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Abstract 

Background: Univariate analyses of metabolomics data currently follow a frequentist approach, using p-

values to reject a null-hypothesis. However, the usability of p-values is plagued by many misconceptions 

and inherent pitfalls. We here propose the use of Bayesian statistics to quantify evidence supporting 

different hypotheses and discriminate between the null hypothesis versus lack of statistical power. 

Methods: We use metabolomics data from three independent human cohorts that studied plasma 

signatures of subjects with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). Data are 

publicly available, covering 84-197 subjects in each study with 562-888 identified metabolites of which 777 

were common between two studies, and 93 compounds reported in all three studies. By comparing results 

from classic multiple regression against Bayesian multiple regression we show how Bayesian statistics 

incorporates results from one study as ‘prior information’ into the next study, thereby improving the overall 

assessment of the likelihood of finding specific differences between plasma metabolite levels and disease 

outcomes in ME/CFS.  

Results: Whereas using classic statistics and Benjamini-Hochberg FDR-corrections, study 1 detected 18 

metabolic differences, study 2 detected no differences. Using Bayesian statistics on the same data, we 

found a high likelihood that 97 compounds were altered in concentration in study 2, after using the results of 

study 1 as prior distributions. These findings included lower levels of peroxisome-produced ether-lipids, 

higher levels of long chain, unsaturated triacylglycerides, and the presence of exposome compounds that 

are explained by difference in diet and medication between healthy subjects and ME/CFS patients. Although 

study 3 reported only 92 reported compounds in common with the other two studies, these major differences 

were confirmed. We also found that prostaglandin F2alpha, a lipid mediator of physiological relevance, was 

significantly reduced in ME/CFS patients across all three studies.   

Conclusions: The use of Bayesian statistics led to biological conclusions from metabolomic data that were 

not found through the frequentist analytical approaches more commonly employed.  We propose that 

Bayesian statistics to be highly useful for studies with similar research designs if similar metabolomic assays 

are used.  

 

Key words: Bayesian; p value; metabolomics; ME/CFS; statistics 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.17.492312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492312
http://creativecommons.org/licenses/by-nc/4.0/


2 
 
Introduction 

  Although literature detailing limitations and misconceptions of p-values has established that the way 

that many researchers employ statistics in their research is ritualistic and inappropriate,1,2 and impedes 

scientific progress,3,4 metabolomic researchers rarely acknowledge the pitfalls in methods used for 

assessment of statistical significance. Even the American Statistical Association has warned about misusing 

the p-value.5 Cut-offs for significance testing can be easily subject to changing perspectives.6-8  
 

This discussion has not become generally accepted in the realms of omics sciences, including in 

metabolomics.  While it is common for univariate analyses to be conducted with false discovery rate or family-

wise error rate corrections, researchers still only consider metabolites to be interesting if their p-values fall 

below an arbitrary threshold. But p-values only give the probability that measured data fit an assumed null 

hypothesis. If a p-value is <0.05, the null hypothesis is commonly rejected. However, even if p>0.05, a 

metabolite might still be different between two study groups. Simply put, strict “null hypothesis significance 

testing” cannot distinguish whether there is a true null effect or whether the data are insensitive.9 More 

importantly, a p-value cannot provide support for an alternative hypothesis. A classic p-value reports the 

probability of the data given the hypothesis – not the probability of the hypothesis, given the data.5 These are 

not identical statements (i.e., p(data|H) ≠ p(H|data)),10 and they do not answer the same questions. Strangely, 

a p-value does not provide a measure of the strength of evidence in favor of a hypothesis.  One cannot rank 

p-values by being ‘more significant’.  For example, a p-value of 0.0001 is not stronger evidence in favor of the 

alternative hypothesis than a p-value of 0.049. Given a threshold of 0.05, they both reject the null hypothesis, 

but neither of them tests an alternative hypothesis. Furthermore, although reporting actual effect sizes (the 

differences in metabolite levels) is crucially important, a p-value does not give that information. 
 

