in on and off switch-like behaviors 
but may result in partial augmentation or inhibition of basal activities and also the active state is 
not restricted to one of the PTM modes.  
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Table 1. Active mode table. In the modeling procedure performed by SPADAN, for each protein, only one of three forms shown in 
the table is consumed as active and the other two are consumed as inactive forms. The table is automatically made by scanning 
the types and effects of PPI network edges. 

An advantage of the developed algorithm is that it recognizes that each protein is present in 
different fractions at a given time point in terms of PTM modifications,  bound to DNA or bound 
to other proteins. Indeed, the measured concentration of a given protein at a time is the sum of 
concentrations of these fractions. Each protein form is considered as an element and receives a 
unique ID in the algorithm. Furthermore, each element may participate in different reactions and 
there are overlaps between reactants and products of different reactions. Hence, the 
biochemical reactions are inter-connected and construct a biochemical network. In order to 
organize the data of metabolic reaction network for downstream computational processes, a “3D 
reactions matrix” is generated with several 2D pages. Each page represents a biochemical 
reaction with two columns for reactants and products. The matrix is shown in Fig. 3. 
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Fig. 3. The 3D matrix "reactions" is used by SPADAN to store biochemical reactions network. Each page of the matrix represents 
one reaction in the biochemical reactions network that includes IDs of reactants and products in the first and second columns 
respectively. These two columns do not necessarily have same size. 

 

 

Protein-Protein interaction type Biochemical reactions 

Phosphorylation 𝐴𝐴 + 𝐵𝐵 ⇌ 𝐴𝐴|𝐵𝐵 ⟶ 𝐴𝐴 + 𝐵𝐵𝑃𝑃ℎ𝑜𝑜𝑜𝑜 

Dephosphorylation 𝐴𝐴 + 𝐵𝐵𝑃𝑃ℎ𝑜𝑜𝑜𝑜 ⇌ 𝐴𝐴|𝐵𝐵𝑃𝑃ℎ𝑜𝑜𝑜𝑜 ⟶ 𝐴𝐴 + 𝐵𝐵 

Ubiquitination 𝐴𝐴 + 𝐵𝐵 ⇌ 𝐴𝐴|𝐵𝐵 ⟶ 𝐴𝐴 + 𝐵𝐵𝑈𝑈 

Complex formation 𝐴𝐴 + 𝐵𝐵 ⇌ 𝐴𝐴|𝐵𝐵 

Transcriptional upregulation 𝐴𝐴 + 𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷 ⇌ 𝐴𝐴|𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷 ⟶ 𝐴𝐴 + 𝐵𝐵𝑅𝑅𝐷𝐷𝐷𝐷      𝐵𝐵𝑅𝑅𝐷𝐷𝐷𝐷 → 𝐵𝐵 

Transcriptional downregulation 𝐴𝐴 + 𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷 ⇌ 𝐴𝐴|𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷 ↛ 𝐴𝐴 + 𝐵𝐵𝑅𝑅𝐷𝐷𝐷𝐷  

Protein production 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 → 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐴𝐴𝑅𝑅𝐷𝐷𝐷𝐷     𝐴𝐴𝑅𝑅𝐷𝐷𝐷𝐷 → 𝐴𝐴 

Protein degradation 𝐴𝐴 ⟶ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
Table 2. Simplified Biochemical reactions that each type of  Protein-Protein interaction includes. 
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Step III: Converting biochemical reactions network to a large scale ODE system 
The biochemical reactions network provides deep insight on what is happening between 
interacting molecules. However, it does not explain the dynamic behavior of the system. In order 
to fuse dynamic insights, a large-scale ODE system is constructed by generating the ODE 
equivalent of each biochemical reaction automatically. Although SPADAN is able to employ 
Michaels-Menten or Hill kinetics, all reactions in the colorectal cancer biochemical network are 
modeled based on mass action law in order to avoid pre-assumptions of those models.  
Consequently, the changing speed of molecules’ concentration in each reaction is written as a 
function of the concentrations of substrates and the kinetic parameter of the reaction. Since each 
molecule can take part in several reactions, the rate of the concentration change for it is the 
algebraic sum of the concentration changing rates in those reactions. PPI networks are generally 
constructed to provide a holistic description of the underlying events of complex biomedical 
phenomena, commonly composed of large numbers of interactions. The size of the model even 
expands when PPI networks are translated to biochemical networks. Thus, the ODE system 
constructed based on these networks has an unusually large scale. Therefore, applying novel 
strategies to decrease computational costs is of critical importance.  

