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Abstract

Understanding the distribution  of fitness effects  of new mutations  is  central  to  predicting adaptive
evolution. Short-term experiments provide a snapshot of this distribution, but observing how it changes
as organisms adapt is challenging. Here we use saturated, genome-wide insertion libraries to quantify
how the fitness effects of new mutations changed in two E. coli populations that adapted to a constant
environment for 15,000 generations. The proportions of neutral and deleterious mutations remained
constant, despite fitness gains of ~50%. In contrast, the beneficial fraction declined rapidly and became
exponentially distributed, with genetic interactions profoundly reshuffling the loci subject to beneficial
mutations.  Despite this volatility,  the ancestral distribution predicts many of the alleles that become
dominant in the long-term experiment, even after the initial period of rapid adaptation. Overall, our
results  suggest that  short-term adaptation can be idiosyncratic but empirically reproducible, and that
long-term dynamics can be described by simple statistical principles.
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Long-term evolution results from the accumulation of new mutations. Therefore, detailed knowledge of
the proportions of mutations that are beneficial, neutral, or deleterious is important for predicting the
course and outcomes of evolution. Indeed, assumptions about the distribution of fitness effects (DFE) of
new mutations (DFE) lie at the core of many theories describing fundamental evolutionary phenomena,
including the speed of adaptation (1), fitness decay in small populations (2), the maintenance of genetic
variation  (3), the probability of parallel (4) versus divergent  (5) evolution, the pace of the molecular
clock (6), and the evolution of sex (7) and mutation rates (8). Driven by this interest, many experimental
and comparative studies have produced estimates of this distribution in different organisms. While most
studies have been small in scale (9) or focused on narrow genomic regions (10), some important features
appear similar across a variety of model systems. In particular, most mutations are neutral or deleterious,
lethal mutations form a distinct class within the deleterious tail, and those rare beneficial mutations are
typically (but not always) exponentially distributed (11).

However, the DFE only indicates what is possible at a particular point in time, and it is unknown how
long the distribution will remain relevant as evolution proceeds and especially as beneficial substitutions
accumulate. Predictions on how the shape of the DFE changes are implicit in some theoretical models,
most famously that the beneficial tail should approach an exponential distribution near a fitness peak
(12,  13). The picture is more ambiguous for the deleterious tail, with different models predicting it to
become heavier (14)  or lighter  (15) with adaptation. In any case, these predictions address only the
macroscopic form of the DFE, with little attention to the microscopic processes underlying the changes
in shape. And while the shape influences the dynamics, the microscopic details—especially the sign and
intensity of interactions among mutations (i.e., epistasis)—determine the outcomes of adaptation (16).
For example, in the absence of epistasis, adaptation will shorten the beneficial tail simply by the process
of sampling without replacement. In this case, a complete DFE would suffice to specify the probabilities
of all possible adaptive trajectories in a given environment. At the other extreme, if sign epistasis is the
norm—such that mutations go from beneficial to deleterious, and vice versa, as the genome evolves (17)
—then new mutations will continually change the effects and rank order of the remaining mutations,
rendering futile any prediction about adaptive trajectories beyond the very short term.

High-throughput insertion mutagenesis and fitness measurements

To illuminate experimentally  how adaptation  and epistatic  interactions  change the DFE,  one would
ideally like to measure the relative fitness of a large set of mutants at multiple time points along a broad
and well-characterized adaptive  trajectory.  To do so,  we take advantage  of  the long-term evolution
experiment (LTEE) in which populations of  Escherichia coli have been adapting to a glucose-limited
medium for tens of thousands of generations, resulting in large fitness increases (18). Examples of both
weak  and  strong epistasis  among  beneficial  mutations  have  been  reported  in  this  system  (16,  19).
Moreover,  the most  important  mutations  driving adaptation have been identified from signatures of
parallelism in whole-genome sequences (20, 21), allowing the predictive capacity of a DFE at one time
point to be compared with the actual fate of mutations during later adaptation. To measure the DFE, we
created genome-wide libraries of insertion mutants using a transposon engineered to capture the 14-bp
sequence adjacent to each insertion site, which in most cases identifies unequivocally the target locus
(22) (Methods, fig. S1). We typically identified >100,000 different insertion mutants, which mapped to
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>78% of the ancestral genome’s 8424 loci including both open reading frames (ORFs) and intergenic
regions (Methods).

We estimated the fitness effects of all these mutants as selection coefficients, for which we tracked the
frequency trajectory of every allele during 5-day, bulk competition assays under the same conditions as
in the LTEE (Fig. 1, a-c; Methods). Although transposon insertions typically cause losses of function, we
also found evidence of two types of more subtle effects (Fig. 1, d). First, an insertion in the C-terminus
of a gene may cause only a partial  loss of function or even a change in function.  This outcome is
prominently  revealed by the  tolerance of  many essential  genes  to  insertions  in  that  region,  notably
including  insertions  in  topA and  serB that  show large  benefits  (23).  Second,  the  position  of  many
beneficial insertions, including in intergenic regions and genes upstream of known targets of adaptation
in the LTEE, suggests changes in gene expression. To preserve these types of effects, while also ensuring
robust fitness estimates, we divided each locus into 5 segments of equal length and then pooled all
insertions in each segment. As an added benefit, fitness comparisons among segments of the same locus
allow identification of outliers and provide an internal control to quantify the reproducibility of the
fitness estimates (Methods, fig. S2).

