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Abstract

Thousands of DNA methylation (DNAm) array samples from human blood

are publicly available on the Gene Expression Omnibus (GEO), but they

remain underutilized for experiment planning, replication, and cross-study

and cross-platform analyses. To facilitate these tasks, we augmented our

recountmethylation R/Bioconductor package with 12,537 uniformly pro-

cessed EPIC and HM450K blood samples on GEO as well as several

new features. We subsequently used our updated package in several illus-

trative analyses, finding (1) study ID bias adjustment increased variation

explained by biological and demographic variables, (2) most variation in

autosomal DNAm was explained by genetic ancestry and CD4+ T-cell

fractions, and (3) the dependence of power to detect differential methy-

lation on sample size was similar for each of peripheral blood mononu-

clear cells (PBMC), whole blood, and umbilical cord blood. Finally, we

used PBMC and whole blood to perform independent validations, and we

recovered 40-46% of differentially methylated probes (DMPs) between sexes

from two previously published epigenome-wide association studies (EWAS).

Keywords: DNA methylation, BeadArray, epigenetics, experiment planning,

biomarker validation
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1 Introduction

DNA methylation (DNAm) is the most commonly studied epigenetic mark, and most public

DNAm array samples are generated from blood [1]. In prior work [1], we conducted compre-

hensive cross-study analyses of human DNAm array studies with raw data deposited on the

Gene Expression Omnibus (GEO) [2, 3], the largest archive of publicly available array data.

We confined attention to the HumanMethylation450K (HM450K) platform introduced by

Illumina in 2012. HM450K arrays profile 485,577 CpG loci concentrated in protein-coding

genes and CpG island regions [4, 5]. We found that: (1) a subset of Illumina’s prescribed

BeadArray controls explained most quality variances; (2) samples clustered by tissue and

cancer status in a principal component analysis (PCA) of autosomal DNAm; and (3) sub-

sets of CpG probes showed high tissue-specific DNAm variation among 7 normal tissues.

We further released the recountmethylation Bioconductor package [6] along with uniformly

processed data compilations pairing DNAm with harmonized metadata labels for age, sex,

tissue, and disease state.

The initial recountmethylation release left open several important issues. First, the

delay between data compilation and reporting meant our initial release of data compiled in

March 2019 was over a year out of date at the time of publication. Second, the prevalence

of raw data from the newer EPIC platform [7] is rapidly increasing while our initial data

compilation included only samples run on the older HM450K platform. Finally, several

practical research concerns were not accommodated in the initial package release, including

how to leverage public array data compilations to determine the required number of samples

to test a new hypothesis, how to account for confounding factors in cross-study analyses,

and how to leverage public data to independently validate previously published DMPs and

identify subsets of high-confidence biomarker candidates.

We address these outstanding issues in the present paper using novel cross-study and

cross-platform analyses, confining attention to normal human blood samples. Blood DNAm

is often probed in epigenome-wide association studies (EWAS) to discover, test, and validate

biomarkers [8–10] for diseases such as type II diabetes [11–13], obesity [14], non-alcoholic

fatty liver disease [15], asthma [16], and dementia [17], as well as colorectal [18–21],

esophageal [22], breast [23], pancreatic [24], and head-and-neck [25] cancers. It is widely

used to study biological aging [26–29] and normal tissue epigenetics [30, 31], including

development and function of the immune system [32]. Recent work studied how gestational

age-related differential DNAm relates to fetal health and disease risk [28, 33]. Further, cord

blood DNAm is increasingly used to precisely quantify fetal gestational age [29, 34–36],

which may lead to improvement in the efficacy of prenatal screening [37]. In addition, many

software tools were trained and designed for use with blood DNAm data; these included

methods for cell-type deconvolution [38–40], inference of population genetic structure and

shared genetic ancestry [41], and power analyses [42].

DNAm differences between sexes have been observed in mouse [43] and multiple human

tissues including brain [43], pancreas [44], nasal epithelium [45], cord blood [46], and whole

blood [47, 48]. These DNAm differences can impact insulin secretion [44], risk of disease [45,

46], and biological age [43]. Using cross-study and cross-platform compilations of whole

blood and PBMC, we performed novel independent validation of previously published sets

of probes with differential methylation between the sexes (a.k.a. “sex DMPs”) from two

previous studies in whole blood [47, 48].