Since the ODE solver used in this paper employs the Euler method which is explained in ( 1 ), the 
solver calls function 𝐹𝐹 in each time step of integration.  

�̇�𝑋 = 𝐹𝐹(𝑋𝑋,𝐾𝐾) 
𝑋𝑋(𝑡𝑡+∆𝑡𝑡) ≅  𝑋𝑋(𝑡𝑡) +  𝐹𝐹(𝑋𝑋(𝑡𝑡),𝐾𝐾) ⋅ ∆𝑡𝑡 

( 1 ) 

Where 𝑋𝑋 and 𝐾𝐾 are  the matrices of state variables and  model parameters. The function 𝐹𝐹 is the 
matrix of parametric state equtions of the model which depends on 𝐾𝐾 and 𝑋𝑋. 

On the other hand, completing the integration requires thousands of time steps. Thus, decreasing 
the computation cost of the function 𝐹𝐹 has a considerable effect on the progression speed of 
model simulation and consequently in parameter estimation. In order to lower the computation 
cost of calculating 𝐹𝐹, the SPADAN converts the nonlinear ODE system to matrix multiplications 
as described further. 

Since mass-action law is employed to analyze reaction speeds, the rate of reaction 𝑖𝑖  which is 
shown with 𝑣𝑣𝑖𝑖 can be shown as follow: 

𝑣𝑣𝑖𝑖 = 𝑘𝑘𝐹𝐹𝑖𝑖𝑥𝑥𝑟𝑟1𝑥𝑥𝑟𝑟2𝑥𝑥𝑟𝑟3 …   −  𝑘𝑘𝐵𝐵𝑖𝑖𝑥𝑥𝑝𝑝1𝑥𝑥𝑝𝑝2𝑥𝑥𝑝𝑝3 … 

( 2 ) 

  where 𝑘𝑘𝐹𝐹𝑖𝑖 and  𝑘𝑘𝐵𝐵𝑖𝑖  are forward and backward reaction rate constants, 𝑥𝑥𝑟𝑟1 ,𝑥𝑥𝑟𝑟2 ,𝑥𝑥𝑟𝑟3,... represent 
reactants of the reaction and 𝑥𝑥𝑝𝑝1 ,𝑥𝑥𝑝𝑝2 ,𝑥𝑥𝑝𝑝3,... represent the products. 
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The derivative of each state variable is calculated by 

ẋ𝑘𝑘 = � 𝑐𝑐𝑚𝑚𝑣𝑣𝑚𝑚

𝑀𝑀

𝑚𝑚=1

 

( 3 ) 

  where 𝑀𝑀 is the total number of reactions, 𝑣𝑣𝑚𝑚 is the rate of the reaction m and 𝑐𝑐𝑚𝑚 is a variable 
with 3 possible values of 0, 1, or -1. The variable 𝑐𝑐𝑚𝑚 is evaluated based on the role of the state 
variable 𝑥𝑥𝑘𝑘 in the reaction 𝑚𝑚.  

The nonlinear structure of the equations in ( 2 ) and ( 3 ) shows that it is not possible to write the 
ODE system in the form of a linear ODE system as follows:  

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵 

( 4 ) 

Thus, the ODE solver can’t calculate �̇�𝑋 by matrix multiplications and may need to calculate each ẋ𝑘𝑘 
separately and save them into the matrix �̇�𝑋 which increases computation cost exponentially by 
enlarging the size of the ODE system. 

To overcome this challenge, the matrix of total reaction rates, denoted by 𝑉𝑉 is calculated as 

𝑉𝑉(𝑋𝑋,𝑲𝑲)𝑚𝑚×1 = 𝐾𝐾𝐹𝐹 ⊙ 𝑋𝑋𝑅𝑅1 ⊙ 𝑋𝑋𝑅𝑅2 ⊙ 𝑋𝑋𝑅𝑅3 ⊙ … −  𝐾𝐾𝐵𝐵 ⊙ 𝑋𝑋𝑃𝑃1 ⊙ 𝑋𝑋𝑃𝑃2 ⊙ 𝑋𝑋𝑃𝑃3 ⊙ … 

( 5 ) 

where ⊙ is the element-wise product and 𝐾𝐾𝐹𝐹 and  𝐾𝐾𝐵𝐵 include forward and backward reaction 
rate constants. 𝑋𝑋𝑃𝑃𝑃𝑃 and 𝑋𝑋𝑅𝑅𝑃𝑃  include the list of 𝑗𝑗𝑡𝑡ℎ products and reactants for all reactions 
respectively. The number of 𝑋𝑋𝑅𝑅𝑖𝑖s and 𝑋𝑋𝑝𝑝𝑖𝑖s depend on the maximum number of reactants and 
products of the reactions. By analyzing the roles of each state variable in reactions, matrix 𝐻𝐻 is 
given by   

