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Abstract 
Deep neural network models of sensory systems are often proposed to learn representational 
transformations with invariances like those in the brain. To reveal these invariances we generated 
“model metamers” – stimuli whose activations within a model stage are matched to those of a 
natural stimulus. Metamers for state-of-the-art supervised and unsupervised neural network 
models of vision and audition were often completely unrecognizable to humans when generated 
from deep model stages, suggesting differences between model and human invariances. 
Targeted model changes improved human-recognizability of model metamers, but did not 
eliminate the overall human-model discrepancy. The human-recognizability of a model’s 
metamers was well predicted by their recognizability by other models, suggesting that models 
learn idiosyncratic invariances in addition to those required by the task. Metamer recognition 
dissociated from both traditional brain-based benchmarks and adversarial vulnerability, revealing 
a distinct failure mode of existing sensory models and providing a complementary benchmark for 
model assessment.  
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Introduction 
A central goal of neuroscience is to build models that reproduce brain responses and behavior. 
The hierarchical nature of biological sensory systems (1, 2) has motivated the use of hierarchical 
neural network models that transform sensory inputs into task-relevant representations (3, 4). As 
such models have become the top-performing machine perception systems over the last decade, 
they have also emerged as the leading models of both the visual and auditory systems (5–11). 
 
One hypothesis for why artificial neural network models might replicate computations found in 
biological sensory systems is that they instantiate invariances that mirror those in such systems 
(12–14). For instance, visual object recognition must often be invariant to pose, and to the 
direction of illumination. Similarly, speech recognition must be invariant to speaker identity and to 
details of the prosodic contour. Sensory systems are hypothesized to build up invariances (15–
17) that enable robust recognition. Such invariances plausibly arise in neural network models as 
a consequence of optimization for recognition tasks or other training objectives. 
 
Although biological and artificial neural networks might be supposed to have similar internal 
invariances, there are some known human-model discrepancies that suggest the invariances of 
the two systems do not perfectly match. For instance, model judgments are often impaired by 
stimulus manipulations to which human judgments are invariant, such as additive noise (18–20) 
or small translations of the input (21, 22). Another such discrepancy is the vulnerability to 
adversarial perturbations – small changes to stimuli that alter model decisions despite being 
imperceptible to humans (23–26). These findings illustrate that current task-optimized models 
lack some of the invariances of human perception, but leave many questions unresolved. For 
instance, because the established discrepancies rely on only the model’s output decisions, they 
do not reveal where in the model the discrepancies arise. It also remains unclear whether 
observed discrepancies are specific to supervised learning procedures that are known to deviate 
from biological learning. And because the known discrepancies do not point to a general method 
to assess model invariances in the absence of a specific hypothesis, it remains possible that 
current models possess many other invariances that humans lack. 
 
In this paper we present a general test of whether the invariances present in computational 
models of the auditory and visual systems are also present in human perception, and apply this 
test to a set of contemporary and classical models. Rather than target particular known human 
invariances, we visualize or sonify model invariances by synthesizing stimuli that produce 
approximately the same activations in a model. We draw inspiration from human perceptual 
metamers, which have previously been characterized in the domains of color perception (27, 28), 
texture (29–31), cue combination (32), Bayesian decision making (33), and visual crowding (34, 
35). We call the stimuli we generate “model metamers” because they are metameric for a 
computational model1. 
 
We generated model metamers from a variety of state-of-the-art deep neural network models of 
vision and audition by synthesizing stimuli that yield the same activations in a model stage as 
particular natural images or speech signals. We then evaluated human recognition of the model 
metamers. If the model invariances match those of humans, then humans should be able to 
recognize the model metamer as belonging to the same class as the natural signal to which it is 
matched.  
 

 
 
 
1 A preliminary version of some of the experiments described here was presented in a conference paper (36). 
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Across both visual and auditory task-optimized neural networks, metamers from late model stages 
were nearly always misclassified by humans, suggesting that many of their invariances are not 
present in human sensory systems. The same phenomenon also occurred for networks trained 
with unsupervised learning, demonstrating that the model failure is not specific to supervised 
classifiers. Model metamers could be made more recognizable to humans with selective changes 
to the training procedure or architecture. However, late-stage model metamers remained much 
less recognizable than natural stimuli in every model we tested regardless of architecture or 
training. Some model changes that produced more recognizable metamers did not improve 
conventional neural prediction metrics or evaluations of robustness, demonstrating that the 
metamer test provides a complementary tool to guide model improvements. The human-
recognizability of a model’s metamers was well predicted by other models’ recognition of the same 
metamers, suggesting that the discrepancy with humans lies in idiosyncratic model-specific 
invariances. Model metamers demonstrate a qualitative gap that remains between current models 
of sensory systems and their biological counterparts, and provide a metric for future model 
evaluation. 
 
Results 
General procedure 
The goal of our metamer generation procedure (Figure 1a) was to generate stimuli that produce 
nearly identical activations at some stage within a model, but that were otherwise unconstrained, 
and thus could physically differ in ways to which the model was invariant. We first measured the 
activations evoked by a natural image or speech signal at a particular model stage. The metamer 
for the natural image or speech signal was then initialized as a white noise signal (either an image 
or a sound waveform; white noise was chosen to sample the metamers as broadly as possible 
subject to the model constraints, without biasing the initialization towards a specific object class). 
The noise signal was then iteratively modified to minimize the difference between its activations 
at the model stage of interest and those for the natural signal to which it is matched. The 
optimization procedure performed gradient descent on the input, iteratively updating the input 
while holding the network parameters fixed. Model metamers can be generated in this way for 
any model stage constructed from differentiable operations. Because the models we considered 
are hierarchical, if the image or sound was matched with high fidelity at a particular stage, all 
subsequent stages were also matched (including the final classification layer in the case of 
supervised networks, yielding the same decision). 
 
Experimental logic 
The logic of our approach can be related to four sets of stimuli. For a given “reference” stimulus, 
there is a set of stimuli for which humans produce the same classification judgment as the 
reference (Figure 1b; blue shaded). A subset of these are stimuli that are indistinguishable from 
the reference stimulus (i.e., metameric) to human observers (blue circle). If a model performs a 
classification task, it will also have a set of stimuli judged to be the same category as the reference 
stimulus (orange shaded). However, even if the model does not itself perform classification, it 
could instantiate invariances that define model metamers for the reference stimulus at each model 
stage (orange circle). 
 
In our experiments, we generate stimuli (sounds or images) that are metameric to a model and 
present these stimuli to humans performing a classification task (Figure 1c). Because we have 
access to the internal representations of the model, we can generate metamers for each stage of 
a model (i.e. sampling from the preimage of the reference stimulus at each model stage; Figure 
1d). In many models there is limited invariance in the early stages (as is believed to be true of 
early stages of biological sensory systems (17)), with model metamers closely approximating the 
stimulus from which they are generated (Figure 1d, small orange sets in leftmost column). But 
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successive stages of a model may build up invariance, producing successively larger sets of 
model metamers. In a feedforward model, if two distinct inputs map onto the same representation 
at a given model stage, then any differences in the inputs cannot be recovered in subsequent 
stages, such that invariance cannot decrease from one stage to the next. If a model replicates a 
human sensory system, every model metamer from each stage should also be classified as the 
reference class by human observers (first row of Figure 1d). Such a result does not imply that all 
human invariances will be shared by the model, but it is a necessary condition for a model to 
replicate human invariances. 
 
Discrepancies in human and model invariances could result in model metamers that are not 
recognizable by human observers (second row of Figure 1d). Moreover, assessing model 
metamers from different model stages may provide insight into how the invariances are built up 
over the model, and where they begin to diverge from those of humans. 
 
Our approach differs from classical work on metamers (28) in that we do not directly assess 
whether model metamers are also metamers for human observers (i.e., indistinguishable). The 
reason for this is that a human judgment of whether two stimuli are the same or different could 
rely on any representations within their sensory system that distinguish the stimuli, rather than 
just those that are relevant to a particular behavior. By contrast, most neural network models of 
sensory systems are trained on a single task. As a result, we do not expect metamers of such 
models to be fully indistinguishable to a human observer. But if the model replicates the 
representations that support a particular behavioral task in humans, its metamers should 
nonetheless produce the same human behavioral judgment on that task, because they should be 
indistinguishable to the human representations that mediate the judgment. We thus use a 
recognition judgment as the behavioral assay of whether model metamers reflect the same 
invariances that are instantiated in an associated human sensory system. Moreover, if humans 
cannot recognize a model metamer, they would also be able to discriminate it from the reference 
stimulus, and the model would not pass a traditional metamerism test. 
 
We sought to answer several questions. First, we asked whether the learned invariances of 
commonly used neural network models are shared by human sensory systems. Second, we 
asked where any discrepancies with human perception arise within models. Third, we asked 
whether any discrepancies between model and human invariances would also be present in 
models obtained without supervised learning. Fourth, we explored whether model modifications 
intended to improve robustness would also make model metamers more recognizable to humans. 
Fifth, we asked whether metamer recognition identifies model discrepancies that are not evident 
using other methods of model assessment, such as brain predictions or adversarial vulnerability. 
Sixth, we asked whether human-discrepant metamers are shared across models. 
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Metamer optimization 
Because the metamer generation relies on an iterative optimization procedure, it was important 
to measure optimization success for each metamer. We considered the metamer generation to 

 
Figure 1. a) Model metamer generation. Metamers are synthesized by performing gradient descent on a 
noise signal to minimize the difference between its activations and those of a natural signal. The model 
architecture shown here is that of the CochCNN9 auditory model class used throughout the paper. b) Each 
reference stimulus has an associated set of stimuli in the space of all possible stimuli that are categorized 
as the same class by humans (blue) or by models (orange, if models have a classification decision). 
Metamers for humans and metamers for models are also sets of stimuli in the space of all possible stimuli 
(subsets of the set of same-class stimuli). c) General experimental setup. Humans make classification 
judgements on natural stimuli or model metamers. d) Possible scenarios for how model metamers could 
relate to human classification decisions. Each square panel depicts sets of stimuli in the input space. The 
top row depicts a model that passes our proposed behavioral test. The set of metamers for a reference 
stimulus grows over the course of the model, but even at the deepest stage, all model metamers are 
classified as the reference category by humans. The second row depicts a model whose invariances 
diverge from those of humans. By the late stages of the model, many model metamers are no longer 
recognizable by humans as the reference stimulus class. The metamer test results also constrain the model 
stage at which model invariances diverge from those of humans. e) Example distributions of activation 
similarity for pairs of metamers (a natural signal and its corresponding metamer) along with random pairs 
of natural signals from the training set. The latter provides a null distribution that we used to verify the 
success of the model metamer generation. The correlation between metamer activations in the layer used 
for metamer generation (top left and bottom right) falls outside the null distribution, as intended. When the 
metamer is generated from an early layer, the activations in a deeper layer are also well matched (top right), 
as expected given that the model is feedforward and deterministic. By contrast, when metamers are 
generated from a deep layer, activations in the deep layer are well matched, but those in the early layer are 
not (bottom left). This is because the model builds up invariances from layer to layer, such that metamers 
for the deep layer produce very different activations in an early layer. 
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have succeeded only if it satisfied two conditions. First, measures of the match between the 
activations for the natural reference stimulus and its model metamer at the matched stage had to 
be much higher than would be expected by chance, quantified with a null distribution (Figure 1e, 
grey distributions) measured between randomly chosen pairs of examples from the training 
dataset. This criterion was adopted in part because it is equally applicable to networks that do not 
perform a task. Second, for models that performed a classification task, the metamer had to result 
in the same classification decision by the network as the paired natural signal. In practice we 
trained linear classifiers on top of all unsupervised models, such that we were able to apply this 
second criterion for them as well (to be conservative). 
 
Figure 1e shows example distributions of the match fidelity (using Spearman’s rho, match fidelity 
was also measured with two other metrics; see Methods). Activations in the matched model stage 
have a correlation close to 1, as intended, and are well outside the null distribution for random 
pairs of training examples. And as expected given the feedforward nature of the model, matching 
at an early layer produces matched activations in a late layer (Figure 1e, orange distributions, top 
row). But because the models we consider build up invariances over a series of feedforward 
stages, stages earlier than the matched layer need not have the same activations, and in general 
differ from those for the original stimulus to which the metamer was matched (Figure 1e, orange 
distributions, bottom row). This is particularly true for model metamers generated from late stages 
of the network, where many different signals can yield the same model activations.  
 
Metamers for standard visual deep neural networks are unrecognizable to humans 
We generated model metamers for multiple stages of five standard visual neural networks trained 
to recognize objects (using the ImageNet dataset (37)) (Figure 2a). The five network models 
spanned a wide range of architectural building blocks and depths: CORnet-S (38), VGG-19 (39), 
ResNet50 and ResNet101 (40), and AlexNet (41). These models have been posited to capture 
similar features as primate visual representations, and at the time the experiments were run, they 
respectively placed 1st, 2nd, 11th, 4th, and 59th on a neural prediction benchmark (38, 42). To 
evaluate human recognition of the model metamers, humans performed a 16-way categorization 
task on the natural stimuli and model metamers (Figure 2b) (18). In networks with residual 
connections, we only generated metamers at layers where all branches converge, which ensured 
that all subsequent model stages, and the model decision, remained matched. 
 
Contrary to the idea that the trained networks have learned human-like invariances, we found that 
human recognition of the model metamers decreased across model stages, reaching near-
chance performance at the deepest stages even though the model metamers remained as 
recognizable to the networks as the corresponding natural stimuli, as intended (Figure 2c). This 
reduction in human recognition of model metamers was evident as a main effect of observer 
(CORnet-S: F(1,42)=424.4, p<0.0001; VGG-19: F(1,42)=1612.1, p<0.0001; ResNet50: 
F(1,42)=554.9, p<0.0001; ResNet101: F(1,42)=1001.7, p<0.0001; AlexNet: F(1,42)=935.4, 
p<0.0001), and an interaction between the effect of metamer generation stage and the observer 
(CORnet-S: F(5,210)=293.6, p<0.0001; VGG-19: F(9,378)=268.4, p<0.0001; ResNet50: 
F(7,294)=290.2, p<0.0001; ResNet101: F(7,294)=345.8, p<0.0001; AlexNet: F(8,336)=195.0, 
p<0.0001). From visual inspection, many of the metamers from late stages resemble noise rather 
than natural images (Figure 2d; see Supplementary Figure 1a for examples of metamers 
generated from different white noise initializations). Although the specific optimization strategies  
we used had some effect on the subjective appearance of the model metamers, human 
recognition of the generated stimuli remained poor regardless of the optimization procedure 
(Supplementary Figure 2).  
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Metamers for standard auditory deep neural networks are unrecognizable to humans 
To investigate whether this phenomenon generalized across modalities, we performed an 
analogous experiment with two audio neural networks trained to recognize speech (the word 
recognition task in the Word-Speaker-Noise dataset (36)). Each model consisted of a biologically-
inspired “cochleagram” representation with parameters matched to estimates of the frequency 
tuning of the human ear (43, 44) followed by a convolutional neural network whose parameters 
were optimized during training. We tested two network architectures: a ResNet50 architecture 
(referred to here as CochResNet50) and a network with nine layers (including five convolutional 
layers) similar to that used in a previously published auditory neural network model (5), referred 
to here as CochCNN9. Model metamers were generated for clean speech examples from the 
validation set (Figure 1a). Humans performed a 793-way classification task (5) to identify the word 
in the middle of either a natural speech example or a model metamer of a speech example 
generated from a particular model stage (Figure 2e; humans typed responses but were only 
allowed to enter one of the 793 words from the models’ word-recognition task).   
 
As with the image recognition models, human recognition of the auditory model metamers 
decreased markedly at late model stages for both architectures (Figure 2f). As with the vision 
models, there was a significant main effect of human vs. model observer (CochCNN9: 
F(1,38)=551.9, p<0.0001; CochResNet50: F(1,38)=467.8, p<0.0001) and a significant interaction 
between effect of metamer generation stage and the observer (CochCNN9: F(9,342)=189.2, 
p<0.0001; CochResNet50: F(8,304)=227.4, p<0.0001). Subjectively, the model metamers from 
deeper layers sound like noise (and appear noise-like when visualized as cochleagrams; Figure 
2g). This result suggests that many of the invariances present in these models are not invariances 
for the human auditory system.  
 