We here present Bayesian 

alternatives to complement or replace p-

values and the analyses that produce them 

that we will hereafter refer to as null 

hypothesis significance testing (NHST). 

We exemplify the power of Bayesian 

analyses on previously published 

metabolomics data to highlight the 

differences between the two statistical 

approaches. But how is Bayesian statistics 

different? Unlike classic p-values, 

Bayesian statistics can be used to quantify 

the size of an effect, quantify the strength 

of evidence in favor of one hypothesis over 

another, and allow researchers to 

discriminate between an inconclusive 

finding and evidence in favor of the null 

hypothesis.  We argue that this is exactly 

what researchers want to get. These analyses test competing models of hypotheses and the distribution of 

the observed data.11,12 Bayesian statistics always starts with a prior distribution. That is an expectation of a 

range of possible effect sizes that could feasibly be observed. Put simply, this means that researchers should 

(or at least can) have some idea of the plausible size and/or direction of an effect that they are studying. For 

example, a statement like “I think that compound X is most likely to be upregulated in cases compared to 

controls, with a fold-change of about 3” is an example of a prior distribution: this description can be modeled 

Figure 1. Hypothetical hurricane paths before (top-left) and after data 

has been collected (top-right). The cones represent the likely path of 

the hurricane (yellow = unlikely; red = most likely). Distributions 

(bottom-left and bottom-right) represent the cones plotted as 

probability distributions. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.17.492312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492312
http://creativecommons.org/licenses/by-nc/4.0/


3 
 
very easily so that the probability of downregulation is zero, and the most likely effect sizes are around fold 

change = 3.  
  

Bayesian statistics are used across a vast array of fields and domains,13 including everyday cognition and 

decision-making.14 An example is hurricane forecasts. Figure 1 shows a fictional hurricane that may have 

formed in the Gulf of Mexico (top-left panel), with a cone of different colors displaying the path the hurricane 

is most likely to take. Given previous hurricanes, and other data such as ocean currents, storm trackers 

already have an expectation, a “prior distribution”. This is like a metabolomicist knowing the literature and 

having ideas how levels of metabolites might vary in diabetes mellitus. The colors of the cone correspond to 

the modeled prior distribution (bottom-left panel). As the hurricane progresses (Figure 1, top-right panel) and 

researchers incorporate the new data into an updated model, their expectations change about where the 

hurricane is most likely to go. The cone also narrows as the researchers become more confident about the 

path of the hurricane. This results in the narrower distribution (bottom-right panel). Hence, unlike classic p-

values, Bayesian models take prior data into account and can be updated continuously.  
 

Methods 

Metabolomic Datasets 

 Three data sets were reanalyzed for the current study. All three studies investigated metabolic 

differences between patients who suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), 

and matched healthy controls. In order to be consistent in our analyses, we only used identified metabolites 

and ignored unknown features. First, the previously published study by Nagy-Szakal et al15 included 50 cases 

and 50 controls and reported 562 identified metabolites. The data is available at the Metabolomics Workbench 

repository16 under Project ID PR000576 (DOI: http://dx.doi.org/10.21228/M86X1F). The second data set is 

available under Project DOI 10.21228/M8PD9N and available by Che et al17 at DOI: 

10.1101/2021.06.14.21258895, covering 106 cases and 91 control subjects, and reporting 888 metabolites. 

In both studies, participant metadata (age, sex, body mass index (BMI), race/ethnicity, diagnosis of irritable 

bowel syndrome (IBS), geographic/clinical site, and season of sample) was also collected. 20 subjects (10 

ME/CFS patients, 10 healthy controls) participated in both studies. For comparison of the strengths of 

Bayesian analyses, we also used a previously published data set by Naviaux et al18 (Project DOI: 

10.21228/M82K58) with 45 cases and 39 controls. Naviaux et al. used a different metabolomic assay with 

612 identified metabolites, for which we found only 92 compounds in common to the other two studies. For 

this study, participant metadata as given above were not available apart from disease status and sex. 
 