ℎ𝑖𝑖,𝑃𝑃 = �
1, 𝒊𝒊  is a product in reaction  𝒋𝒋

−1, 𝒊𝒊  is a substrate in reaction  𝒋𝒋
0, 𝒊𝒊  is not in reaction  𝒋𝒋

 

( 6 ) 

Consequently, multiplying 𝑉𝑉 by 𝐻𝐻 results in the matrix �̇�𝑋 which is shown in ( 7 ). 

�̇�𝑋𝑛𝑛×1 =  𝐹𝐹𝑛𝑛×1(𝑋𝑋,𝐾𝐾) =  𝐻𝐻𝑛𝑛×𝑚𝑚 × 𝑉𝑉𝑚𝑚×1  

( 7 ) 

In this method of calculating �̇�𝑋, in each time step of integration, the ODE solver calculates indices 
of  �̇�𝑋 simultaneously. Testing this method on the nonlinear ODE model of colon cancerous cells 
with 3,347 state variables (which is explained further) shows that the proposed method could 
decrease mean calculation time from 2.5 seconds to 0.25 second for each time of ODE solving 
with similar initial values. 
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Taken together, using the SPADAN algorithm, the total biochemical reactions network is modeled 
by ordinary differential equations which have a set of unknown reactions' kinetic parameters 
denoted as 𝐾𝐾. In further steps, SPADAN tries to find an acceptable approximation of 𝐾𝐾 using 
time-course experimental data and parameter estimation techniques. 

 

Step IV: Parameter estimation 
In the parametric ODE system automatically made by SPADAN, there is one parameter for one-directional 
and two parameters for two-directional biochemical reactions. Therefore, in large-scale models SPADAN 
works with, there is a large number of unknown parameters. Considering that Proteins, post-
translational modified proteins, DNAs, and RNAs are the basic elements of the model, due to the 
shortage of experimental data on their biological reactions rates, providing acceptable 
estimations of model parameters based on time-series measurements is of utmost importance. 

In order to estimate model parameter values, SPADAN uses the Least-squares method in which 
the gap between model simulation time points and experimental data time points is defined as 
an objective function called 𝑆𝑆. After that, model parameters are altered by an optimizer to 
minimize the objective function (REF). The way of calculating 𝑆𝑆 is shown as follows: 

𝑆𝑆 =  ��(𝑦𝑦�𝑖𝑖𝑃𝑃 − �̂�𝑒𝑖𝑖𝑃𝑃)2
𝑛𝑛

𝑃𝑃=1

 
𝑚𝑚

𝑖𝑖=1

 

( 8 ) 

where �̂�𝑒𝑖𝑖𝑃𝑃is the normalized experimental data and 𝑦𝑦�𝑖𝑖𝑃𝑃is the normalized model simulation. The 
variables 𝑖𝑖 and 𝑗𝑗 show the number of biological elements and time points respectively. The total 
number of biological elements and time points are also shown with variables 𝑚𝑚 and 𝑛𝑛. The 
normalization method of experimental data and model simulations depends on the 
measurement technique and the nature of measured values. 

