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 2

ABSTRACT 36 

Previous studies have evidenced how the local prediction of physical stimulus features may 37 

affect the neural processing of incoming stimuli. Less known are the effects of cognitive 38 

priors on predictive processes, and how the brain computes local versus cognitive predictions 39 

and their errors. Here, we determined the differential brain mechanisms underlying prediction 40 

errors related to high-level, cognitive priors for melody (rhythm, contour) versus low-level, 41 

local acoustic priors (tuning, timbre). We measured with magnetoencephalography the 42 

mismatch negativity (MMN) prediction error signal in 104 adults having varying levels of 43 

musical expertise. We discovered that the brain regions involved in predictive processes for 44 

local priors were primary and secondary auditory cortex and insula, whereas cognitive brain 45 

regions such as cingulate and orbitofrontal cortices were recruited for melodic errors in 46 

cognitive priors. The involvement of higher-level brain regions for computing cognitive 47 

errors was enhanced in musicians, especially in cingulate cortex, inferior frontal gyri, and 48 

supplementary motor area. Overall, the findings expand knowledge on whole-brain 49 

mechanisms of predictive processing and the related MMN generators, previously mainly 50 

confined to the auditory cortex, to a frontal network that strictly depends on the type of priors 51 

that are to be computed by the brain. 52 
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Introduction 62 

According to predictive coding theory, audition is an active process where models of 63 

expectations for the incoming sounds are constantly updated based on expectations (also 64 

termed priors) when errors occur 1,2. Recent neuroimaging studies recorded the mismatch 65 

negativity (MMN) with electroencephalography (EEG) or magnetoencephalography (MEG) 66 

3,4 providing empirical support for the theory in relation to auditory processing, since MMN 67 

indexes predictive coding errors of acoustic features and demonstrate the existence of 68 

ascending, forward connections in the auditory cortex conveying prediction errors, which 69 

correspond to the ‘new’ information conveyed by the external stimuli that cannot be 70 

predicted. MMN studies also demonstrated the presence of backward connections from 71 

higher-order areas of the auditory cortex to predict activity in lower-order areas 5,6,7,8.  72 

However, most studies measured the MMN for simple acoustic feature errors, 73 

analyzing the MEEG sensor signal and parameters. Only a minority of studies have provided 74 

a clear reconstruction of the neural sources. These studies returned a network of active brain 75 

areas that were mainly localized in the auditory cortex and especially in Heschl’s gyrus, 76 

superior, and middle temporal gyri 9–12. Additional, weaker generators of the MMN were 77 

localized in the inferior frontal cortex and cingulate gyrus 9–11. Functional magnetic 78 

resonance imaging (fMRI) studies confirmed the involvement of superior temporal gyrus and 79 

right inferior and middle frontal gyri in the generation of the MMN 13,14. Taken together, the 80 

current literature supports the hypothesis that auditory cortex is the main generator of the 81 

MMN elicited in response to errors of acoustic priors, with frontal generators possibly 82 

responsible for the process of involuntary “attention switching” and prior updating 15–19.  83 

Within this framework, music listening is a peculiar case: while processing music the 84 

brain constantly predicts lower-level acoustic features using knowledge (priors) accumulated 85 

from life-long exposure to all kinds of sounds while, at the same time, integrating them with 86 

music-specific priors from exposure to a specific musical culture, allowing us to spot those 87 

changes and mistakes (e.g., in tonality, harmony, transposition, rhythm) that make music 88 

either interesting and pleasurable or, conversely, boring and dissonant 6,20,21. How this 89 

process, indexed by the MMN prediction error signal, is enacted in the different brain areas, 90 

beyond the primary auditory cortex, is, thus far, an open research question. 91 

Most of MMN studies of musical sound processing, including the fMRI ones, utilized 92 

simple auditory oddball paradigms, where the acoustic features inserted in sequences of 93 

coherent sounds (e.g., pitch, rhythm, location, timbre) are broken by sudden, infrequent 94 
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deviant sounds 22,23. These oddball paradigms eliciting the MMN response have allowed us to 95 

study automatic predictive processes for sounds that rely on feedforward and backward 96 

projections from and to the auditory cortex, not requiring the intervention of additional 97 

attentional resources 4. However, these oddball sequences have little resemblance with the 98 

variety of sounds and sound features that are encountered in music, limiting our 99 

understanding of whether predictions can be made at that sensory level also for the more 100 

cognitive features of sounds that are essential in music 24. 101 

To this end, the newer “multi-feature” paradigm 25,26,27 introduces a deviation in a 102 

single feature into every second sound of a musical pattern, allowing for the recording of 103 

several MMNs of prediction errors. In a musical version of this paradigm, six deviants were 104 

used (pitch, slide, duration, timbre, location or intensity), obtaining reliable MMNs 28–32. 105 

Similarly, in the latest “MusMelo” paradigm, six deviants are inserted in a loop of one 106 

elaborated musical melody 33,34, crucially including two distinct categories of deviants: 107 

cognitive or high-level deviants and acoustic or low-level ones. Cognitive deviants refer to 108 

changes in the melodic line (melodic contour) of the melody, altering the meaning of the 109 

music since they give rise to a varied version of the original melody. Conversely, acoustic 110 

deviants sound merely like “mistakes” during the musical performance without producing 111 

any actual change of the melodic line. Hence, the MusMelo paradigm offers a unique 112 

possibility of measuring the neural indexes of cognitive versus acoustic priors and their 113 

related prediction error signals, and of locating the subservient neural sources.  114 