Statistical Analyses 

 All analyses were conducted in R 4.1.2. Prior to analyses, any compound not observed in at least 50% 

of samples was removed from analysis. Any missing data were imputed with half-minimum values. Each 

compound was log transformed for normality and then auto-scaled. Only compounds common to both Nagy-

Szakal and Che data sets were used in analyses, which resulted in 632 compounds (551 identified) being 

analyzed. Common compounds were matched using International Chemical Identifier keys. For the third, 

Naviaux data set, 92 compounds were matched to the other two data sets, using RefMet annotations19.  

Classic univariate statistical analyses were performed by linear regression using base R functions, and 

Bayesian regression was conducted using the rstanarm20 and bayestestR21 packages.  These analyses were 

used to determine between-groups differences for each compound and were used instead of t-tests or Mann-

Whitney U tests due to the inclusion of covariates and having a sufficiently large sample size.  All models 

included age, sex, BMI, race/ethnicity, IBS diagnosis, geographic/clinical site, and season of sample as 

covariates. The default prior distributions recommended by rstanarm were used to model the expected effect 

sizes for each compound in the Nagy-Szakal data set. These defaults are considered to be ‘weakly 

informative’ in that they provide some information on the expected magnitude of the effect based on the scales 
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of the variables. However, they do not strongly affect the posterior distribution and help stabilize computation, 

while still allowing for extreme effect sizes if warranted by the data.22,23 Posterior distributions were created 

from four Markov Chain Monte Carlo chains of 2,000 iterations each, with the first 1,000 iterations in each 

chain used as burn-ins. The posterior distribution of each compound from the Nagy-Szakal data was then 

used as the prior distribution for the same compound in the Che data set. Compounds were considered to be 

altered if the 95% credible interval did not overlap with zero. A negative posterior median was indicative of 

downregulation in the ME/CFS group, and a positive posterior median was indicative of upregulation.  

ChemRICH24 was performed for set enrichment statistics, with the posterior median used as an estimate of 

effect size and the probability of direction was used as a Bayesian analog of a p-value.25 
 

Results 

Classic univariate statistics analyses 

Figure 2 shows the results of the classic p-value (frequentist) analyses for the Nagy-Szakal and Che data 

sets. Of the 632 compounds common to both 

studies, only 18 were significantly different 

(FDR < 0.10) in the Nagy-Szakal data for 

which phosphatidylcholines (28:0, 30:0, 

32:1, 32:2, 33:0, 34:1, 34:3, 34:4, 38:2, 38:6) 

were found downregulated and 

triacylgycerides (52:4, 54:6, 54:7, 56:5, 56:8) 

were upregulated, in addition to lower levels 

of carnitine and tyrosine in the ME/CFS 

group.  Interestingly, when analyzing the 

Che data set by itself, not a single metabolite 

was found to be significantly different 

between groups, using regression analyses 

(Figure 2). 

Bayesian Analyses 

To demonstrate the advantages of Bayesian 

analyses over classic univariate analyses, 

we first analyzed the Nagy-Szakal data using 

weakly informative prior distributions. The 

resulting posterior distribution was then used 

as input into the Bayesian analyses of the 

Che data. Bayesian model comparison 

commonly refers to the calculation of Bayes 

factors (BFs).  Bayes factors are ratios that 

quantify the probability of one hypothesis 

over another by estimating the strength of 

evidence.26 Such tests do not determine if 

one hypothesis is true and the other is not. 

but instead, whether one hypothesis is more 

likely than an alternative hypothesis, given 

the observed data. Additionally, BF values 

are easily interpretable in terms of the 

Figure 2. Heat map of compounds analyzed in the Nagy-Szakal 

and Che data sets. Blue indicates downregulation, red indicates 

upregulation. Asterisks indicate FDR-adjusted p values < 0.10. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.17.492312doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492312
http://creativecommons.org/licenses/by-nc/4.0/


