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Abstract

Accurate identification of disease vector insects is crucial when collecting epidemiological data. 

Traditionally, mosquitoes that transmit diseases like malaria, yellow fever, chikungunya, and 

dengue fever have been identified by looking at their external morphological features at different 

life cycle stages. This process is tedious and labour intensive. 

In this paper, the potential of Raman spectroscopy in combination with Linear and Quadratic 

Discriminant Analysis to classify three mosquito species, namely: Aedes aegypti, Anopheles 

gambiae and Culex quinquefasciatus, was explored. The classification was based on the 

mosquitoes’ cuticular melanin. The three mosquito species represented two subfamilies of 

medically important mosquitoes, i.e. the Anophelinae and the Culicinae. The housefly (Musca 

domestica) was included as a ‘control’ group to assess the discrimination ability of the 

classifiers. This study is the first to use Raman spectroscopy to classify mosquitoes. Fresh 

mosquitoes were anaesthetized with chloroform, and a dispersive Raman microscope was used to 

capture spectra from their legs. Broad melanin peaks centred around 1400 cm-1, 1590 cm-1, and 

2060 cm-1 dominated the spectra. Variance Threshold (VT) and Principal Component Analysis 
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(PCA) were used for feature selection and feature extraction respectively from the preprocessed 

data. The extracted features were then used to train and test Linear Discriminant Analysis (LDA) 

and Quadratic Discriminant Analysis (QDA) classifiers.

The VT/PCA/QDA classification model performed better than VT/PCA/LDA. VT/PCA/QDA 

achieved an overall accuracy of 94%, sensitivity of 87% and specificity of 96%, whereas 

VT/PCA/LDA attained an accuracy of 85%, a sensitivity of 69% and a specificity of 90%. The 

success of these relatively simple classification models on Raman spectroscopy data lays the 

groundwork for future development of models for discriminating morphologically 

indistinguishable insect species.

INTRODUCTION

Mosquitoes transmit many diseases to man, including malaria, yellow fever, chikungunya and 

dengue fever. Female mosquitoes are obligate blood-feeders and are responsible for transmitting 

these diseases (1,2). Disease transmission occurs when susceptible female mosquitoes become 

infected through blood-feeding, support pathogen development to maturity, and obtain the next 

blood meal from a susceptible individual (3). Blood meals are essential nourishment that female 

mosquitoes use to develop their eggs (4). Infected mosquitoes introduce disease-causing 

pathogens into their blood meal hosts through saliva, which is injected alongside an 

anticoagulant enzyme known as salivary apyrase (5).

Identification of disease vectors results in essential data that epidemiologists can use to develop 

strategies for disease control. Mosquito identification has traditionally been realized by 

observing morphological features at different life cycle stages. Identification is achieved using 

taxonomic keys in which individual mosquitoes are classified based on contrasting 
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morphological features. Adults of Anopheline mosquitoes are readily separated from Culicines 

by their stature in resting positions. The Anophelines are known to rest with their bodies at an 

angle to the resting surface in a ‘head down bottom up' posture. On the other hand, the culicines 

rest with their abdomens almost parallel to the resting surface. In the female adults, which are of 

medical importance, examination of the heads is relied on in distinguishing Anophelines from 

Culicines. The Anophelines have palps that are as long as the proboscis, usually lying close 

along with it. The palps in Culicines are shorter than the proboscis. Other features in Anopheles 

include the presence of a single spermatheca and dark scales on the wing veins arranged in 

'blocks'. In contrast, the Culicines have two or three spermathecae, and the dark scales on the 

wing veins are continuous and not arranged in distinctive areas (blocks). The genera Culex and 

Aedes, which include the most medically important species, are also identified by taxonomic 

keys. Culex species are recognized by their lack of ornamentation, which is conspicuous among 

Aedes, which have patterns of black and white or silvery scales on the thorax, abdomen and legs. 

In addition, the tip of the Culex abdomen is not pointed as it is in Aedes species (6). 

The use of taxonomic keys by observation is generally a tedious and labour-intensive process, 

hence the need to develop advanced tools. The most advanced and recent techniques for 

identifying mosquitoes are molecular techniques. These tools focus on identifying 

morphologically indistinguishable species such as those within the Anopheles gambiae complex. 

Molecular techniques rely on the analysis of DNA (7–15). Currently, DNA analysis is achieved 

through Polymerase Chain Reaction (PCR) amplification (16). PCR is a technique used to select 

specific portions of an organism’s genome (DNA sequences) to be replicated several times to a 

reasonable quantity for analysis. PCR-based methods have high accuracy, specificity and 
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sensitivity. However, PCR is time-consuming, labour-intensive, and expensive. It also requires 

special laboratory conditions and highly skilled personnel.

Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-

MS) has also been tested as an alternative method of discriminating the sibling species within the 

Anopheles gambiae complex. MALDI-TOF-MS is a technique that uses laser energy and an 

absorbing matrix to ionize large molecules, such as proteins, while minimizing fragmentation. 

Using MALDI-TOF-MS, mosquito leg protein extracts were adequate to identify mosquitoes to 

species level (17–19).

Spectroscopic techniques such as Near Infra-Red (NIR) spectroscopy have previously been 

investigated in insect taxonomic studies. These include the identification of species of beetles 

(20), Drosophila species (21) and the identification of cryptic Tetramorium ant species (22). The 

success of NIR spectroscopy in differentiating insect species has seen it deployed to the 

Anopheles gambiae complex identification problem (22,23). NIR spectroscopy probes 

vibrational states of molecules and provides a spectral fingerprint of the chemical compound 

under investigation. Cuticular lipids and hydrocarbons have been considered the main molecules 

that provide essential classification information in NIR spectroscopy insect taxonomic studies 

(24–26).  