To summarize, much is known on the MMN prediction error signal and its neural 115 

substrate in the auditory cortex. However, there is not definitive consensus on the role of 116 

frontal MMN generators, especially in the music perception domain. In this study, we wished 117 

to determine the predictive processes in the whole brain that are responsible for generating 118 

error signals in music, when the error is computed against acoustic versus cognitive priors. 119 

To this goal, we investigated in a large sample of over 100 participants the neural sources of 120 

acoustic versus cognitive errors of musical melodies. We hypothesized that we would 121 

observe stronger frontal generators for cognitive deviants, and increased responses in the 122 

auditory cortex to acoustic deviants. 123 

Finally, MMN has been repeatedly connected to cognitive abilities 35,36 and 124 

musicianship, musical learning and cognitive abilities 29,37–40. For instance, Putkinen and 125 

colleagues 34  showed an enhanced MMN in children exposed to musical training, especially 126 

for melody modulation, mistuning and timbre. Interestingly, such differences were not 127 

existent before exposure to the musical training. Investigating the relationship between MMN 128 
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and musical training, Kliuchko and colleagues 41 discovered an overall stronger MMN to 129 

timbre, pitch and slide for jazz compared to classical musicians and non-musicians and 130 

amateurs. Similarly, Tervaniemi and colleagues 42 showed that MMNs were enhanced for 131 

tuning deviants in classical musicians, for timing deviants in classical and jazz musicians, and 132 

for transposition deviant in jazz musicians. Moreover, fMRI evidence has consistently 133 

demonstrated how musical expertise refines cognitive priors making them accurate and 134 

sophisticated, for instance, allowing musicians to notice subtle harmonic changes and their 135 

action observation areas and higher-order frontal areas to be activated during mere music 136 

listening 43,44. For all these reasons, in this study we also assessed whether the MMN 137 

generators to cognitive and acoustic deviants were modulated by the participants’ musical 138 

expertise.  139 
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Methods 140 

 141 

Participants 142 

Participants were volunteers recruited with fliers in social media or posted in academies and 143 

universities, and they were compensated for the time spent in the lab with vouchers that could 144 

be used for culture and sport activities (e.g. museums, concerts, swimming pools, etc.). Prior 145 

to the beginning of the experiment, participants filled in the informed consent. The 146 

experimental procedures, included in the wide research protocol named “Tunteet” 147 

(“Emotions” in Finnish), complied with the Declaration of Helsinki – Ethical Principles for 148 

Medical Research, and were approved by the Ethics Committee of the Hospital District of 149 

Helsinki and Uusimaa (approval number: 315/13/03/00/11, dated 11th March 2012). The 150 

“Tunteet” protocol included 1 to 3 experimental sessions (depending on participants’ 151 

availability). Besides the paradigm included for this study, other paradigms were presented to 152 

the participants, however, never exceeding 60 minutes of MEEG recordings and three hours 153 

of time spent at the Biomag laboratory (including welcoming, preparation, instructions, 154 

questionnaires and forms filling, and dismissal). MRI recordings were conducted in another 155 

day separated by maximum two weeks from MEG recordings. Other MEG and behavioral 156 

findings with the same participants are reported in Kliuchko and colleagues 41, Haumann and 157 

colleagues 45, Criscuolo and colleagues 35 , and Bonetti and colleagues 30,31. The current 158 

dataset based on the Musmelo paradigm has, however, never been reported in a paper. 159 

The study comprised 104 volunteers: 44 males and 60 females (age range: 18 – 51 years old, 160 

mean age: 28.24 ± 7.92 years). All participants declared to be healthy and reported no current 161 

or previous drug nor alcohol abuse. In addition, they were not under any kind of medication, 162 

they did not have any neurological or psychiatric disorder, and declared to have normal 163 

hearing. Finally, their educational, economic, and social statuses were homogeneous, as 164 

studied and reported in Criscuolo and colleagues 35. 165 

Since musicianship has been connected to modulation of MMN responses 17,39,50–52, we 166 

recruited participants with different levels of musical expertise. Specifically, the average 167 

formal musical training received by our participants was 5.88 ± 7.12 years (ranging from 0 to 168 

28 years of musical training). Indeed, our samples comprised musicians who obtained a 169 

professional musical education or graduated from Sibelius Academy and University of 170 

Helsinki, amateur musicians who had only few years of formal musical training, and non-171 

musicians. 172 
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 173 

Experimental design and stimuli 174 

To detect the brain predictive responses to cognitive and acoustic deviants, we used the 175 

Melodic Multifeature paradigm (MusMelo) introduced by Tervaniemi and colleagues 33 and 176 

Putkinen and colleagues 34 while participants’ brain activity was recorded by means of 177 

magnetoencephalography (MEG). 178 

The MusMelo paradigm consisted of brief recursive melodies composed by the author Minna 179 

Huotilainen. These melodies were played with the standard timbre correspondent to digital 180 

piano tones (McGill University Master Samples) and followed typical Western tonal musical 181 

harmonies and configurations.  182 

The melodies started with a triad (duration of 300 ms), followed by four tones of different 183 

length, plus an ending tone. To be noted, a 50-ms gap was always present between successive 184 

tones, while the ending tone was of 575 ms duration. Additionally, a 125 ms gap between 185 

each melody was inserted. Thus, one melody lasted for 2100 ms in total. Such melodies were 186 

presented for 15 min in a looped, recursive manner.  187 

Within these repeated melodies, six different deviants (changes) were inserted. Importantly, 188 

they were divided into low-level, acoustic deviants and high-level, cognitive deviants. 189 