Due to the nonlinear kinetics of biochemical reactions, the ODE systems that SPADAN works with 
are mostly nonlinear. Therefore, during developing SPADAN, the performance of nonlinear 
optimization algorithms such as unconstrained quasi-newton, Nelder-Mead Simplex Method 
[11], and Levenberg-Marquardt Algorithm [12] was tested for large-scale parameter estimation 
problems. The results have shown that the progression toward the optimization solution 
becomes exponentially more complicated by increasing the number of unknown parameters and 
model equations. This is because gradient-based algorithms such as quasi-newton and 
Levenberg-Marquardt use numerical methods to estimate gradients which need numerous times 
of model simulations by increasing the number of unknown parameters. In addition, by 
increasing the size of the ODE system, each model’s simulation time increases which result in 
incrementing the total computation cost. However the Nelder-Mead Simplex Method doesn't 
use derivatives, the number of needed model simulations for each step progression in it is related 
to the number of unknown parameters which makes it hard to find an answer in a feasible time. 
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To overcome this challenge, an approximation method has been proposed that speeds up the 
optimizer progression by considering the interconnectivity between parameters and state 
variables in ODE equations. Based on this method, the total optimization problem is broken into 
many sub-optimal problems to find the best possible answer. This method is the upgraded 
version of the optimization method declared in [13].  

At the first step of this method, the parameters that exist in the derivative equation of each state 
variable are grouped into a set labeled with that state variable’s name.  For example in the ODE 
system shown in Fig. 4, 𝐾𝐾𝑥𝑥𝑥𝑥 is the name of parameters related to the variable 𝑥𝑥𝑥𝑥. In the next step, 
state variables are sorted based on their repetition time in the equations which is related to their 
effectiveness on the manner of the ODE system. In step 3, the Nelder-Mead optimizer starts to 
find the optimum S by altering the parameters belonging to the first group only. In the further 
steps, the optimizer performs this procedure for the next parameter groups. After reaching the 
last group of parameters, the algorithm starts from the first parameter group again. This 
procedure continues until getting to the proposed termination tolerance. The details of this 
optimization algorithm are shown in Fig. 4. In summary, the proposed approximation algorithm 
finds an approximation for parameter values of the model using time-course experimental data. 

 

Fig. 4. An example from the proposed parameter approximation algorithm. In the first step of the algorithm, one parameter 
group is made for each state variable. The groups named as 𝐾𝐾𝑥𝑥𝑖𝑖   contain parameters exist in �̇�𝑋𝑖𝑖 's equation. In step II, the 
algorithm sorts the state variables by the number of times each state variable is repeated in total state equations. During step 
III, the optimizer starts solving a sub-optimal problem from state variable with bigger repetition time to state variable with 
smaller repetition time. The sub-optimal problem for the state variable 𝑥𝑥𝑖𝑖 is to optimize the value of S in the space of parameters 
belonging to 𝐾𝐾𝑥𝑥𝑖𝑖. The algorithm is finished by reaching the considered tolerance of S. 
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Case Study: Applying SPADAN to develop a dynamic model of colorectal 
cancer 
In order to assess the applicability of the developed algorithm to construct a dynamic model 
based on a time-course experimental data, we have here re-analyzed and exploited a time-course 
multi-layer expression profiling data originally generated by Ressa et al [10]. These investigators 
assessed the response of WiDr colorectal cancer (CRC) cells to vemurafenib and gefitinib as BRAF 
inhibitor (BRAFi) and EGFR inhibitor (EGFRi), respectively. The cells were harvested 0, 2, 6, 24, 
and 48 hours after treatment and transcriptomics, proteomics, and phosphoproteomics data 
were generated. They found the up-regulation of metabolic pathways and tyrosine kinases 
receptors under BRAF inhibition as a primary response. Also, the switching of energy sources in 
treated cells turns to a defensive state to compensate for MAPK signaling inhibition. Noteworthy, 
they extended the analyses to a PTPN11 knockout WiDr cell line, the data of which is not used in 
the current study. The data of four experimental groups, including no treatment control, cells 
treated with BRAF inhibitor, EGFR inhibitor, or both are here explored.  
Using MaxQuant analysis and after filtration, we identified 5655, 3432 proteins and 
phosphoproteins respectively. We were interested to consider the role and interactions of all 
identified genes and not only differentially expressed ones. Hence, using SPADAN, the map of 
interactions between all identified proteins, phosphoproteins, and transcripts in WiDr CRC cells 
was constructed (Fig. 5). Next, the biochemical reaction network was constructed which includes 
5953 reactions and 3347 elements. The biochemical reaction network was then converted to a 
large ODE system with 3347equations and 7743 parameters.  
 