Overall, these results demonstrate that the invariances of many common visual and auditory 
neural networks are substantially misaligned with those of human perception, even though these 
models are currently the best predictors of brain responses in each modality.  
 
Metamers of unsupervised deep network models are also unrecognizable to humans 
It is widely appreciated that the learning procedures used to train most contemporary deep neural 
networks deviate markedly from the learning that occurs in biological systems (45). Perhaps the 

Figure 2 (previous page). Metamers of standard-trained visual and audio deep neural networks are often 
unrecognizable to human observers. a) Model metamers are generated from different stages of the model. 
b) Experimental task used to assess human recognition of visual model metamers. Humans were presented 
with an image (either a natural image or a model metamer of a natural image) followed by a noise mask. 
They were then presented with 16 icons representing 16 object categories, and classified each image as 
belonging to one of these 16 categories by clicking on the icon. c) Human recognition of image model 
metamers (N=22). For all tested models, human recognition of model metamers declined for late model 
stages, while model metamers remained recognizable to the model (as expected). Error bars plot SEM 
across participants (or participant matched stimulus subsets for model curves) d) Example metamers from 
VGG-19 and ResNet50 visual models. e) Experimental task used to assess human recognition of auditory 
model metamers. Humans classified the word that was present at the midpoint of a two-second sound clip. 
Participants selected from 793 possible words by typing any part of the word into a response box and 
seeing matching dictionary entries from which to complete their response. A response could only be 
submitted if it matched an entry in the dictionary. f) Human recognition of audio model metamers (N=20). 
For both tested models, human recognition of model metamers decreased at late model stages. By 
contrast, model metamers remain recognizable to the audio models, as expected. When plotted, chance 
performance (1/793) is indistinguishable from the x-axis. Error bars plot SEM across participants (or 
participant matched stimulus subsets for model curves). g) Cochleagram visualizations of example audio 
model metamers from CochCNN9 and CochResNet50 architectures. Color intensity denotes instantaneous 
sound amplitude in a frequency channel (arbitrary units) 
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most fundamental difference lies in supervised learning, as biological systems are not provided 
with explicit category labels for millions of stimuli during development. Do the divergent 
invariances evident in neural network models result in some way from supervised training? 
Metamers are well-suited to address this question given that their generation is not dependent on 
a classifier, and thus can be generated for any sensory model.  

 

 
Figure 3. Metamers of self-supervised neural network models are unrecognizable to humans. a) Overview 
of self-supervised learning, adapted from (46). Models were trained to map multiple views of the same 
image to nearby points in the embedding space. The SimCLR and MoCo_V2 models also had an additional 
training objective that explicitly pushed apart embeddings from different images. b) Human recognition of 
metamers from supervised and self-supervised models (N=21). Self-supervised models (SimCLR, 
MoCo_V2, and BYOL) used a ResNet50 backbone; the comparison supervised model was also a 
ResNet50. For self-supervised models, the “final” stage was a linear classifier trained on the ImageNet task 
on the avgpool representation (intended to validate the representations learned via self-supervision, but 
included here for completeness). Model recognition curves were close to ceiling as in Figure 2, and are 
omitted here and in later figures for brevity. Error bars plot SEM across participants. c) Example metamers 
from select stages of ResNet50 supervised and self-supervised models. In all models, late-stage metamers 
are mostly unrecognizable. 
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Recent advances in certain types of unsupervised learning have produced neural networks whose 
representations support classification tasks without requiring millions of labeled examples during 
training (46). The leading such models are self-supervised, being trained with a loss function 
favoring representations in which variants of a single training example (different crops of an 
image, for instance) are similar while those from different training examples are not (Figure 3a). 
To assess whether this unsupervised training produces more human-like invariances compared 
to traditional supervised training, we generated model metamers for three such models, all with a 
ResNet50 architecture: SimCLR (46), MoCo_V2 (47) and BYOL (48). After training, we verified 
that the learned representations were sufficient to support object classification performance (on 
ImageNet) by training a linear classifier on the final average pooling layer (without changing any 
of the model weights). We measured human recognition of metamers from these models as well 
as those of the same ResNet50 architecture fully trained with supervision (on the ImageNet task).  
 
As shown in Figure 3b&c, the unsupervised networks (SimCLR, MoCo_V2 and BYOL) produced 
similar results to those for supervised networks: human recognition of model metamers declined 
at deeper model stages, approaching chance levels for the final stages. Two of the self-
supervised networks had somewhat more recognizable metamers at intermediate stages, with 
MoCo_V2 producing the largest boost (significant interaction between model type and model 
stage, F(21, 420)=16.0, p<0.0001). However, recognition was low in absolute terms, with the 
metamers bearing little resemblance to the original image they were matched to. Overall, the 
results suggest that the failure of standard neural network models to pass our metamer test is not 
specific to the supervised training procedure. This result also demonstrates the generality of the 
metamers method, as it can be applied to models that do not have a behavioral read-out. 
 
Model metamers reveal invariances of classical hierarchical models of sensory systems 
As a further demonstration of the generality of the model metamer method, we generated 
metamers for classical visual and auditory models that were designed by hand based on 
neuroscience and engineering principles. Although these models do not perform classification 
tasks as well as contemporary neural network models, their comparative simplicity might be  
hypothesized to yield more human-like invariances.  
 
The HMAX vision model is a biologically-motivated architecture with cascaded filtering and 
pooling operations inspired by simple and complex cells in the primate visual system and was 
intended to capture aspects of biological object recognition (4, 16). We generated model 
metamers by matching all units at the S1, C1, S2, or C2 stage of the model (Figure 4a). Although 
HMAX is significantly shallower than the neural network models investigated in previous sections, 
it is evident that by the C2 model stage its model metamers are comparably unrecognizable to 
humans (Figure 4b&c; significant main effect of model stage, F(4,76)=351.9, p<0.0001). This 
classical model thus also has invariances that differ from those of the human object recognition 
system.  
 
We performed an analogous experiment on a classical model of auditory cortex, consisting of a 
set of spectrotemporal filters applied to a cochleagram representation (Spectemp model) (49). 
We used a version of the model in which the convolutional responses are summarized with the 
mean power in each filter (5, 50, 51) (Figure 4d). Metamers from the first two stages were fully 
recognizable, and very similar to the original audio, indicating that these stages instantiate few 
invariances, as expected for overcomplete filter bank decompositions (Figure 4e&f). By contrast, 
metamers from the mean power representation were unrecognizable (significant main effect of 
model stage F(4,76)=515.3, p<0.0001), indicating that this model stage produces invariances that 
humans do not share (plausibly because the human speech recognition system retains 
information that is lost in the averaging stage).  
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Figure 4. Metamers from classical models of sensory systems. a) Schematic of HMAX vision model, 
adapted from (4). b) Example HMAX model metamers. c) Human recognition of HMAX model metamers 
(N=20). Metamers generated from the HMAX model are recognizable at early model stages but become 
unrecognizable to humans by the C2 model stage. Error bars plot SEM across participants. d) Schematic 
of spectro-temporal auditory filterbank model (Spectemp), adapted from (49). e) Cochleagrams of example 
Spectemp model metamers.  f) Human recognition of Spectemp model metamers (N=20). Metamers 
generated from the Spectemp model are recognizable at early model stages but become unrecognizable 
by the final (temporal average of filter power) stage. Error bars plot SEM across participants 
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Overall, these results show how metamers can reveal the invariances present in classical models 
as well as state-of-the-art deep neural networks, and demonstrate that both types of models fail 
to fully capture the invariances of biological sensory systems.  
 
Adversarial training of visual models increases human recognition of model metamers 
A known peculiarity of contemporary artificial neural networks is their vulnerability to small 
adversarial perturbations designed to change the class label assigned by a model (23–26, 52). 
Such perturbations are typically imperceptible to humans due to their small magnitude, but can 
drastically alter model decisions, and have been the subject of intense interest in part due to the 
security risk they pose for machine systems. One way to reduce this vulnerability is to generate 
perturbation-based adversarial examples during training and add them to the training set, forcing 
the network to learn to recognize the perturbed images as the “correct” human-interpretable class 
(Figure 5a) (53). This procedure has been found to yield networks that are less susceptible to 
adversarial examples for reasons that remain debated (54). 
 
We asked whether reducing adversarial vulnerability in this way would improve human recognition 
of model metamers. A priori it was not clear what to expect. Perturbation-based adversarial 
examples can be viewed as the converse of a model metamer, in that they are generated by 
perturbations to which humans are invariant but which cause changes in model decisions. Making 
models robust to adversarial perturbations causes them to exhibit more of the invariances of 
humans (the shaded orange covers more of the blue outline in Figure 1b), but it is not obvious 
that this will reduce the model invariances that are not shared by humans (i.e., to decrease the 
orange outlined regions that don’t overlap with blue shaded region in Figure 1b). Previous work 
visualizing latent representations of visual neural networks suggested that robust training might 
make model representations more human-like (55), but human recognition of model metamers 
had not been behaviorally evaluated.  
 
We first generated model metamers for vision models trained to be adversarially robust (ImageNet 
ResNet50 and AlexNet architectures) (55). As a control, we also trained models with equal 
magnitude perturbations in random, rather than adversarial, directions. Such random 
perturbations are typically ineffective at preventing adversarial attacks (52). As intended, networks 
with adversarial perturbations during training were more robust to adversarial examples than the 
standard network or networks with random perturbations (Supplementary Figure 3a&b).  
 
For both architectures, metamers for the robust models were significantly more recognizable than 
those from the standard model (Figure 5b-d; Supplementary Figure 1), evident as a significant 
main effect of training type (repeated measures ANOVAs comparing human recognition of 
standard and each adversarial model, significant main effect in each of the five models, 
F(1,19)>104.61, p<0.0001). Training with random rather than adversarial perturbations did not 
yield the same benefit (significant main effect of random vs. adversarial for each perturbation of 
the same ε type and size, F(1,19)>121.38, p<0.0001). Model metamers were more recognizable 
to humans for some adversarial training variants than others, but all variants that we tried 
produced a human recognition benefit. It was nonetheless the case that metamers from all 
variants remained less than fully recognizable to humans when generated from the deep layers. 
We note that performance is inflated by the use of a 16-way alternative-force-choice (AFC) task, 
for which above-chance performance is possible even with severely distorted images. 
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Adversarial training of auditory models increases human recognition of model metamers 
To investigate whether adversarial training also leads to more human-like auditory 
representations, we trained CochResNet50 and CochCNN9 architectures on the word recognition 
task described above, using both standard and adversarial training. Because the auditory models 
contain a fixed cochlear stage at their front end, there are two natural places to generate 

 
Figure 5. Adversarial training increases human recognition of visual model metamers. a) Explanation of 
adversarial training. Adversarial examples are derived at each training step by finding an additive 
perturbation to the input that moves the classification label away from the training label class (top). These 
derived adversarial examples are then provided to the model as training examples and used to update the 
model parameters (bottom). The resulting model learns to classify the adversarial examples as the training 
data label, and is subsequently more robust to adversarial perturbations than if standard training were used. 
As a control experiment, we also trained models with random perturbations to the input rather than 
adversarial perturbations. b) Human recognition of visual model metamers on a 16-way classification task 
with metamers generated from ResNet-50 models (N=20) trained with and without adversarial or random 
perturbations. Error bars plot SEM across participants. c) Same as c, but for AlexNet models (N=20). In 
both ResNet50 and AlexNet models, adversarial training leads to more recognizable metamers at the deep 
layers of the networks, though in both cases the metamers remain less than fully recognizable. d) Example 
visual model metamers for ResNet50 networks trained with and without adversarial or random L2 

perturbations. 
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adversarial examples (they can be added to the waveform or the cochleagram), and we explored 
both for completeness.  
 
We first investigated the effects of adversarial perturbations to the waveform (Figure 6a, 
Supplementary Figure 3c&d). As a control experiment, we again trained networks with random, 
rather than adversarial, perturbations. As with the visual models, human recognition was generally 
better for model metamers from adversarially trained networks (Figure 6b&c; ANOVAs comparing 
standard and adversarial models, significant main effect in 4/5 cases: F(1,19)>9.26, p<0.0075; no 
significant main effect for CochResNet50 with L2 (ε=1) perturbations: F(1,19)=0.29, p=0.59). This 
benefit again did not occur for models trained with random perturbations (ANOVAs comparing 
each random and adversarial perturbation model with the same ε type and size; significant main 
effect in each case: F(1,19)>4.76, p<0.0444). The model metamers from the robust models are 
visibly less noise-like when viewed in the cochleagram representation (Figure 6d).  
 
We also trained models with adversarial perturbations to the cochleagram representation, whose 
fixed components enabled norm-based constraints on the perturbation size analogous to those 
used for input-based adversarial examples (Figure 6e). Models trained on cochleagram 
adversarial examples had significantly more recognizable metamers than both the standard 
models and the models adversarially trained on waveform perturbations (Figure 6f&g; ANOVAs 
comparing each model trained with cochleagram perturbations vs. the same architecture trained 
with waveform perturbations; significant main effect in each case: F(1,19)>4.6, p<0.04; ANOVAs 
comparing each model trained with cochleagram perturbations to the standard model; significant 
main effect in each case: F(1,19)>102.25, p<0.0001). The effect on metamer recognition was 
again specific to adversarial perturbations (ANOVAs comparing effect of training with adversarial 
vs. random perturbations with the same ε type and size: F(1,19)>145.07, p<0.0001).  
 
Although the perturbation sizes in the two model stages are not directly comparable, in each case 
we chose the size to be large enough that the model showed robustness to adversarial 
perturbations while not being so large that the model could not perform the task (as is standard 
for adversarial training). Further, training networks with perturbations generated at the 
cochleagram stage resulted in substantial robustness to adversarial examples generated at the 
waveform (Supplementary Figure 3e&f). These results suggest that the improvements from 
intermediate-stage perturbations may in some cases be more substantial than those from 
perturbations to the input representation. They also highlight the utility of model metamers for 
evaluating model modifications, in this case adversarial training with perturbations to intermediate 
model representations. 
 
Overall, these results suggest that training alterations intended to mitigate undesirable 
characteristics of artificial neural networks (adversarial vulnerability) can cause their invariances 
to become more like those of humans in both the visual and auditory domain. However, 
substantial discrepancies remain even with these alterations. In both modalities, many model 
metamers from the deep layers remain unrecognizable even after adversarial training.  
 
Figure 6 (next page). Adversarial training increases human recognition of audio model metamers. a) 
Schematic of auditory convolutional neural networks with adversarial perturbations applied to the waveform 
input. b) Human recognition of auditory model metamers from CochResNet50 (N=20) and c) CochCNN9 
(N=20) models with adversarial perturbations generated in the waveform space (models trained with 
random perturbations are also included for comparison). When plotted here and in f&g, chance performance 
(1/793) is indistinguishable from the x-axis and error bars plot SEM across participants. L2 (ε=0.5) waveform 
adversaries were only included in the CochResNet50 experiment. d) Cochleagrams of example model 
metamers from CochResNet50 models trained with waveform and cochleagram adversarial perturbations. 
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e) Schematic of auditory convolutional neural networks with adversarial perturbations applied to the 
cochleagram stage. f) Human recognition of auditory model metamers from networks trained with 
cochleagram adversarial perturbations are more recognizable for CochResNet50 and g) CochCNN9 
models compared to those from models trained with waveform perturbations. 
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Human recognition of metamers dissociates from adversarial vulnerability 
Although we found that adversarial training increased the human recognizability of model 
metamers, we also found examples where a model’s susceptibility to adversarial examples was 
not predictive of the recognizability of its metamers. Here we present results for two models that 
had similar adversarial robustness, one of which had much more recognizable metamers than 
the other.  
 
The first model was a CNN that was modified to reduce aliasing (LowpassAlexNet). Because 
many traditional neural networks contain downsampling operations (e.g. pooling) without a 
preceding lowpass filter, they violate the sampling theorem (36, 56) (Figure 7a). It is nonetheless 
possible to modify the architecture to reduce aliasing, and such modifications have been 
suggested to improve network robustness to small image translations (21, 22). The second model 
was a CNN that contained an initial processing block inspired by primary visual cortex in primates 
(57, 58) featuring hard-coded Gabor filters and a stochastic response component present during 
training (VOneAlexNet, Figure 7b). The inclusion of this block has been previously demonstrated 
to increase adversarial robustness. It was a priori unclear whether either model modification would 
improve human recognizability of the model metamers. 
 
