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Abstract

As of June 2022, the GISAID database contains more than one million SARS-CoV-2 
genomes, including several thousand nucleotide sequences for the most common 
variants such as delta or omicron. These SARS-CoV-2 strains have been collected from 
patients around the world since the beginning of the pandemic. We start by assessing the 
similarity of all pairs of nucleotide sequences using the Jaccard index and principal 
component analysis. As shown previously in the literature, an unsupervised cluster 
analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according to 
certain characteristics such as their strain or their clade. Importantly, we observe that 
nucleotide sequences of common variants are often outliers in clusters of sequences 
stemming from variants identified earlier on during the pandemic. Motivated by this 
finding, we are interested in applying outlier detection to nucleotide sequences. We 
demonstrate that nucleotide sequences of common variants (such as alpha, delta, or 
omicron) can be identified solely based on a statistical outlier criterion. We argue that 
outlier detection might be a useful surveillance tool to identify emerging variants in real 
time as the pandemic progresses.

1. Introduction

More than one million nucleotide sequences of the SARS-CoV-2 virus have been collected 
from patients around the world since the beginning of the pandemic and made available 
in the GISAID database (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017). 
Among them are more thousands of nucleotide sequences of the most common variants, 
precisely for the alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), gamma (P.1), GH (B.1.640),
lambda (C.37), mu (B.1.621), and omicron (B.1.1.529) variants (UCSC Genome Browser, 
2022).

The emergence of new variants of the SARS-CoV-2 virus poses a threat to the progress 
made by ongoing vaccination campaigns against COVID-19 worldwide. Therefore, the 
detection and possible identification of newly emerging variants of the SARS-CoV-2 virus in
(close to) real time is therefore of great interest.

Currently, a tool called “genomic surveillance” is used by the Centers for Disease Control 
(CDC) to detect new variants (CDC 2022a). This is done both through the National SARS-
CoV-2 Strain Surveillance (NS3) program, as well as through commercial and academic 
laboratories contracted by the CDC, where genetic information of SARS-CoV-2 specimen 
are analyzed and classified into variants. By definition, a variant is characterized by having 
one or more mutations which differentiate it from other variants of the SARS-CoV-2 virus 
(CDC 2022b). A group of variants with similar genetic changes (a lineage) can be classified 
as a variant of concern (VOC) or a variant of interest (VOI) if they share characteristics that 
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potentially necessitate public health action. For example, the U.S. government SARS-CoV-2 
Interagency Group (SIG) classified omicron as a Variant of Concern (VOC) on 30 November 
2021 due to the fact that omicron emerged in multiple countries without apparent travel 
history, the replacement of certain delta variants as predominant variants in South Africa 
by omicron, and its number of mutations in the spike protein which indicated a reduced 
susceptibility to sera from vaccinated individuals and certain monoclonal antibody 
treatments. The purpose of this article is to explore the ability of new unsupervised 
learning methodology that can to detect new variants of interest.

As shown previously in the literature (Hahn et al., 2020a,b), an unsupervised cluster 
analysis in which the similarity of all pairs of nucleotide sequences is assessed using the 
Jaccard index, and subsequent application of principal component analysis to the Jaccard 
similarity matrix, results in clusters of sequences according to certain characteristics such 
as their strain or their clade. Importantly, Hahn et al. (2020f) notice that nucleotide 
sequences the omicron variant cluster among sequences stemming from variants 
identified earlier on during the pandemic.

This finding immediately prompts the question whether the nucleotide sequences 
belonging to common variants can be identified by unsupervised outlier detection. In this 
article, we investigate this question by applying outlier detection to nucleotide sequences, 
both before the emergence of a variant and after a variant has emerged. We demonstrate 
that indeed, the number of detected outliers often increases shortly after the emergence 
of a new variant, and that nucleotide sequences of common variants can be identified 
solely based on a statistical outlier criterion.

Our findings could have important implications for the automated unsupervised 
identifications of SARS-CoV-2 strains. We argue that outlier detection might be a useful 
surveillance tool to identify emerging variants of interest in real time as the pandemic 
progresses.

The article is structured as follows. Section 2 introduces the methodology we use for this 
article, starting with data acquisition and cleaning, and how the similarity of sequences is 
assessed. We then describe the outlier detection method we use. Section 3 presents our 
findings on the clustering and outlier detection of SARS-CoV-2 nucleotide sequences. The 
article concludes with a discussion in Section 4.