The MALDI-TOF-MS and NIR spectroscopy techniques have the advantage of being rapid 

compared to PCR methodologies. However, MALDI-TOF-MS involves a relatively time-

consuming sample preparation process since the compound to be investigated must be extracted 

and embedded in a laser absorbing matrix for analysis. On the other hand, the NIR spectra are 

complicated by water absorption signatures. NIR spectra of fresh biological samples, which 

contain water molecules, are therefore challenging to interpret.
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Raman spectra contain complementary molecular vibration information to spectra in the mid-IR 

range. The Raman technique has several advantages over NIR, including minimal sample 

preparation and the absence of water interference (27). It is usually integrated into microscopy 

for high spatial resolution and 3D mapping and can be miniaturized into portable hand-held 

devices. These attributes make Raman spectroscopy potentially attractive for public health 

applications in entomology.

Although there have been some studies that have used Raman spectroscopy in entomology, these 

are not widespread. These studies include analyses of the structure of honey bee wings (28), 

melanin in spiders (29), and bumble bees (30). Recently, Wang et al. (31) reported a study on 

mosquito age-grading that employed surface-enhanced Raman spectroscopy (SERS). To the best 

of our knowledge, Raman spectroscopy has not been used for mosquito taxonomy. In this paper, 

we demonstrate, for the first time, the capability of Raman spectroscopy in combination with 

machine learning tools to classify three species of mosquitoes: Aedes aegypti, Anopheles 

gambiae and Culex quinquefasciatus, based on their cuticular melanin signatures. We chose 

them to represent two subfamilies of medically important mosquitoes, i.e. the Anophelinae 

(Anopheline mosquitoes) and the Culicinae (Culicine mosquitoes). We explore the potential of 

two machine learning tools: Linear and Quadratic Discriminant Analysis, in discriminating the 

three groups of mosquitoes. We include the housefly (Musca domestica) as a ‘control’ group to 

test the discrimination ability of the classifiers.

MATERIALS AND METHODS

Mosquito Rearing and Sample Preparation
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Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus were reared in insectaries of the 

Department of Biology at the University of Nairobi. Adult mosquitoes were held in 30 × 30 × 30 

cm cages in separate rooms. In each cage, the mosquitoes laid eggs in an ovicup containing a 

cone of filter paper placed on water. The eggs were transferred into trays filled with water, where 

they hatched into larvae. The larvae were fed on TetraMin® baby fish food. The adults were fed 

on a 6% glucose solution soaked in filter paper wicks. The rooms were kept at a temperature of 

27oC-28oC and 32oC-34oC for Aedes/Culex and Anopheles mosquitoes, respectively. Humidity 

was maintained at 70-80% with a 12-hour light and darkness photoperiod in all the rooms. 

Houseflies were collected from kitchens and living rooms of residential places within Nairobi, 

Kenya. The collected houseflies and fresh adult mosquitoes taken from rearing cages were 

anaesthetized using chloroform. This was done by enclosing the separate groups of the insects in 

enclosed chambers that contained open bottles of chloroform for six hours.

Raman Spectroscopy Measurements

Raman spectra were acquired using a Technos® dispersive Raman microscopy system. The 

system had the following parameters: 532nm laser, 600 grooves per mm gratings, and ×10 

infinity-corrected dry microscope objective with a Numerical Aperture of 0.25. Figure 1 shows a 

schematic of the instrument set-up with the sample (insect) placed on the X-Y translation stage. 

The insect sample was focused and viewed via the video monitor on the computer screen and 

simultaneously scanned by translating the X-Y stage to identify the region of interest. All the 

insects were scanned on the legs. Photons from the laser (indicated as green arrows pointing 

toward the sample) were delivered through the microscope objective to the sample, which was 

on a Raman-grade Calcium Fluoride microscope slide (Crystran Ltd, UK, Batch No. 60373). 

Raman and Rayleigh scattered photons (indicated as green and red arrows pointing away from 
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the sample) were collected by the same microscope objective with an optical low pass filter 

blocking the latter. The Raman signal was collected via an optical fibre and spectrograph for 

digitization by a charge-coupled device (CCD) (cooled to -76oC) connected to a computer for 

display and storage. Wavenumber calibration was done by interpolating the laser line and the 

strong silicon Raman shift positioned at 520.5±4 cm-1.

Figure 1. A schematic representation of a dispersive Raman microscope. The sample is 

placed on the X-Y stage. The red and green arrows indicate photon delivery routes.

Data Pre-processing

Data processing was performed following previously published protocols by Ryabchykov (32) 

and Morais (33). Acquired data were smoothed by convolving each Raman spectrum with a 

Savitzky Golay digital filter of order 5 and frame length of 21 pixels. This was followed by a 

baseline correction procedure employing the Vancouver algorithm (34) with a 5th order 

polynomial to subtract fluorescence. Vector normalization was applied to each Raman spectrum 

to account for intensity variation due to experimental factors such as changes in sample focus. 

All pre-processing procedures were done using scripts developed in Matlab® 2018 software.

Feature Selection and Feature Extraction

Data reduction consisted of two steps: feature selection followed by feature extraction. Feature 

selection involved the reduction of input variables by selecting a subset of Raman shifts that 

were considered most relevant for developing a classification model. Variance threshold method 
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(VT) (35),  a technique of feature selection drawn from a broad range of feature selection 

methods known as filter methods, was chosen due to its simplicity. The Raman data were 

stacked into a matrix Rm×n  where m and n were the number of objects (the insects) and 

features (Raman shifts), respectively. The value of m was approximately 480 (consisting of 

approximately 120 insects of each of the categories: Anopheles, Aedes, Culex and houseflies). 