5 
 
strength of a finding. Bayesian analyses allow statements such as “the null hypothesis was five times more 

likely to be true than the alternative hypothesis, given the data”.  Classic p-values cannot support such 

statements. BFs are continuous estimates that range from approaching zero to approaching infinity. BF=1 

indicates equal likelihoods of either hypothesis, given the data. Values further from 1 imply stronger evidence 

in favor of one hypothesis over the other.  Jeffreys27 provided arbitrary guidelines to categorize these values 

as anecdotal, moderate, strong, or extreme evidence for or against one hypothesis over another. Based on 

these guidelines, BFs between ⅓ and 3 are referred to as anecdotal evidence and imply that the data are not 

sensitive enough to conclusively state that one hypothesis is more likely than another. For studies with BFs 

between are ⅓ and 3 are typically underpowered, and more data would need to be collected.  However, any 

general rule used to categorize BFs will not be appropriate for all research contexts. Extraordinary claims 

require extraordinary evidence: if geographic location or birth date would have been found to be associated 

with ME/CFS, one would certainly require more evidence than usual for such claim.  

 

Compounds with BFs> 10 closely match those that were reported as significantly different in the classic 

univariate analyses, for the simple reason that both methods tested whether metabolite levels were different 

between the case and control groups. For example, phosphatidylcholines (PC) were still found downregulated 

by Bayesian statistics, and triacylglyceride (TG) 54:7 was still upregulated in ME/CFS patients (Figure 3). For 

compounds with BF > 3, see Supplement 1. However, unlike the classic statistics, Bayes’ models also 

determine which compounds are sufficiently unlikely to be altered by ME/CFS (those with a BF < 1/3) and 

those that may be affected but do not have sufficient statistical power to draw a conclusion (BFs between 1/3 

and 3).  

In addition, Bayes’ analyses can be used to estimate the magnitude of an effect of interest. It is based 

on the posterior distribution, the updated prior distribution after data has been collected and incorporated into 

the model. The posterior distribution provides an estimate of the credibility of every possible metabolite value 

after accounting for the researcher’s hypotheses before data collection and after observing the current data. 

The mode of the distribution is the most likely estimate of the true effect size, while the mean and median of 

the distribution are often used as point estimates of credibility. The variability of a Bayesian effect size estimate 

is based on ‘credible intervals’. Credible intervals are a range of values within which the true effect falls at a 

specified level of confidence.27 When a 95% credible interval does not overlap with zero, the probability of an 

Figure 3. Bayes factors of all compounds in the Nagy-Szakal data set. Compounds with BF > 10 (i.e., strong 

evidence in favor of the alternative hypothesis) have been labeled. 
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effect being zero is < 5%. Conversely, if the credible interval 

would overlap with zero, it could be considered as a Bayesian 

analog of a significance test.25 Notably, the similar-sounding 

‘confidence intervals’ are different because those values would 

provide an interval within which the true effect size would fall at 

95% confidence if the same study was to be repeated 100 

times.3 

Figure 4 shows the compounds that have 95% credible 

intervals that do not overlap with zero and have a BF > 3. Again, 

phosphatidylcholines were found downregulated along with 

tyrosine and one phosphatidylethanolamine (PE) ether-lipid, PE 

(p-38:6).  A range of triacylglyerides were found up-regulated in 

ME/CFS cases, as also observed with classic univariate 

statistics. The most interesting difference in using Bayesian 

statistics was found when then using the Che data set with a 

prior distribution for each compound taken from the results of the 

Nagy-Szakal data set as. Figure 5 shows the BFs of each 

compound, and Figure 6 shows the compounds that have 95% 

credible intervals that do not overlap with zero.  In contrast to 

classic univariate p-values (Figure 2), 98 compounds were 

found to be altered in the Bayesian analyses. Importantly, results 

were very consistent with those observed from the Nagy-Szakal 

data set: specific phosphatidylcholines were still found 

downregulated whereas specific triacylglyerides upregulated. Yet, a range of other compounds were now found 