2. Methods

In this section, we highlight methodological features of the analysis. In particular, we 
describe data acquisition and cleaning (Section 2.1), the assessment of the similarity of 
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nucleotide sequences (Section 2.2), the methods used for outlier detection among 
sequences (Section 2.3), and the calibration of the outlier detection (Section 2.4).

2.1 Data acquisition and cleaning

All findings reported in this article are based on an image of all available SARS-CoV-2 
nucleotide sequences on the GISAID database (Elbe and Buckland-Merrett, 2017; Shu and 
McCauley, 2017) from 28 March 2022, consisting of 211,167 sequences having accession 
numbers in the range of EPI_ISL_403962 to EPI_ISL_11498019. Sequences are only 
included in the analysis if they satisfy the four data quality attributes on GISAID. To be 
precise, all nucleotide sequences have to satisfy the criterion of being complete (defined as
sequences having length at least 29,000bp), high coverage (defined as sequences with less 
than 1% N-bases), with patient status (defined as submissions with meta information 
consisting of age, sex, and patient status), and collection data complete (defined as 
submissions with a complete year-month-day collection date).

We aim to investigate if it is possible to detect sequences of a new variant among the 
other sequences in circulation upon emergence of that new variant. We consider eight 
common SARS-CoV-2 variants available on GISAID. Those are alpha (B.1.1.7), beta 
(B.1.351), delta (B.1.617.2), gamma (P.1), GH (B.1.640), lambda (C.37), mu (B.1.621), and 
omicron (B.1.1.529) variants.

To detect a new variant, we generate two reference datasets for each variant. For the first 
dataset, we determine the timepoint T1 at which the first sequences of each variant under 
consideration emerge on GISAID. We then generate the first reference dataset using only 
sequences from GISAID with a timestamp before T1. The second dataset emulates the 
emergence of a new variant. For this we determine the timepoint T2 at which 10% of all the
sequences of a variant under consideration are available on GISAID (the threshold of 10% 
is arbitrary). We then generate the second reference dataset using only sequences from 
GISAID with a timestamp up to T2. The details of the reference datasets (the total number 
of sequences, their accession numbers on GISAID, as well as the time period they cover), 
are given in Tables 2 and 3.

Our planned subsequent computations on the nucleotide sequences (the calculation of 
the principal components of the Jaccard similarity matrix) are too computationally 
intensive to be carried out for all available sequences on GISAID. For this reason, we 
down-sample each dataset by drawing an unbiased sample of size 10,000 without 
replacement.

Using the alignment tool MAFFT (Katoh et al, 2002) and the official SARS-CoV-2 reference 
sequence (available on GISAID under the accession number EPI_ISL_402124), we align all n
sequences to the reference genome. We employed MAFFT with the keeplength option in 
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order to obtain a well-defined window (of length L=29891 base pairs) for comparison of all 
sequences. All other parameters of MAFFT were kept at their default values.

2.2 Assessing the similarity of nucleotide sequences

We next convert all sequences into a binary Hamming matrix X  B∈ n x L (where B={0,1} is 
the set of binary numbers) as follows. We compare the reference genome to each aligned 
nucleotide sequence, and set Xij=1 if the sequence with number i differs at position j from 
the reference sequence. Otherwise, we set Xij=0. Here, the number of rows of X is set to 
the number of nucleotide sequences, and L=29891 is the number of base pairs in the 
comparison window. The row sums of X correspond to the Hamming distance of each 
nucleotide sequence to the reference genome. This methodology has already been used 
in the literature (Hahn et al., 2020a,b,e,f).

We employ the Jaccard similarity measure (Jaccard, 1901; Prokopenko et al, 2016; Schlauch
et al, 2017) to assess the similarity of all pairs of sequences. To be precise, each entry (i,j) 
of the Jaccard matrix J(X)  ℝ∈ n x n (having n rows and n columns) is a measure of similarity 
between the binary rows i and j of X. An entry (i,j) of J(X) of zero encodes that the two 
genomes do not share any  deviations from the reference genome, while an entry of one 
encodes equality of rows I and j of X. We employ the R-package “locStra”, available on 
CRAN (Hahn et al, 2020c,d), to compute the Jaccard matrix.

