
Draft

Investigating and Modeling the Factors that Affect Genetic

Circuit Performance

Shai Zilberzwige-Tal1,*, Pedro Fontanarrosa2, ?, Darya Bychenko1, Yuval Dorfan3,4,5,
Ehud Gazit1,6, and Chris J. Myers7

1The Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel
Aviv University, Israel

2Department of Biomedical Engineering, University of Utah, USA
3The Israeli SynBio Institute, Innovation Center, Reichman University, Israel

4Zvi Meitar Institute for Legal Implications of Emerging Technologies, Reichman
University, Israel

5Alagene Ltd., Innovation Center, Reichman University, Israel
6The Department of Materials Science and Engineering, Engineering Faculty, Tel Aviv

University, Israel
7Department of Electrical, Computer, and Energy Engineering, University of Colorado

Boulder, USA
*Corresponding author. shai.zil22@gmail.com

?Corresponding author. pfontanarrosa@gmail.com

May 16, 2022

Abstract

Over the past two decades, synthetic biology has yielded ever more complex genetic circuits
able to perform sophisticated functions in response to specific signals. Yet, genetic circuits are not
immediately transferable to an outside-the-lab setting where their performance is highly compro-
mised. We propose introducing a scale step to the design-build-test workflow to include factors that
might contribute to unexpected genetic circuit performance. As a proof-of-concept, we designed and
tested a genetic circuit under different temperatures, mediums, inducer concentrations, and bacte-
rial growth phases. We determined that the circuit’s performance is dramatically altered when these
factors differ from the optimal lab conditions. Based on these results, a scaling effort, coupled with
a learning process, proceeded to generate model predictions for the genetic circuit’s performance
under untested conditions, which is currently lacking in synthetic biology application design. As the
synthetic biology discipline transitions from proof-of-concept genetic programs to appropriate and
safe application implementations, more emphasis on a scale step is needed to ensure correct and
robust performances.
Keywords: genetic circuit, DBTL, outside-the-lab, robustness, re-design.

1 Introduction

Synthetic biology aims to address pressing global challenges including disease diagnosis and treat-
ment [1, 2], bio-fuels production [3, 4, 5], contamination detection [6], bio-manufacturing [7, 8, 9,
4, 10, 11], etc. These are achieved by engineering biological systems with new capabilities, granting
cellular control and user-defined performance [12, 4]. The variety of genetic circuit functions include
a genetic toggle switch [13], genetic counters [14], low- or high-frequency filters [15, 16], adders [17],
sequential asynchronous logic circuits [18], and more.

An implicit, iterative Design-Build-Test (DBT) process is often used to develop these ingenious
genetic circuits. However, bias is introduced into the DBT process in almost all of its steps and the
variability of environmental factors that affect a circuits’ behavior is often not taken into account.
This might hinder a circuit’s expected performance when applied outside-the-lab (OOT). Models
used by genetic design automation (GDA) tools are mostly based on experiments carried out under
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optimal lab conditions (OLC) [19, 20, 21, 22]. Furthermore, most rely only on the expression of a
fluorescent protein as an output reporter under OLC. This setup leads to an inaccurate Scale step
with regard to the actual circuits’ performance when applied in non-OLC that can produce erroneous
or faulty behavior with unpredictable outcomes. Furthermore, with a narrow Test step, the learning
usually is limited to a post-hoc description of circuit dynamics. This would be especially perilous for
engineered systems that are aimed to operate in dynamic environments, such as living therapeutics
and whole cell biosensors.

This study applies a broader Test step to a designed delay-signal circuit to include more envi-
ronmental dynamic factors and reporters (as shown in Fig. 1). The circuit’s output, as well as the
time for output detection, were observed to be highly variable for different temperatures, mediums,
inducer concentration, bacterial growth-phases, and output reporters. If the performance of the de-
lay circuit is compromised by the tested experimental factors presented here, it will inevitably alter
its behavior in other contexts, which would not have been predicted by GDA tools.

We propose to introduce a Scale step as part of a new and improved Design-Build-Test-Scale
(DBTS) process. Scaling refers to the process of considering the variability of factors that can affect
genetic circuit performance in real-life applications. Most studies either have a non-existent Scale
step, or it consists only of a post-hoc description of the designed circuit’s performance at OLC. This
work not only provides a re-parametrization effort for different experimental conditions, but also
produces a new model to determine the necessary predictions for untested conditions. As a case
study, we focused on the effect of growth phase on the circuit’s output, in which we observed a trend
in delay and total output production. This, in turn, allowed for a deeper Scale step which ultimately
resulted in a new model that estimates these trends, thus enabling the capacity to predict untested
delays and output production of the circuit which can be further applied for scaling.

Thus, we propose that a greater emphasis in the Test and Scale steps of a DBTS cycle are needed
to build more predictive models and to reduce bias across the entire DBTS cycle. This, in turn, will
enable the possibility of finding design alternatives to any unexpected behavior and performance
when the circuits are used in applications, improving a genetic circuit’s robustness [23]. As we
move from proof-of-concept designs to more real-life applications, a thorough Test step provides the
necessary data that allows for a significant Learn step and, therefore, an appropriate Scale step.

(a)

(b)

Figure 1: DBTS workflows in synthetic biology. a Most common workflow, where testing is done only
in OLC and there is no feedback to alter design. b Proposed workflow in which the Test step includes
different conditions that may affect the outcome of a circuit. This can be utilized in the Scale step to
obtain new model predictions, which will allow one to make better design choices. Ultimately, this will
produce robust designs.
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2 Results

2.1 Designed Circuit and Predicted Behavior

Fig. 2a shows a schematic of the actual circuit designed, built, and tested in this work. For more
information on the layout design, please refer to the Methods.