2 Results

2.1 12,537 normal blood samples spanning 3 sample types were
incorporated into recountmethylation

We uniformly processed raw intensity data generated on the HM450K or EPIC platforms

for 68,758 samples available on GEO before March 31, 2021 (Fig. 1, Methods, [49, 50]). We
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narrowed focus to 12,537 normal human blood samples from 63 studies, each of which had

≥ 10 samples after quality control. After harmonizing metadata across studies, we found

these samples were predominantly of three types (Fig. 2a): whole blood, umbilical cord

blood (a.k.a. “cord blood”), and peripheral blood mononuclear cells (a.k.a. “PBMC”). Whole

blood was distinguished from PBMC by the presence of erythrocyte and granulocyte DNA,

as these cell types are removed during PBMC preparation [51] (Fig. 2a). Each blood sample

type included ≥ 245 samples from ≥ 2 studies per respective platform (Fig. 2b, Table S1).

Sample prep Array prep and processing Data publication and IDAT upload 

IDAT, 
SOFT 

download 

E-Utilities 
API queries 

Metadata mapping, prediction, 
and harmonization 

DNAm preprocessing 
and uniform 

normalization 
HDF5 and SummarizedExperiment 

compilation files 
Data analysis and 

upload to 
recount.bio/data 

Sample collection 

recountmethylation_pipeline 
recountmethylation_server 

recountmethylation_instance 

Fig. 1: Workflow to obtain public DNAm array data from GEO. Collection, preparation, and
processing of array samples (top left) as well as publication of GEO datasets were performed by
other investigators (top right). We downloaded raw intensity data (IDATs) and metadata (SOFTs;
top right), processed GEO metadata (middle) and DNAm signals (bottom right) into HDF5-
based data formats (bottom middle), and finally updated our server and the recountmethylation
Bioconductor package (bottom left). Color outlines indicate data access and processing using tools
we developed (green = recountmethylation server [52], blue = recountmethylation pipeline [53],
green = recountmethylation instance [54]). Diagrams were created with BioRender.com.

We subsequently updated our Bioconductor package recountmethylation [1] to facilitate

cross-study and cross-platform analyses of the blood samples. The package’s new features

permit search for samples with DNAm profiles similar to a query sample [55], inference of

shared genetic ancestry [41], and novel power analyses [42]. These features are explained in

package vignettes. Further, a new recountmethylation instance Snakemake workflow avail-

able on GitHub [54] allows users to create their own compilations of public DNAm array data

on GEO [56], with the functionality to customize output data types and attributes predicted

from GEO metadata. As shown below, our resources enable identification of biomarker can-

didates, independent validation and replication of previous research, experiment planning,

and more.

BioRender.com
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Fig. 2: Blood specimen collection and DNAm array data availability by sample type. (a) Blood
sample collection and handling prior to upload to GEO. (b) Barplot summaries of available samples
(left) and studies (right), showing counts (top) and percentages (bottom) of blood sample types
(black = other/not otherwise specified [NOS], gray = whole blood, red = PBMCs, yellow =
cord blood). Bar heights indicate the aggregate sample group “all.” Diagrams were created with
BioRender.com.

2.2 Study ID adjustment increased variation explained by
biological and demographic variables

We conducted simulations investigating the impact of bias correction by study ID, a surro-

gate for technical confounders [1]. Three DNAm values were modeled in multiple regressions:

(1) unadjusted DNAm, (2) uniform adjustment on 5 randomly selected studies (a.k.a.

“adjustment 1”), and (3) exact adjustment on 2-4 randomly selected studies (a.k.a. “adjust-

ment 2”). Regression models 2 and 3 were compared to test whether two distinct study

ID bias adjustment strategies had comparable outcomes. We determined the fraction of

explained variance (FEV) for each of 13 variables from ANOVA, yielding 3 results per vari-

able per simulation rep (Methods). Total non-residual variances almost invariably decreased

after applying either of the 2 study ID adjustment strategies (Fig. S2a, median fractions of

BioRender.com


recountmethylation enables flexible analysis of public blood DNA methylation array data 5

non-residual variances, adjusted over unadjusted, adj. 1 = 6.88e-1, adj. 2 = 6.84e-1). Vari-

ance reduction magnitudes were identical across adjustment strategies, with the exception

of a few outlying models from adjustment 1 simulations (Fig. S2b).