For all figures included in this work, we visualize the Jaccard similarity measures by 
computing its first two principal components. We plot the first principal component 
against the second principal component, thus effectively interpreting the entries of the 
first eigenvector as x-coordinates, and the ones of the second eigenvector as y-
coordinates. We color each point according to either a time stamp, according to its cluster 
membership, or according to whether it is an outlier.

2.3 Outlier detection

We are interested in detecting sequences falling into neighborhoods or clusters in which 
they are classified as outliers (subject to a certain criterion). To be precise, we are 
interested in sequences falling into neighborhoods consisting of sequences having much 
older (or newer) time stamps.

We aim to utilize an approach which is not dependent on previously identified clusters. 
One way to achieve this is to define a local environment of radius eps > 0 around each 
sequence in a principal component plot (each sequence corresponds to a point in the 
principal component plot), and to consider all other (that is, similar) sequences falling into 
that local environment. Comparing the time stamp of the sequence under consideration 
to the distribution of timestamp in the local environment allows one to define an outlier. 
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We say that a sequence is an outlier in its local environment if its time stamp is more than 
f > 0 standard deviations from the mean date in the environment.

2.4 Calibration

Our clustering approach depends on two tuning parameters, the radius of the local 
environment eps, and the factor f that specifies how many standard deviations away from 
the mean date are needed to define a sequence as an outlier. To calibrate both 
parameters, we look at the number of outliers which are identified in the data as a 
function of both eps and f. This results in a typical “elbow” plot, though here in two 
dimensions (see Figure 2). For small values of f, meaning values close to the mean, many 
outliers are flagged. As f increases, fewer and fewer outliers are identified. The decrease is
usually not linear. Instead, the number of outliers usually drops rapidly at a certain cutoff f
before leveling off, thus giving the plot its name. The point at which the plot levels off can 
be used to determine f. We apply the elbow method to both set the parameter f, as well as
the parameter eps.

3. Results

We first focus on the newest variant, omicron. Figure 1 shows a plot of the first two 
principal components of the Jaccard matrix as outlined in Section 2.2. As observed 
previously (Hahn et al., 2022f) the genomes from GISAID exhibit a particular progression 
pattern, with older submissions (green) clustering in the middle of the plot, while newer 
samples (red) cluster at the bottom of the plot. The progression of genomes seems to take
place from the early point cloud (green, middle), to genomes with intermediate 
timestamps (top), to new samples (red, bottom). As also observed in the aforementioned 
publication, genomes of the omicron strain are most similar to genomes in stemming 
from early on in the pandemic. This is visible from Figure 1 as omicron samples (triangles) 
fall into a point cloud of early (green) genomes.

Interestingly, the observations for Figure 1 are virtually identical with the ones made in 
Hahn et al. (2022f), even though both experiments are made with independent, and thus 
entirely different, subsamples without replacement of size 10000 taken from all complete 
samples available on GISAID.

Before applying the approach of Section 2.3, we calibrate the outlier detection on the 
omicron data as outlined in Section 2.4. Figure 2 shows the two dimensional elbow plot of 
the number of flagged outliers as a function of both the radius of the local environment 
eps and the parameter f. We indeed observe a distinct shape of the decrease in the 
number of outliers as the parameter f increases, with a sharp decrease at around f=1.2, 
after which the plot levels off. Interestingly, the algorithm is rather insensitive to the 
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choice of the local environment eps, apart from the case eps=0. We repeated the 
calibration for the other variants as well. Interestingly, the parameters f=1.2 and eps=1e-1 
emerge as consistent choices for all variants. Therefore, we use f=1.2 and eps=1e-1 in the 
remainder of the section.

After calibration, we aim to identify outliers using the local detection approach of Section 
2.3. Figure 3 shows the same principal components as Figure 1 for the omicron variant, 
though this time without any coloring by timestamp. Instead, all points in yellow have the 
property that they pass the local outlier criterion of Section 2.3, meaning that they are 
outliers in a local epsilon environment centered around them, subject to the calibration of 
Section 2.4. As summarized in Table 1, of the 25 omicron genomes included in the dataset,
19 are indeed detected (though with a large false positive rate as there are 276 outliers in 
Figure 4).

Interestingly, using the same calibration, many other sequences not belonging to the 
omicon strain are flagged in Figure 3. These belong to the delta variant of the SARS-CoV-2 
virus. In what way these samples differ from the other delta variant samples in Figure 3 
remains an important question of future work.