Both architectures were comparably robust to adversarial perturbations (Figure 7c; no significant 
main effect of architecture for perturbations, F(1,8)<4.5, p>0.10 for all perturbation types), and 
both were more robust than the standard AlexNet (main effect of architecture for perturbations 
F(1,8)>137.4, p<0.031 for all adversarial perturbation types for both VoneAlexNet and 
LowPassAlexNet). However, metamers generated from LowpassAlexNet were substantially more 
recognizable than metamers generated from VoneAlexNet (Figure 7d,e; main effect of 
architecture: F(1,19)=71.7, p<0.0001; interaction of architecture and model stage: F(8,152)=21.8, 
p<0.0001). This result empirically demonstrates that human recognizability of model metamers 
and susceptibility to adversarial examples are dissociable. The model metamer test thus provides 
a complementary comparison of model invariances that can differentiate models even when 
adversarial robustness does not.  
 
These results may be understood in terms of the four types of stimulus sets originally shown in 
Figure 1b, four configurations of which are depicted in Figure 7f. Adversarial examples are stimuli 
that are metameric to a reference stimulus for humans but that are classified differently from the 
reference stimulus by a model. Adversarial robustness thus corresponds to a situation where the 
human metamers for a reference stimulus fall completely within the set of stimuli that are given 
the reference class label by a model (blue outline contained within orange shaded region in 7f, 
right column). This condition does not imply that all model metamers will be recognizable to 
humans (orange outline contained within the blue shaded region, top row). These theoretical 
observations motivate the use of model metamers as a complementary model test, and are 
confirmed by the empirical observations of this section. The effect of adversarial training on model 
metamers (Figures 5&6) thus appears to be somewhat specific to the training method – a model’s 
adversarial robustness is not always predictive of the human recognizability of its metamers. 
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Standard evaluation metrics do not capture differences between auditory models  
Are the differences between models shown by the metamer test similarly evident when using 
standard neural evaluation benchmarks (5)? To address this question, we used such benchmarks 
to evaluate the auditory models from the adversarial-training experiments described above. We 
chose to make this comparison with auditory models because we had access to a large data set 
of human auditory cortical responses (59) that had previously been used to evaluate neural 
network models of the auditory system (fMRI responses to a large set of natural sounds). We 
assessed predictions of the responses of individual voxels using cross-validated regularized linear 
regression applied to the network activations to the same set of natural sounds (Figure 8a). We 
used the models trained with cochleagram adversarial perturbations as these produced the 
largest effect on model metamer recognizability (Figure 8b). 
 
The brain predictions of the two types of neural network models were overall similar (Figure 8c&d), 
with both explaining significantly more variance than a single-layer baseline model (the Spectemp 
model from Figure 4d; permutation test, p<0.004 for all three models). There was a small but 
statistically significant difference between the brain predictions of adversarially trained and 
standard models, but the difference was in the opposite direction as the metamer recognizability 
difference (permutation test for standard model larger than adversarial robust model; p<0.014 for 
all comparisons). Results were consistent across different regions of interest defined by selectivity 
for speech, music, pitch, or audio frequency (neural network models were better than Spectemp 
model, p<0.004 in all cases, and robust models were never better than standard models, p>0.062 
in all cases). These results contrast with those of the metamer test, which showed a relatively 
large benefit from adversarially-robust training (compare Figure 8b&c), and indicate that the 
metamer test is complementary to traditional metrics of model-brain fit.  
 

Figure 7 (previous page). Human recognition of model metamers dissociates from adversarial 
vulnerability. a) Operations included in AlexNet architecture to reduce aliasing. Strided convolutions were 
replaced with a sequence of four operations: convolution with a learnable kernel using a stride of 1, ReLU, 
convolution with a fixed lowpass filter, and subsampling with the original convolution stride. Max Pooling 
was replaced with a sequence of two operations: convolution with a fixed lowpass filter, and subsampling 
with the original pooling stride. The network with these modified operations more closely obeys the sampling 
theorem and is referred to as “LowpassAlexNet”. b) Schematic of VOneBlock input to AlexNet backbone 
architecture. The VOneBlock includes a layer of fixed Gabor filters, and a stochastic layer with Gaussian 
noise. The stochastic layer was turned on for training but turned off for evaluations of adversarial robustness 
and for metamer generation. c) Adversarial vulnerability, assessed via recognition accuracy on 1000-way 
ImageNet classification task with adversarial perturbations of different sizes added to the images. 
LowpassAlexNet and VOneAlexNet both produce a modest increase in adversarial robustness (greater 
accuracy for large adversarial perturbations) compared to the standard-trained AlexNet model. Error bars 
plot SEM across five subsets of training images. D) Human recognition of model metamers generated from 
LowpassAlexNet, VoneAlexNet and standard AlexNet models on the 16-way classification task (N=20). 
LowpassAlexNet has substantially more recognizable model metamers than the VOneNet, demonstrating 
a dissociation between human recognition of model metamers and a model’s susceptibility to adversarial 
examples.  Error bars plot SEM across participants. e) Example model metamers from experiment in (d). f) 
Human-recognizability of model metamer is dissociable from adversarial robustness. Adversarial examples 
are cases where a model misclassifies stimuli that are metameric to humans (left row). This schematic 
depicts a reference stimulus for which the model gives the correct class label, such that the adversarial 
perturbation induces a classification error. Model metamers may be unrecognizable to humans even if the 
model is robust to adversarial examples (bottom right). Tests involving model metamers are thus 
complementary to those involving adversarial examples. 
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Human recognition of a model’s metamers is predicted by their recognizability to other 
models 
Are one model’s metamers recognizable by other models? We addressed this issue by taking all 
the models we trained for one modality, holding one model out as the “generation” model, and 
then presenting its metamers to each of the other models (“recognition” models), measuring the 
accuracy of their class predictions (Figure 9a). We repeated this procedure with each model as 
the generation model. Accuracy for all combinations of recognition and generation models is 

 
Figure 8. Human recognition of model metamers dissociates from model predictions of fMRI responses.  
a) 165 natural sounds presented to humans in an fMRI experiment (59) were also presented to neural 
network models. The model’s time-averaged unit responses in each layer were used to predict each 
auditory cortical voxel’s response by a linear mapping fit to the responses to a subset of the sounds with 
ridge regression. For each neural network model, the best-predicting layer was selected for each participant 
using independent data. Model predictions were evaluated on a set of held-out sounds. Schematic of 
procedure is reproduced from (5). b) Human metamer recognition results on the 793-way word classification 
task for neural network models included in fMRI analysis, reproduced from Figure 6e&f for ease of 
comparison with c and d. Recognition is better for metamers from models trained with adversarial 
perturbations. c) Average voxel response variance explained by CochResNet50 models across all voxels 
in auditory cortex (left) and a selection of auditory functional ROIs (right). The Variance Explained (R2) was 
measured for the best-predicting layer of the neural network models, chosen individually for each participant 
and each voxel subset. For each participant, the other participants’ data was used to choose the layer that 
yielded the best predictions, and then the R2 from this layer for the held-out participant was included in the 
average. Error bars plot SEM across participants. d) Same as c, but for CochCNN9 models. Models trained 
with adversarial perturbations explain about the same amount of fMRI response variance despite exhibiting 
more human-recognizable model metamers (compare to b). 
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shown in Supplementary Figures 4 and 5. As a summary measure for each generation model, we 
averaged the accuracy across the recognition models (Figure 9a, right). Because we had trained 
the ResNet50 and CochResNet50 architectures with several variants of self-supervised and 
adversarial training in addition to standard supervised training, we performed further analysis of 
these architectures (Figure 9b&c). 
 
In the vision models, metamers from deep stages of the standard supervised trained ResNet50 
were generally not recognized by other models (Figure 9b, blue), suggesting that many of the 
invariances in this model are not present in the other models. A similar trend held for the models 
trained with self-supervision (Figure 9b, orange). By contrast, metamers from the adversarially 
trained models were more recognizable to other models (Figure 9b, green). We saw an analogous 
metamer transfer boost from the model with reduced aliasing (LowPassAlexNet), for which 
metamers for intermediate stages were more recognizable to other models (Supplementary 
Figure 6). Similar results held for audio models (Figure 9c), though metamers from the standard 
supervised CochResNet50 transferred better to other models than did those for the supervised 
vision model, perhaps due to the shared cochlear representation present in all auditory models, 
which could increase the extent of shared invariances.  
 
These results suggest that models tend to contain idiosyncratic invariances, in that their metamers 
vary in ways that render them unrecognizable to other models. The results also clarify the effect 
of adversarial training. Specifically, they suggest that adversarial training is removing some of the 
idiosyncratic invariances of standard-trained deep neural networks, rather than learning new 
invariances that are not shared with other models (in which case their metamers would not have 
been better recognized by other models). The architectural change that reduced aliasing had a 
similar effect, albeit limited to the intermediate model stages. 
 
The average model recognition of metamers generated from a given stage of another model is 
strikingly similar to human recognition of the metamers from that stage (compare Figures 9b and 
9c to Figures 3, 5, and 6, and Supplementary Figure 6 to Figure 7d). To quantify this similarity, 
we plotted the average model recognition for metamers from each stage of each generating model 
against human recognition of the same stimuli, revealing a strong correlation for both visual 
(Figure 9d) and auditory (9e) models. This result suggests that the human-model discrepancy 
revealed by model metamers reflects invariances that are often idiosyncratic properties of a 
specific neural network, leading to impaired recognition by both other models and human 
observers. One consequence of this result is that a collection of other models may be a 
reasonable proxy for a human observer -- rather than running a new psychophysical experiment 
any time there is a new model to evaluate, one could test the model’s metamers on a set of other 
models, facilitating the automation of searches for better models of perception.   
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Discussion 
We used model metamers to reveal invariances of deep artificial neural networks, and compared 
these invariances to those of humans by measuring human recognition of visual and auditory 
model metamers. We found that metamers of standard deep neural networks are dominated by 

 
Figure 9. Human recognition of a model’s metamers is correlated with their recognition by other models. 
a) Model metamers were generated for each layer of a “generation” model (one of the models from Figures 
2c, 3, and 5 for visual model analysis, and from Figures 2f and 6 for audio model analysis). The associated 
metamers are input into “recognition” models (all other models from Figures 2c, 3, and 5 for visual model 
analysis, and from Figures 2f and 6 for audio model analysis). We measured recognition of the generating 
model’s metamers by each recognition model, averaging the accuracy over all recognition models 
(excluding the generation model). This analysis is shown here for a standard-trained ResNet50 image 
model. Error bars are SEM over recognition models. b) Average model recognition of metamers generated 
from the standard ResNet50, the three self-supervised ResNet50 models, and the three ResNet50 models 
trained with adversarial perturbations. In model groups with multiple generating models, we averaged each 
recognition model’s accuracy curve across all of the generating models, then averaged these curves across 
the recognition models. Error bars are the SEM over recognition models. Model metamers from deep stages 
tend to be unrecognizable to other models, but models trained with adversarial perturbations have 
metamers that are more recognizable by other models. c) Same as b, but for audio models, with metamers 
generated from the standard CochResNet50, three CochResNet50 models with waveform adversarial 
perturbations, and two CochResNet50 models with cochleagram adversarial perturbations. Chance 
performance is 1/794 for the models because (unlike the human experimental participants) they had a “null” 
(no speech) class label as a possible prediction in addition to the 793 word labels. d, e) Correlation between 
human and model recognition of another model’s metamers for visual (d) and audio (e) models. The 
abscissa of each data point plots the average human recognition accuracy of metamers generated from 
one stage of a model. The ordinate of each data point plots the average recognition by other models of 
those metamers. In both modalities, human recognition of a model’s metamers is highly correlated with the 
accuracy of other models at recognizing those same model metamers (quantified by spearman rank-
ordered correlation coefficient).   
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invariances that are absent from human perceptual systems, in that metamers from deep model 
stages are typically completely unrecognizable to humans. This was true across modalities (both 
visual and auditory) and across training methods (supervised vs. self-supervised training). We 
identified ways to make model metamers more human-recognizable in both the auditory and 
visual domains, including a new type of adversarial training for audio models using perturbations 
at an intermediate model stage. Although there was a substantial effect on metamer recognition 
from one common training method to reduce adversarial vulnerability, we found that metamers 
could reveal model differences that were not evident by measuring adversarial vulnerability alone. 
Moreover, some model improvements revealed by model metamers were not obvious from 
standard brain prediction metrics. These results show that metamers provide a model comparison 
tool that complements the standard benchmarks that are in widespread use.  
 
Even though some models produced significantly more recognizable metamers than others, 
metamers generated from late model stages remained less recognizable than natural images or 
sounds in all cases we tested, suggesting that substantial further improvements are needed to 
align model representations with those of biological sensory systems. The fact that one model 
generally cannot recognize another model’s metamers indicates that the discrepancy is at least 
partially caused by invariances that are idiosyncratic to a model (being absent in both humans 
and other models). Might humans analogously have their own invariances that are specific to an 
individual? This possibility is difficult to explicitly test given that we cannot currently sample human 
metamers (model metamer generation relies on having access to the model’s parameters and 
responses, which are currently beyond reach for biological systems). If idiosyncratic invariances 
were present in humans as well, the phenomenon we have described here might not represent a 
human-model discrepancy, and could instead be a general property of recognition systems. The 
main argument against this interpretation is that several model modifications motivated by 
engineering considerations – different forms of adversarial training, and architectural 
modifications to reduce aliasing – substantially reduced the idiosyncratic invariances present in 
standard deep neural network models. These results suggest that idiosyncratic invariances are 
not unavoidable in a recognition system. Moreover, the set of modifications explored here was far 
from exhaustive, and we see no reason why the idiosyncratic model invariances could not be 
further alleviated with alternative training or architecture changes in the future.  
 
Relation to previous work  
The methods we use to synthesize model metamers are not new. Previous neural network 
visualizations have also used gradient descent on the input to visualize representations (60), in 
some cases matching the activations at individual layers as we do here (61). However, the 
significance of these visualizations for evaluating neural network models of biological sensory 
systems has received relatively little attention. One contributing factor may be that model 
visualizations have often been constrained by added natural image priors or other forms of 
regularization (62) that help make model visualizations look more natural, but mask the extent to 
which they otherwise diverge from a perceptually meaningful stimulus. For this reason, we 
intentionally avoided priors or other regularization when generating model metamers, as they 
defeat the purpose of the metamer test.  
 
Another reason the discrepancies we report here have not been widely discussed within 
neuroscience is that most studies of neural network visualizations have relied on small numbers 
of examples rather than systematically measuring recognizability to human observers (in part 
because these visualizations are primarily reported within computer science, where such 
experiments are not the norm). By contrast, our work used human perceptual experiments to 
quantify the divergence between human and model invariances, revealing a widespread 
mismatch between humans and current state-of-the-art computational models. We found 
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controlled experiments to be essential. Prior to running full-fledged experiments we always 
conducted the informal exercise of generating examples and evaluating them subjectively. 
Although the largest effects were evident informally, the variability of natural images and sounds 
made it difficult to predict with certainty how an experiment would turn out. It is thus critical to 
substantiate informal observation with controlled experiments in humans. 
 
Metamers are also related to a type of adversarial example generated by adding small 
perturbations to an image from one class such that the activations of a classifier match those of 
a reference image from a different class. These “invariance-based adversarial examples” yield 
the same network activations at the classification layer (sometimes referred to as “feature 
collisions” (63)). but are seen as different classes by humans (albeit again tested informally with 
a small number of examples rather than a systematic experiment) (64, 65). Our method differs in 
probing the network invariances without any explicit bias to cause the metamers to appear 
different to humans, but our results may reflect some of the same properties evident in these 
alternative adversarial stimuli. We innovate on this prior work by quantifying human recognition 
with experiments, in probing invariances across model stages, by exploring a diverse set of 
models (e.g. those trained with self-supervision), by showing that the relevant phenomena 
generalize across auditory and visual domains, and by identifying many non-human invariances 
as model-specific. The finding that models tend to learn idiosyncratic invariances may be related 
to findings that the representational dissimilarity matrices for natural images can vary between 
individual neural network models (66). 
 