We categorized variables as biological (e.g., six predicted blood cell type fractions), demo-

graphic (e.g., predicted sex, age, and genetic ancestry), or technical (e.g., platform, where

applicable). Across all 3 variable categories, FEV increased relative to unadjusted mod-

els after either adjustment strategy, and FEV distributions were far more similar among

adjusted models than between adjusted and unadjusted models (Fig. 3a). The largest median

FEV differences were observed for demographic variables, while the smallest were observed

for technical variables. Among individual variables, median FEV was < 0.1 across most

models and variables, where study ID showed the maximum median FEV of 0.47 for unad-

justed DNAm. After either adjustment, study median FEV decreased drastically to ≤ 2e-3,

while median FEV for all remaining variables increased (Table S2).

Because performing compilation-wide corrections on study ID substantially increased

variation explained by biological and demographic variables, we included Beta-values under

our adjusted models in recountmethylation for reuse in cross-study analyses.

2.3 Most explained DNAm variation is from predicted genetic
ancestry and predicted cell composition

To better understand key sources of variation in compiled blood data, we performed prin-

cipal component analysis (PCA) on normalized [49], study ID-corrected autosomal DNAm,

followed by ANOVA on regressions with 13 variables categorized as either biological, demo-

graphic, or technical (Methods). While most variation was residual across most components,

explained variation was mainly from demographic variables at components 1 and 3, bio-

logical variables at components 4,5,6, and 10, and from technical variables at component

8, and split between demographic and biological variables at component 2 (Fig. 3b). Most

explained variation from demographic variables was from genetic ancestry in the first compo-

nent, and while CD4+ T-cell fraction explained substantial biological across remaining top

components (Fig. S3). The top two principal components showed samples clustered largely

independent from sample type and platform labels, but showed distinct gradient patterns

for genetic ancestry, CD8+ T-cells, CD4+ T-cells, and B-cells (Fig. S4).

2.4 Dependence of statistical power on sample size was similar
across blood sample types

We conducted power analyses on the blood samples included in recountmethylation by

applying the simulation-based pwrEWAS approach [42] (Methods). To attain ≥ 80% power

to detect DMPs between two groups of roughly equal size, the N estimated total samples

required were similar across sample types, where N ≈ 300 samples at mean Beta-value

difference between groups δ = 0.05, N ≈ 150 samples at δ = 0.1, and N ≈ 80 samples at

δ = 0.2. We assumed an FDR threshold of 5%. Outcomes were similar within each of the

whole blood, cord blood, and PBMC groups, but they were worse when including all blood

samples, likely due to greater sample heterogeneity (Fig. 4).

Our results suggest fewer samples are necessary than the results of [42], where adult

PBMCs showed ≥80% power with N = 220 samples at δ = 0.1. Further, an independent

power analysis using whole-blood EPIC arrays [57] found 85% of probes had >80% power

with N = 200 and δ = 0.1, although their FDR cutoff value of 15% was less stringent than