Next, we investigate the question if an increase in the number of outliers can be detected 
upon the emergence of a new variant. To this end, for each variant under investigation 
(alpha, beta, delta, gamma, GH, lambda, mu, omicron), we apply the same calibrated 
outlier detected to first the reference dataset before the emergence of each variant, and 
after the emergence of each variant. Figures 4-11 show results for all eight variants (alpha,
beta, delta, gamma, GH, lambda, mu, omicron). The left column always corresponds to the
time period before the emergence of each variant, and the right column corresponds to 
the time period after the emergence of each variant. The top plots show the first two 
principal components with highlighted sequences for each variant under consideration, 
the bottom plots show the local outliers as yellow triangles. We observe that for the beta, 
delta, GH, and omicron variants the number of detected outliers considerably increases 
after the emergence of the variant. For the other variants, the change in the number of 
outliers is less pronounced. For the gamma variant, the number of detected outliers 
considerably decreases after the emergence of the variant.

To concretize results, Table 1 summarizes the total number of detected outliers, the 
number of detected genomes per variant, and the number of genomes for each variant 
that is included in the dataset (and that can possibly be detected). We observe that for the 
common variants beta, delta, GH, and omicron, the detection of the emergence of a new 
strain is possible. Clearly the biological importance of a new variant cannot be assessed 
via outlier detection, but the proposed method would have been able to flag these strains 
as variants of interest.
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4. Discussion

In this work, we demonstrate that nucleotide sequences of common virus strains/variants 
can be identified solely based on a statistical outlier criterion in real time. To this end, we 
prepare two reference datasets, one before and one after the emergence of eight 
common SARS-CoV-2 variants (alpha, beta, delta, gamma, GH, lambda, mu, omicron) 
available on the GISAID database, and apply outlier two detection methods to those 
datasets.

Using the proposed local outlier detection approach, we can identify genomes belonging 
to the beta, delta, GH, and omicron strain upon emergence of these variants. However, 
this detection comes at the cost of a larger number of false positives. The nature of those 
other nucleotide sequences that pass our outlier criteria, and in what way they differ from 
other sequences of the most common SARS-CoV-2 variants, is an important direction of 
ongoing research.

Importantly, this research shows that outlier detection might be a useful tool to identify 
emerging variants in real time as the pandemic progresses, using machine learning 
techniques and purely statistical methods only.
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Figure 1. Reference dataset for the omicron variant (see Table 2). First two principal 

components of the Jaccard matrix, colored by the collection time stamp of each nucleotide

sequence. The color scale encodes early (red) to late (green) sequences. Sequences of the 

omicron variant (see Table 3) are highlighted as triangles.
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Figure 2. Omicron variant. Heatmap showing the number of outliers (from low, depicted in

light blue, to high, depicted in red) as a function of the radius of the local environment eps

and the number of standard deviations f.
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Figure 3. Reference dataset for the omicron variant (see Table 2). First two principal 

components of the Jaccard matrix with subsequent local outlier detection approach. 

Parameters eps = 1e-2 (the neighborhood radius) and f=1.5 (the multiplier for the 

standard deviations). Outliers depicted as yellow triangles.
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Figure 4. Alpha variant. First two principal components of the Jaccard matrix applied to the

reference dataset for the alpha variant (see Table 2) before (top left) and after (top right) 

the emergence of the alpha variant, where sequences of the alpha variant (see Table 3) 

are highlighted as triangles. Local outlier detection applied before (bottom left) and after 

(bottom right) the emergence of the alpha variant, with outliers depicted as yellow 

triangles.
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Figure 5. Beta variant. First two principal components of the Jaccard matrix applied to the 

reference dataset for the beta variant (see Table 2) before (top left) and after (top right) 

the emergence of the beta variant, where sequences of the beta variant (see Table 3) are 

highlighted as triangles. Local outlier detection applied before (bottom left) and after 

(bottom right) the emergence of the beta variant, with outliers depicted as yellow 

triangles.
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Figure 6. Delta variant. First two principal components of the Jaccard matrix applied to the 

reference dataset for the delta variant (see Table 2) before (top left) and after (top right) 

the emergence of the delta variant, where sequences of the delta variant (see Table 3) are 

highlighted as triangles. Local outlier detection applied before (bottom left) and after 