differentially regulated as well: With Bayesian statistics informed by prior research (here: the Nagy-Szakal 

data), the Che data now showed that the branched chain amino acid leucine and aromatic amino acids tyrosine 

and phenylalanine were downregulated in ME/CFS cases. Additional lipid species were now also found to be 

down-regulated such as specific lysophosphatidylcholines, phosphatidylcholines, and plasmalogens. Notably, 

specific diacylglycerides were found at higher plasma levels in ME/CFS patients as well as specific 

pharmaceutical drugs such as gabapentin and p-acetamidophenol (acetaminophen), both used as pain 

Figure 4. Forest plot of compounds with 
Bayesian 95% credible intervals not 
overlapping with zero and BF > 3 in the 
Nagy-Szakal data set. Points in each bar 
represent posterior distribution median and 
bars represent 95% credible interval bounds. 

Figure 5. Bayes factors of all compounds in the Che data set. Compounds with BF > 10 (i.e., strong 

evidence in favor of the alternative hypothesis) have been labeled. 
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medications, in addition to pantothenic acid (vitamin B5), a vitamin often taken as dietary supplement. A range 

of food compounds were found at lower levels in ME/CFS patients indicating less use of specific foods, such 

as caffeine, theobromine and trigonelline (coffee biomarkers) and piperine (found in pepper). 

There is one more type of question that metabolomics 

investigators, and their clinical partners, would ask: how are 

these findings connected? One way to answer such questions 

is to map metabolites to their biochemical pathways of 

synthesis and degradation. However, metabolite levels in 

human blood do not only correspond to pathways in cells but 

surely also to the differences between organs, and, of course, 

dietary patterns and exposures. We therefore tested for the 

significance that specific groups of compounds were found to 

be over-enriched, beyond what would be expected at random. 

For this type of set enrichment statistics,29,30 we have grouped 

metabolites by similarity in chemical structure, using the 

Kolmogorov-Smirnov test for significance. Using the results 

from Bayesian probabilities as input into chemical enrichment 

statistics,24 we found very strong evidence of very specific 

differential regulation of whole groups of compounds (Figure 

7). For example, we found that only unsaturated 

triacylglycerides were upregulated in ME/CFS patients, but 

not saturated triacylglycerides. Such finding points to a 

specific biochemical regulation instead of simple explanations 

like differences in the number or type of lipid-carrying 

lipoprotein particles. Similarly, we found large downregulation 

of unsaturated phospholipid ethers and plasmalogens that 

are exclusively produced by peroxisomes and which, hence, 

might be involved in the etiology of the disease. 

Sphingomyelins and unsaturated phosphatidycholines were 

significantly associated with ME/CFS, but among these 

compound classes, some members were found to be up-

regulated and others down-regulated. Unsaturated 

ceramides and unsaturated lysophosphatidylcholines were 

found down-regulated, but not their saturated counterparts. In 

combination, therefore Bayesian analyses unequivocally 

found evidence that reflects know behaviors in ME/CFS 

patients (such as avoidance of specific foods but increases in use of pharmaceuticals), in addition to 

biochemically and physiologically interpretable findings that would have been completely overlooked and 

ignored by classic univariate statistics. 
  

 

Figure 6. Forest plot of compounds with 

Bayesian 95% credible intervals not 

overlapping with zero in the Che data set. 

Points in each bar represent posterior 

distribution median and bars represent 95% 

credible interval bounds 
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Yet, Bayesian statistics can go even further. To illustrate the usefulness of Bayesian analyses, we extended 

our investigations by taking a third ME/CFS data set into account, the Naviaux study, Figure 8. Compounds 

were matched across all three data sets using RefMet,19 yielding a common core of 92 analyzed compounds 

that were observed in all three studies. The 

posterior distributions from the Che data were used 

as the prior distributions in the Naviaux study.  