Changes in the size and shape of the beneficial tail of the DFE

Using this approach, we first sought to characterize how the macroscopic shape of the DFE changed as
fitness increased during the LTEE. The rate of fitness increase declined during the LTEE, such that half
of the ~70% gain typically seen at 50,000 generations had already occurred by 5,000 generations (18).
We decided therefore to create transposon libraries in three genetic backgrounds: the ancestor (which we
call “Anc”) and clones sampled from population Ara+2  at 2,000 ( “2K”) and 15,000 (“15K”), when
fitness had increased by ~25% and ~50%, respectively. Despite these large fitness gains, Figure 2 shows
that the overall shape of the DFEs remained similar, with one critical difference—namely, the fraction of
beneficial insertion mutations is substantially larger in the ancestor than in the evolved backgrounds
(7.4% for Anc versus 5.1% and 3.9% for 2K and 15K, respectively; P < 0.004 both cases, two-sample
Kolmogorov–Smirnov [K-S] test). In contrast, the deleterious fraction is essentially constant across the
three backgrounds (21.4% for Anc versus 22.6% and 21.2% for 2K and 15K, respectively;  P > 0.073
both cases, two-sample K-S test). These patterns are consistent with analyses performed at the level of
individual genes for both beneficial and deleterious mutations (Fig. 3, a-b). 

We also examined whether these results depended on the particular evolutionary lineage that we chose to
study. To that end, we also measured the DFEs for clones sampled at 2,000 and 15,000 generations from
population Ara–1, an independently evolving lineage that accumulated different beneficial mutations
along its adaptive trajectory (Methods, table S1). At least two major features distinguish the evolutionary
history of this lineage from that of Ara+2. First, Ara–1 fixed a mutation in  topA early in the LTEE,
which confers the highest fitness benefit seen in this system for any single substitution (19). Mutations
in this locus reached fixation in five of the twelve LTEE populations, but they never reached detectable
frequency in  Ara+2.  Second,  Ara–1 evolved a  mutator  phenotype,  whereas  Ara+2 retained the  low
ancestral mutation rate throughout the experiment (note, however, that Ara–1 became hypermutable only
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after ~21,000 generations, and hence it did not affect the clones in our study). Despite their independent
evolutionary histories, we obtained strikingly similar overall results for the two lineages, at both the
macroscopic and microscopic levels (fig. S3).

How do our observations compare to previous studies and expectations? An influential prediction based
on statistical arguments is that the effects of beneficial mutations should be exponentially distributed if
the population is well-adapted to its environment (1, 12). Despite some empirical support (24–26), the
evidence remains inconclusive overall owing to a severe limitation of most studies: without detailed
knowledge of a population’s evolutionary history, it is difficult to evaluate its level of adaptation to a
particular environment. Our data, therefore, provides a unique test of these ideas. We find that, indeed,
beneficial mutations in the evolved backgrounds are well fit by an exponential distribution, whereas this
fit can be rejected for the ancestor (P = 0.016 for Anc versus P = 0.716 and P = 0.984 for Ara+2 clones
2K and 15K, respectively;  one-sample K-S test). We also considered other commonly used alternative
distributions,  but  the  exponential  fit  provides  the  most  satisfactory  distribution  for  the  evolved
backgrounds (Methods, table S2). In contrast, the beneficial tail for the ancestor was reasonably well fit
by both gamma and Weibull distributions (P = 0.059 and P = 0.21, respectively; one-sample K-S test),
consistent with previous reports for viral and bacterial genotypes thought to be poorly adapted to the test
environment (26, 27). Overall, our results support the view that, after an early period of rapid adaptation
to a new environment, the distribution of beneficial mutations becomes exponential. Thus, by analyzing
changes  in  the  DFE in  a  temporal  series  of  genetic  backgrounds  becoming  better  adapted  to  their
environment,  we can  reconcile  disparate  pieces  of  evidence  and provide  insights  relevant  to  many
models of adaptation. 

Constancy of the deleterious tail of the DFE

The constancy of the deleterious tail, however, stands in contrast to a study that measured the DFE for
710  insertion  mutations  in  hybrid  yeast  genotypes  with a  fitness  range  spanning  ~20%,  in  which
deleterious effects were significantly worse in the more-fit backgrounds  (28).  A potentially important
difference is that the fitness variation among the yeast backgrounds was generated by crossing two
distantly related strains, whereas we use a series of backgrounds from lineages undergoing adaptation to
the same environment in which we assess the fitness effects of the new mutations. As further support for
our findings, a companion study focused on the evolution of gene essentiality in the LTEE found no
systematic changes in deleterious effects across all of the lineages at 50,000 generations (29). In any
case, theoretical predictions about the tail of deleterious mutations differ substantially and have been
guided mostly by plausibility arguments (14, 15), and so all of these studies should help refine current
models by clarifying the assumptions and narrowing the range of parameters. 