The intended purpose of this design is to provide some delay between an input concentration
change and output production, whilst avoiding unwanted switching behavior due to initial propa-
gation of an erroneous state. The circuit will not produce yellow fluorescent protein (YFP), unless
both arabinose (Ara) and oxohexanoyl-homoserine lactone (HSL) are present. This design avoids
unwanted production of an output (YFP) when the circuit is initialized in a cell without Ara: even
if there is initial production of LuxR. Meaning, if there is no HSL, the circuit will not produce YFP
and both Ara and HSL are needed to produce the circuit’s output.

The initial model predictions of the circuit, shown in Fig. 2b, were done in iBioSim [25] using an
automatic model generator to produce an ordinary differential equation (ODE) model of the circuit.
The resulting complete model was then analyzed using the Runge-Kutta-Fehlberg method [26], also
implemented in iBioSim [25].

The simulation results show that there is no YFP production when only HSL is present and,
furthermore, there is a delay in the YFP production when Ara is added as expected. However, given
that these simulations are using default parameters that were characterized under OLC (obtained
from [20]), these only provide qualitative information on how the actual circuit is going to behave
only when tested in OLC.

2.2 Control Experiment

Using iBioSim [25] and standard genetic parts [20], the delay circuit was designed aiming for a relative
output time delay post-induction. To test the actual delay, a simple control experiment was set using
OLC. Briefly, bacteria were cultivated in M9 glucose media at 37◦C in the presence of both inducers
from T=0 (Ara and HSL), which simulate the characterization assays that were done in Cello [20]
(Fig. 3 a). As negative controls, the bacteria were also cultivated without any inducer or with the
presence of only one of the inducers. Under these conditions, it took an average of 180 minutes to
detect a fluorescence signal (Fig. 3 b(i) and b(ii)). The 180 minutes was set as the optimal detection
time (ODT) and the signal intensity from this assay was also set as the optimal intensity (OI) since
both were measured under optimal growth conditions.

Next, the circuit’s robustness was tested at different conditions that mimic the dynamic environ-
ments that bacteria may encounter OOT. The following sections will describe the genetic circuit’s
dynamic performance under different testing conditions. The purpose of these testing conditions is
to observe how it will affect the time for signal detection and signal intensity.

2.3 Inducer Concentrations

An important dynamic variation bacteria could encounter when applied OOT is inducer concentra-
tions. The inducers concentrations that were set in our control experiment as 1:1 are 2mM and 2µM
for Ara and HSL, respectively, since these are the concentrations that were used in Cello [20]. The
bacteria were cultivated in the presence of serially diluted concentrations (1:100 and 1:100) and in
concentrated concentration (10:1) (Fig. 3a). Bacteria that were cultivated in the presence of the
10:1 inducers, were able to produce a fluorescence signal much faster than the ODT (Fig. 3b(i) and
b(ii)). In addition, the signal intensity of the 10:1 sample was significantly higher than the signal
from OI (Fig. 3b(iii)). However, in the lower concentrations of 1:100 and 1:10, the fluorescence signal
was weak and barely detected using our methods (Fig. 3b(i) and b(iii)). Thus, the genetic circuit
behavior in terms of time for signal detection and its intensity is highly compromised and dependent
on the inducer concentrations. Thus, the genetic circuit behavior is not robust in terms of time for
signal detection and signal intensity.

2.4 Temperature

Among environmental conditions, temperature is an important, if not the most important, variable
affecting microbial growth and as a direct consequence we hypothesize that it affects the genetic
circuit’s behavior [27]. E. coli can survive in a range of temperatures starting from 4◦C up to
45◦C, with an optimal growth at 37◦C, and it is usually the temperature used for cultivating E.
coli in the lab [28]. E. coli was cultivated at 30◦C and 42◦C in the presence of a range of inducer’s
concentrations as described above (Fig. 3a). Lowering the growth temperature from 37◦C to 30◦C

1https://synbiohub.programmingbiology.org/public/Eco1C1G1T1/Eco1C1G1T1_collection/1
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(a)

(b)

Figure 2: (a) Designed delay circuit using Cello gates [20]. Sequences obtained from SynBioHub [24]
1. This circuit produces yellow fluorescent protein (YFP) after a delay when both arabinose and
oxohexanoyl-homoserine lactone (HSL) are present. (b) Delay circuit simulation results using default
parameters. YFP production (in a.u.) over increasing simulated time-points.
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Figure 3: Control assay and inducer concentration variations at different temperatures. a Scheme of
the control and inducers’ concentration variations assays. Ranging inducer concentrations were added at
T=0, 37◦C, 30◦C and 42◦C. b Measured fluorescence signal (in a.u.) over time (i) of the control assay and
of bacteria that were cultivated with a range of inducers concentrations. b(ii) Comparison of the time to
detect a fluorescence signal from bacteria cultivated with different inducers concentrations. *P < 0.01,
***P < 0.005 (Student’s t-test). b(iii) Comparison of the maximum fluorescence signal intensity fold
change detected from bacteria that were cultivated with different inducers concentrations. ***P < 0.005
(Student’s t-test). c(i) Measured fluorescence signal (in a.u.) over time of bacteria cultivated with
different inducers concentrations at 30◦C. c(ii) Comparison of the time to detect a fluorescence signal.
*P < 0.01. ***P < 0.005 (Student’s t-test). c(iii) Comparison of the maximum fluorescence signal
intensity. ***P < 0.005, ****P < 0.001 (Student’s t-test). d Measured fluorescence signal (in a.u.)
over time of bacteria cultivated with different inducers concentrations at 42◦C. The differences between
the negative controls and the induced samples were not significant and therefore cannot be plotted in
fluorescence detection and fold change graphs. e Comparison of the time to detect a fluorescence signal
at 30◦C and 37◦C from bacteria cultivated with different inducer’s concentrations. f Comparison of
maximum fluorescence signal at 30◦C, 37◦C and 42◦C from bacteria cultivated with different inducer’s
concentrations.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.492150doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492150
http://creativecommons.org/licenses/by-nc-nd/4.0/