Bayesian statistics yielded credible intervals for 14 

compounds to be different between ME/CFS 

subjects and that were common for all three 

studies. Similar to the combined Bayes analysis of 

just the Nagy-Szagal and Che studies (Figure 6), 

we found specific phosphatidylcholines to be 

downregulated along with aromatic amino acids 

phenylalanine and tyrosine, while vitamin levels 

were elevated in ME/CFS patients (pantothenic 

acid and 4-pyridoxic acid). Interestingly, 

eicosapentaenoic acid (an omega-3 fatty acid and 

precursor to oxylipins) and PGF2-α (an oxylipin 

product and physiologically active mediator) were 

found to be regulated in opposite directions, further 

positing interesting new biochemical hypotheses on 

the etiology of ME/CFS that are now grounded in 

three independent data sets. Results like these also 

show the need to further standardize metabolomics 

data acquisitions that would accomplish progress in 

direct data integrations by Bayesian statistics, as demonstrated for this ME/CFS data integration study. 

Discussion 

Science should progress over time in its insights into specific phenomena. Bayesian statistics allow 

researchers to incorporate previous knowledge into their models. Hence, it is surprising that Bayesian 

approaches are rarely used in –omics research, and even less in metabolomics.  Here, we exemplified the 

suitability of Bayesian approaches on three data sets that investigate the metabolic profile of ME/CFS.15,17,18 

There is little known about ME/CFS with respect to origins of this complex disease, disease progression, 

possible treatment options, chances or timing of remission or why women are more affected than men.31 

These studies were chosen precisely because the overall effects are not well studied, and because they 

investigated the same disease complex. The similarity in the study designs, including similar numbers of 

subjects, allowed us to conduct Bayesian analyses on the first data set, then incorporate the knowledge 

gleaned from those results into the Bayesian analyses conducted on the second and then the third data set. 

However, as caveat, we must state that there are likely differences in the ME/CFS cohorts that are unknown 

to us or to the different study investigators, because the disease etiology cannot be very sharply defined. It is 

very possible that the disease symptoms that are today summarized as ME/CFS may be better categorized 

into subtypes in the future. Hence, by random chance, there may have been differences in the ME/CFS 

subjects (or the matched healthy controls) that could have led to differences in metabolic imprints in the 

plasma metabolome data studied here.  While all three studies used here emphasized the importance of 

complex lipids in plasma metabolomic profiles, the use of Bayesian analyses allowed us to refine the original 

ideas and metabolic pathways involved. For example, Naviaux et al. emphasized the importance of 

sphingolipids as having the ‘largest disturbances in the chemical signature of CFS’,18 explaining 44-50% of 

Figure 7. Chemical set enrichment statistics using results 

of the Bayesian analyses conducted on the Che data set. 

Bubble sizes indicate the number of compounds belonging 

to chemical groups. Bubble colors indicate the direction of 

effects (red = all compounds upregulated in ME/CFS 

group; blue = all compounds downregulated in ME/CFS 

group; purple = mixed effects). 
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the metabolic impact in men and women.18 With 

the results by Nagy-Szagal15 and Che17, 

published later, we can now rule out these 

molecules as being of high importance when 

integrating the studies. Instead, we were able to 

use prior data such as the ceramides and 

sphingomyelins as hypotheses to be tested, but 

changing distributions and therefore altering 

posterior distributions, effect size estimates and 

the strengths of statements using subsequent 

datasets. Indeed, using Bayesian statistics and 

incorporating previous results into subsequent 

analyses we found evidence of peroxisomal 

dysfunction, differences in diet, and PGF2 alpha 

in the Che data set that we would not have 

otherwise seen if we only used traditional 

statistical analyses. Similar to other statistical 

approaches, Bayesian analyses can only weigh 

between different hypotheses but cannot 

ultimately provide absolute statements. For 

example, as Bayesian analyses provide strong 

evidence of the involvement of peroxisomes in 

the pathology of ME/CFS, we cannot rule out that 

mitochondria or the endoplasmic reticulum are 

also involved through the oxidation and 

modification of complex lipids. Similarly, our analyses focused on patient plasma which almost always 