our cutoff value of 5%.
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Fig. 3: Variance analyses of study bias adjustments and principal components. (a) Distributions
of fraction of explained variance (FEV). Violin plots show results grouped by 3 variable categories
(plot titles, one of biological on left, demographic in middle, or technical on right), and color
fills show model type (pink = adjustment 1 or adjustment on 5 studies, green = adjustment 2 or
adjustment on 2-4 studies, and blue = unadjusted). (b) Autosomal DNAm principal component
analysis (PCA) results across normal blood samples. Stacked barplot y axes show the eigenvalue
magnitudes at left and percentages at right for the top ten components on the x axes. Fill colors
indicate magnitudes of component sum of squared variances explained by variable categories (red
= biological, green = demographic, blue = technical, purple = residuals).
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tradeoffs between power on the y axes and total samples N on the x axes, across 3 delta values
(0.05 at left, 0.1 at middle, 0.2 at right). Curve colors show results for each sample type (line
colors, blue = all, yellow = cord blood, red = PBMCs, gray = whole blood). Dotted horizontal
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Fig. 5: Replication of sex DMPs from [48] (a.k.a “Inoshita et al 2015”) using cross-study compila-
tions of whole blood and PBMC. (a) Sample label distributions among the 1,000 nearest neighbors
from querying [48] samples, where density and box plots show returned frequencies of 3 sample
labels (red = PBMCs, black = other/not otherwise specified [NOS], gray = whole blood). (b)
Concordance of [48] DMPs on the y-axis among the top significant compilation DMPs on the x-
axis, ranked on P-values, for whole blood in gray and PBMCs in red. The zoom shows the top
1,000 DMPs, and colored dotted lines and colored numbers indicate total DMPs from [48] (Meth-
ods). (c and d) Mean Beta-value differences (male - female) at [48] DMPs on y axes and in (c)
whole blood and (d) PBMC compilations. Region colors show direction agreement in gold and
disagreement in blue, and insets show DMP counts by region.

2.5 40% of sex DMPs from a previously published EWAS study
were replicated in either whole blood or PBMC

We queried a search index of blood autosomal CpG DNAm, which is included in the updated

recountmethylation resource, for each of the 113 whole blood samples from [48]. In the

process, we quantified the similarity of queried sample methylation profiles to other samples

by analyzing the k nearest neighbors returned (Methods). Among the 1,000 nearest neighbors

returned per queried sample, the whole blood label was common while the PBMC label

was rare (Fig. 5a), in agreement with Methods in [48] describing the queried samples as

“peripheral whole blood.” This greater similarity to compiled whole blood may reflect greater

similarity in subject ages, cell composition [51], and/or genetic ancestry (Fig. S5a), and we
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corrected for these potential confounders in regressions for identifying sex DMPs from either

compilation (Methods).

We next considered the threshold of the top 1,000 most significant DMPs from whole

blood and PBMC. We set this threshold because these DMPs captured the long tail of

high between-sex DNAm differences for each tissue (Fig. S6a- S6d), and because of less

replication divergence between tissues compared to less stringent thresholds observed from

our concordance at the top analysis (Fig. 5b). Among these whole blood and PBMC DMPs,

(117/292 =) 40% replicated sex DMPs from [48] (Fig. 5b). Of these, 95 were only replicated

in whole blood, 80 were only replicated in PBMC, and 58 were replicated in both tissues

(Fig. S7a). Further, (248/544 =) 46% of whole-blood sex DMPs independently reported

in [47] overlapped DMPs in whole blood or PBMC. However, just 26 sex DMPs appeared in

all of PBMC, whole blood, [48], and [47]. Mean (normalized) Beta-value was typically higher

in females than males in whole blood (64-81% of DMPs) but not PBMC (35% of DMPs).

There was high agreement in mean Beta-value differences between males and females, with

slightly greater agreement among whole blood than PBMC (99%> 96% direction agreement)

across sex DMPs from [48], and 100% agreement among the subset of replicated DMPs in

each compilation (Figs 5c and 5d). DNAm proximal to cytosine- and guanine-rich regions,

known as CpG islands, can functionally regulate gene expression [58, 59, 59–62], and most

replicated sex DMPs mapped to CpG islands (65/117, 56%). The most significant of these

DMPs mapped to a variety of gene regions, including two body DMPs at RFTN1 and

LOC644649, and one promoter DMP at SLC6A4 (P-adjusted < 5.1e-47, Bonferroni method,

Supplementary Materials).

3 Discussion

We analyzed DNAm array data from the three most prevalent blood sample types in

the GEO database and updated the recountmethylation Bioconductor package to make

reproducible [63, 64] cross-study and cross-platform analyses of these data easier. Since

HM450K and EPIC data continue to accumulate rapidly on GEO, we further developed the

recountmethylation instance Snakemake workflow to enable semi-automated compilation

of the DNAm array data on GEO [54].