Changing identity of beneficial mutations and sign epistasis

Having now described how the macroscopic structure of the DFE changed as the bacteria adapted to the
LTEE  environment,  we  next  sought  to  understand  how  these  macroscopic  changes  emerged  from
changes at the level of genes and mutations. Figure 3a shows that deleterious mutations generally exhibit
only slight epistasis across the three focal genetic backgrounds of the Ara+2 lineage; the magnitude of
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their  harmful  effects  may vary,  but  without  any tendency towards  either  aggravating  or  alleviating
effects.  Thus,  deleterious  mutations  in  the  ancestor  remain  deleterious  in  the  evolved backgrounds,
consistent with the observed constancy of the deleterious tail. In stark contrast, beneficial mutations are
largely dominated by strong, sign-epistatic interactions (fig. 3b). Only 6.1% of the mutations beneficial
in the ancestor are still beneficial by 2,000 generations, with most becoming effectively neutral (73.9%)
and some deleterious (20%) (fig. 3c, left panel). This pattern also holds in the reverse direction: most
beneficial mutations at 2,000 generations are neutral (74.1%) or deleterious (19%) in the ancestor (fig.
3c, left panel). Similar patterns occur when comparing how fitness effects changed between 2,000 and
15,000 generations (fig.  3C, right panel). Intrigued by the transitory nature of beneficial effects, we
asked whether  the  overall  DFE of  the initially  beneficial  mutations  retains  even a  slightly  positive
tendency at the later time points. In fact, it does not. The DFE of mutations that were beneficial in the
ancestor becomes indistinguishable from a random sample of the parent distribution (fig. 3d, left panel),
and the same holds for the reverse scenario (fig. 3d, right panel) (P > 0.130 both cases; two-sample K-S
test).  This  regression  to  the  mean  persists  even  when  we  account  for  measurement  noise  around
neutrality (fig. S2). 

What might explain this turnover in the identity of the beneficial mutations? In a previous study, the first
five mutations to fix in one LTEE population were shown to exhibit diminishing-returns epistasis, such
that  their  benefits  declined in  magnitude as the background fitness increased  (19).  However,  it  was
unlikely a priori that these five mutations would show sign epistasis because they were chosen precisely
because their combination was favored by natural selection (30). By contrast, another study analyzed the
co-occurrence of fixed mutations across 115 lines of E. coli that had evolved under thermal stress, and
found that sign epistasis was indeed common (31). Moreover, that study found that the prevalence of
different  types  of  epistasis reflected  the  modular  architecture  of  cellular  traits:  mutations  affecting
different modules tend to interact more or less additively, while mutations impacting the same module
tend to be redundant. We therefore investigated the extent of modularity in our data, and we found that
beneficial mutations tend to cluster together in operons, the most basic functional level (Methods, P <
0.01). Mutations in the same operon are likely to alter the same cellular process in similar ways, and
therefore the potential for redundancy at this level provides a simple explanation for why large sets of
beneficial mutations disappear, and other sets emerge, as adaptation proceeds. Even without considering
these specific details, the increased prevalence of sign epistasis with adaptation has also been predicted
from general properties of the genotype-to-fitness map (32).

We identified a large pool of loci that can produce beneficial mutations, including some known targets
for adaptation in the LTEE (e.g., topA, pykF, nadR)  (20). However, the fate of beneficial mutations is
determined not only by their fitness, but also by the nature and intensity of their interactions with other
beneficial mutations (16, 17). As a consequence, only a fraction of all possible beneficial mutations will
contribute to adaptation in an evolving population. To gain further insight into this issue, we compared
our data with metagenomic data obtained by sequencing whole-population samples from the 12 LTEE
populations over the course of 60,000 generations (21). We see a significant, but fairly weak, correlation
between our fitness estimates of mutations in the ancestor and the abundance of corresponding alleles
during the LTEE (r  = 0.36, fig. 4a), and this correlation largely disappears when using the beneficial

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492360doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492360
http://creativecommons.org/licenses/by-nc-nd/4.0/


effects estimated in the evolved backgrounds (fig. S4). An important factor contributing to these weak
correlations is that our methods involve insertion mutations, which usually, but not always, cause losses
of function (fig. 1). While losses of unused functions have contributed to adaptation in the LTEE (20,
33), subtle changes that typically require point mutations have also been important in refining some
functions (16, 20, 34). In contrast, the abundance of alleles in the metagenomic data correlates more
strongly with the target size of the locus (r = 0.72, fig. 4b) (Methods). These “quasi-neutral” patterns are
consistent with intense competition among independently segregating beneficial mutations (i.e., clonal
interference), a phenomenon that is pervasive in the LTEE (21, 35). Under intense clonal interference,
the probability that different mutations occur may shape genomic evolution more than their individual
fitness effects (36). In any case, the best linear model includes target size as the most explanatory single
variable, but it also includes significant contributions from the fitness effects in both the ancestral and
2,000-generation genetic backgrounds (fig. 4c, table S3).

Predicting future beneficial mutations as adaptation proceeds

Finally, given that sign epistasis is widespread, it is natural to ask for how long the information about the
particular loci in the beneficial tail of a DFE can predict the subsequent steps of adaptation. To address
this question, we recorded the alleles that were nearing fixation through time using the metagenomic
data, and we calculated how many of them corresponded to those loci for which we detected beneficial
effects. We found that the ancestral DFE predicted most of the mutations that become dominant early in
the LTEE populations; the predictive power decays rapidly but was still evident for ~15,000 generations
(fig. 4d). Interestingly, this rapid decay was largely driven by the lineages that evolved hypermutability
early in the LTEE; when these mutator populations are removed from the analysis, the ancestral DFE
retained significant predictive power through 50,000 generations (fig. S5). In turn, the DFEs measured
in  the  evolved  backgrounds  had  less  predictive  power,  and  it  takes  longer  for  their  predictions  to
materialize; the latter effect may reflect the declining rate of adaptation. These patterns are reminiscent
of work showing that parallel genomic evolution was more common early in the LTEE than in later
generations (20, 37).