Quantification of biomolecules  
Proteomics data are generally expressed as relative quantifications using fold change 
parameters. However, the dynamic model simulation outputs are absolute concentrations. In 
order to make the comparison of these two feasible, the absolute concentration of proteins was 
estimated using the “proteome ruler” plugin which uses histones as standards. Employing this 
technique is not feasible for the estimation of absolute quantity of phosphoproteins. Hence, in 
order to compare phosphoproteomics experimental and simulation data, mean normalization 
was performed for both datasets; intensities of each phosphoprotein were scaled to make the 
mean value of the five time points equal to one. In order to calculate RNA absolute 
concentrations, normalized RNA counts were divided by an estimated volume of a cell (which is 
2E-9 uL). 

Approximation of basal concentrations 
In ODE systems, initial values play an important role in the dynamic behavior of the system. Each 
protein concentration obtained from proteomics data is indeed the sum of concentrations of 
different states of that protein including phosphorylated form. In order to have an estimation of 
initial values of proteins and phosphoproteins, we relied on a previous study indicating that 
phosphoproteins constitute about 30% of total protein concentrations. Hence, 30% and 70% of 
the measured concentration of each protein at time zero was considered as the concentration of 
the phosphorylated and unmodified forms of that protein, respectively. We appreciate that in 
real situations this 30/70 ratio is not exactly true for all proteins. However, in the lack of absolute 
quantitative data, especially for phosphoproteins, this approximation can be acceptable. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.20.491854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.20.491854


For transcriptomics data, absolute concentrations are available for both time 0 and other time 
steps as indicated above. For the genes with transcriptional regulation in the model, DNA level is 
also included which can be bound to transcription factors or in the unbound state. The total DNA 
concentration obviously remains constant and is equal to 2 copies divided by cell volume which 
is about 8E-7 µL (REF).   

 

 

 

 
Fig. 5. Statistics of case study modeling and validation. The experimental data includes 4 datasets called CTRL, 

EGFRi, BRAFi, and EGFRi+BRAFi. The first 3 datasets were used for modeling and the fourth was used for model 
validation. 
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function S 
In order to adjust model parameters, it is essential to compare model outputs with experimental 
data. In the exploited experimental data, measurements were performed with three biological 
replicates. The matrix of three biological replications for each time point of experimental data is 
denoted by 𝑒𝑒𝑖𝑖,𝑗𝑗 as follows: 

 

𝑒𝑒𝑖𝑖,𝑗𝑗 =  �
𝑒𝑒𝑖𝑖,𝑗𝑗,1
𝑒𝑒𝑖𝑖,𝑗𝑗,2
𝑒𝑒𝑖𝑖,𝑗𝑗,3

� 

( 9 ) 

Where 𝑖𝑖 is the number of gene, 𝑗𝑗 is the number of timepoint and the third index represents the number 
of biological replicates. 

 Since in this case study, the experimental data is from proteins, phosphoproteins, and mRNAs, 
the concentration of proteins, phosphoproteins, and mRNAs of each gene in the model are 
defined as model outputs. As mentioned before, each molecule can appear in different 
biochemical elements. Therefore, in order to find the intensity of a molecule at a time point, the 
concentration of these elements should be summed. 𝑌𝑌𝑃𝑃, 𝑌𝑌𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜 and 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅 are three sets of 
model outputs which show the value of proteins, phosphoproteins, and mRNAs in the model 
respectively. These values are calculated by adding their element values which are calculated by 
multiplication of the C matrix to the X. C matrix consists of three binary matrices called 𝐶𝐶𝑃𝑃, 𝐶𝐶𝑃𝑃ℎ 
and 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 which are automatically made by SPADAN. 

 

𝑌𝑌2295×1 = �
𝑌𝑌𝑃𝑃765×1

𝑌𝑌𝑃𝑃ℎ𝑜𝑜𝑜𝑜765×1

𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅765×1

� = �
𝐶𝐶𝑃𝑃765×3347

𝐶𝐶𝑃𝑃ℎ𝑜𝑜𝑜𝑜765×3347

𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅765×3347

� × 𝑋𝑋3347×1 

( 10) 

Considering the wide range of concentration scales, the sum of the squares of differences 
between model output and experimental data in different time points is calculated for each 
element and then divided by the average of experimental concentrations in the five timepoints.  