The Raman shifts (n=341) spanned wave number range 1000-2300 cm-1. Variance threshold 

(VT) was performed in Matlab® 2018 software using

                                      𝜎2 = ∑(𝑥𝑖 ― 𝑥𝑖)2

𝑚
                                                                              (1)

where σ2 is the variance of a feature and xi is a vector containing ith feature in the data matrix 

Rm×n. 

A total of 123 features with variance scores below a 0.0003 threshold value were excluded from 

the feature extraction step. The selected 218 features were subjected to feature extraction by 

performing Principal Component Analysis (PCA). PCA projected the selected feature data into a 

low dimensional subspace resulting in 24 orthogonal score variables that captured 94% of the 

information in selected features. All score features accounting for less than 0.5% variability were 

considered noise and excluded from the model. PCA numerical decomposition was performed in 

Matlab® 2018 software using

                                𝐗 = 𝐓𝐏𝐓 +𝐄                                                                                     (2)

where T is a matrix containing scores, PT is the transpose of the matrix containing loadings, and 

E is the residual.

Classification Models

X

X
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The extracted 24 principal components were subsequently subjected to Linear Discriminant 

Analysis (LDA) and Quadratic Discriminant Analysis (QDA) using OriginLab® 2019 and 

Matlab® 2018 software. Training and testing of both LDA and QDA were done by leave-one-out 

cross-validation. Training the models involved finding suitable decision boundaries between the 

classes. LDA and QDA, being generative models, relied on a full structured joint probability 

distribution over the training samples and labels. The basic assumption in the classification 

models was that the data followed a normal distribution. Therefore, each class label was fitted to 

a Gaussian distribution function using the calculated covariance matrices of the multivariate data 

during training and decision boundaries found based on the prior probability of each class. 

Prediction of test samples was achieved by evaluating each discriminant function, and the class 

label of the test sample was assigned to the highest-scoring function. The calculations were 

based on Tharwat’s guide (36), summarized as follows: The first 24 features of the score matrix, 

T, were used to find the decision boundaries. A decision boundary, S12, between any two classes 

C1 and C2 with means µ1 and µ2 respectively, covariances Σ1 and Σ2 respectively, and 

probabilities P(C1) and P(C2) respectively, is defined, for QDA, as a quadratic function 

represented by

                                      S12=xTMx+WTx+Wo.                                                                                                    (3)

In equation 3, xT is the transpose of x, the vector containing the classification features of each 

sample; 

                                      M=-0.5(Σ1
-1 - Σ2

-1)                                                                  (4)

where Σ1
-1 and Σ2

-1 are inverses of the covariance matrices Σ1 and Σ2, respectively;

                                     W=µ1
TΣ1

-1 - µ2Σ2
-1                                                                                                            (5)
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and 

                                          Wo=-0.5(µ1
TΣ1

-1µ1- µ2
TΣ2

-1µ2+ln|Σ1|-ln|Σ2|)+ln{
𝑃(𝐶1)
𝑃(𝐶2)}                         (6)

where |.| denotes the determinant of the enclosed matrix. For LDA, the decision boundary is 

evaluated by omitting the quadratic term, xTMx, in equation 3.

Performance Quality Metrics

Five quality metrics were calculated from the confusion matrices of the developed 

VT/PCA/LDA and VT/PCA/QDA models to evaluate their performance: Accuracy, Sensitivity, 

Specificity, F-score, and G-Score. Accuracy was defined as the percentage of correct 

classification; sensitivity the percentage of true positives that were classified correctly while 

specificity the percentage of true negatives that received the correct classification. F-Score 

accounted for the balance between Sensitivity and Specificity in the classes whereas G-Score 

accounted for the class sizes. The metrics were calculated using equations 7-11 (33)

                     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 × 100                                                (7) 

                    𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 × 100                                                                            (8)

                    𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 × 100                                                                            (9)

                    𝐹 ― 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                                                              (10)

                   𝐺 ― 𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                                                   (11)
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where TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and False 

Negatives respectively. Figure 2 summarizes the data analysis protocol followed in developing 

the models.

Figure 2. Data analysis pipeline: from the left, raw data is pre-processed, modelled, and 

finally, the models are validated and evaluated.

RESULTS

The preprocessed Raman spectral data consisted of 341 features (wavenumber range 1000-2300 

cm-1). The Raman shift range was chosen because it is known to correspond to the fingerprint 

region of many organic and biological molecules and hence was considered most suitable for 

classification. Figure 3 (a-d) shows Raman spectra of Aedes aegypti, Anopheles gambiae, Culex 

quinquefasciatus and Musca domestica (housefly). The spectra are dominated by broad peaks 

centred around 1400 cm-1, 1590 cm-1 and 2060 cm-1. These peaks are attributed to melanin 

(29,30,37–40).

Figure 3. Preprocessed Raman spectra of (a) Aedes aegypti, (b) Anopheles gambiae, (c) 

Culex quinquefasciatus and (d) Musca domestica. The labelled peaks are those attributed to 

melanin pigment.