Draft

resulted in a higher fluorescence signal of both 10:1 and 1:10 inducers’ concentrations (Fig. 3 f). It
should be noted that in addition to a lower fluorescence signal of the 1:10 dilution at 37◦C, the time
to detect the signal was significantly higher (Fig. 3e). The circuit’s behavior was tested at 42◦C in the
presence of different inducers’ concentration as mentioned above. At this temperature, a fluorescence
signal was observed only in the high inducers’ concentration (10:1) (Fig. 3d) and the intensity of the
detected signal was an order of magnitude lower than the OI (Fig. 3f). We assume that the burden
of the genetic circuit on the bacteria is higher at 42◦C than 37◦C, since in the higher temperature
the bacteria is in greater stress due to increased expression of heat shock proteins, which add to the
overall burden on the cell [29]. Thus, the behavior of the circuit at the higher temperature differ
significantly from its behavior during the control assay at 37◦C.

2.5 Soil

Medium composition can be highly diversified, which may lead to altered genetic circuit’s behavior.
We decided to test our genetic circuit in a medium that will mimic applications OOT. Therefore,
bacteria were cultivated in sterile and non-sterile soil (Fig. 4a). A fluorescence signal was detected
in both samples, however the signal intensity was higher in the sterile soil sample (Fig. 4b and c).
This can be attributed to the fact that in the sterile sample there is less competition for nutrients,
since the sample was autoclaved. While in the non-sterile sample, there are many other bacteria
competing for nutrients, which leads to a lower signal. It should be noted that the production of the
fluorescence signal in the soil samples was maintained for a longer period of time than in all other
conditions (Fig. 4). This, again, can be attributed to the fact that the soil contains nutrients that
are lacking in our control assay medium (see Methods).

Figure 4: Cultivation in media containing 2% sterile and non-sterile soil. a Scheme of the cultivation
with soil assay, 2% (W/V) soil was added to the media and then both HSL and Ara were added at
T=0, which induced the production of YFP. b Measured fluorescence signal (in a.u.) over time of the
bacteria cultivated in 2% (W/V) sterile and non-sterile soil. c Comparison of the maximum fluorescence
signal intensity detected from bacteria that were cultivated in 2% sterile and non-sterile soil. *P < 0.01.
(Student’s t-test)
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2.6 Induction at Different Bacterial Growth Phases

Optical density (OD) measurements are usually used for quantifying the growth of a bacterial cul-
ture [30]. When the data is plotted semi-logarithmically, four growth phases are distinguishable: (i)
lag phase which is non-replicative; (ii) exponential phase which is replicative; (iii) stationary phase
where growth ceases, but cells remain metabolically active and (iv) death phase where there is a
gradual decline in viable cells. During these phases, the transcriptome and proteome of the bacteria
dramatically change, as well as the transcription and translation rates. To test the robustness of
the time delay circuit across the different growth phases, we grow the bacteria in the presence of
HSL from T=0, and we added the second inducer, Ara, at different growth phases: early-lag (T=0,
such as the control experiment), late-lag, early-exponential, mid-exponential, late-exponential and
stationary, and measured the fluorescence signal over time (Fig. 5a). When the inducers were added
at a later phase than the early-lag (EL), which is also the ODT, the time for fluorescence detection
was significantly decreased (Fig. 5b and c). Interestingly, we observed that the decrease was gradual
from the late-lag (LL) to early-exponential (EE) and middle-exponential (ME). This was followed
by a minor increase from late-exponential (LE) and stationary (S) (Fig. 5c). When comparing the
signal intensity of the different induction times, it is clearly shown that the signal decreases when
induction starts at a later stage, especially at ME, LE, and S (Fig. 5b and d). It should be noted
that the encounter with the inducer at different growth phases did not influence the doubling time of
the bacteria when compared to the doubling time of the bacteria without induction (Supplementary
Fig. 1. The behavior of the time-delay genetic circuit alters when the bacteria are induced at different
growth phases, suggesting that the unsteadiness of the bacteria transcription and translation rates
influences the behavior of the genetic circuit.

Figure 5: Growth phase variations assay. a Scheme of the growth phase variations. HSL was added
at T=0 (EL) and Ara was later on added at a different growth phase which induced the production of
YFP. b Measured fluorescence signal (in a.u.) over time of bacteria induced at different growth phases.
c Comparison of the time to detect a fluorescence signal from the bacteria. ****P < 0.001 (Student’s t-
test). d Comparison of the maximum fluorescence signal intensity fold change detected from the bacteria.
*P < 0.01, ***P < 0.005, ****P < 0.001 (Student’s t-test).