Taken together, our results shed new light on which aspects of adaptation to a novel environment are
predictable, and which are not, given our current understanding of genetics and evolution. While the first
stages of adaptation are not yet well-captured by theory, we have demonstrated that the major drivers of
early adaptation can be predicted from high-throughput empirical fitness data. By contrast, the long-term
dynamics of adaptation are well-described using simple statistical arguments. However, predicting the
genetic identity of the late drivers of adaptation is more difficult, and it will remain a challenge until a
general theory of epistasis has been developed.
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Figures

Fig. 1. Overview of experimental procedures. (A) Several saturated, genome-wide insertion libraries
in the ancestor and two evolved isolates (2K and 15K generations) from each of two LTEE populations
(Ara+2 and Ara–1) were subjected to bulk competition and sequencing. (B) The abundance trajectories
of well-known neutral loci were taken as reference to estimate selection coefficients (left). The values
for this neutral set were closely centered around zero (right).  (C)  Frequency trajectories of the whole
mutant  library  in  the  ancestor  (left),  and  mapping  of  the  selection  coefficient  estimates  along  the
chromosome (right).  Colors  indicate  fitness  effects,  from deleterious  (red)  to  beneficial  (blue).  (D)
Examples of important sub-genic structure for known targets of selection in which we observed polar
effects  involving the preceding regions of the same transcription  unit  (mrdA, nadR, and topA),  and
showing the tolerance to insertions of the C-terminal portion of essential genes (serB, topA, and spoT).
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Fig. 2. Change in the DFE along a large fitness gradient. (A) DFEs in the ancestor (black), 2K (blue)
and 15K (red) evolved strains from population Ara+2. Note the logarithmic scaling of the y-axis.  (B)
Deleterious  tails  remained  unchanged  during  adaptation,  as  indicated  by  comparing  the  cumulative
distributions between the ancestor and 2K (left), and the ancestor and 15K (right).  (C) Beneficial tails
are  rapidly  truncated  and  become  exponentially  distributed.  Histograms  show  the  best  fit  to  an
exponential distribution (dashed line) in the ancestor (gray), 2K (blue), and 15K (red) backgrounds.
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Fig. 3. Effect of genetic background on the fitness effects of mutations in specific gene targets. (A)
The genes and intergenic regions subject to the most severely deleterious mutants in three backgrounds
in the Ara+2 lineage. Colors indicate ancestor (black), 2K (blue), and 15K (red) evolved strains. Gray
shaded areas indicate members of the same transcription unit. (B) The genes and intergenic regions with
the most beneficial alleles in the ancestral background, and their fitness effects in the 2K (blue) and 15K
(red) backgrounds. (C) Most beneficial mutations available to the ancestor became neutral or deleterious
in the 2K background, while most beneficial mutations available in the 2K background were neutral or
deleterious in the ancestor (left). The same general pattern occurs when comparing beneficial mutations
in the 2K and 15K backgrounds (right).  (D)  More than 90% of initially beneficial mutations become
neutral or deleterious in later generations (left). Likewise, more than 90% of beneficial mutations from
later generations were neutral or deleterious in the ancestor.
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Fig. 4. Determinants of evolutionary outcomes. (A, C) The prevalence of mutations in the LTEE is
better explained by mutational target size (A, area and color of dots represent fitness) than by fitness
effects measured in the ancestor (C, area and color of dots represent target size).  (B) The best linear
model  for  mutation  prevalence  is  strongly  dependent  on  the  mutational  target  size  (area  of  dots
represents size, and color represents fitness). (D) The predictive capacity of DFEs as a function of time
in  the  LTEE.  Colors  indicate  the  DFE measured  in  the  ancestor  (black),  2K (blue)  and 15K (red)
evolved  strains.  Shaded  areas  show the  null  expectations  based  on randomly  sampling  neutral  and
deleterious mutations.
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Materials and Methods

Generation of transposon mutant libraries

We used the INSeq methodology (1) to create transposon mutant libraries in the ancestor and several
derivatives  from  the  E.  coli long-term  evolution  experiment  (LTEE)  (table  S1).  We  employed  a
kanamycin-resistance version of the original INSeq transposon carried in the pSAM plasmid. The ends
of this transposon encode recognition sequences for the restriction enzyme  MmeI, which cuts 20 bp
away from its binding site and thus allows the capture of the 14 bp adjacent to the insertion site (Fig.
S1). The pSAM plasmid also carries the Himar1C9 transposase, an ampicillin resistance marker and
RP4-oriT/oriR6K, a mobilizable and  pir-dependent origin of replication. We maintained the plasmid
into a well-known, pir-gene encoding  E. coli donor strain, MG1655 MFDpir  (2); from which it was
transferred into  the different  E.  coli recipient  strains  by standard,  agar  plate  conjugation methods.
Mating time was limited to 3-4 h, after which we selected transconjugants by spreading the cells onto
LB agar plates supplemented with streptomycin (100 mg/L) and kanamycin (100 mg/L). Libraries were
assembled from at least 100,000 colonies coming from at least 10 independent conjugation mixtures.
The colonies were scraped off the plates, pooled in saline solution and added glycerol (10% final) to
store at -80°C.