We replicated 40% of sex DMPs from [48] and 46% of sex DMPs from [47] using inde-

pendent whole blood and PBMC compilations. These rates were similar to prior studies of

sex DNAm differences, including a 38% validation rate of cord blood sex DMPs between

two independent cohorts [46], and 44% validation rate of genes in nasal epithelium with

DNAm differences by sex [45]. These results could represent a baseline expectation for repli-

cation or independent validation rate of DMPs for sex, and potentially other variables, across

independent EWAS.

Our work has several limitations. First, we excluded blood spots from our analyses due

to insufficient raw DNAm array data available from GEO, although this blood sample type

accounts for a substantial fraction of publicly available data from younger subjects. Another

limitation related to data availability is that far fewer blood samples were available for the

EPIC platform compared to HM450K as of March 31, 2021. The larger EPIC platform

could help expand analyses to new genome regions and clarify regional DNAm signals at

CpG islands and genes. The pwrEWAS method assumes a technical detection threshold of

Beta-value = 0.01 by default, and using this threshold ensures our findings are relevant for

both single-study and cross-study analyses. However, this technical threshold likely should

be lowered if the study being planned involves cross-study analyses using study ID bias

correction, because we found this correction reduced explained variances (Section 2.2) and

resulted in lower between-group differences in our sex DMP cross-study analysis compared

to the single-study discovery EWAS (Section 2.5). Finally, we did not conduct orthogonal or

wet-lab validation of replicated sex DMPs. Such steps would be essential to narrow biomarker

candidates and elucidate biological mechanisms explaining differential DNAm.
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Our cross-study and cross-platform approach could be applied to other highly preva-

lent tissues such as brain [1] or expanded to include public bisulfite-sequencing samples

from the Sequence Read Archive [65], which could clarify the genome region speci-

ficity of high-confidence biomarkers from DNAm arrays [7, 66, 67]. A future update of

recountmethylation may include such samples.

4 Methods

4.1 Compiling recent public DNAm array data across platforms

DNAm array data were identified, downloaded, and processed using the

recountmethylation instance v0.0.1 [54] Snakemake workflow. It comprises the

recountmethylation server v1.0.0 [52] and recountmethylation.pipeline v1.0.0 [53]

tools, which we used previously to compile HM450K data [1]. We uniformly processed

samples into cross-study and cross-platform data compilations. Data were from samples

run on the HM450K [4] and EPIC [7] DNAm array platforms and available on GEO by

March 31, 2021. Sample DNAm was normalized using out of band signal (a.k.a. “noob-

normalization” [49]). Compilations paired normalized DNAm fractions, or Beta-values, with

harmonized sample metadata for 68,758 cumulative samples for which raw image data files,

or IDATs, were available as gzip-compressed supplementary files.

Compilations were stored as Hierarchical Data Format 5 (HDF5)-based Summarized-

Experiment files generated using the HDF5Array v1.18.0 and rhdf5 v2.34.0 R/Bioconductor

packages [68, 69]. These formats used DelayedArray v0.18.0 [70] to support rapid access,

summaries, and filters. For most analyses, DNAm data were merged across platforms for

the 453,093 CpG probes [7] they shared. We made compiled data available online at

https://recount.bio/data/gr-gseadj h5se hm450k-epic-merge 0-0-3/.

4.2 Prediction and harmonization of sample metadata

We generated harmonized sample metadata from heterogeneous metadata mined from SOFT

files accompanying GEO studies. We wrote regex terms to detect keywords in metadata-

containing files, and we mapped detected terms to controlled vocabularies under “tissue”,

“disease,” and other categories, as described in [1] and [71]. The suitability of regex patterns

for capturing informative metadata terms was spot-checked across studies and iteratively

updated to more precisely map terms and avoid erroneous mappings. We further predicted

sample types from mined metadata using the method from [72]. To add sex annotations,

we used the minfi v1.37.1 [50, 73]) R package; to add six blood type cell fractions, we used

the method from [38]); and to add age annotations, we used the pan-tissue epigenetic clock

model from [26]. Finally, we calculated the top components of genetic ancestry using the

method from [41].