2.7 Total Fluorescence Production

To address the different genetic circuit behavior when induced at different growth phases, we calcu-
lated the total amount of fluorescence in arbitrary units (a.u.) that are produced hourly following
the detection of the fluorescence signal (see Methods). Our hypothesis is that genetic circuits that
are induced during the exponential phase, in which bacteria are dividing rapidly and thus producing
more proteins, the hourly a.u. production rate will be higher than genetic circuits that are induced
in the lag or stationary phase, where protein synthesis is much lower [30]. Moreover, genetic circuits
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that are induced at a later growth phase will not produce as much total fluorescence a.u. as genetic
circuits that are induced earlier, since the bacteria are closer to the stationary phase and start to die
due to the lack of nutrients. Thus, we decided to compare the accumulated fluorescence a.u. produc-
tion in bacteria that are induced at different growth phases (Fig. 6a). According to the results, in the
first few hours, the highest fluorescence a.u. production was of the LL and EE induction (Fig. 6b).
However, following four hours, the hourly fluorescence a.u. production of the LL, EE and ME were
relatively similar (Fig. 6b). Through all the first five hours, the LE and S hourly fluorescence a.u.
production were the lowest (Fig. 6b). These findings are consistent with our hypothesis regarding
the susceptibility of the bacteria to efficiently produce a signal if the induction occurs in an early
growth phase. Moreover, the sum of the hourly productions further emphasize that bacteria that
are induced at a later stage (starting from the ME phase) are more likely to produce less signal
overall (Fig. 6c). Thus, the range of the circuit behavior is heavily influenced by the specific growth
phase in which the bacteria are at when they encounter the signal molecules. We hypothesize that
the growth phase status is an immensely important factor with implications on protein production
and degradation rates, which directly affect gate production rates. This means that growth phase
status will affect the parameter values used in the model and, therefore, the predicted behavior. We
decided to characterize the gate production rates at different growth phases (see below).

Figure 6: Accumulating fluorescence a.u. production of bacteria induced at different growth phases. a
hourly accumulated fluorescence a.u. of bacteria induced at different growth phases. b Comparison of
the hourly accumulated fluorescence a.u. of the first five hours. c Comparison of the total accumulated
fluorescence a.u. ****P < 0.001 (Student’s t-test).

2.8 Gate Re-parametrization

To capture the effect of different growth phases on the production delays, as well as signal intensities
of the designed circuit in this work, characterization experiments were done for the different growth
phases. These experiments were performed following the methods described in Shin et al. [31] (see
Methods). From these experiments, new parameter values for each growth phase were achieved as
described below.
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2.8.1 Hill Function Parameters

Equation 7 is an equation derived from the Hill function, which is used to calculate the steady-state
output of a gate [20, 31]. To acquire the Hill function parameter values used in this equation, gate
induction experiments were performed and then fitted as shown in the “Parametrization Methods”
section. This fitting can be done by minimizing the error of Equation 1 (for activation) and 2 (for
repression) predictions by using parameter fit values and the experimental measurements for the
different growth phases as shown in the “Circuit Induction and Measurements” section.

y = ymin +

(
ymax − ymin) · (Kn)

(xn) + (Kn)

)
, (1)

y = ymin +

(
ymax − ymin) · (xn)

(xn) + (Kn)

)
. (2)

The Hill-function fitted parameter values obtained are shown in Table 3. These parameters can
be used to calculate the steady-state output of the circuit using Equations 3 and 4. However, to be
able to predict the dynamical behavior of these circuits, the τON and τOFF parameters also have
need to be calculated.

2.8.2 Tau (τ) Parameters

Equation 8 describes the dynamical response of each gate, using the τON and τOFF parameters. To
obtain these dynamical parameter values, different ON-to-OFF and OFF-to-ON characterization
experiments were performed using the same gate plasmids and methods as shown in Shin et al. [31]
and this work (see Methods). These experiments can be used to fit the data using Equations 3 and
4, obtained from the supplementary material in Shin et al. [31], to achieve parameter values for these
conditions. The characterization method used to re-parameterize the dynamical τON and τOFF is
explained with detail in the Methods section. The results obtained are shown in Table 4.

dx

dt
= τON

x · (xss − x) , (3)

d[Y FP ]

dt
= τON

Y FP · x− τOFF
Y FP · [Y FP ] . (4)

Using the parameters shown in Table 4, derived from the fitting algorithm, new simulations were
produced for each growth phase (Fig. 7). The new model simulations predict both lower production
of YFP protein (signal intensity), as well as the decrease in time for reaching steady-state, for each
successive growth phase, as observed experimentally.

However, the parametrization results (shown in Table 4) were produced without fixing any of the
parameter values when using the fitting algorithm, meaning they were all treated as free variables.
When there are no fixed parameters, then the fitting algorithm will find the best fit by manipulating
the parameter values until the expected outcome best matches the experimental results. This will
result in widely different parameter values to compensate for other parameters’ minimization of
error while fitting (see for example, xSS values for different growth phases in Table 4). This means
it will be hard to derive any parameter value trends indicative of what might be happening to their
magnitude as the circuit is induced at different growth phases.

To discern if there are any parameter value trends that can be attained from fitting the experimen-
tal results, we proceeded to fix parameter values to reduce the number of free variables in the fitting
algorithm. The first parameter value fixed was τOFF

y . This was done using the fitting algorithm
with the ON-to-OFF gate characterization experiments (see methods section). Re-fitting the model
to the experimental results, with τOFF

y as a fixed parameter value and the rest as free-variables,
new parameter values were acquired. These re-fitting iterations were done then by fixing subsequent
parameters values by calculating averages from previous iterations. First, xSS average values were
calculated, then fixed for the next iteration, then followed by τON

x . With the last iteration of this
re-fitting process, τON

y was left as a free-variable, while the rest of the parameters were fixed. This
process was carried out to understand the effect of the different experimental conditions on the value
of τON

y . First, since τON
y is the parameter closest to the measured parameters in the experiments

(YFP fluorescence); and secondly, because if the other parameter values are not fixed, then if there
is any parameter value trends, it is lost in the minimization process, when the fitting algorithm tries
to find the solutions by increasing a parameter value and decreasing another one. Fig. 8a shows τON

y

parameter values obtained following this procedure.
As hypothesized, the values of τON

y shown in Fig. 8a vary for the different growth phases of the
clonal bacteria. When bacteria are induced at a later growth-phase, the values of τON

y decrease.
This coincides with previously observed experimental results where induction at later growth phases
decreases the time it took to reach steady-state, as well as the maximum signal intensity at the
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Figure 7: Simulation results for the different growth phases of the AraC gate, using fitted parameters
shown in Table 4, obtained using the lmfit Python package [32].
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steady-state. A predictive linear model of signal intensity over time can be created as shown in
Equation 5:

τON
y = m ∗ (induction time) + b , (5)

where τON
y is the predicted value of gate dynamics when the circuit evolves to an ON state [31]. Using

linear regression, m was estimated to be −1.869e−04 and b to be 0.13527606. With this equation, a
researcher could estimate the value of τON

y for different times of induction and, therefore, estimate
the decrease in output production and delay of a delay circuit for untested conditions as shown in
Fig. 8b.