The key difference between the two categories of deviants is that low-level, acoustic deviants 190 

did not alter the melodic contour of the musical stimuli, but introduced acoustic mistakes 191 

(e.g., small variations in pitch or rhythm that were perceived as mistakes and not drastic 192 

changes of the melodies). Conversely, high-level, cognitive deviants operated a profound 193 

change in the melodies that were perceived as proper variations. One melody could contain 194 

several changes, as illustrated in Figure 1.  195 

 196 

As follows, we provided details on the acoustic deviants: 197 

1. Mistuning (half of a semitone upwards, up to 3% of the fundamental frequency of the 198 

sound). It occurred in the 14% of the melodies and could happen in the first, second or fourth 199 

tone of the melody. 200 

2. Timbre deviant (flute timbre instead of the standard piano timbre). It occurred in the 8% of 201 

the melodies and could happen in the first, third or fourth tone of the melodies. 202 

3. Timing delay (100 ms silent gap). It occurred in the 8% of the melodies. It could happen in 203 

the first, second or third tone. 204 

Conversely, these were the characteristics of the cognitive deviants:  205 
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1. Melody modulation occurred in the 12% of the melodies. It consisted of a pitch change of 206 

the third or fourth tone. It endured until a new melody modulation was introduced.  207 

2. Rhythm modulation occurred in the 7% of the melodies and could happen in the second or 208 

third tone. There were two possible alternatives for rhythm modulation, either a short tone 209 

was replaced by a long tone (tone lengthening) or a long tone was replaced by a short one 210 

(tone shortening). 211 

3. Transposition occurred in the 16% of the melodies and could occur in the first triad. In this 212 

case, after introducing the chord transposition the following melodies kept the converted key 213 

until a new chord transposition was presented.  214 

Thus, all cognitive deviants became the repeated form of the melody in its subsequent 215 

presentations. This system has been previously called roving-standard fashion 46. Finally, all 216 

cognitive deviants were musically plausible, both when the change involved the melodic 217 

contour and the rhythm contour. 218 

The stimuli were presented using Presentation software (Neurobehavioural Systems, 219 

Berkeley, CA). In a separate session, the structural images of participants’ brain were 220 

acquired by using magnetic resonance imaging (MRI). 221 

 222 

 223 

 224 

 225 

Fig. 1. Melodic multi-feature (MusMelo) paradigm. 226 

Graphical depiction of the MusMelo paradigm, consisting of brief recursive melodies played consecutively in a 227 

loop. In these melodies, six different deviants have been inserted. The deviants belonged to two categories: 228 

acoustic deviants (mistuning, timbre, rhythm mistake) and cognitive deviants (melody modulation, rhythm 229 

modulation, transposition). 230 

 231 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492262doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492262
http://creativecommons.org/licenses/by-nd/4.0/


 9

 232 

 233 

Data acquisition 234 

MEG data was collected at the Biomag Laboratory of the Helsinki University Central 235 

Hospital. The measurements were conducted in a magnetically shielded room (ETS-Lindgren 236 

Euroshield, Eura, Finland) with Vectorview™ 306-channel MEG scanner (Elekta 237 

Neuromag®, Elekta Oy, Helsinki, Finland). The MEG scanner had 102 sensor elements. 238 

Specifically, it had 102 orthogonal pairs of planar gradiometer SQUID sensors and 102 axial 239 

magnetometer SQUID sensors. We placed electrodes above and below the left eye and close 240 

to the external eye corners on both sides of the face of the participants to record horizontal 241 

and vertical eye movements. Furthermore, we recorded the continuous head position of the 242 

participants by using the head position indicator (HPI) coils that were placed on the forehead 243 

and behind the ears of participants. Moreover, for each participant we recorded the fiducial 244 

points corresponding to nasion and to the prearicular anatomical landmarks by using the 245 

Isotrack 3D digitizer (Polhemus, Colchester, VT, USA). The HPI coils and fiducial points 246 

were necessary to perform co-registration between MEG and MRI data at a later stage of 247 

analysis. Finally, the MEG data was registered with a sampling rate of 600 Hz. 248 

The recorded MRI data was the structural T1, required for the source reconstruction of the 249 

MEG signal. The MRI scanning was conducted using a 3T MAGNETOM Skyra whole-body 250 

scanner (Siemens Healthcare, Erlangen, Germany), plus a standard 20-channel head-neck 251 

coil. The measurements were done at the Advanced Magnetic Imaging (AMI) Centre (Aalto 252 

University, Espoo, Finland). Details of the T1-weighted structural images are reported as 253 

follows: 176 slices; matrix = 256×256; field of view = 256x256 mm; pulse sequence = 254 

MPRAGE; slice thickness = 1 mm; interslice skip = 0 mm. Later in the analysis pipeline, we 255 

co-registered each individual T1-weighted MRI scan to the standard MNI brain template 256 

through an affine transformation. Then, we referenced such image to the MEG sensors space 257 

by employing the Polhemus head shape data and the three fiducial points collected prior to 258 

start the MEG recording. 259 

 260 

Data pre-processing 261 

We preprocessed the raw MEG sensor data by using the signal space separation solution 262 

implemented in MaxFilter 47 which attenuated the interference originated outside the scalp. 263 