Bulk competition experiments

We propagated aliquots of the mutant libraries in conditions replicating those of the LTEE: 1/100 daily
dilutions in 50-mL flasks filled with 10 mL of DM25 and incubated at 37°C in an orbital shaker (3). To
ensure that the initial cell density was similar to the one used in the LTEE (~ 5 x 107 cells / mL), we
inoculated several  flasks  for  each experiment  with  a  different  aliquot  from the  defrosted libraries,
which  next  day  we  discarded  as  appropriate  based  on  viable  count  estimates.  The  competition
experiments  were  conducted  for  5  or  8  days  (Ara+2  and  Ara-1  datasets,  respectively),  and  the
remaining culture after each serial passage was stored at -80°C for further analyses. Viable counts were
monitored each day to verify each passage represented the expected ~ 6.6 generations of binary fission.

Generation of DNA libraries for sequencing

The defrosted stocks from the bulk competition experiments were pelleted and subjected to genomic
DNA extraction using the DNeasy Blood & Tissue kit (Qiagen). Due to the relatively low cell density
supported  by  DM25,  the  purified  DNA was  subjected  to  high-fidelity,  unbiased  whole-genome
amplification using the  Phi29-polymerase-based REPLI-g midi kit (Qiagen). The resulting DNA was
digested by MmeI (NEB), concentrated using a vacuum concentrator and run on a 1% agarose gel. The
expected size of the transposon plus the adjacent genomic DNA is 1.4 Kb, so we excised from the gel
lanes the regions corresponding to 1.2-1.5 Kb using as a reference the Quick-Load 100 bp DNA ladder
(NEB). To enrich the excised samples for transposons, the INSeq method takes advantage of the fact

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492360doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492360
http://creativecommons.org/licenses/by-nc-nd/4.0/


that  MmeI  digestion  results  into  two-nucleotide,  sticky-end  fragments;  so  that  custom made,  PCR
adaptors can be added in a simple ligation reaction (Fig. S1, table S4). We performed the ligations
using T4 DNA ligase (NEB). Ligation products contain the 14 bp adjacent to the insertion site flanked
by the transposon and the custom-made adaptor. Using these known sequences for annealing, we used a
28-cycle PCR to amplify a small region containing the 14 bp of interest (Fig. S1, table S4). All PCR
reactions  were  carried  out  using  the  HiFi  DNA Polymerase  (KAPA Biosystems).  The  resulting
molecules,  116 bp and  148 bp in  size  (Ara+2 and Ara-1  datasets,  respectively),  were  isolated  by
electrophoresis and band excision on a 2% agarose gel. To add the required indexes for multiplexed,
paired-end sequencing, we subjected the samples to a secondary, 18-cycle PCR using the Nextera XT
DNA Library Prep Kit (Illumina). The final Nextera libraries were purified, quantified and sent for
sequencing  on  Illumina  platforms.  The  Ara+2  libraries  were  sequenced  using  a  HiSeq  platform
(Integragen, Evry, France), while the Ara-1 libraries were sequenced using a MiSeq platform (Bichat
Hospital, Paris, France). After filtering (see below), the libraries showed an average of ~ 3.55 and ~
0.39 million reads, mapping to an average of ~ 0.33 and ~ 0.27 million different insertion sites (Ara+2
and Ara-1 datasets, respectively). To control for potential technical biases, libraries for the ancestor
were processed using both transposon capture and sequencing methods (Fig. S5).

Insertion location, filtering and abundance determination

We developed a series of custom scripts to map transposon insertion sites, discard low-quality cases
and quantify the abundance of each insertion allele. We first used a Python script to extract the captured
14 bp genomic fragments from the Illumina sequence reads. This was accomplished using the module
“regex” to identify any of the constant sequences expected to be flanking the captured fragments, up to
a maximum edit distance of 1 (i.e., one position indel or mismatch) (Fig. S1). Second, we used the
BWA algorithm (Li  et  al.,  2009) to map these genomic fragments onto the  E. coli  B str.  REL606
reference genome (NCBI reference: NC_012967),  allowing a  maximum edit distance of 1. We  only
retained fragments  for which the best hit mapped to a single genomic location, excluding therefore
repeated regions from the analysis. Pairs from paired-end reads were merged except when they showed
discordant results (in these cases, only the one offering the best alignment was retained). These filtered
read mappings were then compiled in a list with all the unique insertion sites, the number of reads per
site and the identity of the corresponding locus. As loci, we considered both open reading frames and
intergenic regions but excluded repetitive and mobile genetic elements. Finally, to be able to observe
sub-genic effects (Fig. 1, D), we divided each locus into equally sized segments (5 for the Ara+2, and 3
for the lower-coverage Ara-1 dataset; in both cases loci were not divided when < 100 bp in size), and
calculated the abundance of all insertions mapping onto the same segment. In preliminary tests we
observed that excluding insertion sites with very low counts at this pooling step reduced the number of
outliers in downstream analyses. This occurs presumably because very low abundance insertions are
enriched for PCR and Illumina sequencing artifacts. Therefore, for each segment, we pooled together
only  insertions  with  >10  or  >3  total  counts  across  all  data  points  (Ara+2  and  Ara-1  datasets,
respectively). All the following analyses were conducted at this pooled segment level.
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Fitness estimates and outlier removal