2.9 Lysis

The ability to time and accurately delay the expression of lysis proteins by engineered bacteria is
of great interest to the synthetic biology field, since it is one of the safety mechanisms that is used
for bio-containment [33]. Therefore, we wanted to explore the circuit behavior when producing a
lysis protein rather than YFP, so a designed circuit that produces the MS2 lysis protein L was
designed (see Fig. 2). Although MS2 bacteriophage is one of the most researched bacteriophages,
the mechanisms underlying protein L lysis abilities remain mainly unknown [34]. Similar to the YFP
assays setup, HSL was present in the media from T=0 and Ara was added at different growth phases
and at different concentrations, and the time for lysis was measured (see Methods) (Fig. 9a and b).
When the inducers were added at the EL phase, the time for lysis was 240 min, however, when the
inducers were added at later growth phases, there was a gradual significant decrease in the time it
took to detect lysis (Fig. 9c). Thus, the induction at later growth phases alters the circuit behavior
and leads to a faster lysis. Similarly, when a 10:1 concentration was added, the bacteria were lysed
faster than the bacteria cultivated with a 1:1 concentration (Fig. 9d).

The OD was measured for 800 min, and around 650 min there was an increase in the OD across all
samples which led us to believe that the bacteria escaped the lysis process, probably due to mutation
insertions in the circuit plasmids. It should be noted, that the time it took the bacteria to rescue
itself from lysis was the highest for EL induction (T=0) and the 10:1 inducers’ concentrations (also
at T=0) (Supplementary Fig. 3). This can be explained by the initial small amount of bacteria at
T=0. Samples from different time points were taken to a confocal microscopy for a live-dead assay
and compared to a non-induced sample (Fig. 9e). The results show that indeed following 6 hours
from induction. The vast majority of bacteria were dead, however, following 21 hrs, there was an
increase in the amount of live bacteria, further validating the ability of the bacteria to escape lysis
(Fig. 9b and e). These results indicate that for an efficient bio-containment control, the L protein of
the MS2 bacteriophage should be combined with an additional killing mechanism, regardless of the
different induction conditions.

3 Discussion

The DBTS cycle is a powerful methodology that is commonly and successfully implemented in the
synthetic biology field. Yet, it is not flawless and is constantly needing to be re-examined to reduce
the turnaround of synthetic biology applications. As an example, when engineering bacteria to act as
a sensor for a specific molecule, the two features of time for fluorescence detection and signal intensity
are very important. This work shows that if bacteria was sensing a molecule at the EE stage, and
was observed prior to its ability to produce a fluorescence signal, then it can lead to a false negative
result. In addition, bacteria that sensed the molecule at the S phase, and therefore produced a
significantly low fluorescence signal, can also lead to a false negative result. Furthermore, our results
support the notion that when designing a genetic circuit, the range of inducer concentrations that
can lead to a satisfying performance can vary across different cultivation temperatures which is a
major factor when transitioning outside the lab. Additionally, in this work we hypothesized the
values of τON

y shown in Fig. 8a vary for the different growth phases of the clonal bacteria. After
learning from the appropriate test results, we could acquire new models in the Scale step that could
predict the behavior of these circuits on untested experimental conditions. Thus, by introducing the
Scale step and broadening the Test step to include more environmental factors will subsequently
advance the overall learning and will provide deeper understanding of the obstacles that genetic
circuit’s performance face when taken outside of the lab.

Expansion of the Test step will inevitably promote new prediction models and tools developed
in the Scale step, able to predict the behavior of genetic circuits under different conditions (even
untested ones), and therefore will enable better design choices than those provided by GDA tools.
Furthermore, these studies can identify, which experimental conditions have a greater effect on
a genetic circuit’s performance. Currently, there is a lack of standardized methodologies and/or
software tools to help researchers perform a meaningful Scale step and benefit from its results. Even
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popular GDA tools (like Cello [20]), which provide extensive and automated Design, Build, and even
Test steps, lack of a proper Scale step, which will be beneficial to help researchers with better design
choices for OTL genetic circuit applications. However, as of now, there is no consensus on what these
methodologies should look like, nor tools to help with this process.

4 Methods

4.1 Circuit Design

A naive implementation of delay in a genetic circuit is shown in Fig. 10a, where successive pairs of
NOT gates can be used to add delay to a circuit (from a change of inputs to a change in outputs)
without changing the circuits’ function or behavior. However, this circuit can produce unwanted
output production (set-up glitches) when it is initialized, even in the absence of input molecules,
since its components have not been stabilized yet [35]. This means that when the circuit is initialized,
since the circuit is not stabilized, some internal gates will start randomly producing output before
others. This can cause an erroneous or faulty initial state for the circuit, and therefore an unexpected
or unwanted output protein production. So, for example, the gate that produces the output protein
of a circuit (blue gate, Fig. 10a) could start producing output before the circuit reaches steady-state
without any inducer (input) present, at which point it will be repressed by the green gate.