For proteomic and transcriptomic experimental data which there were estimations for their 
concentrations, the average of experimental concentrations in the five timepoints (�̃�𝑒𝑖𝑖) is 
calculated by: 

�̃�𝑒𝑖𝑖 =
1
5
�𝑎𝑎𝑎𝑎𝑎𝑎� 𝑒𝑒𝑖𝑖,𝑗𝑗�
5

𝑗𝑗=1

 

( 11) 
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For each time point, if the simulation value ( 𝑦𝑦𝑖𝑖,𝑗𝑗  ) is in the range of minimum and maximum of 
three experimental replicates which are shown with max (𝑒𝑒𝑖𝑖,𝑗𝑗) and min (𝑒𝑒𝑖𝑖,𝑗𝑗), 𝛼𝛼𝑖𝑖,𝑗𝑗 gets zero and 
the difference between simulation and experimental data is ignored in calculating S. Otherwise, 
the residual between simulation data and mean value of the three replicates ( 𝑑𝑑𝑖𝑖,𝑗𝑗  ) was used to 
calculate function S as the sum of squares of differences between simulation and experimental 
data.  

Variable 𝛼𝛼𝑖𝑖,𝑗𝑗 is calculated using: 

𝛼𝛼𝑖𝑖,𝑗𝑗 =
1
2
𝑠𝑠𝑎𝑎𝑠𝑠�  (𝑦𝑦𝑖𝑖,𝑗𝑗 − max (𝑒𝑒𝑖𝑖,𝑗𝑗))(𝑦𝑦𝑖𝑖,𝑗𝑗 − min (𝑒𝑒𝑖𝑖,𝑗𝑗)) � +  

1
2

  

( 12) 

To calculate S relatively, it is calculated as follows: 

𝑑𝑑𝑖𝑖,𝑗𝑗 =  𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑎𝑎� 𝑒𝑒𝑖𝑖,𝑗𝑗� 

(𝑆𝑆𝑜𝑜 𝑜𝑜𝑜𝑜 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅) = ��𝛼𝛼𝑖𝑖,𝑗𝑗(
𝑑𝑑𝑖𝑖,𝑗𝑗
�̃�𝑒𝑖𝑖

)2
5

𝑗𝑗=1

768

𝑖𝑖=1

 

( 13) 

where 𝑆𝑆𝑜𝑜 and 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 are the sum of squares in proteomics and transcriptomics levels respectively, 
𝑖𝑖 is the gene number and 𝑗𝑗 is the number of timepoint. A visual example of this normalization 
and S calculation method is shown in Fig. 6. 

Since in this case study, there was not a method to estimate the absolute concentration of 
phosphoproteomics experimental data, mean normalized intensities and model simulations 
were used to compare the track of concentration changes during the time. Mean normalization 
for experimental intensities are calculated as follows: 

  

𝐼𝐼�̅�𝑖,𝑟𝑟 =
1
5
�𝐼𝐼𝑖𝑖,𝑗𝑗,𝑟𝑟

5

𝑗𝑗=1

                     𝑒𝑒𝑖𝑖,𝑗𝑗,𝑟𝑟 =  
𝐼𝐼𝑖𝑖,𝑗𝑗,𝑟𝑟

𝐼𝐼�̅�𝑖,𝑟𝑟
 

 

( 14) 

𝐼𝐼𝑖𝑖,𝑗𝑗,𝑟𝑟 is the intensity of the 𝑖𝑖𝑡𝑡ℎ phosphoprotein at the 𝑗𝑗𝑡𝑡ℎ timepoint in the 𝑜𝑜𝑡𝑡ℎ biological replication. 
After defining 𝑒𝑒𝑖𝑖,𝑗𝑗,𝑟𝑟 in ( 14), the matrix  𝑒𝑒𝑖𝑖,𝑗𝑗 is constructed as ( 9 ). 

Model simulations are also mean normalized by: 

𝑦𝑦�𝑖𝑖 =
1
5
�𝑦𝑦𝑖𝑖,𝑗𝑗

5

𝑗𝑗=1

                   𝑦𝑦∗𝑖𝑖,𝑗𝑗 =  
𝑦𝑦𝑖𝑖,𝑗𝑗
𝑦𝑦�𝑖𝑖

 

( 15) 
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where 𝑦𝑦∗𝑖𝑖,𝑗𝑗 is the mean normalized simulation value of the 𝑖𝑖𝑡𝑡ℎ phosphoprotein at the 𝑗𝑗𝑡𝑡ℎ 
timepoint.  