Metamers have previously been used to validate models of visual and auditory texture (30, 67), 
and visual crowding (34, 35, 68, 69). A related type of model-matched stimulus has been used to 
test whether models can account for brain responses (51). In these previous lines of work the 
models instantiated hypotheses about specific types of invariances that may be present in human 
sensory systems, and the experiments assess human perception or brain responses to test the 
hypotheses. Our work differs in that the models are learned, and could in principle instantiate 
many different types of invariances (which are a priori unknown).  
 
Our work also differs from prior work on metamers in that our test of model metamers is a 
recognition test rather than a same/different metamerism test that has classically been used for 
evaluating models of early sensory stages (measuring the ability to discriminate two stimuli). We 
view the recognition test as most appropriate for current deep neural network models that are 
typically trained on one or two tasks at most and that model components of high-level sensory 
perception, such as object or speech recognition. A same/different discrimination judgment might 
be performed using any representations in the observer’s perceptual system, rather than just 
those that are relevant for a particular task. There is thus no reason to expect that metamers for 
representations that support a particular task would be completely indistinguishable in every 
respect to a human (in contrast to metamers of color vision, for instance, for which the entire 
visual system is constrained by the cone inputs). The classical metamer test is thus likely to be 
too sensitive for our purposes – models may fail the test even if they succeeded in capturing the 
invariances of a particular task. We note that because an unrecognizable metamer would 
obviously be distinguishable from the natural image or sound to which its activations are matched, 
a failure in our recognition test also implies a failure in the classical test of metamerism. 
 
Effects of unsupervised training 
One common criticism of task-optimized models is that supervised training on classification tasks 
is inconsistent with biological learning (45). Recent advances in unsupervised learning have 
enabled useful representations to be learned from large quantities of natural data without explicit 
labels, potentially providing a more biologically plausible computational theory of learning (70–
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72). A priori it seemed plausible that the invariances of deep neural network models could be 
strongly dependent on supervised training for classification tasks, in which case models trained 
without supervision might be substantially more human-like according to the metamers test. 
However, we found that the invariances learned from self-supervised learning also diverged from 
the invariances of human perceptual systems. 
 
The metamer-related model discrepancies we saw for self-supervised models are particularly 
striking because these models are trained with the goal of invariance, being explicitly optimized 
to become invariant to the augmentations performed on the input. But the metamers of these 
models reveal that they nonetheless encode a large number of invariances that diverge from 
those of human perception. This finding is consistent with evidence that the classification errors 
of self-supervised models are no more human-like than those of supervised models (73). We also 
found that the divergence with human recognition had a similar dependence on model stage 
irrespective of whether models are trained with or without supervision. These findings raise the 
possibility that factors common to supervised and unsupervised neural networks underlie the 
divergence with humans. 
 
Differences in metamers across layers 
The metamer test differs from some other model metrics (e.g. behavioral judgments of natural 
images or sounds, or measures of adversarial vulnerability) in that metamers can be generated 
from every stage of a model, with the resulting discrepancies associated with particular model 
stages. Because invariances reflect information that is discarded, and because information that 
is discarded at one stage of a feedforward system cannot be recovered, the set of metamers for 
a reference stimulus cannot shrink from one model stage to the next. But apart from this constraint 
it is otherwise not obvious how discrepancies might develop across stages, and we observed 
variation from model to model. 
 
One application of this layer-specificity is to characterize intermediate model stages. In some 
cases metamers revealed that intermediate stages were more human-like in some models than 
others. For example, the effects of reducing aliasing produced large improvements in the human-
recognizability of metamers from intermediate stages (Figure 7d). By contrast, metamers from the 
final stages showed little improvement. This result indicates that this model change produces 
intermediate representations with more human-like invariances despite not resolving the 
discrepancy introduced at the final model stages. 
 
For most models, the early layers produced model metamers that were fully recognizable, but 
that also resemble the original image or sound they were matched to. By contrast, metamers from 
late stages physically deviated from the original image or sound but for some models nonetheless 
remained recognizable. This difference highlights two ways that a model’s metamers can pass 
the recognition test used here – either by being perceptually indistinguishable to humans, or by 
being recognizable to humans as the same class despite being perceptually distinct. This 
distinction could be quantified in future work by combining a traditional metamer test with our 
recognition test. 
 
Across all the models we considered, the final model stages tended to produce metamers that 
were less recognizable than natural images to humans as well as to other models. This was true 
irrespective of how the models were trained. This result highlights these deep stages as targets 
for model improvements. 
 
Limitations 
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Although a model that fails our metamer test is ruled out as a description of human perception, 
passing the test, on its own, reveals little. For instance, a model that instantiates the identity 
mapping would pass our test despite not being able to account for human perceptual abilities. 
Traditional metrics thus remain critical, but on their own are also insufficient (as shown in Figures 
7 and 8). Failing the test also does not imply that the model representations are not present in the 
brain, only that they are not sufficient to account for the recognition behavior under consideration. 
For instance, there is considerable evidence for time-averaged auditory statistics in auditory 
perception (30, 74) even though they do not produce human-recognizable metamers for speech 
(Figure 4f). We thus argue that a large suite of test metrics, including but not limited to the model 
metamer test, is needed for model comparison. 
 
Model metamers are generated via iterative gradient-based optimization of a non-convex loss 
function, and only approximately reproduce the activations of the natural stimulus to which they 
are matched. We attempted to improve on previous deep network visualization work (60, 61) by 
setting explicit criteria for the optimization success. For models that perform classification tasks, 
we verified that the model metamer produced the same class label as the reference stimulus to 
which it was matched. Failures of the metamer test represent an unambiguous dissociation of 
model and human behavior for such models. We also verified that the residual error between the 
metamer and reference activations was much smaller than would be expected by chance. 
However, the reliance on optimization may be a limitation in some contexts and with some models. 
 
We also cannot fully exclude the possibility that the metamer optimization process does not 
sample uniformly from the set of a model’s metamers. Such non-uniform sampling cannot explain 
the human-model discrepancies we observed, but could in principle contribute to differences 
between the magnitude of discrepancies for some models compared to others. For instance, the 
greater human-recognizability of metamers from some models could in principle be caused by 
differences in the optimization landscape that make it less likely that the metamer generation 
process samples along a model’s idiosyncratic invariances. We are not aware of any reason to 
think that this might be the case, but it is not obvious how to fully exclude this possibility. 
 
Adversarial training reduces idiosyncratic invariances 
Why does adversarial training produce models with more recognizable metamers? One 
interpretation is that it prevents models from “cheating” on tasks by using data set artifacts to 
make decisions (54) and as a consequence develops more human-like invariances. This 
interpretation is supported by findings that adversarial examples often transfer across models (53, 
75). Our results suggest that the effect of adversarial training on metamers likely has a distinct 
explanation. First, we found that not all model changes that improve adversarial robustness have 
comparable effects on metamer recognizability (Figure 7), suggesting that it is the adversarial 
training procedure, rather than adversarial robustness per se, that underlies the increased human 
recognizability of model metamers. Second, metamers from standard trained models generally 
did not transfer across models trained on the same data set (unlike adversarial examples). 
Metamers from adversarially trained models were more recognizable to humans but also 
transferred substantially better to other models. This finding suggests that adversarial training 
serves to avoid the model-specific invariances that are otherwise learned by deep neural network 
models. This set of results highlights the relationship between adversarial robustness and model 
metamers as a promising direction for future study. 
 
Utility of synthetic stimuli 
Most previous work comparing artificial neural network representations to human brain and 
behavioral representations has compared human and model responses to a large set of natural 
images or sounds (5–7, 76–79). Although this approach has provided evidence of similarities 
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between models and biological sensory systems, it is vulnerable to the correlations that typically 
exist between features in natural stimuli (51, 80). Stimulus correlations make it difficult to separate 
whether human brain responses are in fact due to the same underlying features instantiated in a 
model, as opposed to a set of distinct features that are correlated with the model’s features within 
the stimulus set. Synthetic stimuli generated to match particular model features disrupt these 
correlations because they are constrained only by the model features, and as a result can provide 
a stronger model test (51, 81). Synthesis methods can also be used to dissociate predictions of 
different models (82), to test reliance on specific features (83, 84), or to optimize stimuli for a 
model of a neural response (85–87). Model metamers are another example of this general 
approach, showing that models can produce similar brain predictions for natural stimuli (Figure 8) 
despite possessing distinct invariances from those of human observers. The similar predictions 
for natural stimuli suggest that the discrepancies revealed by metamers may be difficult, if not 
impossible, to reveal using only natural stimuli.  
 
Future directions 
The underlying causes of the divergence between human and model invariances demonstrated 
here seems important to understand, in part because we will not fully understand biological 
sensory systems until we can replicate them in a model, and deep neural networks are currently 
the most promising candidates. In addition, many otherwise promising model applications, such 
as model-based signal enhancement (88, 89), are likely to be hindered by human-discrepant 
model invariances.  
 
The supervised models we explored here were trained on a single speech or image recognition 
task. It is possible that the use of a single task causes models to discard information that is 
preserved by biological sensory systems. One possibility is that biological sensory systems do 
not instantiate invariances per se, in the sense of mapping multiple different inputs onto the same 
representation. Instead, they might learn representations that untangle behaviorally relevant 
variables. For instance, a system could represent word labels and talker identity, or object identity 
and pose, via independent directions in a representational space. Such a representational 
scheme could enable invariant classification without invariant representations. Some model 
architectures may be able to address this hypothesis, for instance by factoring out different latent 
variables that, once combined, can reconstruct the input representation. But as of yet we lack 
methods for building such models that can support human-level recognition at scale. Training on 
multiple tasks could be another approach that would serve this goal. The results of Figure 9 – 
showing that the recognition judgments of a set of models for another model’s metamers are 
predictive of human recognition – suggest a way to efficiently test any model for discrepant 
metamers, which should facilitate evaluation of these and any other new model class that is 
developed in coming years.  
 
The discrepancies shown here for model metamers contrast with a growing number of examples 
of compelling human-model similarities for behavioral judgments of natural stimuli. Models 
optimized for object recognition (90), speech recognition (5), sound localization (91), and pitch 
recognition (92) all exhibit qualitative and often quantitative similarities to human judgments when 
run in traditional psychophysical experiments with natural or relatively naturalistic stimuli. These 
results suggest that neural network models trained in naturalistic conditions often match human 
behavior for signals that fall within their training distribution, but not for some signals derived from 
the model that fall outside the distribution of natural sounds and images. Understanding the 
source of this contrast seems critical to understanding both the successes and failures of deep 
network models. 
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Current deep neural network models are overparametrized, such that training produces one of 
many functions consistent with the training data. From this perspective it is unsurprising that 
different systems can perform similarly on natural signals while exhibiting different responses to 
signals outside the training distribution of natural images or sounds. And yet we nonetheless 
found that sensible engineering modifications to models succeeded in bringing the models into 
better alignment with human invariances. These results demonstrate that divergence between 
human and model invariances is not inevitable, and show how metamers can be a useful metric 
to guide and evaluate the next generation of brain models.   
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METHODS 
 

Model training and evaluation 
Models were trained and evaluated with the PyTorch deep learning library (93), and the 
Robustness library (94), modified to accommodate metamer generation and audio model training. 
Model code and checkpoints will be made available online via GitHub upon acceptance of the 
paper. Model architecture descriptions are provided as Supplemental Information. All models 
were trained on the OpenMind computing cluster at MIT using NVIDIA GPUs with a minimum of 
11GB memory.  
Image training dataset 

All vision neural network models were trained on the ImageNet Large Scale Visual Recognition 
Challenge dataset (37). This classification task consists of 1000 classes of images with 1,281,167 
images in the training set and 50,000 images in the validation set. All classes were used for 
training the neural network models. Accuracy on ImageNet task and additional training 
parameters are reported in Table 1. 
 
Visual model training and evaluation 

Unless otherwise described below, visual models consisted of publicly available checkpoints. 
Standard supervised models used the pretrained PyTorch checkpoints from torchvision.models 
(documentation https://pytorch.org/vision/stable/models.html, referred to as “pytorch” in Table 1). 
Visual model performance was evaluated as the model accuracy on the ImageNet validation set, 
implemented by resizing the images so the smallest dimension was 256 pixels (or 250 in the case 
of HMAX) and taking a center crop of 224x224 (or 250 in the case of HMAX) pixels of the image. 
Train, test, and metamer images were all normalized by subtracting channel means of [0.485, 
0.456, 0.406] and dividing by channel standard deviations of [0.229, 0.224, 0.225] before being 
passed into the first layer of the neural network backbone (except in the case of HMAX, where 
this normalization was not applied).   
 
Self-supervised vision models 

Self-supervised models were downloaded from the OpenSelfSup Model Zoo, and the training 
details that follow are taken from the documentation (https://github.com/open-
mmlab/OpenSelfSup, referred to as “openselfsup” in Table 1). Three models, each with a 
ResNet50 architecture, were used: MoCo_V2, SimCLR and BYOL. MoCo_V2 self-supervised 
training had a batch size of 256, with data augmentations consisting of random crop (224x224 
pixels), random horizontal flip (probability=0.5), random color jitter (brightness=0.4, contrast=0.4, 
saturation=0.4, hue=0.1, probability=0.8, all values uniformly chosen), random greyscale 
(probability=0.2), and random gaussian blur (sigma_min=0.1, sigma_max=0.2, probability=0.5). 
SimCLR self-supervised training had a batch size of 256, with augmentations consisting of 
random crop (224x224 pixels), random horizontal flip (probability=0.5), random color jitter 
(brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2, probability=0.8, all values uniformly 
chosen), random greyscale (probability=0.2), and random gaussian blur (sigma_min=0.1, 
sigma_max=0.2, probability=0.5). BYOL self-supervised training had a batch size of 4096, with 
augmentations consisting of random crop (224x224 pixels), random horizontal flip 
(probability=0.5), random color jitter (brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, 
probability=0.8, all values uniformly chosen), random greyscale (probability=0.2), and random 
gaussian blur (sigma_min=0.1, sigma_max=0.2, probability=0.5). For all self-supervised models, 
a linear readout consisting of a fully connected layer with 1000 units applied to the average pooling 
layer of the network was trained using the same augmentations used for supervised training of 
the other models described above. The linear readout was trained for 100 epochs of ImageNet 
(while the rest of the model backbone remained unchanged). For MoCo_V2 and SimCLR models, 
the accuracy was within 1% of that reported on the OpenSelfSup (BYOL average pooling 
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evaluation was not posted at the time of training). The linear readout served as a check that the 
downloaded models were instantiated correctly, and was used to help verify the success of the 
metamer generation optimization procedure, as described below. 
 
HMAX vision model 

The hand-engineered HMAX vision model was based off of a publicly availably implementation in 
PyTorch (https://github.com/wmvanvliet/pytorch_hmax) which follows the model documented in 
a previous publication (4). A gaussian activation function was used, and boundary handling was 
added to match the MATLAB implementation provided by the original HMAX authors 
(https://maxlab.neuro.georgetown.edu/hmax.html). For full comparison to the other models, we 
trained a linear classifier consisting of 1000 units to perform the ImageNet recognition task on the 
final C2 output of the HMAX model. This fully connected layer was trained for 30 epochs of the 
ImageNet training dataset, and the learning rate was dropped after every 10 epochs. Inputs to 
HMAX during the classifier training consisted of random crops (250x250 pixels), random 
horizontal flip (p=0.5), random color jitter (brightness=0.1, contrast=0.1, saturation=0.1, 
probability=1, all values uniformly chosen), and lighting noise (alpha standard deviation of 0.05, 
an eigenvalue of [0.2175, 0.0188, 0.0045], and channel eigenvectors of [[-0.5675, 0.7192,  
0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]). HMAX performance was 
evaluated by measuring the model accuracy on the ImageNet validation set after resizing the 
images so that the smallest dimension was 250 pixels, taking a center crop of 250x250 pixels of 
the image, converting to greyscale, and multiplying by 255 to scale the image to the 0-255 range. 
As expected, the performance on this classifier was low, but it was significantly above chance 
and could thus be used for the metamer optimization criteria described below. 
 