Afterwards, we converted the data into the SPM format and further analysed it in Matlab 264 

(MathWorks, Natick, Massachusetts, United States of America) by employing OSL (OHBA 265 
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Software Library), a freely available toolbox that relies on a combination of FSL 48, Fieldtrip 266 

49, SPM 50, as well as in-house-built functions.  267 

First, a few segments of the data contaminated by large artifacts were removed after visual 268 

inspection. Second, we corrected the brain data for the interference of eyeblinks and heart-269 

beat artefacts by using independent component analysis (ICA). This procedure decomposed 270 

the original signal in independent components. Then, we identified and discarded the 271 

components that picked up the eyeblink and heart-beat activities. Finally, we rebuilt the 272 

signal by using the remaining components 51. After the preprocessing steps, we epoched the 273 

signal in 4130 trials (one for each sound) lasting 700 ms each (with 100ms of pre-stimulus 274 

time that was used for baseline correction). To be noted, in a few cases the number of trials 275 

was lower than 4130. This happened when a few segments of the data were previously 276 

discarded due to the presence of large artefacts. 277 

 278 

MEG sensor analysis 279 

Although our focus was on the MEG source reconstructed brain data, a first analysis on MEG 280 

sensors data was computed, in accordance with state-of-the-art guidelines about best practice 281 

in MEG analysis 52. 282 

Thus, according to a large number of MEG and electroencephalography (EEG) task-related 283 

studies 52–54, we averaged the trials over conditions, and we combined planar gradiometers by 284 

sum-root square. Then, we assessed whether the deviant stimuli elicited a clear MMN signal 285 

by contrasting the brain responses to our six categories of deviants against the standard 286 

stimuli. Since this contrast has been done for each deviant (six), each time point (182, 287 

ranging from 0 to 300 ms from the onset of the deviant stimuli), and each MEG combined 288 

gradiometer channel (102), we have corrected for multiple comparisons by using Bonferroni 289 

correction and thus lowering the p-value to 4.5e-07 (.05 / (6 * 182 * 102)). In this analysis, 290 

we used combined gradiometers only because of their better signal-to-noise ratio than 291 

magnetometers when performing analysis on the MEG sensor level 52. The results showed 292 

that the MMN was strongly elicited among all deviants, are illustrated in Figure 2. The 293 

detailed statistical results showing significant time-points and channels for each deviant are 294 

reported in Table ST1. 295 

 296 

Source reconstruction  297 

We reconstructed the neural sources of the brain activity recorded on the scalp by the MEG 298 

channels, applying the widely adopted procedure named beamforming. Here, we used the 299 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.17.492262doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.17.492262
http://creativecommons.org/licenses/by-nd/4.0/


 11

OSL implementation consisting of a local-sphere forward model and a beamformer approach 300 

as the inverse method 55–57. The local-sphere forward model considers the MNI-co-registered 301 

anatomy as a simplified geometric model, and it fits a sphere separately for each sensor 58. 302 

Then, the beamforming employs a different set of weights sequentially applied to the source 303 

locations to isolate the contribution of each source to the activity recorded by the MEG 304 

channels for each different time point. In our procedure, we used a three-dimensional eight-305 

mm grid which resulted in a brain parcellation of 3559 dipoles (sources) and both 306 

magnetometers and (non-combined) planar gradiometers. 307 

 308 

Neural sources of MMN peaks 309 

We computed an independent GLM sequentially for each time point at each dipole location, 310 

where we contrasted each deviant category against the standard stimuli. This procedure, 311 

computed independently for each participant, allowed us to detect the contrast of parameter 312 

estimates (COPEs) for the brain activity specifically associated with the detection of the 313 

deviant stimuli (i.e. the MMN in source space). These results were then submitted to a 314 

second-level (group) analysis, using one-sample t-tests with spatially smoothed variance 315 

obtained with a Gaussian kernel (full-width at half-maximum: 50 mm). 316 

Although the analysis was computed for each time-point in the epoch, we were only 317 

interested in the brain sources of the MMNs peak. Thus, after detecting the peak MMN 318 

activity independently for each deviant, we extracted and averaged the group-level results 319 

around the MMN peak (considering a small time-window of ± 25ms around the MMN peak). 320 

This procedure returned the strength of the MMNs to the six deviants for each brain dipole. 321 

To correct for multiple comparisons, we performed a cluster-based permutation test with 322 

5000 permutations which allowed us to isolate the clusters of brain activity underlying the 323 

generation of the MMNs. Since we computed six tests (one for each deviant), we have used 324 

an α level of .0017 (.05/6), corresponding to a cluster forming threshold t-value = 3.3. 325 

 326 

MMNs to cognitive versus acoustic deviants 327 

After detecting the sources of the brain signals underlying the MMNs peak, we performed a 328 

further analysis to assess whether such sources differed according to the category of deviants. 329 

Specifically, we were interested in assessing whether cognitive deviants (transposition, 330 

melody modulation and rhythm modulation) elicited an MMN with different brain sources 331 

than acoustic deviants (mistuning, timbre, rhythm mistake). Thus, first we averaged together 332 
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the neural activity of the three deviants forming the two categories. We conducted this 333 

procedure independently for each participant. Second, we computed a t-test for each brain 334 

dipole comparing the brain activity underlying cognitive versus acoustic deviants. Finally, to 335 

correct for multiple comparisons, we performed cluster-based Monte-Carlo simulations 336 