To estimate the fitness of the pooled insertion mutants,  we evaluated the slope of  their  frequency
trajectories  relative  to  that  of  a  set  of  presumed  neutral  loci.  The  natural  logarithm of  this  slope
approximates the selection coefficient from classical population genetics, and is related to the ratio of
realized growth rates (the standard fitness metric used in the LTEE literature) by a scaling factor of ln2
(Fig.  S6,  A)  (4).  The set  of presumed neutral  loci included genes  annotated as cryptic and the L-
arabinose transport and catabolism operons (L-arabinose auxotrophy has extensively been used as a
neutral  marker  in  the  LTEE). In  addition,  we  only  considered  their  internal  segments,  to  reduce
spurious deviations from neutrality linked to polar or change-of-function effects (e.g., Fig. 1, D). We
estimated slopes by fitting a linear regression model to the data using the lm() function in R. We
weighted  the  regression using the  counts  at  each time  point  (using the  “weight”  argument),  in  an
attempt to reduce the noise associated with low count observations. We found this weighting improved
estimates in the deleterious range (Fig. S6, B). Mutants with less than 3 non-zero time points were
discarded. 

In tests with the neutral set we observed that most of the poor quality fits can be filtered out simply by
excluding mutants with low initial abundance (cutoffs for exclusion, <10 or <3 counts in the first data
point; Ara+2 and Ara-1 datasets, respectively). However, when the much larger complete set of loci
was analyzed, we noticed several instances of marked outliers characterized by increasingly steeper
slopes.  These cases probably reflected the hitch-hiking of individual  insertion alleles  with  de novo
beneficial  mutations  occurring  during  the  competition  experiments.  In  agreement  with  this
interpretation, the outliers were proportionately more common in the higher-coverage  Ara+2 dataset;
presumably because of the increased resolution to detect rare events. Filtering out by the regression
standard error eliminated these prominent outliers from both datasets (cut-offs: 0.01 and 0.015, Ara+2
and  Ara-1  datasets,  respectively).  However,  we  noticed  a  few  highly  beneficial  mutations  in  the
ancestor from the Ara+2 dataset that we suspected constituted another class of more subtle outliers. Our
suspicion arose from two facts: first, they were completely absent from the other ancestor data, and
second, their fitness markedly deviated from the fitness measured for the other insertions in the same
locus.  These  cases  probably  represented  even  rarer  hitch-hiking  events  in  which  the  insertion  we
tracked  occurred  in  a  genetic  background  harboring  either  a  preexisting  beneficial  mutation  or  a
secondary, beneficial insertion. In these cases the insertion behaves as a beneficial mutation over the
whole time course, and therefore can not be discarded on the basis of a high regression standard error.
Of note,  these rare events could even make deleterious  mutations  appear neutral  or beneficial.  To
address this issue, we systematically compared all segments for each locus, and removed the internal
segments deviating more than 1% in fitness from the locus average. N- or C-terminal segments were
retained on the grounds that deviations may represent polar or change-of-function effects (but to retain
them when beneficial, we required other beneficial mutations were found in the same operon).
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Statistical methods

All statistical tests were performed using either built-in functions or publicly available packages from
the R programming language. To fit linear models we used the built-in lm() function. We used the
package “Matching” to implement a bootstrap version of the Kolmogorov-Smirnov test, which corrects
for the fact that the empirical distributions of fitness effects are discrete in nature  (5). We used the
package “Fitdistrplus” to find which of the distributions commonly used in the literature provided the
best fit to the beneficial tails (table S2) (6). For all tests conducted on the deleterious or beneficial tail,
we considered only the values outside the range of neutrality, as established by looking at the DFE for
the set of presumed neutral loci (Fig. S7). Finally, to test whether beneficial mutations in the ancestor
tended to cluster together in operons more than expected at random, we sampled without replacement
an  equal  number  of  loci  from the  reference genome and computed the  frequency of  these having
another member from the same transcription unit in the sample. The reported p-value is the proportion
of cases out of 100 simulations that show higher or equal frequency of clustered loci than the observed
data. Operons harboring mild effect mutations are expected to be underrepresented because most of
these mutations may fall below the threshold of neutrality. To avoid this bias, we focused the analyses
in the 50% most beneficial mutations observed. The list of transcriptional units for the ancestor was
retrieved from the BioCyc database.