For discrimination purposes, features with large variance were needed since those with low 

variance have similar values across the four insect categories. Figure 4 shows the variance of 
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each of the original features and the threshold value used to select the features. The greatest 

variance in the data set occurs around 1590 cm-1, followed by 2060 cm-1. Significant variances 

can also be seen on features around 1066 cm-1, 1315 cm-1, 1410 cm-1, 1462 cm-1, 1667 cm-1, 

1766 cm-1, 2100 cm-1 and 2165 cm-1. A total of 123 features with variance scores below the 

0.0003 threshold value were excluded from further processing. The value of 0.0003 was 

determined using an iterative process in which the threshold value that led to the best 

classification was identified. The large variance in the Raman bands centred around 1400 cm-1, 

1590 cm-1, and 2060 cm-1 could, therefore, be ascribed to differences in quantities of the 

eumelanin and pheomelanin within the insect species.

Figure 4. A plot of variance within each Raman band for all the four insect categories. The 

threshold value is indicated by the red dotted line.

In order to meet the dimensional requirements of Discriminant Analysis, the selected 218 

features were compressed to 24 PC scores (represented by T in equation 2) which accounted for 

94% variability. The 25th PC score and those beyond were each found to account for less than 

0.5% variability and were considered to be noise. 

The following two classification models were tested on the datasets: VT, then PCA, followed by 

LDA (VT/PCA/LDA) and VT, then PCA, followed by QDA (VT/PCA/QDA). VT/PCA/QDA 

performed better than VT/PCA/LDA achieving an overall accuracy of 94% against the 85% 

accuracy rate achieved by the latter. Table 1 summarizes the overall performance of the two 
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models as assessed based on the five quality metrics: accuracy, sensitivity, specificity, F-Score 

and G-Score as defined by equations 7-11.

Table 1. Performance Quality Metrics for VT/PCA/LDA and VT/PCA/QDA Classification 

Models.

 

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

F-Score

(%)

G-Score

(%)

VT/PCA/LDA 85 69 90 77 78

VT/PCA/QDA 94 87 96 91 91

The numerical figures presented in Table 1 are averaged values of the figures of merit as 

calculated from the confusion matrices of the VT/PCA/LDA and VT/PCA/QDA classifiers. 

Tables 2 and 3 present the confusion matrices that resulted from the VT/PCA/LDA and 

VT/PCA/QDA classifiers. The numerical figures in these matrices are the actual numbers of 

insects used in the cross-validation of the models. In examining each confusion matrix, it became 

clear that the two classifier models performed much better in distinguishing Anopheline 

mosquitoes (represented by Anopheles gambiae) from Culicines (represented by Aedes aegypti, 

Culex quinquefasciatus). For instance, the models were more ‘confused’ in distinguishing 

between Aedes versus Culex than Aedes versus Anopheles for both models. In Table 3, 30 Culex 

mosquitoes were identified as Aedes as opposed to zero Anopheles confused for Aedes. A similar 

trend is observed in Table 2, in which 34 Culex mosquitoes were classified as Aedes as opposed 

to 4 Anopheles identified as Aedes. Thus, VT/PCA/QDA performed better than VT/PCA/LDA in 
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classifying Culicines from Anophelines. However, both models were more likely to classify 

houseflies as Culicine mosquitoes.

Table 2. Confusion Matrix of VT/PCA/LDA Classifier.

Predicted Class

Aedes Anopheles Culex Housefly

Aedes 132 8 22 6

Anopheles 4 92 12 12

Culex 34 6 70 18

A
ct

ua
l C

la
ss

Housefly 27 8 7 79
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Table 3. Confusion Matrix of VT/PCA/QDA Classifier.

Predicted Class

Aedes Anopheles Culex Housefly

Aedes 152 0 14 2

Anopheles 0 120 0 0

Culex 30 0 92 6

A
ct

ua
l C

la
ss

Housefly 7 0 8 106

To understand the differences between the decision boundaries established by the two classifier 

models during training, the discriminant scores, calculated using equation 3, were plotted to 

show the decision borders. Figure 5 shows the evaluation of the linear term of equation 3, which 

represents hyperplane decision boundaries between the four categories of insects. Each of the 

boundaries is represented by points where the equation evaluates to zero between any two 

categories of insects, with the separated categories assuming either positive or negative values. It 

can be observed that the decision boundaries created by VT/PCA/LDA are plagued with lots of 

overlap, especially for categories that exhibit large variances. The variances of the various 

classes can be visualized by how close the members of each class are to each other in the 

discriminant score plots. For instance, in Figure 5 (a), the Anopheles mosquitoes are well 

identified by negative discriminant scores, while the Aedes assume positive scores. However, 

due to large variation within the Aedes group, a portion of Aedes were discriminated as 

Anopheles by assuming negative discriminant score values. This trend is repeated in Figures 5 
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(b), (c) and (f). In Figures 5 (d) and (e), it is equally noted that the Anopheles are well 

discriminated with positive values of the discriminant scores, but the large variation within Culex 

and houseflies results in poor decision boundaries. 

Figure 5. Decision boundaries as evaluated by VT/PCA/LDA. Each class takes either a 

positive or negative value Discriminant Score. (a) Aedes versus Anopheles, (b) Aedes versus 

Culex, (c) Aedes vs Housefly, (d) Anopheles versus Culex, (e) Anopheles versus Housefly, 

and (f) Culex versus Housefly.

Figure 6. Decision boundaries as evaluated by VT/PCA/QDA. Each class takes either a 

positive or negative value Discriminant Score. (a) Aedes versus Anopheles, (b) Aedes versus 

Culex, (c) Aedes vs Housefly, (d) Anopheles versus Culex, (e) Anopheles versus Housefly, 

and (f) Culex versus Housefly.