Adversarial training – vision models 

Adversarially trained ResNet50 models were obtained from the robustness library 
(https://github.com/MadryLab/robustness, referred to as “robustness” in Table 1). Adversarially 
trained AlexNet architectures and the random perturbation ResNet50 and AlexNet architectures 
were trained for 120 epochs of the ImageNet dataset, with image pixel values scaled between 0-
1. Learning rate was decreased by a factor of 10 after every 50 epochs of training. During training, 
data augmentation consisted of random crop (224x224 pixels), random horizontal flip 
(probability=0.5), color jitter (brightness=0.1, contrast=0.1, saturation=0.1, probability=1, all 
values uniformly chosen), and lighting noise (alpha standard deviation of 0.05, an eigenvalue of 
[0.2175, 0.0188, 0.0045], and channel eigenvectors of [[-0.5675, 0.7192, 0.4009], [-0.5808, -
0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]). An adversarial or random perturbation was then 
added. All adversarial examples were untargeted, such that the loss used to generate the 
adversarial example pushed the input away from the original class by maximizing the cross-
entropy loss, but did not push the prediction towards a specific target class. For the L2-norm (! =
3) network, adversarial examples were generated with a step size of 1.5 and 7 attack steps. For 
the L∞-norm (! = 8/255) network, adversarial examples were generated with a step size of 4/255 
and 7 attack steps. For both ResNet50 and AlexNet random-perturbation L2-norm networks, a 
random sample on the L2 ball with width ! = 3 was drawn and added to the input, independently 
for each training example and dataset epoch. Similarly, for both Resnet50 and AlexNet random 
perturbation L∞-norm networks, a random sample on the corners of the L∞ ball was selected by 
randomly choosing a value of ±8/255 to add to each image pixel, independently chosen for each 
training example and dataset epoch. After the adversarial or random perturbation was added to 
the input image, the new image was clipped between 0-1 before being passed into the network. 
 
VOneAlexNet vision model 

The VOneAlexNet architecture was downloaded from the VOneNet GitHub repository 
(https://github.com/dicarlolab/vonenet) (57). Modifications were then made to use Gaussian noise 
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rather than Poisson noise as the stochastic component, as in (58), and to use the same input 
normalization as in our other models (rather than a mean of 0.5 and standard deviation of 0.5 as 
used in (57)). The model was trained with stochastic responses (Gaussian noise with standard 
deviation of 4) in the “VOne” model stage, but for the purposes of metamer generation we fixed 
the noise by randomly drawing one noise sample when loading the network and using this noise 
sample for all metamer generation and adversarial evaluation. Although “fixing” the noise reduces 
the measured adversarial robustness compared to when a different sample of noise is used for 
each iteration of the adversarial example generation, the model with a single noise draw was still 
significantly more robust than a standard model, and allowed us to perform the metamer 
experiments without having to account for the stochastic representation during metamer 
optimization.  
 
LowpassAlexNet vision model 

The LowpassAlexNet architecture was trained for 120 epochs using the same augmentations 
described for the adversarially trained AlexNet networks (but without adversarial or random 
perturbations). To approximately equate performance on natural stimuli with the 
VOneNetAlexNet, we chose an early checkpoint that was closest, but did not exceed, the Top 1% 
performance of the VOneAlexNet model (to ensure that the greater recognizability of the 
metamers from LowpassAlexNet could not be explained by higher overall performance of that 
model). This resulted in a comparison model trained for 39 epochs of the ImageNet dataset.  
 
AlexNet vision model, early checkpoint 

We trained an AlexNet architecture for 120 epochs using the same augmentations described for 
the adversarially trained AlexNet networks (but without adversarial or random perturbations). After 
training, to approximately equate performance on natural stimuli with the VOneNetAlexNet and 
LowpassAlexNet, we chose an early checkpoint that was closest, but not lower than, the 
performance of the VOneAlexNet model. This resulted in a comparison model trained for 51 
epochs of the ImageNet dataset.  
 
Adversarial evaluation -- vision models 
The adversarial vulnerability of visual models was evaluated with white-box untargeted 
adversarial attacks (i.e., in which the attacker has access to the model’s parameters when 
determining an attack that will cause the model to classify the image as any category other than 
the correct one). All 1000 classes of ImageNet were used for the adversarial evaluation. Attacks 
were computed with L1, L2, and L∞ maximum perturbation sizes (ε) added to the image, with 64 
gradient steps each with size ε/4 (pilot experiments suggested that this step size and number of 
steps were sufficient to produce adversarial examples for most models). We randomly chose 
images from the ImageNet evaluation dataset to use for adversarial evaluation, applying the 
evaluation augmentation described above (resizing so that the smallest dimension was 256 
pixels, followed by a center crop of 224x224 pixels). Five different subsets of 1024 stimuli were 
drawn to compute error bars.  
 
For the statistical comparisons between the adversarial robustness of architectures for Figure 7 
we performed a repeated measure ANOVA with within-group factors of architecture and 
perturbation size !. A separate ANOVA was performed for each adversarial attack type. The 
values of ! included in the ANOVA were constrained to a range where the VOneAlexNet and 
LowPassAlexNet showed robustness over the standard AlexNet (four values for each attack type, 
!!! ∈ {10".$, 10%, 10%.$, 10&}, !!" ∈ {10'", 10'(.$, 10(, 10(.$}, !!# ∈ {10'&.$, 10'&, 10'%.$, 10'%}), so 
that any difference in clean performance did not affect the comparisons. We computed statistical 
significance for the main effect of architecture by a permutation test, randomly permuting the 
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architecture assignment, independent for each subset of the data. We computed a p-value by 
comparing the observed F-statistic to the null distribution of F-statistics from permuted data (i.e., 
the p-value was one minus the rank of the observed F-statistic divided by the number of 
permutations). In cases where the maximum possible number of unique permutations was less 
than 10,000, we instead divided the rank by the maximum number of unique permutations.  
 
Model Learning 

Rate (at 
Start) 

Batch Size Accuracy  
Top 1 

Accuracy 
Top 5 

AlexNet Standard (pretrained, 
pytorch) 

(pretrained) 56.518 79.070 

AlexNet L2-norm (! = 3) 0.01 256 41.882 65.018 
AlexNet random L2-norm (! = 3) 0.01 256 57.978 79.986 
AlexNet L∞-norm (! = 8/255) 0.01 256 29.702 51.034 
AlexNet random L∞-norm (! = 8/255) 0.01 256 57.738 79.996 
ResNet50 Standard (pretrained, 

pytorch) 
(pretrained) 76.130 92.862 

ResNet50 L2-norm (! = 3) (pretrained, 
robustness) 

(pretrained) 57.900 80.706 

ResNet50 random L2-norm (! = 3) 0.1 256 76.600 93.136 
ResNet50 L∞-norm (! = 4/255) (pretrained, 

robustness) 
(pretrained) 62.424 84.060 

ResNet50 L∞-norm (! = 8/255) (pretrained, 
robustness) 

(pretrained) 47.906 72.484 

ResNet50 random L∞-norm (! = 8/255) 0.1 256 73.062 91.366 
ResNet101 Standard (pretrained, 

pytorch) 
(pretrained) 77.374 93.546 

VGG-19 Standard (pretrained, 
pytorch) 

(pretrained) 72.376 90.876 

CORnet-S Standard (pretrained, 
cornet) 

(pretrained) 73.020 91.116 

ResNet50-BYOL (pretrained, 
openselfsup) 
/ 30 linear 
eval 

(pretrained) 
/ 256 linear 
eval 

68.706 88.090 

ResNet50-MOCO_V2 (pretrained, 
openselfsup) 
/ 30 linear 
eval 

(pretrained) 
/ 256 linear 
eval 

67.832 88.322 

ResNet50-SIMCLR (pretrained, 
openselfsup) 
/ 30 linear 
eval 

(pretrained / 
256 linear 
eval 

59.204 81.304 

HMAX 0.1 linear 
eval  

256 6.101 15.070 

VOneAlexNet 0.01 256 47.84 71.57 
LowpassAlexNet 0.01 256 47.620 72.416 
AlexNet (EarlyCheckpoint) 0.01 256 52.536 76.446 

Table 1: Vision architecture training parameters and ImageNet accuracy.  
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Audio training dataset 

All audio neural network models were trained on the Word-Speaker-Noise (WSN) dataset. This 
dataset was first presented in (36) and was constructed from existing speech recognition and 
environmental sound classification datasets. The dataset is approximately balanced to enable 
performance of three tasks on the same training exemplar: (1) recognition of the word at the 
center of a two second speech clip (2) recognition of the speaker and (3) recognition of 
environmental sounds, that are superimposed with the speech clips (serving as “background 
noise” for the speech tasks while enabling an environmental sound recognition task). Although 
the dataset is constructed to enable all three tasks, the models described in this paper were only 
trained to perform the word recognition task. The speech clips used in the dataset were excerpted 
from the Wall Street Journal (95) (WSJ) and Spoken Wikipedia (96) (SWC).  
 
To choose speech clips, we screened WSJ, TIMIT (97) and a subset of articles from SWC for 
appropriate audio clips (specifically, clips that contained a word at least four characters long and 
that had one second of audio before the beginning of the word and after the end of the word, to 
enable the temporal jittering augmentation described below). Some SWC articles were left out of 
the screen due to a) potentially offensive content for human listening experiments; (29/1340 clips), 
b) missing data; (35/1340 clips), or c) bad audio quality (for example, due to computer generated 
voices of speakers reading the article or the talker changing mid-way through the clip; 33/1340 
clips). Each segment was assigned the word class label of the word overlapping the segment 
midpoint and a speaker class label determined by the speaker. With the goal of constructing a 
dataset with speaker and word class labels that were approximately independent, we selected 
words and speaker classes such that the exemplars from each class spanned at least 50 unique 
cross-class labels (e.g., 50 unique speakers for each of the word classes). This exclusion fully 
removed TIMIT from the training dataset. We then selected words and speaker classes that each 
contained at least 200 unique utterances, and such that each class could contain a maximum of 
25% of a single cross-class label (e.g., for a given word class, a maximum of 25% of utterances 
could come from the same speaker). These exemplars were subsampled so that the maximum 
number in any word or speaker class was less than 2000. The resulting training dataset contained 
230,356 unique clips in 793 word classes and 432 speaker classes, with 40,650 unique clips in 
the test set. Each word class had between 200 and 2000 unique exemplars. A “null” class was 
used as a label when a background clip was presented without the added speech. 
 
The environmental soundtrack clips that were superimposed on the speech clips were a subset 
of examples from the AudioSet dataset (a set of annotated YouTube video soundtracks) (98). To 
minimize ambiguity for the two speech tasks, we removed any sounds under the “Speech” or 
“Whispering” branch of the AudioSet ontology. Since a high proportion of AudioSet clips contain 
music, we achieved a more balanced set by excluding any clips that were only labeled with the 
root label of “Music”, with no specific branch labels. We also removed silent clips by first discarding 
everything tagged with a “Silence” label and then culling clips containing more than 10% zeros. 
This screening resulted in a training set of 718,625 unique natural sound clips spanning 516 
categories. Each AudioSet clip was a maximum of 10 seconds long, from which a 2-second 
excerpt was randomly cropped during training (see below).  
 
Audio model training 

During training, the speech clips from the Word-Speaker-Noise dataset were randomly cropped 
in time and superimposed on random crops of the AudioSet clips. Data augmentations during 
training consisted of 1) randomly selecting a clip from AudioSet to pair with each labeled speech 
clip, 2) randomly cropping 2 seconds of the AudioSet clip and 2 seconds of the speech clip, 
cropped such that the labeled word remained in the center of the clip (due to training pipeline 
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technicalities, we used a pre-selected set of 5,810,600 paired speech and natural sound crops 
which spanned 25 epochs of the full set of speech clips and 8 passes through the full set of 
AudioSet clips), 3) superimposing the speech and the noise (i.e., the AudioSet crop) with a Signal-
to-Noise-Ratio (SNR) sampled from a uniform distribution between -10dB SNR and 10dB SNR, 
augmented with additional samples of speech without an AudioSet background (i.e. with infinite 
SNR, 2464 examples in each epoch) and samples of AudioSet without speech (i.e. with negative 
infinite SNR, 2068 examples in each epoch) and 4) setting the root-mean-square (RMS) 
amplitude of the resulting signal to 0.1. Evaluation performance is reported on one pass through 
the speech test set (i.e., one crop from each of the 40,650 unique test set speech clips) 
constructed with the same augmentations used during training (specifically, variable SNR and 
temporal crops, paired with a separate set of AudioSet test clips, same random seed used to test 
each model such that test sets were identical across models). 
 
Each audio model was trained for 150 epochs (where an epoch is defined as a full pass through 
the set of 230,356 speech training clips). The learning rate was decreased by a factor of 10 after 
every 50 epochs (see Table 2).  
 
Audio model cochlear stage 

The first stage of the audio models produced a “cochleagram” – a time-frequency representation 
of audio with frequency tuning that mimics the human ear, followed by a compressive nonlinearity 
(44). This stage consisted of the following sequence of operations. First, the 20kHz audio 
waveform passed through a bank of 211 bandpass filters with center frequencies ranging from 
50Hz to 10kHz. Filters were zero-phase with frequency response equal to the positive portion of 
a single period of a cosine function, implemented via multiplication in the frequency domain. Filter 
spacing was set by the Equivalent Rectangular Bandwidth (ERB N) scale (43). Filters perfectly 
tiled the spectrum such that the summed squared response across all frequencies was flat (four 
low-pass and four high-pass filters were included in addition to the bandpass filters in order to 
achieve this perfect tiling). Second, the envelope was extracted from each filter subband using 
the magnitude of the analytic signal (via the Hilbert transform). Third, the envelopes were raised 
to the power of 0.3 to simulate basilar membrane compression. Fourth, the compressed 
envelopes were lowpass-filtered and downsampled to 200Hz (1d convolution with a Kaiser-
windowed Sinc filter of size 1001 in the time domain, applied with a stride of 100 and no zero 
padding, i.e. “valid” convolution), resulting in a final “cochleagram” representation of 211 
frequency channels by 390 time points. The first layer of the neural network “backbone” of the 
auditory models operated on this cochleagram representation. Cochleagram generation was 
implemented in PyTorch such that the components were differentiable for metamer generation 
and adversarial training. Cochleagram generation code will be released upon acceptance of the 
paper.  
 
Spectemp model 

The hand-engineered Spectro-Temporal filter model (Spectemp) was based on a previously 
published model (49). Our implementation differed from the original model in specifying spectral 
filters in cycles/ERB rather than cycles/octave (because our implementation operated on a 
cochleagram generated with ERB-spaced filters). The model consisted of a linear filter bank tuned 
to spectro-temporal modulations at different frequencies, spectral scales, and temporal rates. The 
filtering was implemented via 2D convolution with zero padding in frequency (211 samples) and 
time (800 samples). Spectro-temporal filters were constructed with spectral modulation center 
frequencies of [0.0625, 0.125, 0.25, 0.5, 1, 2] cycles/ERB and temporal modulation center 
frequencies of [0.5, 1, 2, 4, 8, 16, 32, 64] Hz, including both upward and downward frequency 
modulations (resulting in 96 filters). An additional 6 purely spectral and 8 purely temporal 
modulation filters were included for a total of 110 modulation filters. This filterbank operated on 
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the cochleagram representation (yielding the ‘filtered_signal’ stage in Figure 4d-f). We squared 
the output of each filter response at each time step (‘power’) and took the average across time 
for each frequency channel (‘average’), similar to previous studies (5, 50, 59). To be able to use 
model classification judgments as part of the metamer generation optimization criteria (see 
below), we trained a linear classifier after the average pooling layer (trained for 150 epochs of the 
speech training set with a learning rate that started at 0.01 and decreased by a factor of 10 after 
every 50 speech epochs, using the same data augmentations as for the neural networks). 
Although performance on the word recognition task for the Spectemp model was low, it was 
significantly above chance, and thus could be used to help verify the success of the metamer 
generation optimization procedure. 
 
Adversarial training – auditory models – waveform perturbations 

CochResNet50 and CochCNN9 were adversarially trained with perturbations in the waveform 
domain. We also included a control training condition in which random perturbations were added 
to the waveform. For both adversarial and random waveform perturbations, after the perturbation 
was added, the audio signal was clipped to fall between -1 and 1. As with the adversarially trained 
vision models, all adversarial examples were untargeted. The L2-norm (! = 0.5	and 	! = 1.0) 
network adversarial examples were generated with a step size of 0.25 and 0.5, respectively, and 
5 attack steps. L∞-norm (! = 0.002) network adversarial examples in the waveform space were 
generated with a step size of 0.001 and 5 attack steps. For random perturbation L2-norm networks 
(both CochResNet50 and CochCNN9), a random sample on the L2 ball with width ! = 	1.0 was 
selected and added to the waveform, independently for each training example and dataset epoch. 
Similarly, for random perturbation L∞-norm networks, a random sample on the corners of the L∞ 
ball was selected by randomly choosing a value of ±0.002 to add to each image pixel, chosen 
independently for each training example and dataset epoch.  
 