(MCS) 53,59–61. Specifically, the MCS consisted of detecting the spatial clusters of significant 337 

dipoles (dipoles whose test had a p-value lower than the MCS α level) in the original data and 338 

assessing whether they were significant or occurred by chance. First, spatial clusters were 339 

identified in the original data. Then, we permuted the original data and detected the clusters 340 

in this new permuted set of brain values. We computed this procedure 1000 times, obtaining 341 

a reference distribution of cluster sizes detected for each permutation. Finally, the original 342 

cluster sizes were compared to the reference distribution and considered significant if they 343 

were bigger than 99.9% (MCS p-value of .001) of the permuted cluster sizes. In this case, we 344 

computed two MCS, one for the significant dipoles where cognitive deviants were stronger 345 

than acoustic ones, and another one for the dipoles where the acoustic deviants were stronger 346 

than the cognitive ones. Remarkably, while cognitive versus acoustic deviants returned a 347 

significant cluster only with a standard cluster-forming threshold p-value = .05, acoustic 348 

versus cognitive deviants returned a significant cluster even when lowering the cluster-349 

forming threshold p-value to 1.0e-04, indicating a very large significant difference. Details of 350 

the outcomes of these analyses are reported in the Results section. 351 

 352 

Cognitive, acoustic deviants and musicianship 353 

The last step of our analysis pipeline was to assess whether there was a relationship between 354 

musical expertise and the brain areas activated during the perception of cognitive and 355 

acoustic deviants. Thus, we computed Pearson’s correlations for each brain dipole between 356 

the participants’ years of music playing and their brain activity underlying deviant detection. 357 

Afterwards, we corrected for multiple comparisons employing an MCS analogous to the one 358 

described above. In this case, since we computed two independent MCS analyses, one for the 359 

cognitive and one for the acoustic deviants, we used a cluster-forming threshold p-value = .01 360 

and an MCS p-value = .001.  361 
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Results 362 

 363 

Experimental design and MMNs detection 364 

Our study had three main aims: reconstructing the neural sources of the deviants inserted in a 365 

melodic multifeature paradigm (i), assessing whether such neural sources differed across 366 

cognitive and acoustic deviants (ii), investigating the relationship between the neural sources 367 

of cognitive and acoustic deviants and the musical expertise of the participants. 368 

We employed the Melodic Multifeature paradigm (MusMelo), which was introduced by 369 

Tervaniemi and colleagues 33 and Putkinen and colleagues 34 and consists of a series of 370 

deviants breaking cognitive (transposition, melody modulation and rhythm modulation) or 371 

acoustic (mistuning, timbre, and rhythm mistake) musical features. Thus, it is the ideal 372 

paradigm to assess whether the MMNs neural sources vary depending on the characteristic of 373 

the deviants (cognitive versus acoustic). To address our research questions, we presented our 374 

104 participants with the MusMelo paradigm while we collected their brain activity using 375 

MEG. 376 

Although our focus was on the neural sources of the MMNs elicited by the six deviants of the 377 

MusMelo, prior to computing the analysis in MEG source space, we verified that we had 378 

obtained a reliable MMN signal on the MEG sensors. We computed one-sample t-tests for 379 

each MEG-combined gradiometer channel (102), each time point (182, ranging from 0 to 300 380 

ms after the onset of the stimuli), and each deviant, comparing the brain response to the 381 

deviant versus the standard stimuli. We corrected for multiple comparisons by using 382 

Bonferroni correction which resulted in an adjusted p-value of 4.5e-07 (.05 / (6 * 182 * 102)). 383 

Our results showed that the MMNs were clearly identified among several MEG channels and 384 

time points (p < 4.5e-07), as illustrated in Figure 2 and reported in detail in Table ST1. 385 

 386 

 387 
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 388 

 389 

Fig. 2. MMN to all deviants (MEG channel 1341). 390 

Waveform depicting the MMN responses (deviant minus standard) to the six deviants occurring in the MusMelo 391 

paradigm (melody modulation, rhythm modulation, transposition, mistuning, timbre, and rhythm mistake). The 392 

time series were recorded at the MEG magnetometer channel 1341, which is a typical channel shown in MMN 393 

studies. Dash lines show the standard error. The grey area highlights the different peaks of the MMN to the six 394 

deviants included in the study. X-axis shows time (in seconds), while y-axis amplitude of the signal in fT. 395 

 396 

 397 

Neural sources of MMN peaks 398 

After verifying the reliability of our paradigm in detecting clear MMN signals, we 399 

reconstructed the sources of the neural signal by combining the MEG and MRI data of each 400 

participant. Specifically, as widely done in the field, we used a local-sphere forward model 401 

and a beamformer approach as the inverse method (see Methods for details). Our procedure 402 

returned a time series describing the strength of the neural signal over time for each category 403 

of stimuli (deviant and standard) and for each of the reconstructed 3559 brain sources 404 

(dipoles). Then, we computed a first-level analysis (independently for each participant) by 405 

computing a GLM sequentially for each time point at each dipole location, where we 406 

contrasted each deviant category against the standard stimuli. These results were submitted to 407 

a second-level (group) analysis, using one-sample t-tests with spatially smoothed variance 408 

obtained with a Gaussian kernel (full-width at half-maximum: 50 mm). Although the analysis 409 

was computed for each time point in the epoch, we were only interested in the brain sources 410 

of the MMNs peak. Thus, first we detected the peak MMN activity independently for each 411 
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deviant. Second, we extracted and averaged the group-level results around the MMNs peak 412 