4.3 Sample QC filters

We used metadata filters to find the 3 most prevalent blood sample types (whole blood,

cord blood, and PBMCs), and the aggregate type “all,” which includes the above types

and samples of whose type was indeterminate from mined metadata. We then performed

QC with reference to prior findings from [1]. We removed samples for which either: (1) log2

median M and U signals were both <10; or (2) the sample failed ≥2/5 most informative

BeadArray metrics. These criteria removed 245 samples, and all but one was run on the

HM450K platform.

https://recount.bio/data/gr-gseadj_h5se_hm450k-epic-merge_0-0-3/
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4.4 Simulation of study bias adjustments

We used simulations to show the impact of study ID adjustment on explained variance.

As detailed in Fig. S1, simulations consisted of 4 steps: (1) calculate sample DNAm M-

values from 500 CpG probes and 5 studies, selected randomly; (2) adjust study ID across

all 5 selected studies (i.e. “adjustment 1”) or subsets of 2-4 studies (i.e. “adjustment 2”);

(3) perform ANOVA for 3 models; (4) get FEV for each variable across 3 models. In total,

simulations used 29,028 unique CpG probes and 62 unique studies.

Multiple regression models accounted for sample type, platform, study ID, DNAm-based

predictions for age, sex, and six cell type fractions, and two genetic ancestry components,

which were determined as described above. Variables were grouped as one of biological

(i.e. six blood cell type fractions), demographic (i.e. age, sex, and two genetic ancestry

components), and technical (i.e. platform). Study bias adjustments were performed using

the removeBatchEffect() function from the limma v3.46.0 [74] R package. Parallel sessions

were deployed using the parallel v4.1.1 R package.

4.5 PCA of autosomal DNAm

We performed autosomal DNAm PCA on compiled blood samples using a reduced 1,000-

dimensional representation of the normalized and bias-corrected Beta-values [75, 76]

obtained via feature hashing. (See [1] for details on this approach.) For the top 10 compo-

nents, we calculated FEV from ANOVA using multiple regression models containing the 13

variables from the 3 categories described above.

4.6 Blood autosomal DNAm search index construction

We used the hnswlib v0.5.2 Python library to make a DNAm-based search index from

which one can rapidly identify the nearest samples which neighbor one or more queried

DNAm profiles [55]. We used the Hierarchical and Navigable Small Worlds (HNSW) graph

algorithm implemented in hnswlib, as this was among the top performing algorithms from

a recent comprehensive benchmark of search algorithms [77]. With the mmh3 v3.0.0 and

numpy v1.20.1 [78] Python libraries, we applied feature hashing to generate a reduced 1,000-

dimensional representation of each sample [76, 79] of each blood sample’s noob-normalized

Beta-values. The search index files are available online at https://recount.bio/data/sindex-

hnsw bval-gseadj-fh10k all-blood-2-platforms.pickle and https://recount.bio/data/sidict-

hnsw bval-gseadj-fh10k all-blood-2-platforms.pickle.

4.7 Power analyses using pwrEWAS

We used the method provided in the pwrEWAS v1.4.0 R/Bioconductor library to perform

power analyses across DNAm array platforms [42]. Parameters for these analyses included

100 total simulations varying the total samples N from 50 to 850. We targeted 500 DMPs

and assessed test group Beta-value differences δ of 0.05, 0.1, and 0.2.

4.8 Replication of whole blood sex DMPs

We replicated sex DMPs from [48], a study of whole blood from Japanese individuals, using

independent compilations of whole blood and PBMC samples in recountmethylation. After

filtering out sex chromosome and cross-reactive probes [80], there were 375,244 CpG probes

in whole blood and 375,244 CpG probes in PBMCs. After filtering for sample quality, we

used data from 5,980 whole blood samples (3,942 females and 2,924 males) and 642 PBMC

samples (397 females and 230 males). Ages tended towards young adult and middle-aged

for whole blood (age, mean±SD, 39±21 years) and samples from [48] (46±12 years), but

were more frequently from adolescents and young adults among PBMC (25±19 years). We

preprocessed DNAm M-values using surrogate variables analysis (SVA) with the sva v3.4.0