We estimated the SNR)* for the perturbations of the waveform using: 

SNR)*  =  20 log"( 
||:||
||ξ|| 

where x is the input waveform and ξ is the adversarial perturbation. As described above, the input 
waveforms, x, to the network were RMS normalized to 0.1, and thus ||:|| 	= 	0.1 ∗ √?, where ? is 
the number of samples in the waveform (40,000). For L2-norm perturbations to the waveform, the 
norm of the perturbation is just the ! value, and so ! = 0.5 and ! = 1.0 correspond to ||ξ|| =
0.5	and	||ξ|| = 	1, resulting in SNR)* values of 32.04 and 26.02, respectively. For L∞-norm 
perturbations, the worst case (lowest) SNR)* is achieved by a perturbation that maximally 

changes every input value. Thus, an L∞ perturbation with ! = 0.002 has ||ξ|| 	= 	C∑ (0.002%)+(,(((
-." , 

corresponding to a SNR)* value of 33.98. These SNR)* values do not guarantee that the 
perturbations were always fully inaudible to humans, but they confirm that the perturbations are 
relatively minor and unlikely to be salient to a human listener.   
 
Adversarial training – auditory models – cochleagram perturbations 

CochResNet50 and CochCNN9 were adversarially trained with perturbations in the cochleagram 
domain. We also included a control training condition in which random perturbations were added 
to the cochleagram. Adversarial or random perturbations were added to the output of the 
cochleagram stage, after which the signal was passed through a ReLU so that no negative values 
were fed into the neural network backbone. All adversarial examples were untargeted. The L2-
norm (! = 0.5 and ! = 1.0) network adversarial examples were generated with a step size of 0.25 
and 0.5 respectively, and 5 attack steps. For random perturbation L2-norm networks (both 
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CochResNet50 and CochCNN9), a random sample on the L2 ball with width ! = 	1.0 was selected, 
independently for each training example and dataset epoch.  
 
We estimated the SNR)* of the cochleagram perturbations using the average cochleagram from 
the test dataset, whose L2-norm was 40.65. Using this value with the SNR)* equation yielded 
estimates of 38.20 and 32.18 dB for cochleagram networks trained with ! = 0.5 and	! = 1.0, 
respectively. We again cannot guarantee that the perturbations are inaudible to a human, but they 
are fairly low in amplitude and thus unlikely to be salient.   
 
Adversarial evaluation – audio networks 
As in visual adversarial evaluation, the adversarial vulnerability of audio networks was evaluated 
with untargeted white-box adversarial attacks. Attacks were computed with L1, L2, and L∞ 

maximum perturbation sizes (ε) added to the waveform, with 64 gradient steps each with size ε/4 
(pilot experiments and previous results (58) suggested that this step size and number of steps 
were sufficient to attack most audio models). We randomly chose audio samples from the WSN 
evaluation dataset to use for adversarial evaluation, including the evaluation augmentations 
described above (additive background noise augmentation with SNR randomly chosen between 
-10 to 10 dB SNR, and rms normalization to 0.1). Five different subsets of 1024 stimuli were drawn 
to compute error bars.  
 
Model Learning 

Rate (at 
Start) 

Batch 
Size 

Accuracy  
Top 1 

Accuracy 
Top 5 

CochCNN9 Standard 0.01 128 66.672 83.129 
CochCNN9 waveform L2-norm (! = 1) 0.01 128 48.091 67.240 
CochCNN9 random waveform L2-norm (! = 1) 0.01 128 65.710 82.376 
CochCNN9 waveform L∞-norm (! = 0.002) 0.01 128 60.440 78.278 
CochCNN9 random waveform L∞-norm (! = 0.002) 0.01 128 66.283 82.952 
CochCNN9 cochleagram L2-norm (! = 1) 0.01 128 48.002 66.089 
CochCNN9 cochleagram L2-norm (! = 0.5) 0.01 128 57.198 75.001 
CochCNN9 random cochleagram L2-norm (! = 1) 0.01 128 66.706 83.087 
CochResNet50 Standard 0.1 256 86.797 95.360 
CochResNet50 waveform L2-norm (! = 0.5) 0.1 256 78.130 90.536 
CochResNet50 waveform L2-norm (! = 1) 0.1 256 70.546 85.474 
CochResNet50 random waveform L2-norm (! = 1) 0.1 256 85.916 94.871 
CochResNet50 waveform L∞-norm (! = 0.002) 0.1 256 83.491 93.658 
CochResNet50 random waveform L∞-norm (! = 0.002) 0.1 256 86.367 95.090 
CochResNet50 cochleagram L2-norm (! = 1) 0.1 256 71.392 85.149 
CochResNet50 cochleagram L2-norm (! = 0.5) 0.1 256 80.435 91.444 
CochResNet50 random cochleagram L2-norm (! = 1) 0.1  256 86.556 95.144 
Spectemp (linear eval)  0.01 

(linear 
eval) 

128 
(linear 
eval)  

5.743 13.780 

Table 2: Audio model architecture training parameters and word classification accuracy.  
 
Metamer generation 
Optimization of metamers 
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Gradient descent was performed to minimize the normalized squared error between all activations 
at a particular network layer (for instance, each x, y, and channel value from the output of a 
convolutional layer) for the model metamer and the corresponding activations for a natural signal:  

||F − F′||
I|F|I

 

where A represents the activations from the natural signal and A’ represents the activations from 
the model metamer. The weights of the network remained fixed during the optimization. 
Optimization was performed with gradient descent on the input signal, which was otherwise 
unconstrained. Each step of gradient descent was constrained to have a maximum L2 norm of α, 
where K was initialized at 1 and was dropped by a factor of 0.5 after every 3000 iterations. 
Optimization was run for a total of 24000 steps for each generated metamer. For all vision models 
other than HMAX, the input signal was initialized as a sample from a normal distribution with 
standard deviation of 0.05 and a mean of 0.5 (natural inputs to the models were scaled between 
0-1). The size of the input stimuli, range of pixel values, and normalization parameters were 
matched to the test data for the model. For all audio models other than the spectrotemporal model, 
the input signal was initialized from a random normal distribution with standard deviation of 10-7 
and a mean of zero. The perturbation s was initialized to 0. Normalization that occurred after data 
augmentation in the visual models (subtracting channel means and dividing by channel standard 
deviations) was included as a model component during metamer generation (i.e., gradients from 
these operations contributed to the metamer optimization along with all other operations in the 
model). 
 

The two hand-engineered models (HMAX and the Spectemp model) had different initialization 
settings. For the HMAX model, whose inputs were scaled to fall between 0-255, metamers were 
initialized with a random normal distribution with a mean of 127.5 and standard deviation of 10. 
For the Spectemp model, metamers were initialized with a random normal distribution with a mean 
of zero and standard deviation of 10-5. Empirically, we found that both of these models contained 
stages that were difficult to optimize with the same strategy used for the neural networks. For both 
models, we maintained the learning rate schedule of 24000 total optimization steps with learning 
rate drops of 0.5 after every 3000 iterations (initialized at a learning rate of 1). However, in both 
cases we found that optimization was aided by selectively optimizing for subsets of the units 
(channels) in the early iterations of the optimization process. For the HMAX model, the subsets 
that were chosen depended on the model stage. For the S1 layer, we randomly choose activations 
from a single Gabor filter channel to include in the optimization. For the C1 layer, we randomly 
selected a single scale. And for the S2 and C2 layers we randomly chose a single patch size. The 
random choice of subset was changed after every 50 gradient steps. This subset-based 
optimization strategy was used for the first 2000 iterations at each learning rate value. All units 
were then included for the remaining 1000 iterations for that learning rate value.  
 
For the Spectemp model, we observed that the higher frequency modulation channels were 
hardest to optimize. We set up a coarse-to-fine optimization strategy by initially only including the 
lowest frequency spectral and temporal modulation filters in the loss function, and adding in the 
filters with the next lowest modulation frequencies after every 400 optimization steps (with 7 total 
sets of filters defined by center frequencies in both temporal and spectral modulation, and the 
remaining 200/3000 steps continuing to include all of the filters from the optimization). The 
temporal modulation cutoffs for each of the 7 sets were [0, 0.5, 1, 2, 4, 8, 16] Hz and the spectral 
modulation cutoffs were [0, 0.0625, 0.125, 0.25, 0.5, 1, 2] cycles/ERB; a filter was included in the 
nth set if it had either a temporal or spectral scale that was equal to or less than the nth temporal 
or spectral cutoff, respectively. This strategy was repeated for each learning rate.  
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Criteria for optimization success 

Because metamers are derived via a gradient descent procedure, the activations that they 
produce approach those of the natural signal used to generate them, but never exactly match. It 
was thus important to define criteria by which the optimization would be considered sufficiently 
successful for the result to be considered a model metamer and included in the behavioral 
experiments.  
 
The first criterion was that the models had to produce the same class label for the model metamer 
and natural signal. For visual models, the model metamer had to result in the same 16-way 
classification label as the natural signal to which it was matched. For the auditory models, the 
model metamer had to result in the same word label (out of 794 possible labels, including “null”) 
as the natural speech signal to which it was matched. For models that did not have a classifier 
stage (the self-supervised models, HMAX, and the spectrotemporal filter model), we trained a 
classifier as described above for this purpose. The classifier was included to be conservative, but 
in practice could be omitted in future work, as very few stimuli pass the matching fidelity criterion 
but not the classifier criterion. 
 
The second criterion was that the activations for the model metamer had to be matched to those 
for the natural signal better than would be expected by chance. We measured the fidelity of the 
match between the activations for the natural stimulus and its model metamer at the matched 
model stage using three different metrics: Spearman ρ,  Pearson R2, and the Signal-To-Noise 
Ratio:  

SNR)*  =  10 log"( 
∑(x%)

∑((x − y)%) 

where x is the activations for the original sound when comparing metamers, or for a randomly 
selected sound for the null distribution and y is activations for the comparison sound (the model 
metamer or another randomly selected sound). We then ensured that for each of the three 
measures, the value for the model metamer fell outside of a null distribution measured between 
1,000,000 randomly chosen image or audio pairs from the training dataset. Metamers that did not 
pass the null distribution test for any of the Spearman N,  Pearson R2, or Signal-To-Noise Ratio 
measured at the layer used for the optimization were excluded from the set of experimental 
stimuli. The only exception to this was the HMAX model, for which we only used the Signal-To-
Noise Ratio for the matching criteria (we found empirically that after the S2 layer of the HMAX 
model, activations from pairs of random images became strongly correlated due to the different 
offsets and scales in the natural image patch set, such that the correlation measures were not 
diagnostic of the match fidelity).   
 
Handling gradients through the ReLU operation 

Many neural networks use the ReLU nonlinearity, which yields a partial derivative of zero if the 
input is negative. We found empirically that it was difficult to match ReLU layers due to the 
initialization producing many activations of zero. To improve the optimization when generating a 
metamer for activations immediately following a ReLU, we modified the derivative of the metamer 
generation layer ReLU to be 1 for all input values, including values below zero (36). ReLU layers 
that were not the metamer generation layer behaved normally, with a gradient of 0 for input values 
below zero.  
 
Online behavioral experiments 
All behavioral experiments presented in the main text were run on Amazon Mechanical Turk. To 
increase data quality, Amazon Turk qualifications were set to relatively stringent levels: the “HIT 
Approval Rate for all Requesters’ HITs” had to be at least 97% and the “Number of HITs 
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Approved” had to exceed 1000. Code to run the online experiments will be released via GitHub 
upon publication. All experiments with human participants (both online and in-lab) were approved 
by the Committee On the Use of Humans as Experimental Subjects at the Massachusetts Institute 
of Technology and were conducted with the informed consent of the participants. 
 
Stimuli - image experiments 

Each stimulus belonged to one of the 16 entry-level MS COCO (Microsoft Common Objects in 
Context) categories. We used a mapping from these 16 categories to the corresponding ImageNet 
categories (where multiple ImageNet categories can map onto a single MS COCO category), 
used in a previous publication (18). For each of the 16 categories, we selected 25 examples from 
the ImageNet validation dataset for a total of 400 natural images that were used to generate 
stimuli. A square center crop was taken for each ImageNet image (with the smallest dimension of 
the image determining the size) and the square image was rescaled to the necessary input 
dimensions for each ImageNet trained network. Metamers were generated for each of the 400 
images to use for the behavioral experiments. 
 
Stimuli - auditory experiments 

A set of two-second speech audio excerpts with no background noise was used to generate 
stimuli. These clips were randomly chosen from the test set of the Word-Speaker-Noise dataset 
described above, constrained such that only the WSJ corpus was used. We further ensured that 
the clips were taken from unique sources within WSJ, and that the sounds were cropped to the 
middle two seconds of the training set clip such that the labeled word was centered at the one-
second mark. To reduce ambiguity about the clip onset and offset (which were helpful in judging 
whether a word was centered on the clip), we also screened the chosen clips to ensure that the 
beginning 0.25s or end 0.25s of the clip was no more than -20dB quieter than the full clip. 400 
clips were chosen subject to these constraints and such that each clip contained a different 
labeled word. Metamers were generated for each of the 400 clips to use for the behavioral 
experiments.  
 
Image behavioral experiment 

We created a visual experiment in JavaScript similar to that used in a previous publication (18). 
Participants were tasked with classifying an image into one of 16 presented categories (airplane, 
bear, bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard, knife, oven, truck). 
Each category had an associated image icon that participants chose from during the experiment. 
Each trial began with a fixation cross at the center of the screen for 300ms, followed by a natural 
image or a model metamer presented at the center of the screen for 300ms, followed by a pink 
noise mask presented for 300ms, followed by a 4x4 grid containing all 16 icons. Participants 
selected an image category by clicking on the corresponding icon. To minimize effects of network 
disruptions, we ensured that the image was loaded into the browser cache before the trial began. 
We note that the precise timing of the image presentation for web experiments via JavaScript is 
less controlled compared to in-lab experiments, but any variation in timing should be similar 
across conditions and should average out over trials. To assess whether any timing variation in 
the online experiment set up might have affected overall performance, we compared recognition 
performance on natural images to that measured during in-lab pilot experiments (with the same 
task but different image examples) reported in an earlier conference paper (36). The average 
online performance across all natural images was on par or higher than that measured in-lab (in-
lab proportion correct = 0.888 ± 0.0240) for all experiments.  
 
The experimental session began with 16 practice trials to introduce participants to the task. There 
was one trial for each category, each presenting a natural image pulled from the ImageNet training 
set. Participants received feedback for these first 16 trials which included their answer and the 
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correct response. Participants then began a 12-trial demo experiment which contained some 
natural images and some model metamers generated from the ImageNet training set. The goal 
of this demo experiment was two-fold – first, to introduce participants to the types of stimuli they 
would see in the main experiment and second, to be used as a screening criterion to remove 
participants who were distracted, misunderstood the task instructions, had browser 
incompatibilities, or were otherwise unable to complete the task. Participants were only allowed 
to start the main experiment if they correctly answered 7/12 correct on the demo experiment, 
which was the minimum that were correctly answered for these same demo stimuli by 16 in-lab 
participants in a pilot experiment (36). 143/168 participants passed the demo experiment and 
chose to move onto the main experiment. 
 
There were 6 different main image experiments, each including a set of conditions (model stages) 
to be compared. The stimuli for each main experiment were generated from a set of 400 natural 
images. Participants only saw one natural image or metamer for each of the 400 images in the 
behavioral stimulus set. Participants additionally completed 16 catch trials. These catch trials 
each consisted of an image that exactly matched the icon for one of the classes. Participant data 
was only included in the analysis if the participant got 15/16 of these catch trials correct (123/143 
participants were included). Of these participants, 53 self-identified as female and 70 as male; 
mean age=39.9, minimum age=22, maximum age=78. For all but the HMAX experiment, 
participants completed 416 trials – one for each of the 400 original images, plus the 16 catch 
trials. The 400 images were randomly assigned to the experiment conditions subject to the 
constraint that each condition had approximately the same number of trials. Specifically, each 
condition was initially allocated ceiling(400/N) trials, and then trials were removed at random until 
the total number of trials was equal to 400. In addition, if the stimulus for a condition did not pass 
the metamer optimization criteria (and thus, had to be omitted from the experiment), the natural 
image was substituted for it as a placeholder, and analyzed as an additional trial for the natural 
condition. These two constraints resulted in the number of trials per condition varying somewhat 
across participants (see table below). The resulting 416 total trials were then presented in random 
order across the conditions of the experiment. The HMAX experiment used only 200 of the original 
400 images, for a total of 216 trials. The experiment was run with a smaller number of stimuli than 
other experiments because it contained only 6 conditions (metamer optimization was run for all 
400 stimuli and a subset of 200 images was randomly chosen from the subset of the 400 images 
for which metamer optimization was successful in every layer of the model). HMAX metamers 
were black and white, while all metamers from all other models were in color.  
 