(considering a time window of ± 25 ms around the MMN peak). Third, we corrected for 413 

multiple comparisons using a cluster-based permutation test 65 with 5000 permutations which 414 

allowed us to isolate the significant clusters of brain activity underlying the generation of the 415 

MMNs. Since we computed six tests (one for each deviant), we have used an α level of .0017 416 

(.05/6), corresponding to a cluster forming threshold t-value = 3.3. 417 

As depicted in Figure 3 and reported in detail in Table ST2, these analyses (p < .0017) 418 

returned a main involvement of the primary and secondary auditory cortices, especially for 419 

timbre, rhythm mistake, melody modulation, and mistuning. Remarkably, medial cingulate 420 

gyrus and hippocampal regions were also strongly activated by the presentation of the deviant 421 

stimuli. This result was particularly evident for melody and rhythm modulation, rhythm 422 

mistake, and timbre. Finally, transposition, which is a rather cognitive and complex deviant, 423 

elicited activity mainly localized in the anterior part of the cingulate and in the inferior frontal 424 

gyrus. 425 

 426 

 427 

 428 

 429 

Fig. 3. Brain sources of the MMN to all deviants. 430 

Brain sources of the MMN to all deviants depicted in brain templates. The colorbar indicates t-values obtained 431 

by contrasting the brain response to deviant versus standard sounds. The top row illustrates acoustic deviants, 432 

while the bottom row depicts cognitive deviants. Overall, acoustic deviants show strong activity in the auditory 433 
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cortex, while cognitive deviants highlight the contribution of cingulate and frontal brain areas to the generation 434 

of the MMN. 435 

 436 

 437 

MMNs to cognitive versus acoustic deviants 438 

After detecting the sources of the brain signals underlying the MMNs peak, we performed a 439 

further analysis to assess whether these sources differed when comparing cognitive 440 

(transposition, melody modulation, and rhythm modulation) versus acoustic (mistuning, 441 

timbre, and rhythm mistake) deviants. Thus, first we averaged together the neural activity of 442 

the three deviants in each category. Second, we computed a t-test for each brain dipole 443 

comparing the brain activity underlying cognitive versus acoustic deviants. Finally, to correct 444 

for multiple comparisons, we performed cluster-based MCS (MCS p-value < .001). 445 

When using a cluster-forming threshold p-value < .05 (see Methods for details), we identified 446 

a small, but significant cluster of activity where cognitive deviants had a stronger neural 447 

signal than acoustic ones. This cluster was localized in the medial cingulate gyrus. 448 

Remarkably, when computing the MCS to identify the clusters where the brain activity was 449 

stronger for acoustic versus cognitive deviants, we observed a large cluster which was largely 450 

significant (cluster forming threshold p-value < 1.0e-04). This cluster mainly originated in 451 

the right primary auditory cortex, but extended to secondary auditory cortex, insula, frontal 452 

operculum, and hippocampal regions (Figure 4A and Table ST3). 453 

 454 

Cognitive, acoustic deviants and musicianship 455 

Finally, we wished to assess whether there was a relationship between musical expertise and 456 

the neural sources of the MMNs elicited by cognitive and acoustic deviants. Thus, we 457 

computed Pearson’s correlations between the participants’ years of music playing and their 458 

brain activity underlying deviant detection. This analysis was computed for each brain source 459 

originating the peak of the MMNs. We corrected for multiple comparisons employing an 460 

MCS analogous to the one described above (cluster-forming threshold p-value < .01 and 461 

MCS p-value < .001). 462 

This analysis showed significant clusters of positive correlations between musical expertise 463 

and neural response to deviants (Figure 4B and Table ST4). Interestingly, such relationship 464 

was particularly evident for the cingulate, inferior frontal gyri, and supplementary motor area. 465 

 466 

 467 
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 468 

 469 

Fig. 4. MMN to acoustic versus cognitive deviants and musical expertise 470 

(A) Depiction in brain templates of the contrast between cognitive versus acoustic deviants. The colorbar shows 471 

the t-values emerged from the contrast. (B) Depiction in brain templates of the correlation between musical 472 

expertise and MMN to acoustic (left) and cognitive (right) deviants. The colorbar shows the r-value obtained 473 

from the correlations. 474 

 475 

 476 

 477 

 478 

 479 

 480 

  481 
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Discussion 482 

In this study, we aimed to assess the brain prediction error indexed by the MMN elicited by 483 

cognitive and acoustic deviants inserted in a musical context. Results revealed that the neural 484 

sources of the MMNs were mainly localized in the auditory cortex. However, significant 485 

clusters of activity were also observed in the cingulate gyrus, hippocampal, and frontal areas. 486 

Notably, the contrast between cognitive versus acoustic deviants showed stronger activity 487 

within the cingulate gyrus for the cognitive deviants. Conversely, the acoustic deviants 488 

elicited stronger responses in the auditory cortex. At last, we revealed that musical expertise 489 

modulated the sources of the brain prediction error indexed by MMN to both categories of 490 

deviants. Notably, such modulation was stronger for cognitive deviants and involved 491 

especially the cingulate, inferior frontal gyri, and supplementary motor area. 492 