However, it is possible to re-design the circuit in a way to avoid these initialization problems and
properly locking the initial-state down, so that there is no unwanted switching behavior, or set-up
glitches, when this circuit is initialized. Fig. 10b shows such a design that would avoid set-up failures
due to the initialization problem. When such a circuit is transformed into a bacteria, and there
is random production from internal gates since the circuit is not in steady-state, there will be no
unwanted output production. This is because the output-producing gate is an AND gate, which
needs the presence of two signals before it can produce the output signal. The second inducer is
necessary so that even if there is some initial leakage production of the green gate, the output is
not going to be produced. The results section shows the implementation of Fig. 10b using Cello
gates [20].

4.2 Mathematical Model

The model used by the automatic model generator of this work is based on a combination of a
steady-state model developed in Nielsen et al. [20] and Shin et al. [31], with a dynamic model
developed by Moser et al. [36]. The modeling and simulation in this work uses Cello genetic parts
and parametrization, but it can work for any genetic circuit as long as the appropriate parameters
are available.

The mathematical model used in this work is explained and implemented in Fontanarrosa et
al. [35]. However, certain adaptations have been made to this model to be able to account for
a “split” sensor gate in the design of the delay circuit. The model developed in Shin et al. [31]
represent sensor and internal genetic gates differently: while internal gates are modeled from a Hill-
function-like equation, sensor gates are modeled as either being ON or OFF. Therefore, we adapted
the model in order to have a Hill-function-like equation for sensor gates too, in order to model the
circuit shown in Fig. 10b. This circuit’s second-to-last gate (green gate), is a sensor gate, which was
not initially intended to be an internal gate [20].

The model uses response functions to describe the steady-state RNAP flux output (in RPUs) of a
gate over the output promoter (promoter that the gate has an effect on), as a function of the RNAP
fluxes of the input promoters (for greater detail, see [35]). However, for the model developed in Shin
et al. [31], the steady-state calculation of input (sensor) promoter activities of input gates takes the
following form:

xiSS = δ(1 − q) (ximax − ximin) + ximin , (6)

where xiSS is the steady-state output RNAP flux of sensor gate i; ximin and ximax are the minimal
and maximal output RNAP fluxes, respectively, for sensor gate i; q is the presence (q = 1) or absence
(q = 0) of inducer molecules; and δ(1− q) is 1 when there are inducer molecules present and 0 when
there are not. This formula shows that the response function for a sensor gate is digital : it is either
ON or OFF, there is no response curve. This formulation would not work if a sensor gate is used as
an internal gate as is used in the designed circuit of this work. Therefore, an adaptation of equation
6 to emulate an internal gate response function model was implemented in this work.

The mathematical models for the internal gates are also taken from Shin et al. [31], in which they
describe the dynamical behavior of these gates. Equation 7 describes the steady-state output of the
internal gate as:

yiSS = yimin + (yimax − yimin)
κni
i

κni
i + xni

iSS

, (7)

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2022. ; https://doi.org/10.1101/2022.05.16.492150doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492150
http://creativecommons.org/licenses/by-nc-nd/4.0/


Draft

where yiSS is the steady-state output RNAP flux of gate i; yimin and yimax are the minimal and
maximal output RNAP fluxes, respectively, for gate i; κi and ni are obtained from the affinity and
cooperativity of transcription factor binding; and, finally, xiSS is the input RNAP flux from the
input promoter calculated in equation 6. This would give the steady-state output of the gate used
to calculate the dynamic behavior of it.

However, to describe the dynamic behavior of the internal gates, a set of ODEs for each genetic
gate is needed to describe the timescale by which a gate turns ON or OFF, using a simplified model
that uses only two parameters (τON

y and τOFF
y ) as shown in the following equation:

dy

dt
=

{
τON
y (yiSS − yi) if yi < yiSS

τOFF
y (yiSS − yi) otherwise

, (8)

where yiSS is the RNAP flux of gate i at steady state (Equation 7), yi is the current RNAP flux of
gate i, and τON

y and τOFF
y which are the bundled kinetic parameters that capture the response time

to go to a steady state that is higher than the current output (τON
y ) or lower (τOFF

y ) [31, 36], and
were set to an average value [31] (see supporting information). Finally, to calculate the RPU output
of the promoter controlling YFP expression we use Equation 9:

d[Y FP ]

dt
= τON

Y FP · yi − τOFF
Y FP · [Y FP ] , (9)

where τON
Y FP and τOFF

Y FP which are bundled kinetic parameters that capture the response time to go
to a steady state that is higher than the current output (τON

Y FP ) or lower (τOFF
Y FP ) [31, 36], yi is the

non-additive input RNAP flux of the previous internal gate, and [Y FP ] is the fluorescence output
measuring YFP expression.

The values for the parameters of the first non-informed model predictions were taken from lit-
erature [31], or used averages for when there were no values for certain gates (i.e. for sensor gates
used as internal gates). However, after the re-characterization of the parts, these parameter values
where changed to use the parametrization values (see results section). The resulting complete model
is then analyzed using the Runge-Kutta-Fehlberg (4,5) method [26] implemented in iBioSim [25],
using the Synthetic Biology Open Language [37] to describe the design. The model and parameter
values, can be seen in the Supplementary Information.

4.3 Parametrization Methods

Hill-function characterization algorithm: For the Hill-function parametrization method,
a normalized least-squares method using the non-linear Least-Squares Minimization and Curve-
Fitting (lmfit) Python package [32] was used, and random initial parameter estimations following
the GAMES workflow [38].

ON/OFF and OFF/ON characterization algorithm: The lmfit Python package, which
is based on the Levenberg-Marquardt minimization algorithm, was used to perform the fits and
analyze the resulting parameter sets [32]. The fits were performed by minimizing the sum of the
square of the relative error between each measured data point and the same point in a corresponding
model simulation. As with the Hill-function characterization algorithm a random initial parameter
value search was implemented following the GAMES workflow [38], while simultaneously looking for
the smallest chi-squared values for each fitting iteration. These scripts are in the supplementary
information documentation.