In the following, the sum of squares in phosphoproteomics level which is shown with 𝑆𝑆𝑝𝑝ℎ 

is calculated by: 

𝛼𝛼𝑖𝑖,𝑗𝑗 =
1
2
𝑠𝑠𝑠𝑠𝑠𝑠 �  (𝑦𝑦∗𝑖𝑖,𝑗𝑗 − max (𝑒𝑒𝑖𝑖,𝑗𝑗))(𝑦𝑦𝑖𝑖,𝑗𝑗 − min (𝑒𝑒𝑖𝑖,𝑗𝑗)) � +  

1
2

  

𝑑𝑑𝑖𝑖,𝑗𝑗 =  𝑦𝑦∗𝑖𝑖,𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑠𝑠� 𝑒𝑒𝑖𝑖,𝑗𝑗� 

𝑆𝑆𝑝𝑝ℎ = ��𝛼𝛼𝑖𝑖,𝑗𝑗𝑑𝑑𝑖𝑖,𝑗𝑗
2

5

𝑗𝑗=1

768

𝑖𝑖=1

 

( 16) 

in which 𝑑𝑑𝑖𝑖,𝑗𝑗 is ignored in the summation if 𝛼𝛼𝑖𝑖,𝑗𝑗 is zero. 

Obviously, this normalization applied for proteomics and transcriptomics data is not required for 
phosphoproteomics data which were previously mean normalized. The normalized S for all model 
elements are then summed to calculate 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the equation below: 

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑝𝑝 + 𝑆𝑆𝑝𝑝ℎ + 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 

( 17) 

A visual example of S calculation in phosphoproteomics level is shown in Fig. 7. 

 

Fig. 6. An example of comparing method between model simulation and experimental data for RNAs and proteins. Three 
biological replications for each experimental data time point are shown with red, green, and blue markers. Since both 
experimental data and model simulation are absolute concentrations, there is no need for mean normalization. The method of 
calculating S is explained in ( 11) to ( 13). 
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Fig. 7. An example of comparing method between model simulation and experimental data for phosphoproteins. Since 
experimental data from phosphoproteins are intensities and model simulations are concentrations, they are both mean 
normalized to get comparable. Each of the biological replications is shown with red, green, and blue markers. The method of 
calculating S is explained in ( 14) to ( 16). 
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Using the SPADAN parameter approximation algorithm to approximate unknown model parameters, 
could decrease 𝑆𝑆𝑒𝑒𝑒𝑒𝑝𝑝 from 2.72 × 107to 1.13 × 106 after 476 hours of calculation. In order to get a 
better insight about the mean value of S for each timepoint of the model, Ψ is declared in ( 18 ) which is 
the mean value of Root Summed Squared (RSS) of the model residual between 5 timepoints of 768 × 3 
biomolecules. The progression of the proposed optimizer in minimizing Ψ from initial guess to 
approximated parameter values is shown in Fig. 8. 

Ψ =
�𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒

768 × 5 × 3
 

( 18 ) 

 

 

Fig. 8 Optimization progression during the time of calculation. By applying the proposed parameter approximation method, after 
476 hours of calculation, the S value was decreased from 2.72 × 107to 1.13 × 106 which equals decreasing 𝛹𝛹 value from 0.45 to 
0.09 for each time point. 

Model validation 
After estimating model parameters to fit outputs to experimental data from control, EGFRi, and 
BRAFi groups, the model was run in the situation of simultaneous treatment with EGFRi and 
BRAFi drugs. Simulation results were then compared with experimental data to assess the 
accuracy of the model prediction. The Ψ value which shows the difference between model 
prediction and the experimental data for BRAFi + EGFRi dataset was 0.083 indicating that the 
model could present an acceptable prediction. The comparison of model simulations and 
experimental data for some representative biomolecules is shown in Fig. 9. The figure shows that 
for genes such as NFKB1 and SF1, the model could predict the trajectory of concentration changes 
during the time, considering the model’s weakness in predicting concentration changes for genes 
like SLC2A1 and GDF15. 
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Fig. 9. Model prediction vs. experimental data for some representative genes from response of WiDr colorectal cancer (CRC) cells to 
simultaneous Vemurafenib and Gefitinib treatment. Gray circles show the mean value and error bars show the minimum and 

maximum values between three biological replications. However the model could have an acceptable prediction from the 
manner of genes such as NFKB1 and SF1 shown in figures a and b, for genes such as SLC2A1 and GDF15 it could not have a 

precise prediction (figures c,d). 
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Discussion 
Despite invaluable insights provided by systems biology in the last few decades, a major 
unmet flaw is that the constructed models are either holistic or dynamic (REF). In the top-
down approach, big data are organized to generate holistic but static maps of the 
interactions. On the other hand, in the bottom-up approach, mathematical predictive models 
can be constructed that incorporate the cell dynamism but ignore many critical elements and 
focus on limited numbers of role players. An appropriate response to the insufficiency of 
current therapies for most non-communicable diseases requires large-scale dynamic models. 
The current study was aimed at the development of such a framework.   