The brain sources which generated the MMNs were coherent with the sources 493 

reported by previous literature. Specifically, several studies showed that auditory cortex, and 494 

especially Heschl’s gyrus together with superior and middle temporal gyri, is primarily 495 

implicated in the generation of the MMN 9–11. In addition, we detected sources in the medial 496 

and anterior cingulate gyrus, hippocampal areas, and frontal operculum/inferior frontal gyrus. 497 

This is also supported by previous research which highlighted frontal generators of MMN 10, 498 

proposing that they were necessary for the process of switching attention to the deviant 499 

stimulation 15–18. 500 

Interestingly, we detected a dissociation between the sources underlying processing of 501 

cognitive versus acoustic deviants. Indeed, while auditory cortex was primarily recruited by 502 

the processing of acoustic deviants, a higher-order area such as the medial cingulate gyrus 503 

was stronger for the cognitive deviants. Moreover, insula and frontal brain areas such as 504 

anterior cingulate gyrus and inferior frontal gyrus exhibited greater activity than auditory 505 

cortex when observing the MMN sources of two of our cognitive deviants, namely rhythm 506 

modulation and transposition. In particular, the transposition deviant is thought to be the most 507 

cognitive deviant of the paradigm. Indeed, Putkinen and colleagues 34 showed that 508 

transposition was the only deviant not evoking larger MMN in music-trained children than in 509 

control ones. These findings broadened our understanding of MMN sources and auditory 510 

prediction error. In fact, there was no evidence in favour of a higher switching of attention for 511 

the cognitive versus acoustic deviants. Thus, the higher involvement of frontal brain regions 512 

observed in our study for the cognitive deviants should not be connected to the “attention 513 

switching” hypothesis 15–18 mentioned above. Conversely, we argue that cognitive and 514 
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acoustic deviants elicit two diverse types of auditory prediction error. As a matter of fact, 515 

acoustic deviants are perceived as “mistakes” occurring in the music. On the contrary, 516 

cognitive deviants are actual changes of the musical information carried by the melodies. In 517 

other words, in the first case the brain may simply notice an impaired quality of the musical 518 

information, while in the second scenario, the prediction error operated by the brain would be 519 

more complex, leading to the understanding that musical information has actually changed.  520 

Notably, even though automatic and independent of a participant’s attention, the prediction 521 

error associated with changes in musical information were generated by higher-order brain 522 

areas usually associated with language processing and conscious cognitive abilities, such as 523 

inferior frontal gyrus 62–64 and cingulate gyrus 65–67. Conversely, our findings suggest that 524 

musical “mistakes” such as imprecise rhythms, small mistunings, or sudden variations in 525 

timbre would not require such complex processing. Indeed, in this case, the recruitment of the 526 

auditory cortex would be enough to detect the changes in the physical, acoustic features of 527 

the sounds. 528 

Among our results, of particular interest is the role of cingulate gyrus which has been 529 

previously connected to several functions, including prediction error. For example, Alexander 530 

and colleagues 68 highlighted the role of anterior cingulate cortex (ACC) in processing 531 

behavioural error and signalling deviations between expected and observed events, describing 532 

it within the framework of reinforcement learning. Similarly, an activation likelihood 533 

estimation (ALE) meta-analysis investigated the neural correlates of prediction error in 534 

reinforcement learning. Authors found that ACC, medial prefrontal cortex (mPFC) and 535 

striatum were the key brain areas underlying prediction error, in studies that used both 536 

rewarding and aversive reinforcers 69. Another fMRI study investigated the brain activity 537 

underlying a numerical Stroop task, reporting activity in the ACC when participants 538 

processed errors in the task 70. Along this line, another contribution claimed that ACC learnt 539 

to predict error likelihood in each context, even for trials in which there was no error 71. A 540 

simulation study on mPFC and ACC provided modelling evidence in support of the role of 541 

these brain structures for error likelihood, signaling mistakes, and reward, concluding that 542 

they are central for learning and predicting the likely outcomes of actions whether good or 543 

bad 72. Furthermore, Bonetti and colleagues 53,60,61 showed that cingulate gyrus is of primary 544 

importance for both active encoding and recognition of auditory sequences, and that its 545 

involvement positively correlate with the strength of the recognition 73. Their findings 546 

revealed that the cingulate is more central within the whole brain network when encoding 547 

sounds than when resting 53. Moreover, they found that recognition of previously learned 548 
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compared to novel melodies was associated with stronger cingulate activity 60,61. Along this 549 

line, a recent meta-analysis 74 on music perception, imagery and production highlighted the 550 

involvement of cingulate gyrus when participants were asked to do a variety of different tasks 551 

concerning music listening and production, and mental manipulation of sounds. Taken 552 

together, this evidence supports the idea that cingulate gyrus may be a key structure for 553 

extracting information from musical sequences and signalling variations from the previously 554 

learned melodies. 555 

Conversely, acoustic “mistakes” involving basic acoustic features of musical sounds 556 

may recruit a more restricted network of auditory brain areas. This evidence is supported by 557 

previous studies employing simpler oddball and multi-feature paradigms which highlighted 558 

the primary role of auditory cortex in the MMN generations. For instance, Marco-Pallares 11 559 

and colleagues reconstructed the main sources of MMN measured with EEG within 560 

supratemporal and middle temporal cortex, bilaterally. Similarly, Waberski and colleagues 10 561 

found the main generators of MMN in supratemporal brain regions. They also reported 562 

secondary sources, with a longer latency, localized in the cingulum and right inferior 563 