precludes definitive conclusions on the timing and involvement of specific organs. Future research may use 

animal models and possible timing of events to study routes from potential initial causes (such as viral 

infections that lead to immune hyper-responses) to secondary defects (such as peroxisomal damages in liver 

and brain) which then may end in differences of physiologically active lipid mediators such as PGF2alpha that 

may lead to lower blood flow to brain regions, causing pain and brain fog as reported by ME/CFS patients.  

Although the analyzed data sets we used are from metabolomics backgrounds, such tests can be 

applied to any field of quantitative hypothesis-driven research where classic univariate (p-value driven) 

analyses are traditionally used. Statistical analyses of metabolomics data have typically followed a predefined 

routine of conducting a series of univariate tests, such as t-tests/ANOVAs or their non-parametric 

equivalents.32-34 For effect size considerations, the current practice is even more dismal: fold changes are 

often (but not always) reported, but even these are limited as they do not take the within-compound variation 

into account.35  Bayesian analyses are advantageous as they can consider both the likelihood of a hypothesis 

being true and an estimation of effect size at the same time.  Researchers should consider reporting p-values, 

effect sizes – whether fold changes or a standardized measure of effect size like Cohen’s d – and Bayesian 

results so that readers can gain greater insight from the data.36 Entirely Bayesian analyses, which report 

Bayes Factors, posterior estimates, and credible intervals, may also be suitable when designing a study. 

Although Bayesian model comparisons can be conducted on any set of competing models,37 we here 

focused on simple case/control-style analyses.  More advanced Bayesian analyses can be employed to 

answer increasingly complex and specific research questions, and do not have to be restricted to linear 

Figure 8. Forest plot of compounds with Bayesian 95% credible 

intervals not overlapping with zero in the Naviaux data set. 

Points in each bar represent posterior distribution median and 

bars represent 95% credible interval bounds. 
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relationships.38 Researchers who add these analytical skills to their statistical toolbox will be able to elicit 

richer, more detailed information from their data than others who simply report a p-value. 

There are some limitations of Bayesian statistics.  First, the potentially subjective nature of selecting 

a prior distribution is a common criticism,37 as researchers may attempt multiple analyses in order to find a 

favored result using different prior distribution parameters.  Therefore, researchers should aim to be 

transparent with their choice and justification for their priors and their statistical analyses. Choosing a suitable 

prior distribution can also be challenging, particularly for researchers unfamiliar with Bayesian analyses.28 

Researchers should consider the following issues when deciding upon a prior distribution: The expected effect 

size and its potential variability, whether the hypothesis is one- or two-tailed, and the researcher’s confidence 

in observing a relatively specific effect size.39 Limitations of BFs also include their interpretation. BFs only 

provide relative, and not absolute, evidence for a hypothesis: a statement such as “the BF of 1/50 proves the 

null hypothesis” is incorrect.  Related to the previous comments regarding choosing a suitable prior 

distribution, if a prior distribution is not appropriate, the resulting BF is likely to be biased against it, thereby 

inaccurately estimating the strength of evidence.   

Conclusion 

Relying on p-values alone may only provide a limited perspective of research findings. Bayesian 

analyses provide an alternative to traditional statistical analyses by enriching the information extracted from 

the data. The validity of research findings is the foundation of the scientific evidence that contributes to 

translational research and evidence-based practice. As demonstrated in this paper, Bayesian analyses are 

no more difficult to understand and interpret than traditional analyses.  Researchers are encouraged to 

incorporate results of previous research into their current studies through the use of Bayesian statistics, 

thereby increasing the robustness of the results reported to inform future research and increase field 

knowledge. 
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