Model performance on this 16-way classification task was evaluated by measuring the predictions 
for the full 1000-way ImageNet classification task and finding the maximum probability for a label 
that was included in the 16-class dataset (231 classes). 
 
Experiment Models (number of layers) Total 

Number of 
conditions 
(Includes 
Natural 
Image) 

Number of trials 
per condition 
per participant 
Average (min, 
max) 

Number of 
Participants 

Visual Experiment 
1 (Standard 
Models) 

CORnet-S 
VGG-19 
ResNet50 
ResNet101 
AlexNet 

37 10 (8, 14) 22 
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Visual Experiment 
2 (Self-Supervised 
Models) 

ResNet50 Standard 
Supervised 
ResNet50 SimCLR 
ResNet50 MoCo_V2 
ResNe50 BYOL 

29 13 (11, 20) 21 

Visual Experiment 
3 (HMAX) 

HMAX 6 33 (31, 34) 20 

Visual Experiment 
4 (ResNet50 
Adversarially 
Robust) 

ResNet50 Standard 
Supervised, 
ResNet50 L2-norm (! = 3) 
ResNet50 random L2-
norm (! = 3) 
ResNet50 L∞-norm (! =
4/255) 
ResNet50 L∞-norm (! =
8/255) 
ResNet50 random L∞-
norm (! = 8/255) 

43 9 (6, 13) 20 

Visual Experiment 
5 (AlexNet 
Adversarially 
Robust) 

AlexNet Standard 
Supervised, 
AlexNet L2-norm (! = 3) 
AlexNet random  L2-norm 
(! = 3) 
AlexNet L∞-norm (! = 8/
255) 
AlexNet random L∞-norm 
(! = 8/255) 

41 9 (7, 14) 20 

Visual Experiment 
6 (Lowpass 
AlexNet and 
VOneAlexNet) 

AlexNet Standard 
Supervised 
Lowpass AlexNet 
VOneAlexNet 

25 16 (14, 20) 20 

Table 3: Conditions and number of trials included in each visual experiment.  
 
Audio behavioral experiment 

We developed an audio experiment in JavaScript that was similar to an experiment used in earlier 
publications from our lab (5, 36). Each human participant listened to a two-second audio clip and 
had to choose one of 793 word-labels corresponding to the word in the middle of the clip (centered 
at the one-second mark of the clip). Each trial began with the participant hearing the audio clip 
and typing the word they thought they heard into a response box. As participants typed, words 
matching the letter string they were typing appeared below the response box to help participants 
identify words that were in the response list. Once a word was typed that matched one of the 793 
responses, participants could move onto the next trial.  
 
To increase data quality, participants first completed a short experiment (six trials) that screened 
for the use of headphones (99). If participants scored 5/6 or higher on this screen (224/377 
participants), they moved onto a practice experiment consisting of 10 natural audio trials with 
feedback (drawn from the training set), designed to introduce the task. This was followed by a 
demo experiment of 12 trials without feedback. These 12 trials contained both natural audio and 
model metamers, using the same set of 12 stimuli as in a demo experiment used for earlier in-lab 
experiments (36). As with the visual demo experiment, the goal of the audio demo experiment 
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was to introduce participants to the type of stimuli they would hear in the main experiment and to 
screen out poorly performing participants. A screening criteria was set at 5/12, which was the 
minimum for 16 in-lab participants in earlier work (36). 154/224 participants passed the demo 
experiment and chose to move onto the main experiment. We have repeatedly found that online 
auditory psychophysical experiments qualitatively and quantitatively reproduce in-lab results, 
provided that steps such as these are taken to help ensure good audio presentation quality and 
attentive participants (100–103). The average online performance on natural stimuli was 
comparable to in-lab performance reported in (36) on natural stimuli using the same task with 
different audio clips (in-lab proportion correct = 0.863 ± 0.0340).  
 
There were 6 different main auditory experiments, each including a set of conditions (multiple 
models and multiple model stages) to be compared. The design of these experiments paralleled 
the image experiments. The stimuli for each main experiment were generated from the set of 400 
natural speech behavioral stimuli described above. Participants only heard one natural speech or 
metamer stimulus for each of the 400 excerpts in the behavioral stimulus set. Participants 
additionally completed 16 catch trials. These catch trials each consisted of a single word 
corresponding to one of the classes. Participant data was only included in the analysis if the 
participant got 15/16 of these trials correct (this inclusion criterion removed 8/154 participants). 
As the audio experiment was long, some participants chose to leave the experiment early and 
their data was excluded from analysis (23/154). An additional 3 participants were excluded due 
to self-reported hearing loss, for a total of 120 participants across all audio experiments. Of these 
participants, 45 self-identified as female, 68 as male, and 7 chose not to report; mean age=39.0, 
minimum age=22, maximum age=77. For all but the Spectemp experiment, participants 
completed 416 trials – one for each of the 400 original excerpts, plus the 16 catch trials. The 400 
excerpts were randomly assigned to the experiment conditions subject to the constraint that each 
condition had approximately the same number of trials. As in the visual experiments, each 
condition was initially allocated ceiling(400/N) trials, and then trials were removed at random until 
the total number of trials was equal to 400. If the chosen network-layer condition pair 
corresponded to a metamer that did not pass the metamer optimization criteria (and thus, was 
omitted from experiment stimuli), the natural audio was used for that condition as a placeholder, 
but was not included in the analysis. As in the visual experiments, these two constraints resulted 
in the number of trials per condition varying somewhat across participants (see Table 4). The 
resulting 416 total trials were then presented in random order across the conditions of the 
experiment. The Spectemp experiment used only 200 of the original 400 excerpts, for a total of 
216 trials. This experiment was run with a smaller number of stimuli because it contained only 6 
conditions (metamer optimization was run for all 400 stimuli and a subset of 200 was randomly 
chosen from the subset of the 400 original excerpts for which metamer optimization was 
successful in every layer of the model). We collected online data in batches until we reached the 
target number of participants for each experiment. 
 
Experiment Models (number of layers) Total 

Number of 
conditions 
(Includes 
Natural 
Image) 

Number of 
trials per 
condition per 
participant 
Average 
(min, max) 

Number of 
Participants 

Audio Experiment 1 
(Standard Models) 

CochResNet50 Standard 
CochCNN9 Standard  

18 22 (18, 23) 20 

Audio Experiment 2 
(Spectemp Model) 

Spectemp Model 6 33 (30, 34) 20 
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Audio Experiment 3 
(CochResNet50 
Waveform 
Adversarial 
Training) 

CochResNet50 Standard 
Supervised, 
CochResNet50 waveform 
L2-norm (! = 0.5) 
CochResNet50 waveform 
L2-norm (! = 1) 
CochResNet50 random 
waveform L2-norm (! = 1) 
CochResNet50 waveform 
L∞-norm (! = 0.002) 
CochResNet50 random 
waveform L∞-norm (! =
0.002) 

49 8 (5, 9) 20 

Audio Experiment 4 
(CochCNN9 
Waveform 
Adversarial 
Training) 

CochCNN9 Standard 
Supervised, 
CochCNN9 waveform L2-
norm (! = 1) 
CochCNN9 random 
waveform L2-norm (! = 1) 
CochCNN9 waveform L∞-
norm (! = 0.002) 
CochCNN9 random 
waveform L∞-norm (! =
0.002) 

46 8 (6, 9) 20 

Audio Experiment 5 
(CochResNet50 
Cochleagram 
Adversarial 
Training) 

CochResNet50 Standard 
Supervised, 
CochResNet50 
cochleagram L2-norm (! =
0.5) 
CochResNet50 
cochleagram L2-norm (! =
1) 
CochResNet50 random 
cochleagram L2-norm (! =
1) 
CochResNet50 waveform 
L2-norm (! = 1) 

41 9 (7, 10) 20 

Audio Experiment 6 
(CochCNN9 
Cochleagram 
Adversarial 
Training) 

CochCNN9 Standard 
Supervised, 
CochCNN9 cochleagram 
L2-norm (! = 0.5) 
CochCNN9 cochleagram 
L2-norm (! = 1) 
CochCNN9 random 
cochleagram L2-norm (! =
1) 
CochCNN9 waveform L2-
norm (! = 1) 

46 8 (6, 9) 20 

Table 4: Conditions and number of trials included in each audio experiment.  
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Statistical tests -- difference between human and model recognition accuracy 
All human recognition experiments involving neural network models were analyzed by comparing 
human recognition of a generating model’s metamers to the generating model’s recognition of the 
same stimuli (its own metamers). Each human participant was run on a distinct set of model 
metamers; we presented each set to the generation model and measured its recognition 
performance for that set. Thus, if N human participants performed an experiment, we obtained N 
model recognition curves. We ran mixed model repeated measures ANOVAs with a within-group 
factor of metamer generation model stage and a between-group factor of observer (human or 
model observer), testing for both a main effect of observer and an interaction between observer 
and model stage. Data were non-normal due to a prevalence of values close to 1 or 0 depending 
on the condition, and so we evaluated statistical significance non-parametrically, using 
permutation tests in which we compared the observed F-statistic to that obtained after randomly 
permuting the data labels. To test for main effects, we permuted observer labels (model vs. 
human). To test for interactions of observer and model stage, we randomly permuted both the 
observer labels and the model stage labels, independently for each participant. In each case we 
used 10,000 random permutations and computed a p value by comparing the observed F-statistic 
to the null distribution of F-statistics from permuted data (i.e., the p value was one minus the rank 
of the observed F-statistic divided by the number of permutations).  
 
Because the classical models did not themselves perform recognition judgments, rather than 
comparing human and model recognition as in the experiments involving neural network models, 
we instead tested for a main effect of model stage on human observer recognition.  We performed 
a single-factor repeated measure ANOVA using a within-group factor of model stage, again 
evaluating statistical significance non-parametrically. We randomly permuted the model stage 
labels of the recognition accuracy data, independently for each participant (with 10,000 random 
permutations). 
 
Statistical tests -- difference between human recognition of metamers generated from different 
models 
To compare human recognition of metamers generated from different models, we ran a repeated 
measures ANOVA with within-group factors of model stage and generating model. This type of 
comparison was only performed in cases where the generating models had the same architecture 
(so that the model stages were shared between models). We again evaluated statistical 
significance non-parametrically, by comparing the observed F-statistic to a null distribution of F-
statistics from permuted data (10,000 random permutations). To test for a main effect of 
generating model, we randomly permuting the generating model label, independently for each 
participant. To test for an interaction between the generating model and model stage, we 
permuted both the generating model label and the model stage label, independently for each 
participant. 
 
Power analysis to determine sample sizes 

We planned to run ANOVAs examining the interaction between human performance and model 
performance, the interaction between model and layer, the interaction between standard models 
and adversarially trained models, the interaction between different types of adversarial training, 
and the interaction between standard supervised models and self-supervised models. To estimate 
the number of participants necessary to be well powered for these analyses, we ran a pilot 
experiment comparing the standard versus adversarially trained ResNet50 and CochResNet50 
models, as this experiment included the largest number of conditions and we expected that the 
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differences between different types of adversarially trained models would be subtle, and would 
put an upper bound on the sample sizes that would be needed across experiments.  
 
For the vision experiment, we ran 10 participants in a pilot experiment on Amazon Mechanical 
Turk. The format of the pilot experiment was identical to that of the main experiments in this paper, 
with the exception that we used a screening criteria of 8/12 correct for the pilot, rather than the 
7/12 correct used for the main experiment. In this pilot experiment, the smallest effect size out of 
those we anticipated analyzing in the main experiments was the comparison between the L∞-
norm (! = 8/256) adversarially trained ResNet50 and the L2-norm (! = 3) adversarially trained 
Resnet50, with a partial eta squared value of 0.10 for the interaction. A power analysis was 
performed with g*power (104); 18 participants were needed to have a 95% chance of seeing an 
effect of this size at a p<.01 significance level. We thus set a target of 20 participants for each 
main vision experiment.  
 
For the auditory experiments we ran 14 participants in a pilot experiment on Amazon Mechanical 
Turk. The format of the pilot experiment was identical to that of the main experiments in this paper 
with the exception that 8 of the 14 participants only received 6 original audio trials with feedback, 
while in the main experiment 10 trials with feedback were used. As in the vision pilot experiment, 
in this pilot the smallest effect size of interest was that for the comparison between the L∞-norm 
(! = 0.002) adversarially trained CochResNet50 and the L2-norm (! = 1)  waveform adversarially 
trained CochResNet50, yielding a partial eta squared value of 0.37 for the interaction. A power 
analysis was performed with g*power; this indicated that 12 participants were needed to have a 
95% change of seeing an effect for this size at a p<0.01 significance level. To match the image 
experiments, we set a target of 20 participants for each main auditory experiment.   
 
Experiment testing effect of optimization algorithm (Supplementary Figure 2)  
An in-lab visual experiment was conducted to analyze whether differences in the optimization 
strategy would have an effect on the human-recognizability of model metamers. This experiment 
used one example visual model (a ResNet50 architecture). The optimization code and techniques 
used for this small in-lab experiment differed from any of the experiments described in the main 
text of this paper (they followed the methods used in our previous work (36)) but showed a similar 
main effect of layer for standard networks, where model metamers generated from late stages of 
ImageNet task-optimized ResNet50 networks were unrecognizable to humans.  
 
Visual models included in the experiment 

The models and metamer generation for this experiment were implemented in TensorFlow v1.12 
(105). For these experiments, we converted the ResNet50 model available via the PyTorch Model 
Zoo to TensorFlow using ONNX (version 1.6.0).  
 
The experiment was run together with an unrelated pilot experiment comparing four other models, 
the data for which are not analyzed here. To reduce the number of conditions, the layer 
corresponding to ResNet50 “layer1” was not included in metamer generation or in the experiment 
(from ad-hoc visual inspection of a few examples, the model metamers for conv1_relu1, layer1, 
and layer2 looked similar enough to the natural image that we expected ceiling performance for 
all conditions).  
 

Model metamer optimization 

Metamers were optimized using TensorFlow code based on that used for a previous conference 
paper (36). Unless otherwise noted the methods were identical to those used in the main 
experiments of this paper. 
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We tested two different optimization schemes for generating model metamers.  The first used 
stochastic gradient descent with 15000 iterations, where each step of gradient descent was 
constrained to have an L2 norm of 1. The second method used the Adam optimizer (106), which 
uses an adaptive estimation of first and second order moments of the gradient. Metamers were 
generated with 15000 iterations of the Adam optimizer with an exponentially decaying learning 
rate (initial learning rate of 0.001, 1000 decay steps, and a decay rate of 0.95).  
 
Stimuli – Image dataset for optimization strategy experiment 

Similar to the other visual experiments in this paper, each stimulus belonged to one of the 16 
entry-level MS COCO categories. For each of the 16 categories, we randomly selected 16 
examples from the ImageNet training dataset using the list of images provided by (18) for a total 
of 256 natural images that were used to generate stimuli.  Metamers were generated for each of 
the 256 images to use for the behavioral experiments.  
 

In-lab visual experiment 

The experimental setup was the same as the experiment described for our main experiments (but 
implemented in MATLAB Psychotoolbox rather than JavaScript), in which participants had to 
classify an image into one of the 16 presented categories. Each trial began with a fixation cross 
at the center of the screen for 300ms, followed by a natural image or a model metamer presented 
at the center of the screen for 200ms, followed by a pink noise mask presented for 200ms, 
followed by a 4x4 grid containing all 16 icons. Stimuli were presented on a 20” ACER LCD (backlit 
LED) monitor with a spatial resolution of 1600x900 and a refresh rate of 60Hz. Stimuli spanned 
256x256 pixels and were viewed at a distance of approximately 62 cm (set by the chair position, 
which was fixed; participants were free to position themselves in the chair as was most 
comfortable, which introduced minor variation in viewing distance).  
 