 
DFE-based predictions versus allele prevalence in the LTEE

The metagenomic time series of the LTEE were obtained from https://github.com/benjaminhgood/, and
when needed genomic positions were used to standardize the annotated loci labels. For every non-
synonymous allele observed in the metagenomic data, we recorded the number of lineages in which it
was detected,  the maximum frequency it  reached, and the time point  at  which this  maximum was
attained. Six of the LTEE lineages evolved hypermutability at  different generations, which had the
effect of introducing a large number of “passenger” mutations (i.e., non-beneficial mutations that reach
high frequency due to their  association with a beneficial,  “driver” mutation) (7).  Since passengers
typically appear as singletons, we restricted our analyses to alleles that were observed in at least 2
independent lineages. In addition, to further ensure that these alleles represented  bona fide targets of
selection,  we  only  considered  those  reaching  a  frequency  of  at  least  50%  at  some  point.  When
attempting to correlate the abundance of these alleles with our fitness data, we realized that working at
the sublocus or even at the locus level gave rise to sparse data and therefore low statistical power to
identify any patterns. To mitigate this issue, we performed the analyses at the operon level: fitness was
computed as the maximum value recorded for any of its constituents, and target size as the sum of
constituent lengths (excluding those without beneficial effects). We followed the same approach when
we looked at  how well  the DFEs can predict  the  subsequent  steps  of  adaptation.  To compute the
fraction of drivers captured by the DFE, we retrieved the alleles reaching ≥50% frequency at a given
time point and counted how many of these belonged to operons present in the beneficial tail of the DFE
we studied. In the analyses with the ancestor, we required the allele to reach the 50% threshold in at
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least 2 lineages simultaneously. In analyses with the 2K and 15K backgrounds, we only considered
alleles  surpassing the  threshold in  their  own lineage  (Ara+2 or  Ara-1),  discarding those that  were
already fix in the specific strains we used (table S1). Note that despite the focus in a single lineage,
these mutations still come from the filtered “driver” set, so that lineage-specific singletons were not
considered. To compute a null expectation for these analyses,  we ran them on random samples taken
from the neutral and deleterious fractions of each DFEs. The samples were drawn without replacement
and of size equal to the beneficial mutation set to which they were compared. The shaded areas shown
in Figures 4, S3 and S4 represent the average of 50 simulations ± three times the standard error of the
mean.
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Supplementary Figures

Fig. S1. Procedure for capturing the transposon flanking regions. (A) Genomic DNA is extracted
in bulk, digested with MmeI, and separated by gel electrophoresis. (B) Transposon-sized fragments are
ligated with double-stranded oligonucleotide adapters.  (C) Two rounds of PCR are performed to add
indexes for Illumina sequencing.
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Fig. S2. Reproducibility of the fitness estimates (A) Pairwise comparisons among segments from the
same locus  show high reproducibility.  Pearson’s  coefficient,  r,  is  shown in  upper  left  corner.  (B)
Despite measurement noise, the shape of the DFE for beneficial mutations (left panel) retains a marked
shift towards positive values when constructed using different segments from the same locus (right
panel).
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Fig. S3. Change in the DFE along a second large fitness gradient. (A) DFEs in the ancestor (black),
2K (blue) and 15K (red) evolved strains from population Ara–1. Note the logarithmic scaling of the y-
axis.  (B) Deleterious  tails  remained  unchanged  during  adaptation,  as  indicated  by  comparing  the
cumulative  distributions  between the ancestor  and 2K (left)  and the ancestor  and 15K (right).  (C)
Beneficial tails are rapidly truncated and become exponentially distributed. Histograms show the best
fit  to  an  exponential  distribution  (dashed  line)  in  the  ancestor  (gray),  2K  (blue)  and  15K  (red)
backgrounds. (D) Most beneficial mutations available to the ancestor become neutral or deleterious in
the 2K background, while beneficial mutations in the 2K background were neutral or deleterious in the
ancestor (left). The same general pattern occurs when comparing beneficial mutations in the 2K and
15K  backgrounds  (right).  (E)  The  prevalence  of  mutations  in  the  LTEE  is  correlated  with  the
mutational target size (area and color of dots represent fitness). (F) The predictive capacity of the DFEs
as a function of time in the LTEE. Colors indicate the DFE measured in the ancestor (black), 2K (blue)
and 15K (red) evolved strains. Shaded areas show the null expectations based on randomly sampling
neutral and deleterious mutations; these expectations are lower than for population Ara+2 (Fig. 4D) as
a consequence of the lower coverage, and hence lower resolution at the sub-genic level, of the dataset
for population Ara–1 (Fig. S5). The results shown here in all panels (A-F) for LTEE population Ara–1
are otherwise similar to those seen for the independently evolving Ara+2 population (see Fig. 2A-C,
Fig. 3C, and Fig. 4A,D).
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Fig. S4. Determinants of evolutionary outcomes across different sets of the LTEE lineages.  The
predictive  capacity  of  DFEs  as  a  function  of  time  in  the  LTEE.  Colors  correspond  to  analyses
performed separately using data from the non-mutator (blue), early mutator (orange), and late mutator
lineages (red). The dashed line shows the aggregate average when pooling all lineages, as shown in
Fig.  4D.  The  shaded  area  shows  the  null  expectation  based  on  randomly  sampling  neutral  and
deleterious mutations.
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Fig. S5. Comparison of fitness estimates between two datasets. (A)  Correlation between selection
coefficients measured in the ancestral genetic background in the independent datasets for the LTEE
lineages (Ara+2 on the x-axis; Ara–1 on the y-axis). Pearson’s coefficient, r, is shown in the upper left
corner. (B) The lower coverage of the Ara–1 dataset resulted in lower resolution at the sub-genic level.
This difference is best illustrated by mapping insertions in essential genes for which insertions in the C-
terminal end are neutral (hemB) or even beneficial (serB, topA). The diversity of insertion sites in these
loci is markedly lower in Ara–1 (top alignments) than Ara+2 (bottom alignments). 
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Fig. S6. Measuring fitness effects from bulk competition data. (A) Relationship between the fitness
effect (red; often called the selection coefficient,  s, in population-genetics literature) and the ratio of
realized growth rates (dark blue; typically used as the measure of relative fitness,  W, in the LTEE).
Empirical estimates of s based on the slope of allele frequency trajectories make the approximation s ≈
ln(1  +  s),  which equals  W multiplied by a factor of ln(2) (light blue)  (4).  Note,  however, that this
approximation starts to deviate at large values of s.  (B)  Weighting the regression by the abundance of
each allele improves estimation of s. This improvement is most important in the lower range of s, when
the abundance of a deleterious allele at later time points approaches zero. Lines show the true s (red),
standard regression (black), and weighted regression (blue). Top left panel shows results from a set of
simulations with a single deleterious allele starting at a frequency of 7 x 10–7, and the top right panel
shows a single run with  s  = –0.18. Bottom left panel shows results from simulations in which the
deleterious allele started at a frequency of 2 x 10–7, and the bottom right panel shows a single run with s
= –0.25. Each dot in the two left panels shows the average of 100 simulations at each value of  s.
Simulation model adapted from (8), using a total population size of  6 x 107.
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Fig. S7. Data filtering and the threshold of neutrality. (A) Raw distribution of selection coefficients
for presumed neutral loci in datasets from the ancestor and both evolved Ara+2 strains. (B) Most small
deviations from zero can be explained by sampling error, while larger deviations result from low initial
abundance (y-axis,  note logarithmic scaling)  or poor linear  fit  (colors from blue to gray to orange
indicate increasing standard errors). (C) After filtering outliers (Fig. S2), we scanned combinations of
initial abundance and standard error to identify selection coefficients encompassing 97% percent of the
data (colors, see scale bar on right). (D) Final distribution of selection coefficients for presumed neutral
loci after applying all the filters. The blue dotted lines indicate the resulting threshold for approximate
neutrality (–0.015 < s < 0.015).
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Supplementary Tables