 A bottleneck in construction of big dynamic networks is to identify biochemical reactions 
involved in the interaction between two biomolecules. Indeed, every single edge between 
two proteins in a PPI network is a compact code that should be decoded to the more 
comprehensive language of biochemical reactions. We have generated a conversion list that 
could be assumed as a “dictionary” for the translation of graph edges to reactions.     
Biochemical reactions are then converted to a set of ODEs. Hence, state-space equations can 
be extracted from large-scale networks using the above steps. Although in the presented case 
study, all equations are based on mass action, SPADAN allows to employ Michaelis-Menten 
or Hill kinetics as well.  

In this study, we have employed a time-course large scale experimental data on colon cancer 
cells to assess the validity of the developed framework. An advantage of the constructed 
network is that it encompasses different layers of biomolecules. Specially, it includes all 
identified proteins which is in contrast with most studies that focus solely on the interactions 
of differentially expressed proteins. This common strategy can be scrutinized by ignoring the 
interactions of proteins that are not differential but can be involved in critical interactions. 

Constraint-based modeling allows the generation of a “solution space” for the rates of 
biochemical reactions that are shrunk by imposing a variety of constraints. Developed in the 
mid-twentieth century, this strategy has been more recently employed for modeling large-
scale biochemical systems [7], [14], [15]. However, it cannot provide detailed insights about 
the concentrations of biomolecules and the exact kinetics of each reaction.  The construction 
of large scale dynamic models has been attempted by a few previous investigators; Smallbone 
et al have developed a strategy for the construction of genome-scale dynamic models of 
metabolic networks and employed it to generate a holistic kinetic model of yeast metabolism. 
In spite of the high merit of this work, the parameters were harvested from a kinetic model 
repository. This makes its application limited to cases that such a library is already available. 
Similarly, Smith et al have developed a computational framework that receives an SBML 
format network and automatically constructs differential equations for biochemical 
reactions. The reaction rates are harvested from several databases including previous 
measured parameters. Notably, these investigators have shown that accurate estimates for 
more than 80% of reaction rates are required for an acceptable simulation. This is too far 
from what is already available[5]. This indicates that in the deficiency of such experimental 
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knowledge, parameter estimation is at the cornerstone of large-scale dynamic modeling of 
biological systems.     

The parameter estimation step can be assumed as the major limitation hindering the 
construction of large-scale ODE models. This procedure is performed by minimizing the 
differences between trajectories of model outputs and time-course experimental 
measurements [16]. Although a variety of optimizers are available for this purpose [17], they 
could hardly be applied for large-scale ODE models. Therefore, in this study, a novel 
parameter approximation tool is developed and incorporated into SPADAN which fits with 
the complexity of equations and the large dimensions of genome-scale models.  

Considering the complexity and nonlinearity of biological systems and the scarcity of time-
course experimental data, the parameter estimation strategies, including the method 
employed in this study, may result in a set of parameters that is not unique. We propose that 
integrating the core concepts of constraint-based modeling with the introduced parameter 
estimation strategy may limit the space of parameters and hence result in more accurate 
approximations. This remains to be examined in future works. Additionally, to fasten the 
parameter estimation speed, the proposed parameter estimation algorithm has the potential 
to be parallelized which makes it computable on multi-core supercomputers. This enhanced 
computation approach would pave the way for more sophisticated analyses such as 
considering the stochasticity of biological reactions.  Additionally, the introduced large-scale 
modeling can be improved by considering the intracellular compartments/spaces that the 
reactions take place as well as intracellular transports.  

In conclusion, we have proposed a modeling and optimization method which can fill the gap 
between large-scale static and small-scale dynamic modeling strategies. This simulation 
scheme allows quantitative analysis of cell behavior and prediction of response to different 
therapeutic interventions which is a major step towards precision medicine. 
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