VT/PCA/QDA model decision boundaries were evaluated using the quadratic and linear terms of 

equation 3. Figure 6 (a-f) shows the discriminant scores for the various group combinations. As 

explained earlier, the decision boundaries are represented by points where the equation evaluates 

to zero. The problem of different variances within the insect categories observed in Figure 5 (a-f) 

is also in Figure 6 (a-f). However, VT/PCA/QDA was able to discriminate well the various 
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categories of insects during training by evaluating the non-linear portion of equation 3. The 

shortcoming of  LDA is that it assumes that all the classes have a pooled covariance matrix 

which results in a linear decision boundary. QDA, on the other hand, considers the different 

covariance matrices for each class, which results in a quadratic decision boundary. 

DISCUSSION

We have presented a proof of concept that three medically important mosquito species –Aedes 

aegypti, Anopheles gambiae, and Culex quinquefasciatus –can be classified based on Raman 

signals obtained from the surface of their leg cuticles. Raman signals were carefully extracted 

from the measured raw spectra using computer algorithms. The algorithms suppressed the auto-

fluorescence background inherent in biological specimens, filtered out the noise and normalised 

the resulting Raman signals to provide a common basis for comparing samples. The Raman 

signals acquired from the three mosquito species in this study were dominated by broad peaks 

centred around 1400 cm-1, 1590 cm-1and 2060 cm-1. These peaks are due to melanin, a pigment 

found within insect cuticles (29,30,37–40). The significant spectral variance observed across the 

samples in these three spectral ranges provided important classification features for model 

development and highlights melanin's potential as a biomarker for mosquito taxonomy. Two 

models, VT/PCA/LDA and VT/PCA/QDA, achieved 85% and 94% accuracy, respectively. This 

performance can be considered sufficient for the cost-effective screening of large numbers of 

mosquito samples usually collected in mosquito surveillance programs, field studies, and cases 

where samples have lost morphological features during storage. 

Our demonstration that melanin can be used for taxonomy is a significant shift from previous 

spectroscopic classification work on mosquitoes which relied on signatures of cuticular 

hydrocarbons (24–26) and proteins (17–19). The prevalence of Raman peaks associated with 
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melanin was a surprise since Raman spectroscopy had been expected to reveal signatures 

associated with proteins and lipids. Naturally, the  variance at 1667 cm-1 was attributed to the 

Amide I band due to proteins (41) while those at 1066 cm-1, 1315 cm-1 and 1462 cm-1 were 

attributed to hydrocarbon chains of lipids (42). However, the most significant variance was 

attributed to eumelanin at 1590 cm-1 and pheomelanin at 2060 cm-1. Melanins have traditionally 

been considered difficult to extract for chemical analysis due to their low solubility (43); hence 

they have not been explored for insect classification. The ability of Raman spectroscopy to detect 

melanin signatures in mosquito cuticles makes melanin a potential biomarker for taxonomy. 

Melanin is the primary pigment responsible for colouration in animals and insects. In the latter, it 

is employed ingeniously for exoskeletal pigmentation, cuticular hardening, wound healing (44), 

and protection from solar radiation (45), among other innate immune responses. There are two 

main categories of melanin pigment - eumelanin and pheomelanin (46). Eumelanin is primarily 

responsible for dark colours, from brown to black, whereas pheomelanin produces yellowish or 

reddish colours.

In Figure 3, the peaks occurring around 1400 cm-1 and 1590 cm-1 were attributed to eumelanin, 

while the broad peak around 2060 cm-1 was attributed to pheomelanin (30,39,40). A closer look 

at Figure 3 (a) reveals that the eumelanin peak at 1598 cm-1 is much stronger when compared to 

the pheomelanin peak at 2067 cm-1. The 1406 cm-1peak is also well defined. This spectrum was 

taken from the dark portion of Aedes aegypti (the white part of the leg did not yield any 

significant peaks) and confirmed the black colouration of this insect species, an indication of the 

prevalence of eumelanin. In mosquito identification, colour generally plays a minor role, with 

descriptions of colour features limited to terms such as ‘ornamentation’ or ‘dark spots’, as is the 

case for Aedes aegypti. It is known that colour in insects emanates from pigments, mainly 
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melanin, and structures that enhance visual appearance (47,48). Colour perception is very 

subjective in humans, but when measurements are taken using a spectral device like a Raman 

microscope, details that are not discernible by the naked eye are usually revealed. Figures 3 (b) 

and 3 (c) show spectra obtained from Anopheles gambiae and Culex quinquefasciatus, 

respectively. Although the two mosquitoes are generally described as ‘brown’ with minor 

variations described as ‘pale spots of yellow, white or cream scales’ in Anopheles gambiae, the 

spectra reveal that their eumelanin-pheomelanin combination is completely different and 

therefore useful for their discrimination. In Figure 3 (b), the peak at 1586 cm-1 (eumelanin) is 

much stronger than that at 2063 cm-1 (pheomelanin), whereas, in Figure 3 (c), the two peaks at 

1594 cm-1 (eumelanin) and 2042 cm-1 (pheomelanin) are almost equal in strength. It should also 

be noted that there are variations in the positions and widths of the eumelanin and pheomelanin 

peaks across all the four groups (Figure 3 (a-d)) which could be attributed to the chemical 

environment (49) or the presence of other chemical compounds within the insect cuticle.

The confusion matrices (Tables 2 and 3) reveal how the VT/PCA/LDA and VT/PCA/QDA 

models responded when presented with each insect to classify. Overall, the models performed 

well in distinguishing between Anophelines (Anopheles gambiae) from Culicines (Aedes aegypti 

and Culex quinquefasciatus). However, the tendency of both models to misclassify houseflies for 

Culicine mosquitoes (Aedes aegypti and Culex quinquefasciatus) was puzzling. Probably this 

could be an indicator of yet to be known biochemical similarities between Culicine mosquitoes 

and houseflies, but which are not in Anopheline mosquitoes. We speculate that since flies have a 

common phylogeny (50), their underlying genomes may explain this unexpected similarity. 