https://recount.bio/data/sindex-hnsw_bval-gseadj-fh10k_all-blood-2-platforms.pickle
https://recount.bio/data/sindex-hnsw_bval-gseadj-fh10k_all-blood-2-platforms.pickle
https://recount.bio/data/sidict-hnsw__bval-gseadj-fh10k__all-blood-2-platforms.pickle
https://recount.bio/data/sidict-hnsw__bval-gseadj-fh10k__all-blood-2-platforms.pickle
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R package [81]. We determined sex DMPs using coefficient P-values for the sex variable in

multiple regressions, where regression models used biological, demographic, and technical

variables described above (Supplementary Materials).

4.9 Statistical analyses and visualizations

Data processing and analyses were performed using the R v4.1.0 and Python v3.7.1 pro-

gramming languages [82, 83]. Statistical summaries and tests were performed using base

R libraries. DNAm array processing, normalization, analysis, and prediction of sex and six

blood cell type fractions was performed using the minfi, minfiData, and minfiDataEPIC R

packages. Workflow diagrams were created using BioRender.com. Visualizations in Results

made us of the ggplot2 v3.3.2, grid v4.1.3, gridExtra v2.3, UpSetR v1.4.0, ggpubr v0.4.0,

ggforce v0.3.3, and png v0.1-7 R packages [84, 85]. P-value adjustments used either the

Bonferroni method or the Benjamini-Hotchberg method [86]. Enrichment tests used the

binom.test() base R function with the background of 453,093 total probes overlapping both

array platforms [82]. Supplemental scripts and functions recreating our results are available

online at https://www.github.com/metamaden/recountmethylation v2 manuscript.

4.10 Supplemental data, files, and code

The following resources have been provided to reproduce results, figures, and tables in this

paper:

1. The updated recountmethylation Bioconductor package is now available (https://doi.

org/doi:10.18129/B9.bioc.recountmethylation). It features new functions supporting

analysis of large data compilations, and new vignettes showing how to perform novel

power analysis, infer genetic ancestry, and more using DNAm array data.

2. Supplemental code and scripts for this paper, including support for creating and querying

a search index of DNAm array samples, are available in the manuscript GitHub repository

(https://github.com/metamaden/recountmethylation v2 manuscript).

3. The recountmethylation instance Snakemake workflow is available on GitHub [54]. This

will be useful for researchers hoping to make and update new compilations of public