Using the estimated values of τOFF
Y FP , shown in Table 4, and using both Equations 3 and 4, the

first fitting iteration was used to obtain τON
Y FP , τON

x , and xss parameter estimate values using the
ON-to-OFF characterization experiment results. Using the parameter estimation method proposed
in [38], and the fixed values of τOFF

Y FP obtained previously, the model was fitted to the experimental
results using a minimizing function. The parameter values estimated with this method are shown in
Table 4.

Using the ON-to-OFF characterization experiments, and assuming that the influence of input
sensor promoter flux is zero, then fitting Equation 4 to the gradient of the fluorescence loss over time
produces estimates of τOFF

Y FP parameter values.

4.4 Plasmids preparation

Circuit plasmid (SZT61): pAN3944 containing the AraC gate sequence, pAJM.477 con-
taining the Lux R sequence and pAN4023 containing the Lux R relevant ribozyme (RiboJ), RBS
(BBa B0064 rbs) and terminator (L3S2P21 terminator) were a gift from Prof. Christopher Voigt
(Addgene plasmids #74702, #108526 and #74701, accordingly). The Lux R sequence from pAJM.477
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Table 1: The different inducer concentrations that were tested.

Condition HSL Ara

1:100 0.02µM 0.05mM
1:10 0.2µM 0.5mM
1:1 2µM 5mM
10:1 20µM 5mM

was amplified using polymerase chain reaction (PCR) and cloned into the relevant location at
pAN4023 using a standard Gibson assembly reaction [39]. Then, the entire Lux R gate was am-
plified using PCR and cloned into pAN3944 using standard Gibson assembly reaction. The removal
of other gates from pAN3944 was done using one-step PCR.

Reporter plasmid containing YFP (SZT45): Using one-step PCR, the promoter of the
reporter plasmid pAN4023 was changed to pLux Star.

Reporter plasmid containing the MS2 lysis protein (SZT65): The lysis protein se-
quence was synthesized (genscript) and cloned into SZT45 using standard Gibson assembly reac-
tion s[39].

Lux R gate characterization circuit plasmid (on/off) (SZT69): AraC gate was re-
moved from SZT61 and the LuxR promoter was changed from the pBAD to a constitutive promoter
- J23105, using reverse PCR.

AraC gate characterization circuit plasmid (on/off) (SZT70): LuxR gate was re-
moved from SZT61 using reverse PCR.

AraC gate characterization reporter plasmid (on/off) (SZT71): The pBAD promoter
was amplified from pAN3944 and cloned into SZT45 instead of pLuxStar promoter using standard
Gibson assembly reaction.

4.5 Circuit Induction and Measurements

The genetic circuit plasmid (SZT61) and the relevant reporter plasmid (SZT45 or SZT65) were co-
transformed into chemically competent NEB 10-beta (New England Biolabs, MA, C3019) according
to the manufacture instructions. Following the transformation, the cells were plated on LB agar
plates with 50 µg/mL kanamycin (Gold Biotechnology, MO, K-120-5) and 50 µg/mL spectinomycin
(Gold Biotechnology, MO, S-140-5). The plates were grown at 37◦C overnight and single colonies were
chosen and inoculated into 200 µl of M9 glucose with antibiotics in a deep 96-well plate (MasterBlock,
96 wells, PP, 2ml). M9 glucose media is composed of M9 media salts (6.78 g/L Na2HPO4, 3 g/L
KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl;), 0.34 g/L thiamine hydrochloride (Sigma-Aldrich, MO,
T4625), 0.4% D-glucose (BDH), 0.2% Casamino acids (Bacto), 2 mM MgSO4 (Fisher Chemicals),
and 0.1 mM CaCl2. Antibiotic concentrations in M9 glucose media were 50 µg/mL kanamycin and
50 µg/mL spectinomycin. The single colonies were grown at 37◦C overnight, 1000 RPM in Multitron
Pro 2 shaker incubator. Following the incubation, the overnight cultures were diluted 178-fold by
adding 15 µl of the culture into 185 µL of M9 glucose media, and then 15 µL of that dilution into
185 µL of M9 glucose media with 50 µg/mL kanamycin and 50 µg/mL spectinomycin. For the
different growth phases, the M9 media contained 2 µM of N-Hexanoyl-L-homoserine lactone (HSL)
(Sigma-Aldrich) and the L-arabinose (Ara) (Sigma-Aldrich) was added at the relevant times to a final
concentration of 5 mM. For the different concentrations of inducers assays, the M9 media contained
the following inducer’s concentrations shown in Table 1:

For the soil assays, the soil sample was split to two controls, sterile and non-sterile. The sterile
soil was autoclaved and the non-sterile soil was not. Then, the two controls were mixed with the M9
media to a final concentration of 2% (W/V). The bacteria were grown according to the description
above at M9 media and were diluted 178-fold into the soil media.

Fluorescence Measurements: The diluted culture was plated in a black 96-wells plate with a
clear bottom (655090,F-bottom, µclear, black, Greiner) and placed in a plate reader (Tekan SPARK
plate reader) at 37◦C and 270RPM. OD600 and fluorescence (excitation wavelength 485nm and
emission wavelength 535nm) were measured every 10 minutes for at least 800 minutes. For the lysis
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protein assay, only OD600 was measured. For the soil assay, only fluorescence was measured. For
the different temperature assays the plate reader temperature was set to 30◦C and 42◦C