Different species have conserved or modified their gene sequences as they evolved. The genome 

sizes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus and Musca domestica are 
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known to be 1.38 Giga bases (Gb), 278 Mega bases (Mb), 579 Mb, and 691 Mb, respectively 

(51–54). Therefore, from the genome sizes, Aedes aegypti, Culex quinquefasciatus and Musca 

domestica may have conserved some orthologs that were deleted in Anopheles gambiae during 

evolution.

Compared to the traditional taxonomic key method that relies on morphology for mosquito 

identification, our method is rapid due to its high throughput, making it ideal for mosquito 

surveillance programs. The best accuracy that we have reported here of 94% can be achieved and 

maintained by minimal training of the personnel involved. This performance is better than the 

morphology-based method, which has an average accuracy of 81% at the genus level but whose 

best and poorest performance can range from 100% to 50% depending on the expertise of the 

personnel (55). Furthermore, unlike the standard PCR assays, our method is rapid since it 

requires minimal sample preparation. It is also non-destructive and, after the initial costs of 

setting up the Raman microscope are taken into account, cost-effective because no chemical 

reagents are required. The Raman microscope used in this work costs about USD 100,000. 

However, it is a general-purpose system that is also used for other research projects in materials 

science, forensics, and bio-photonics. The beauty of Raman spectroscopy is that after the method 

development, a custom made, application-specific, hand-held system (56,57) can be designed 

with a preloaded library for mosquito identification. This will drastically decrease the initial cost 

of setting up a Raman system dedicated to mosquito identification to less than USD 30,000. The 

current cost of setting up a PCR system is about USD 40,000, with an expected constant 

requirement of reagents that may not be sustainable for laboratories in resource-limited settings. 

Our method also compares well with NIR spectroscopy (23,25,58,59), an optical technique with 

similar benefits to Raman spectroscopy. However, from a technical point of view, Raman 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


21

measurements are made using laser light in (or close to) the visible range of the electromagnetic 

spectrum. Therefore, Raman spectroscopy is more appealing in the miniaturization of 

spectroscopy devices since visible light detectors are relatively cheaper than NIR detectors. 

Furthermore, Raman systems give better spatial resolution than NIR in spectral imaging 

applications (59). We believe that if Raman imaging is used, the classification accuracy achieved 

in this work may be improved.

CONCLUSIONS

We have demonstrated the capability of Raman spectroscopy, in combination with machine 

learning algorithms, to discriminate medically important mosquito species: Aedes aegypti, 

Anopheles gambiae and Culex quinquefasciatus. The developed models have the potential to be 

extended to the discrimination of other insects.

The results suggest that a cuticular pigment, melanin, is responsible for discriminating the insect 

groups. A linear discrimination model, namely VT/PCA/LDA, performed moderately (85% 

accuracy; 69% sensitivity; 90% specificity) in discriminating the groups compared to 

VT/PCA/QDA, which exploited nonlinearity within the dataset, thus performing better (94% 

accuracy; 87% sensitivity; 96% specificity). This is the first time that a Raman spectroscopy 

method has been used to classify medically important mosquitoes.

Even though Raman spectroscopy gives complementary vibrational information to mid-IR 

spectroscopy and was, therefore, expected to detect signatures of cuticular lipids, the spectra 

were dominated by melanin spectral signatures. Melanins have traditionally been considered 
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difficult to extract for chemical analysis due to their low solubility; hence they have not been 

explored in the classification of insects.

The classification models developed here were simple and limited to discrimination of mosquito 

species belonging to two medically important sub-families: Anophelinae and the Culicinae. They 

demonstrated the potential of Raman spectroscopy in insect classification. More complex 

classification models may need to be developed to classify morphologically indistinguishable 

species. 

Raman spectroscopy coupled with an appropriate machine learning algorithm is, therefore, a 

potentially powerful tool for insect species discrimination and classification that could be used to 

identify morphologically indistinguishable cryptic species.

Acknowledgement

We acknowledge the Swedish International Development Cooperation Agency (SIDA), through 

the International Science Programme (ISP), Uppsala University, for financial support.

REFERENCES

1. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. 
2016;167(3):610–24. 

2. Simon F, Javelle E, Oliver M, Leparc-Goffart I, Marimoutou C. Chikungunya Virus 
Infection. Curr Infect Dis Rep. 2011;13(3):218–28. 

3. Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A. “Bird biting” mosquitoes and 
human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. 
Infect Genet Evol. 2011;11(7):1577–85. 

4. Clements AN. The biology of mosquitoes. Volume 2: sensory reception and behaviour. 
Biol Mosquitoes Vol 2 Sens Recept Behav. 1999;740–740. 

5. Ribeiro JMC, Francischetti IMB. Role of arthropod saliva in blood feeding: sialome and 
post-sialome perspectives. Annu Rev Entomol. 2003;48:73–88. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


23

6. Service MW, Service M. Medical Entomology for Students. Cambridge University Press; 
2012. 

7. Ajamma YU, Mararo E, Omondi D, Onchuru T, Muigai AW, Masiga D, et al. Rapid and 
high throughput molecular identification of diverse mosquito species by high resolution 
melting analysis. F1000Research. 2016;5:1949. 