DNAm array data from GEO.
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Supplementary figures
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Fig. S1: Workflow diagram to simulate the impact of GSE bias corrections on explained variances.
This diagram shows a single simulation rep, including repeated probe and study selections where
indicated. From top to bottom, the workflow shows random selection of 500 CpG probes, random
selection of 5 studies, and calculation of 3 DNAm datasets per CpG probe: (1) unadjusted DNAm;
(2) DNAm after local adjustment on subsets between 1-4 study IDs among 5 selected (a.k.a.
adjustment 1); (3) DNAm after uniform adjustment on all 5 selected study IDs (a.k.a. adjustment
2). Finally, ANOVAs are conducted across the 3 DNAm models, and fractions of explained vari-
ances are determined from sum of squared variances (Methods). Terminology for workflow terms
is shown at top left.
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Fig. S2: Fraction of explained variance (FEV) between unadjusted and adjusted DNAm across
GSE bias simulations. (a) Density plots of unadjusted FEV on x axes and adjusted FEV on y-axes.
Color fill shows density of simulation outcome counts (dark blue = low, green = moderate, yellow
= high). (b) Violin plots of FEV fractions, or adjusted FEV over unadjusted FEV, by adjustment
type on the x-axis.
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Fig. S3: Autosomal DNAm PCA results across normal blood samples. Eigenvalues explained by
select variables. Stacked barplots show the eigenvalue magnitudes (left) and percentages (right)
for the top ten components (x-axis). Fill colors indicate magnitudes of component sum of squared
variances explained by select variables (red = genetic ancestry PC1, yellow = predicted CD4+ T-
cells, green = Study ID, blue = other variable, purple = residuals). The term “other” stores the
10 remaining model variables tested. X-axis labels show the percent of total variances explained
by each component in parentheses.
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Fig. S4: Top two components from PCAs of autosomal DNAm (noob-normalized Beta-values)
colored according to different variables. Each panel includes a scatter plot (top) and 95% confi-
dence interval ellipses (bottom) where the x and y axes correspond to, respectively, the first and
second components. Colors specify sample type (top left, black = other/not otherwise specified,
gray = whole blood, yellow = cord blood, red = PBMC), platform (top middle, red = EPIC, blue
= HM450K), the first component of genetic ancestry (top right, [41]), and predicted fractions [38]
for CD8+ T-cells (bottom left), CD4+ T-cells (bottom middle), and B-cells (bottom right). Color
labels for the latter four continuous variables correspond to sample quintile bins (e.g. 5 quantile
ranges: pink = 0-20, yellow = 20-40, green = 40-60, blue = 60-80, purple = 80-100).
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Fig. S5: Violin plots of the top two genetic ancestry components on the x axes for each of the three
available datasets on the y axes (black = “Inoshita et al 2015” [48], red = PBMC compilation,
gray = whole blood compilation). Vertical blue lines represent the distribution medians.
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Fig. S6: Summaries of differential DNAm by sex in whole blood and peripheral blood mononu-
clear cells (PBMC). (a) Volcano plot for whole blood showing difference in mean Beta-values
(males minus females, x-axis) versus probe significance (-1*log10[P-adj.], Benjamini Hotchberg
adjustment [86], y-axis). Red dots represent the top 1,000 DMPs, black circles represent non-DMP
probes. (b) violin plots for whole blood showing distributions of absolute difference in mean Beta-
values (males minus females, y-axis) for all tested CpG probes (left) and only the top 1,000 most
significant differentially methylated probes (DMPs, right). Horizontal black lines indicate the dis-
tribution medians. (c) Volcano plot for PBMC showing difference in mean Beta-values (males
minus females, x-axis) versus probe significance (-1*log10[P-adj.], y-axis). Red dots represent the
top 1,000 DMPs, black circles represent non-DMP probes. (d) violin plots for PBMC showing dis-
tributions of absolute difference in mean Beta-values (males minus females, y-axis) for all tested
CpG probes (left) and only the top 1,000 most significant differentially methylated probes (DMPs,
right). Horizontal black lines indicate the distribution medians.
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Fig. S7: Upset plot showing DMP overlaps (lower left and top right barplot magnitudes) among
4 DMP sets including compiled whole blood, compiled PBMC, “Inoshita et al 2015” [48], and
“Grant et al 2021” [47] (lower y-axis labels). Set magnitudes are shown on top of subset magnitude
barplots.
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Supplementary tables

All platforms HM450K EPIC Age (years old)

Type Studies Samples Studies Samples Studies Samples Fract. M Median SD 1< 1-10 10-20 20-40 40-60 60-80 >80

all 62 12,242 51 9,083 12 3,159 0.44 30 25 2,155 859 1,640 2,923 2,452 2,053 160

whole blood 31 6,866 25 5,613 6 1,253 0.43 36 21 21 289 1,352 2,252 1,386 1,442 124

cord blood 9 1,475 7 722 2 753 0.52 0 0 1,475 0 0 0 0 0 0

PBMC 9 627 7 382 2 245 0.37 18 19 0 234 87 166 102 35 3

Table S1: Blood sample type (rows) availability and demographic variables (columns).

Technical Biological Demographic

Model Study
ID

Platform CD8+
T-cells

CD4+
T-cells

B-cells Gran. Mono. Natural
Killer

Sex Age G.A.
PC1

G.A.
PC2

Unadj. 0.465 0.037 0.014 0.010 0.013 0.020 0.005 0.009 0.003 0.012 0.077 0.054

Adj. 1 0.002 0.086 0.036 0.026 0.035 0.050 0.013 0.024 0.008 0.030 0.212 0.144

Adj. 2 0.000 0.089 0.037 0.026 0.035 0.051 0.013 0.024 0.008 0.031 0.214 0.144

Table S2: Fraction of explained variance (FEV) medians by model type (rows) and variables
(columns), across study ID bias correction simulations (Methods).
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