Table S1. Strains used in this study

Name strain ID mutated loci source

Ancestor REL606 None (ara- wild-type) (3)

Ara+2 2K REL1159A pykF,  wcaM, infB,  nfuA/gntT,  pitA,  spoT,  hsrA,  ECB_03710,  rbsD-
rbsB

(9)

Ara+2 15K REL7184
A

lon, ybaL, nmpC, lrp, rpsA, appC, flgB, rnb, speG, pykF, lpp-ydiM,
lpp-ydiM,  wzy-wcaM,  wcaM,  nupC/yfeA,  purL,  serV,  yqeB,
ECB_02797/ECB_02822, mreB, fis/yhdJ, spoT, rbsD-rbsA, ilvL, yihP,
hslU, iclR, metH, sgcR-fimB

(9)

Ara-1 2K REL1164A ECB_00736/ECB_00737, topA, pykF, spoT, glmU/atpC, rbsD-yieO (10)

Ara-1 15K REL7177
A

mokC/nhaA,  pcnB,  araJ,  ybaL,  nmpC-ECB_00513,  mrdA,  nagC,
ompF/asnS,  dhaM,  ldrC/chaA,  narI/ECB_01206,  topA,  pykF,  ynjI,
yedW/yedX, manB-cpsG, yegI, ECB_02816, yghJ, ebgR, infB, arcB,
gltB, yhdG/fis, rpsM, malT, glpE, spoT, glmU/atpC, rbsD-yieO, hslU,
pflC, iclR, fimA, nadR

(10)

Table S2. Fits of the beneficial tail to common distributions.
One-sample Kolmogorov-Smirnov test, p-values
Background Exponential Gamma LogNorm Weibull Normal Logistic
Anc 0.012 0.059* <10-4 0.167* <10-4 <10-4

2K 0.716* 0.814* <10-4 0.820* <10-4 <10-4

15K 0.984* 0.939* 0.005 0.971* <10-4 <10-4

Goodness-of-fit, Akaike's Information Criterion 
Background Exponential Gamma LogNorm Weibull Normal Logistic
Anc -8151 -8166 -8022 -8174* -6804 -7186
2K -6114* -6113 -5948 -6112 -5520 -5601
15K -4345* -4343 -4288 -4343 -3915 -3985

Table S3. Multiple linear model for the prevalence of mutations in the LTEE.
Variable Estimate Std. Error t value P(>|t|)
(Intercept) -0.918 0.542 -1.693 0.092
Anc fitness 53.175 18.792 2.830 0.005*
2K fitness 55.810 21.761 2.565 0.011*
15K fitness 37.444 22.722 1.648 0.101
target size 0.002 < 10-3 14.764 <10-15*
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Table S4. Primers used in this study

Name sequence

MS-custom-adaptor-F 5'-TTCCCTACACGACGCTCTTCCGATCTNN-3'

MS-custom-adaptor-R 5'-AGATCGGAAGAGCGTCGTGTAGGGAA-3'

HS-custom-adaptor-F 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNN-3'

HS-custom-adaptor-R 5'-CTGTCTCTTATACACATCTGACGCTGCCGACGA-3'

MS-junction-PCR-F 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNTTC
CCTACACGACGCTCTTCCGATCT-3

MS-junction-PCR-R 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNA
GACCGGGGACTTATCATCCAACCTGT-3

HS-junction-PCR-F 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3'

HS-junction-PCR-R 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNA
GACCGGGGACTTATCATCCAACCTGT-3'
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