8. Bass C, Williamson MS, Wilding CS, Donnelly MJ, Field LM. Identification of the main 
malaria vectors in the Anopheles gambiae species complex using a TaqMan real-time PCR 
assay. Malar J. 2007;6:155. 

9. Chan A, Chiang L, Hapuarachchi H, Tan C, Pang, Lee R, et al. DNA barcoding: 
complementing morphological identification of mosquito species in Singapore. Parasit 
Vectors. 2014;7:569. 

10. Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and 
molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 
2002;16(4):461–4. 

11. Gale KR, Crampton JM. DNA probes for species identification of mosquitoes in the 
Anopheles gambiae complex. Med Vet Entomol. 1987;1(2):127–36. 

12. Paskewitz SM, Collins FH. Use of the polymerase chain reaction to identify mosquito 
species of the Anopheles gambiae complex. Med Vet Entomol. 1990;4(4):367–73. 

13. Walker ED, Thibault AR, Thelen AP, Bullard BA, Huang J, Odiere MR, et al. 
Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan 
single nucleotide polymorphism genotyping. Malar J. 2007;6:23. 

14. Wang G, Li C, Guo X, Xing D, Dong Y, Wang Z, et al. Identifying the Main Mosquito 
Species in China Based on DNA Barcoding. PLoS ONE. 2012;7(10). 

15. Zianni MR, Nikbakhtzadeh MR, Jackson BT, Panescu J, Foster WA. Rapid discrimination 
between Anopheles gambiae s.s. and Anopheles arabiensis by High-Resolution Melt 
(HRM) analysis. J Biomol Tech JBT. 2013;24(1):1–7. 

16. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-Directed 
Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science. 
1988;239(4839):487–91. 

17. Müller P, Pflüger V, Wittwer M, Ziegler D, Chandre F, Simard F, et al. Identification of 
cryptic Anopheles mosquito species by molecular protein profiling. PloS One. 
2013;8(2):e57486. 

18. Yssouf A, Parola P, Lindström A, Lilja T, L’Ambert G, Bondesson U, et al. Identification 
of European mosquito species by MALDI-TOF MS. Parasitol Res. 2014;113(6):2375–8. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


24

19. Yssouf A, Socolovschi C, Flaudrops C, Ndiath MO, Sougoufara S, Dehecq JS, et al. 
Matrix-assisted laser desorption ionization--time of flight mass spectrometry: an emerging 
tool for the rapid identification of mosquito vectors. PloS One. 2013;8(8):e72380. 

20. Dowell F, Throne J, Wang D, Baker J. Identifying Stored-Grain Insects Using Near-
Infrared Spectroscopy. J Econ Entomol. 1999;92(1):165–9. 

21. Fischnaller S, Dowell FE, Lusser A, Schlick-Steiner BC, Steiner FM. Non-destructive 
species identification of Drosophila obscura and D. subobscura (Diptera) using near-
infrared spectroscopy. Fly (Austin). 2012;6(4):284–9. 

22. Kinzner MC, Wagner HC, Peskoller A, Moder K, Dowell FE, Arthofer W, et al. A near-
infrared spectroscopy routine for unambiguous identification of cryptic ant species. PeerJ. 
2015;3:e991. 

23. Mayagaya VS, Ntamatungiro AJ, Moore SJ, Wirtz RA, Dowell FE, Maia MF. Evaluating 
preservation methods for identifying Anopheles gambiae s.s. and Anopheles arabiensis 
complex mosquitoes species using near infra-red spectroscopy. Parasit Vectors. 2015;8:60. 

24. González M, Babayan SA, Khazaeli P, Doyle M, Walton F, Reedy E, et al. Prediction of 
mosquito species and population age structure using mid-infrared spectroscopy and 
supervised machine learning. Wellcome Open Res. 2019;4:76. 

25. Johnson, J. Near-infrared spectroscopy (NIRS) for taxonomic entomology: A brief review. 
J Appl Entomol. 2020;144(4):241–50. 

26. Johnson J, Naiker M. Seeing red: A review of the use of near-infrared spectroscopy (NIRS) 
in entomology. Appl Spectrosc Rev. 2020;55(9–10):810–39. 

27. Niaura G. Raman Spectroscopy in Analysis of Biomolecules. In: Encyclopedia of 
Analytical Chemistry. John Wiley & Sons, Ltd; 2006. 

28. Titěra D. Analysis of European Honeybee (Apis Mellifera) Wings Using ATR-FTIR and 
Raman Spectroscopy: A Pilot Study. Sci Agric Bohem. 2017 Apr 12;48(1):22–9. 

29. Hsiung BK, Blackledge TA, Shawkey MD. Spiders do have melanin after all. J Exp Biol. 
2015;218(22):3632–5. 

30. Polidori C, Jorge A, Ornosa C. Eumelanin and pheomelanin are predominant pigments in 
bumblebee (Apidae: Bombus) pubescence. PeerJ. 2017;5:e3300. 

31. Wang D, Yang J, Pandya J, Clark JM, Harrington LC, Murdock CC, et al. Quantitative age 
grading of mosquitoes using surface-enhanced Raman spectroscopy. Anal Sci Adv. 2021;1–
7. 

32. Ryabchykov O, Guo S, Bocklitz T. Analyzing Raman spectroscopic data. Phys Sci Rev. 
2019;4(2). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


25

33. Morais CLM, Lima KMG, Singh M, Martin FL. Tutorial: multivariate classification for 
vibrational spectroscopy in biological samples. Nat Protoc. 2020;15(7):2143–62. 