temporal gyrus. Notably, this conclusion was reached even in intracranial 564 

electroencephalography (iEEG) recording, where MMN sources were observed in Brodmann 565 

areas 21 and 42, corresponding to middle temporal gyrus and posterior transverse temporal 566 

cortex, respectively 75. Moreover, additional evidence pointed out that the auditory cortex is 567 

mainly implicated in the processing of basic acoustic features of sounds and music. For 568 

instance, in a classic work, Zatorre and colleagues 76 argued that auditory cortices in the two 569 

hemispheres are specialized to extract fundamental acoustic features of both music and 570 

speech such as temporal and spectral content of sounds. Specifically, they reported that 571 

temporal resolution was better in left auditory cortical regions while spectral resolution of the 572 

sounds was greater in right auditory cortical regions. In a more recent review, King and 573 

colleagues 77 highlighted the complexity of the auditory cortex and its important role also for 574 

high-level cognitive processes. Still, they reiterated that auditory cortex shows selectivity for 575 

sound features, which is likely at the basis of processing of natural sounds, such as during 576 

speech and in real-life listening scenarios. 577 

Finally, we revealed that musical expertise modulated the brain sources of the 578 

prediction error signal elicited by cognitive and acoustic deviants. Notably, this modulation 579 

was primarily evident in high-order brain areas such as the cingulate, inferior frontal gyri, 580 

and supplementary motor area. Moreover, this relationship was primarily evident for the 581 

cognitive deviants. This finding is coherent with a large corpus of studies which showed that 582 
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the brains of musicians are different from non-musicians’. Indeed, the musician’s brain has 583 

been suggested as a model of neuroplasticity 78, being shaped by long-lasting musical 584 

training. This hypothesis was further supported by several longitudinal studies showing 585 

structural brain changes, especially in children, after exposure to musical training 79,80. 586 

Likewise, a recent meta-analysis revealed that structural and functional brain differences 587 

emerged when comparing the brain of musicians versus non-musicians 81. Back to MMN 588 

research, several works reported a stronger MMN activity recorded in brains of participants 589 

with higher musical expertise 29,37–40. Additionally, Vuust and colleagues 29 found different 590 

brain responses even across diverse categories of musicians. For instance, they revealed that 591 

the brain of jazz versus classical musicians was more sensitive to pitch and pitch-sliding 592 

deviants, features which are particularly involved in jazz training. In light of previous 593 

findings, our results provide additional evidence that musical expertise is associated with 594 

higher-level processing of music in the brain. Further, our study suggests that to outperform 595 

non-musicians when extracting varied information from musical melodies, musicians rely on 596 

stronger activity of higher-order brain areas such as cingulate and inferior frontal gyri, and 597 

supplementary motor area. 598 

In conclusion, our study showed that the brain employs different strategies for processing 599 

cognitive and acoustic auditory prediction error, and that musical expertise modulates such 600 

mechanisms. Future research is called to investigate auditory prediction error in a wider array 601 

of cognitive and acoustic deviants and assess whether similar results arise when performing 602 

attentive tasks which require a conscious elaboration of the musical information. Moreover, 603 

as previously done by Tervaniemi and colleagues 82 and Pulvermüller & Shtyrov 83, future 604 

studies should investigate acoustic and cognitive deviants in contexts different from music, 605 

such as employing linguistic experimental design and investigating speech sound MMNs. 606 

 607 

  608 

 609 
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Data availability 612 

 613 

The codes are available at the following link: https://github.com/leonardob92/LBPD-1.0.git, 614 

while the multimodal neuroimaging data related to the experiment are available upon 615 

reasonable request. 616 
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SUPPLEMENTARY MATERIALS 846 

 847 

As follows, supplementary materials related to this study. In the cases when the 848 

supplementary tables were too large to be conveniently reported in the current document, 849 

they have been reported in Excel files that can be found at the following link: 850 

https://drive.google.com/drive/folders/1GBrjTPTkf0JTbS1Q3PZ8_0zJyHfPm-851 

bM?usp=sharing 852 
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SUPPLEMENTARY TABLES 860 

 861 

Table ST1. MMN and MEG sensors 862 

Extended table showing the significant time-points over all MEG channels where the ERF elicited by the 863 

deviants was stronger than the one elicited by the standard sounds.  864 

 865 

Table ST2. Brain generators of MMNs 866 

Brain sources forming the significant cluster of activity reconstructed for the MMNs to the six deviants. For 867 

each voxel of the significant clusters, the table shows brain region label (from automated anatomical labelling 868 

(AAL) parcellation), hemisphere, t-value from the contrast deviant versus standard, and MNI coordinates. 869 

 870 

Table ST3. Brain generators of MMNs – Cognitive versus acoustic deviants 871 

Contrast between MMNs to cognitive versus acoustic deviants. For each voxel of the significant clusters, the 872 

table shows brain region label (from AAL parcellation), hemisphere, t-value from the contrast MMNs to 873 

cognitive versus acoustic deviants, and MNI coordinates. 874 

 875 

Table ST4. Cognitive and acoustic deviants and musical expertise 876 

Correlations between brain generators of MMNs to cognitive and acoustic deviants and participants’ musical 877 

expertise. For each voxel of the significant clusters, the table shows brain region label (from AAL parcellation), 878 

hemisphere, rho from the correlation between participants’ musical expertise and MMNs to cognitive or 879 

acoustic deviants, and MNI coordinates. 880 

 881 

 882 
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