(bottom right) the emergence of the delta variant, with outliers depicted as yellow 

triangles.
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Figure 7. Gamma variant. First two principal components of the Jaccard matrix applied to 

the reference dataset for the gamma variant (see Table 2) before (top left) and after (top 

right) the emergence of the gamma variant, where sequences of the gamma variant (see 

Table 3) are highlighted as triangles (top right). Local outlier detection applied before 

(bottom left) and after (bottom right) the emergence of the gamma variant, with outliers 

depicted as yellow triangles.
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Figure 8. GH variant. First two principal components of the Jaccard matrix applied to the 

reference dataset for the GH variant (see Table 2) before (top left) and after (top right) the 

emergence of the GH variant, where sequences of the GH variant (see Table 3) are 

highlighted as triangles (top right). Local outlier detection applied before (bottom left) and

after (bottom right) the emergence of the GH variant, with outliers depicted as yellow 

triangles.
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Figure 9. Lambda variant. First two principal components of the Jaccard matrix applied to 

the reference dataset for the lambda variant (see Table 2) before (top left) and after (top 

right) the emergence of the lambda variant, where sequences of the lambda variant (see 

Table 3) are highlighted as triangles (top right). Local outlier detection applied before 

(bottom left) and after (bottom right) the emergence of the lambda variant, with outliers 

depicted as yellow triangles.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.05.16.492178doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492178


 

Figure 10. Mu variant. First two principal components of the Jaccard matrix applied to the 

reference dataset for the mu variant (see Table 2) before (top left) and after (top right) the 

emergence of the mu variant, where sequences of the mu variant (see Table 3) are 

highlighted as triangles (top right). Local outlier detection applied before (bottom left) and

after (bottom right) the emergence of the mu variant, with outliers depicted as yellow 

triangles.
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Figure 11. Omicron variant. First two principal components of the Jaccard matrix applied 

to the reference dataset for the omicron variant (see Table 2) before (top left) and after 

(top right) the emergence of the omicron variant, where sequences of the omicron variant 

(see Table 3) are highlighted as triangles (top right). Local outlier detection applied before 

(bottom left) and after (bottom right) the emergence of the omicron variant, with outliers 

depicted as yellow triangles.
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Variant Before emergence of variant After emergence of variant
No. 
outliers

true 
positives

No. seq. No. 
outliers

true 
positives

No. seq.

alpha 1314 0 0 1070 329 788
beta 78 0 0 1902 88 99
delta 0 0 128 212 175 1085
gamma 1589 0 0 97 3 140
GH 137 0 0 179 0 4
lambda 2067 0 0 2066 4 4
mu 0 0 0 0 0 16
omicro
n

191 0 0 276 19 25

Table 1. Local outlier detection approach. Number of detected outliers in Figures 5–12 

before and after the emergence of each of the eight variants. True positives among the 

detected outliers, and number of sequences included for each variant.

Variant From accession
ID

To accession 
ID

From date To date No. 
samples

alpha 733573 11230479 2020-10-01 2021-02-15 788
beta 660611 10980370 2020-02-18 2021-01-26 99
delta 1716736 11267911 2021-01-09 2021-07-20 1085
gamma 875689 11396742 2020-12-25 2021-03-08 140
GH 6370560 6651704 2021-11-03 2021-11-10 4
lambda 1111316 1111334 2021-01-17 2021-01-17 4
mu 2500943 5196329 2021-04-01 2021-04-29 16
omicron 7834399 9462827 2021-12-04 2021-12-25 25

Table 2. Composition of the dataset we aim to detect by variant. Range of accession 

numbers extracted from the GISAID database, their time stamps, and the total number of 

sequences included.
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Variant From accession
ID

To accession 
ID

From date To date No. 
samples

alpha 406592 11403614 2020-01-08 2021-02-15 10000
beta 403963 11229964 2020-01-10 2021-01-26 9999
delta 404227 11403612 2020-01-16 2021-07-20 9999
gamma 407079 11448683 2020-01-10 2021-03-08 10000
GH 404227 11468151 2020-01-10 2021-11-22 10000
lambda 406593 11330894 2020-01-10 2021-01-17 9999
mu 408489 11468147 2020-01-10 2021-04-29 10000
omicron 410301 11448664 2020-01-13 2021-12-25 10000

Table 3. Composition of the reference dataset we use to detect the emergence of a new 

variant. Range of accession numbers extracted from the GISAID database, their time 

stamps, and the total number of sequences included.
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