34. Zhao J, Lui H, McLean DI, Zeng H. Automated Autofluorescence Background Subtraction 
Algorithm for Biomedical Raman Spectroscopy. Appl Spectrosc. 2007;61(11):1225–32. 

35. Siti Y, Uyun S. Feature Selection on Magelang Duck Egg Candling Image Using Variance 
Threshold Method. In: 2020 3rd International Seminar on Research of Information 
Technology and Intelligent Systems (ISRITI). 2020 3rd International Seminar on Research 
of Information Technology and Intelligent Systems; 2020. p. 694–9. 

36. Tharwat A. Linear vs. quadratic discriminant analysis classifier: a tutorial. Int J Appl 
Pattern Recognit. 2016;3(2):145–80. 

37. Galván I, Jorge A. Dispersive Raman spectroscopy allows the identification and 
quantification of melanin types. Ecol Evol. 2015;5(7):1425–31. 

38. Huang Z, Lui H, Chen XK, Alajlan A, McLean DI, Zeng H. Raman spectroscopy of in vivo 
cutaneous melanin. J Biomed Opt. 2004;9(6):1198–205. 

39. Jorge A, Polidori C, Nieves-Aldrey JL. Pheomelanin in the secondary sexual characters of 
male parasitoid wasps (Hymenoptera: Pteromalidae). Arthropod Struct Dev. 
2016;45(4):311–9. 

40. Rodrigo M, Jorge A, Reguera S. Raman Spectroscopy Reveals the Presence of Both 
Eumelanin and Pheomelanin in the Skin of Lacertids. J Herpetol. 2018;52(1):67–73. 

41. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M. Raman 
spectroscopy of proteins: a review. J Raman Spectrosc. 2013;44(8):1061–76. 

42. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy 
of lipids: a review. J Raman Spectrosc. 2015;46(1):4–20. 

43. Pralea IE, Moldovan RC, Petrache AM, Ilieș M, Hegheș SC, Ielciu I, et al. From Extraction 
to Advanced Analytical Methods: The Challenges of Melanin Analysis. Int J Mol Sci. 
2019;20(16):3943. 

44. Sugumaran M, Barek H. Critical Analysis of the Melanogenic Pathway in Insects and 
Higher Animals. Int J Mol Sci. 2016;17(10):1753. 

45. Farnesi LC, Vargas HCM, Valle D, Rezende GL. Darker eggs of mosquitoes resist more to 
dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to 
desiccation in Aedes, Anopheles and Culex vectors. PLoS Negl Trop Dis. 
2017;11(10):e0006063. 

46. Solano F. Melanins: Skin Pigments and Much More—Types, Structural Models, Biological 
Functions, and Formation Routes. New J Sci. 2014;2014:e498276. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


26

47. Badejo O, Skaldina O, Gilev A, Sorvari J. Benefits of insect colours: a review from social 
insect studies. Oecologia. 2020;194(1):27–40. 

48. Vukusic P, Sambles JR. Photonic structures in biology. Nature. 2003;424(6950):852–5. 

49. Auer BM, Skinner JL. IR and Raman spectra of liquid water: Theory and interpretation. J 
Chem Phys. 2008;128(22):224511. 

50. Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, et al. Episodic 
radiations in the fly tree of life. Proc Natl Acad Sci. 2011;108(14):5690–5. 

51. Juneja P, Osei-Poku J, Ho YS, Ariani CV, Palmer WJ, Pain A, et al. Assembly of the 
Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows 
Mapping of Genes Affecting Disease Transmission. PLoS Negl Trop Dis. 2014;8(1):e2652. 

52. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The 
genome sequence of the malaria mosquito Anopheles gambiae. Science. 
2002;298(5591):129–49. 

53. Peng C, Qian Z, Xinyu Z, Qianqian L, Maoqing G, Zhong Z, et al. A Draft Genome 
Assembly of Culex pipiens pallens (Diptera: Culicidae) Using PacBio Sequencing. Genome 
Biol Evol. 2021;13(3):evab005. 

54. Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG, Giers SD, et al. Genome of the 
house fly, Musca domestica L., a global vector of diseases with adaptations to a septic 
environment. Genome Biol. 2014;15(10):466. 

55. Jourdain F, Picard M, Sulesco T, Haddad N, Harrat Z, Sawalha SS, et al. Identification of 
mosquitoes (Diptera: Culicidae): an external quality assessment of medical entomology 
laboratories in the MediLabSecure Network. Parasit Vectors. 2018;11(1):553. 

56. Vunckx K, Geelen B, Garcia Munoz V, Lee W, Chang H, Van Dorpe P, et al. Towards a 
miniaturized application-specific Raman spectrometer. Sens Agric Food Qual Saf XII. 
2020;11421:1142108. 

57. Jehlička J, Culka A, Mana L, Oren A. Comparison of Miniaturized Raman Spectrometers 
for Discrimination of Carotenoids of Halophilic Microorganisms. Front Microbiol. 2019;10. 

58. Mayagaya VS, Michel K, Benedict MQ, Killeen GF, Wirtz RA, Ferguson HM, et al. Non-
destructive Determination of Age and Species of Anopheles gambiae s.l. Using Near-
infrared Spectroscopy. Am J Trop Med Hyg. 2009;81(4):622–30. 

59. Sikulu-Lord MT, Maia MF, Milali MP, Henry M, Mkandawile G, Kho EA, et al. Rapid and 
Non-destructive Detection and Identification of Two Strains of Wolbachia in Aedes aegypti 
by Near-Infrared Spectroscopy. PLoS Negl Trop Dis. 2016;10(6):e0004759. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.17.492344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492344
http://creativecommons.org/licenses/by/4.0/