Before the experiment, each participant was shown a printout of the 16 category images with 
labels and the experimenter pointed to and read each category. This was followed by a demo 
experiment with 12 trials without feedback (same stimuli as in the main experiments, but 
performance was not used to exclude participants).  
 
Each participant saw 6 examples from each condition, chosen such that each natural image or 
metamer was from a unique image from the 256-image behavioral set. Ten participants completed 
the experiment. 
 
fMRI Analysis 
The auditory fMRI analysis closely followed that of a previous publication (5) using the fMRI 
dataset collected in another previous publication (59).The key components of the dataset and 
analysis methods are replicated here, but for additional details see (5, 59). The text from sections 
“fMRI data acquisition and preprocessing” and “Voxel and ROI selection” is replicated from a 
previous publication with minor edits (5). 
 
Natural sound stimuli  

The stimulus set was composed of 165 two-second natural sounds spanning eleven categories 
(instrumental music, music with vocals, English speech, foreign speech, non-speed vocal sounds, 
animal vocalization, human-non-vocal sound, animal non-vocal sound, nature sound, mechanical 
sound, or environment sound). The sounds were presented in a block design with five 
presentations of each two-second sound. To prevent sounds from being played at the same time 
as scanner noise, a single fMRI volume was collected following each sound presentation (“sparse 
scanning”). This resulted in a 17-second block. Blocks were grouped into 11 runs with 15 stimuli 
each and four blocks of silence. Silence blocks were the same duration as the stimulus blocks 
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and were used to estimate the baseline response. Participants performed a sound-intensity 
discrimination task to increase attention. One sound in the block of five was presented 7dB lower 
than the other four (the quieter sound was never the first sound) and participants were instructed 
to press a button when they heard the quieter sound. Sounds were presented with MR-compatible 
earphones (Sensimetrics S14) at 75 dB SPL for the louder sounds and 68dB SPL for the quieter 
sounds.  
 
fMRI data acquisition and preprocessing 

MR data was collected on a 3T Simens Trio scanner with a 32-channel head coil at the Athinoula 
A. Martinos Imaging Center of the McGovern Institute for Brain Research at MIT. Data was first 
published in (59), and was re-analyzed for this paper. Each functional volume consisted of fifteen 
slices oriented parallel to the superior temporal plane, covering the portion of the temporal lobe 
superior to and including the superior temporal sulcus. Repetition time (TR) was 3.4 s (acquisition 
time was only 1 s due to sparse scanning), echo time (TE) was 30 ms, and flip angle was 90 
degrees. For each run, the five initial volumes were discarded to allow homogenization of the 
magnetic field. In-plane resolution was 2.1 x 2.1 mm (96 x 96 matrix), and slice thickness was 4 
mm with a 10% gap, yielding a voxel size of 2.1 x 2.1 x 4.4 mm. iPAT was used to minimize 
acquisition time. T1-weighted anatomical images were collected in each subject (1mm isotropic 
voxels) for alignment and surface reconstruction. 
 
Functional volumes were preprocessed using FSL and in-house MATLAB scripts. Volumes were 
corrected for motion and slice time. Volumes were skull-stripped, and voxel time courses were 
linearly detrended. Each run was aligned to the anatomical volume using FLIRT and BBRegister. 
These preprocessed functional volumes were then resampled to vertices on the reconstructed 
cortical surface computed via FreeSurfer, and were smoothed on the surface with a 3mm FWHM 
2D Gaussian kernel to improve SNR. All analyses were done in this surface space, but for ease 
of discussion we refer to vertices as ‘‘voxels’’ in this paper. For each of the three scan sessions, 
we estimated the mean response of each voxel (in the surface space) to each stimulus block by 
averaging the response of the second through the fifth acquisitions after the onset of each block 
(the first acquisition was excluded to account for the hemodynamic lag). Pilot analyses showed 
similar response estimates from a more traditional GLM (59). These signal-averaged responses 
were converted to percent signal change (PSC) by subtracting and dividing by each voxel’s 
response to the blocks of silence. These PSC values were then downsampled from the surface 
space to a 2mm isotropic grid on the FreeSurfer-flattened cortical sheet.  
 
Voxel and ROI selection 

We used the same voxel selection criterion as Norman-Haignere et al. (2015), selecting voxels 
with a consistent response to sounds from a large anatomical constraint region encompassing 
the superior temporal and posterior parietal cortex. Specifically, we used two criteria: (1) a 
significant response to sounds compared with silence (p < 0.001); and (2) a reliable response to 
the pattern of 165 sounds across scans. The reliability measure was as follows: 

P = 1 −
||Q"% − RSTU/$Q"%||%

||Q"%||%
 

RSTU/$Q"% = V
Q&0

||Q&||%
Q"%WQ& 

 
where Q"% is the response of a single voxel to the 165 sounds averaged across the first two scans 
(a vector), and  Q&	is that same voxel’s response measured in the third. The numerator in the 
second term in the first equation is the magnitude of the residual left in  Q"%	after projecting out 
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the response shared with  Q&. This ‘‘residual magnitude’’ is divided by its maximum possible value 
(the magnitude of  Q"%). The measure is bounded between 0 and 1, but differs from a correlation 
in assigning high values to voxels with a consistent response to the sound set, even if the 
response does not vary substantially across sounds. We found that using a more traditional 
correlation-based reliability measure excluded many voxels in primary auditory cortex because 
some of them exhibit only modest response variation across natural sounds. We included voxels 
with a value of this modified reliability measure of 0.3 or higher, which when combined with the 
sound responsive t-test yielded a total of 7694 voxels across the eight participants (mean number 
of voxels per subject: 961.75; range: 637-1221). 
 
We localized four regions of interest (ROIs) in each participant, consisting of voxels selective for 
(1) frequency (i.e., tonotopy), (2) pitch, (3) speech, and (4) music. In each case we ran a 
‘‘localizer’’ statistical test and selected the top 5% most significant individual voxels in each 
subject and hemisphere (including all voxels identified by the sound-responsive and reliability 
criteria described above). We excluded voxels that were identified in this way by more than one 
localizer. The frequency, pitch, and speech localizers required acquiring additional imaging data, 
and were collected either during extra time during the natural sound stimuli scan sessions or on 
additional sessions on different days. Scanning acquisition parameters were identical to those 
used to acquire the natural sounds data. Throughout this paper we refer to voxels chosen by 
these criteria as ‘‘selective,’’ for ease and consistency.  
 
To identify frequency-selective voxels, we measured responses to pure tones in six different 
frequency ranges (center frequencies: 200, 400, 800, 1600, 3200, 6400 Hz) (107, 108). For each 
voxel, we ran a one-way ANOVA on its response to each of these six frequency ranges and 
selected voxels that were significantly modulated by pure tones (top 5% of all selected voxels in 
each subject, ranked by p values). Although there was no spatial contiguity constraint built into 
our selection method, in practice most selected voxels were contiguous and centered around 
Heschl’s gyrus.  
 
To identify pitch-selective voxels, we measured responses to harmonic tones and spectrally-
matched noise (108). For each voxel we ran a one-tailed t-test evaluating whether the response 
to tones was greater than that to noise. We selected the top 5% of individual voxels in each 
subject that had the lowest p values for this contrast. 
 
To identify speech-selective voxels, we measured responses to German speech and to temporally 
scrambled (‘‘quilted’’) speech stimuli generated from the same German source recordings (109). 
We used foreign speech to identify responses to speech acoustical structure, independent of 
linguistic structure. Note that two of the participants had studied German in school and for one of 
these participants we used Russian utterances instead of German. The other subject was tested 
with German because the Russian stimuli were not available at the time of the scan. For each 
voxel we ran a one-tailed t-test evaluating whether responses were higher to intact speech than 
to statistically matched quilts. We selected the top 5% of all selected voxels in each subject. 
 
To identify music-selective voxels, we used the music component derived by (59). We inferred 
the ‘‘voxel weights’’ for each voxel to all six of the components from its response to the 165 
sounds: 

X = Y2Q 
where X contains the inferred voxel weights (a vector of length 6), Y′ is the Moore-Penrose 
pseudoinverse of the ‘‘response components’’ (a 6 by 165 matrix), and Q is the measured 
response of a given voxel (vector of length 165). We assessed the significance of each voxel’s 
music component weight via a permutation test. During each iteration, we shuffled all the 
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component elements, recomputed this new matrix’s pseudoinverse, and recomputed each voxel’s 
weights via the matrix multiply above. We performed this procedure 10,000 times, and fit a 
Gaussian to each voxel’s null distribution of music weights. We then calculated the likelihood of 
the empirically observed voxel weight from this null distribution, and took the top 5% of voxels 
with the lowest likelihood under this null distribution. 
 
Voxelwise encoding analysis 

Each of the 165 sounds from the fMRI experiment was resampled to 20,000Hz (the sampling rate 
of the training dataset) and passed through each auditory model. We measured the model 
response at each layer of the network for each sound. To compare the network responses to the 
fMRI response we averaged over the time dimension for all units that had a temporal dimension 
(all layers except fully connected layers).   
 
In the CochCNN9 architecture, this resulted in the following number of regressors for each layer: 
cochleagram (211), relu0 (6818), relu1 (4608), relu2 (4608), relu3 (9216), relu4 (4608), avgpool 
(2560), relufc (4096), final (794).  In the CochResNet50 architecture, this resulted in the following 
number of regressors for each layer: cochleagram (211), conv1_relu1 (6784), layer1 (13568), 
layer2 (13824), layer3 (14336), layer4 (14336), avgpool (2048), final (794). The spectrotemporal 
model consisted of only the time-averaged power of the spectrotemporal filters (23421 
activations).  
 
We used the features sets extracted from model layers to predict the fMRI response to the natural 
sound stimuli. Each voxel’s time-averaged responses were modeled as a linear combination of a 
layer’s time-averaged unit responses. Ten random train-test splits (83/82) were taken from the 
165 sound dataset. For each split we estimated a linear mapping using L2-regularized (“ridge”) 
linear regression using RidgeCV from the scikit learn library version 0.23.1 (110). Ridge 
regression places a zero-mean gaussian prior on the regression coefficients, corresponding to 
solving the regression problem given by:  

X = (Z0Z + ?λ])'"Z0^ 
where ? is the number of stimuli used for estimation (here equal to 83), X is the _-length column 
vector the length of the regressors (number of extracted layer features), ^ is an ?-length column 
vector containing the voxels response to each sound (length ?),  Z is a matrix containing the 
regressors (? stimuli by _ regressors, the extracted layer features for each sound), ] is the identity 
matrix, and λ is the ridge regression regularization parameter. The mean of each column was 
subtracted from the regressor matrix before fitting the model.  
 
The best ridge regression parameter for each voxel was independently selected using leave-one-
out cross validation across the 83 training sounds in each split sweeping over 81 logarithmically 
spaced values (each power of 10 between 10-40 – 1040). For each held-out sound in the training 
set, the mean squared error of the prediction was computed using regression weights from the 
other 82 training set sounds, for each of the regularization coefficients. The regularization 
parameter that minimized the mean squared error on the held-out sounds was used to fit a linear 
mapping between model responses to all 83 training set sounds and the voxel responses. This 
mapping was used to predict the voxel response to the held-out 82 test sounds and fitting fidelity 
was evaluated with the squared Pearson correlation (r2) as a metric of explained variance of the 
predicted voxel response and the observed voxel response.  
 
This measured explained variance was corrected for the effects of measurement noise by 
computing the reliability of the voxel responses and of the predicted voxel response. We use the 
correction for attenuation (111), which estimates the correlation between two variables 
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independent of measurement noise, resulting in an unbiased estimator of the correlation 
coefficient that would be observed from noiseless data. The corrected variance explained is: 

P3,34%∗ =
P(Q"%&, Q̀"%&)%

P32P342
 

where Q"%& is the voxel response to the 82 test sounds averaged across all three scans, Q̀"%& is 
the predicted response to the 82 test sounds using the 83 training sounds to learn the regression 
weights, P is a function that computes the Pearson correlation coefficient, P32 is the correction for 
reliability of the voxel responses, and P342 is the correction for reliability of the predicted voxel 
response.  P32  is computed as the median Spearman-Brown corrected Pearson correlation 
between the 3 pairs of scans (scan 0 with scan 1, scan 1 with scan 2, scan 0 with scan 2), where 
the Spearman-Brown correction accounts for increased reliability expected from tripling the 
amount of data (112). P342 is similarly computed by using the training data each of the three pairs 
of scans to predict the test data from the same scan, and calculating the median Spearman-Brown 
corrected correlation for the predicted voxel responses. If voxels and/or predictions are very 
unreliable, this can lead to large corrected variance explained measures (113). We set a minimum 
value of 0.182 for P32 (corresponding to the value at which the correlation of two 83-dimensional 
random variables reaches significance at a threshold of p<.05; 83 being the number of training 
data values) and a minimum value of 0.183 for P342 (the analogous value for 82-dimensional random 
variables, corresponding to the number test data values).  
 
The above computation of corrected variance explained was computed for each voxel using each 
layer response for each of 10 train/test splits of data. We took the median variance explained 
across the 10 splits of data. To provide one summary metric across each of the ROIs (all auditory 
voxels, tonotopic voxels, pitch voxels, music voxels, speech voxels) we chose the best layer for 
each ROI using a hold-one-participant out analysis. A summary measure for each participant and 
model layer was computed by taking the median across all voxels of the voxel-wise corrected 
variance explained values within the ROI. Holding out one participant, we averaged across the 
remaining participant values to find the layer with the highest variance explained within the given 
ROI. We measured the corrected variance explained for this layer in the held-out participant and 
repeated the procedure holding out one participant at a time. This cross validation avoids issues 
of non-independence when selecting the layer. We report the mean corrected variance explained 
across the participants (Figure 8). In the spectrotemporal filter model, we only analyzed the power 
of the spectrotemporal filter responses, as this is the model stage that is standardly used when 
analyzing fMRI data in this way. One sided paired sample t-tests were performed to test for a 
difference in the variance explained summary metrics between different networks. Significance 
values were computed by constructing a null-distribution of t-statistics by randomly permuting the 
network assignment independently for each participant (10,000 permutations). The p-value is 
reported as one minus the rank of the observed t-statistic divided by the number of permutations. 
In cases where the maximum possible number of unique permutations was less than 10,000, we 
instead divided the rank by the maximum number of unique permutations  
 
Model recognition of metamers generated from other models 
To measure the recognition of a model’s metamers by other models, we took the generated image 
or audio that was used for the human behavioral experiments, provided it as input to a 
“recognition” neural network, and measured the 16 way image classification (for ImageNet 
models) or the 763-way word classification (for the audio models).  
 
The plots in Figure 9b show the average recognition by other models of metamers generated from 
a particular type of ResNet50 model. We used one “Standard” generation model (the standard 
supervised ResNet50). This curve is the average across all other vision recognition models (as 
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shown in Figure 9a). The curve for self-supervised models shows results averaged across the 
three self-supervised generation models (SimCLR, MoCo_V2, and BYOL); the curve for 
adversarially trained models shows results averaged across the three adversarially trained 
ResNet50 models (trained with L2-norm (! = 3), L∞-norm (! = 4/255), and L∞-norm (! = 8/255) 
perturbations, respectively). For these latter two curves, we first computed the average curve for 
each recognition model across all three generation models, omitting the recognition model from 
the average if it was the same as the generation model (in practice, this meant that there was one 
fewer value included in the average for the recognition models that are part of the generation 
model group). We then averaged across the curves for each recognition model. The error bars 
on the resulting curves are the SEM computed across the recognition models.  
 
Figure 9c was generated in an analogous fashion. We used one “Standard” generation model 
(the standard supervised CochResNet50). The curve for the waveform adversarially trained 
models shows results averaged across the three such CochResNet50 models (trained with L2-
norm (! = 0.5), L2-norm (! = 1), and L∞-norm (! = 0.002) perturbations, respectively). The curve 
for the cochleagram adversarially trained models shows results averaged across the two such 
CochResNet50 models (trained with L2-norm (! = 0.5), and L2-norm (! = 1) perturbations, 
respectively). The group averages and error bars were computed as in Figure 9b.  
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