ON/OFF Characterization Assays: For the AraC gate, AraC plasmid (SZT70) and the re-
porter plasmid (SZT71) were co-transformed into chemically competent NEB 10-beta (New England
Biolabs, MA, C3019) according to the manufacture instructions. For the LuxR gate, LuxR plasmid
(SZT69) and the reporter plasmid (SZT45) were co-transformed into chemically competent NEB
10-beta (New England Biolabs, MA, C3019) according to the manufacture instructions. Following
the transformation the cells were plated on LB agar plates with 50 µg/mL kanamycin (Gold Biotech-
nology, MO, K-120-5) and 50 µg/mL spectinomycin (Gold Biotechnology, MO, S-140-5). The plates
were grown at 37◦C overnight and single colonies were chosen and inoculated into 200 µl of M9 glu-
cose with antibiotics in a deep 96-well plate (MasterBlock, 96 wells, PP, 2ml). M9 glucose media is
composed of M9 media salts (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl;), 0.34
g/L thiamine hydrochloride (Sigma-Aldrich, MO, T4625), 0.4% D-glucose (BDH), 0.2% Casamino
acids (Bacto), 2 mM MgSO4 (Fisher Chemicals), and 0.1 mM CaCl2. Antibiotic concentrations in
M9 glucose media were 50 µg/mL kanamycin and 50 µg/mL spectinomycin. The single colonies were
grown at 37◦C overnight, 1000 RPM in Multitron Pro 2 shaker incuabtor. Following the incubation,
the overnight cultures were diluted 178-fold by adding 15 µl of the culture into 185ul of M9 glucose
media, and then 15 µL of that dilution into 185 µL of M9 glucose media with 50 µg/mL kanamycin
and 50 µg/mL spectinomycin. For the AraC gate, the L-arabinose (Ara) (Sigma-Aldrich) was added
at the relevant times to a final concentration of 5mM. For the LuxR gate, HSL was added at the
relevant times to a final concentration of 2 µM. The diluted culture was plated in a black 96-wells
plate with a clear bottom (655090,F-bottom, µclear, black, Greiner) and placed in a plate reader
(Tekan SPARK plate reader) at 37◦C and 270RPM. OD600 and fluorescence (excitation wavelength
485 nm and emission wavelength 535 nm) were measured every 10 minutes for 650 minutes. Follow-
ing 650 minutes, the plate were centrifuged for 2 minutes at 4000RPM and the media was removed
from each well. Then, fresh M9 media without any inducers was added to all the wells. The plate
were then placed in the plate reader at 37◦C and 270RPM. OD600 and fluorescence were measured
every 10 minutes for an additional 650 minutes.

4.6 Circuit Assay’s Analysis:

For each sample, there were at least five biological repeats.

Fluorescence graphs: The graphs represent the average values of these repeats. The fluores-
cence was normalized by subtracting the averaged blank value from the averaged fluorescence value
and dividing the resulted fluorescence value in the averaged OD600 value for each time point.

Time for fluorescence detection graphs: The normalized fluorescence values of the samples
from T=0 onward were compared to the normalized fluorescence values of the negative control (with-
out induction). The time of fluorescence detection was determined as the time when the fluorescence
values of the samples exceeded those of the negative control.

Fluorescence fold change graphs: The maximum normalized fluorescence values of each
sample were chosen. For the induction time variations assay, the T=0 average was set as one and
all the other samples were compared to it. For the inducer concentration variations assay, the 1:1
concentration average was set as one and all the other samples were compared to it. For the inducer
concentration variations at low and high temperature, the 1:1 concentration average was set as one
and all the other samples were compared to it.

Time for lysis graphs: The normalized OD600 values of the samples from T=0 onward were
compared to the normalized OD600 values of the negative control (without induction). The time of
lysis was determined as the time when the OD600 values of the samples decreased in comparison to
the negative control.

Time for rescue graphs: The normalized OD600 values of the samples from the time of lysis
were examined. The time of rescue was determined as the time when the OD600 values of the
samples started to increase rather than decrease.

YFP a.u. production rate graphs: The sum of the normalized fluorescence values of each
hour was calculated from the time of the fluorescence signal detection (see time for fluorescence
detection graphs explanation).
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Doubling time graphs: The doubling time was determined as the time (min) it took for nor-
malized OD600 values to double (from 0.2 to 0.4).

Confocal images: The bacteria were cultivated and induced as described above for the lysis
assay. At T=6hr and T=21hr, 200 µL from each sample was taken and centrifuged at 4000 RPM for
1 minute. The cells were washed using 1 mL PBS and centrifuged. The pellet was resuspended with
50 µL of PBS. Then, a Live/Dead staining was done according to the manufacturer’s instructions,
(L13152 LIVE/DEAD® BacLight™ Bacterial Viability Kit, Molecular Probes, OR, USA), and the
samples were subjected to confocal microscopy utilizing a LSM510 confocal microscope (Zeiss). The
presented results are representative of three independent experiments.
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(a)

(b)

Figure 8: (a) Fitted τON
y values obtained when fitting fluorescence values for different induction times

(t=0, t=180, t=210, etc.) using fitted parameters obtained using the lmfit Python package [32]. (b)
Un-tested YFP output prediction for induction time of 270 minutes obtained using the linear regression
model to estimate τON

y ’s value for the untested condition.
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Figure 9: Lysis induction under different conditions. a Scheme of the lysis assay. HSL was added at T=0,
Ara was added later at different growth phases which induced lysis. With time, some bacteria overcame
the lysis process, which is shown with OD. b Bacteria growth over time of the different bacteria induced
at various growth phases. c and d Comparison of the time it took to achieve a decrease in the OD of
the bacteria at different growth phases (c) and inducers concentrations (d). ****P < 0.001 (Student’s
t-test). e Confocal images of a live-dead assay of control bacteria (without induction) and lysed bacteria
at two different time points. Scale bar is 40 µm.
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(a)

(b)

Figure 10: (a) Simple delay circuit. Two successive NOT gates (represented as ) add delay to a
circuit without changing the circuit’s behavior. In this image, each logic gate is represented with a
different color to represent different gate assignments. (b) Set-up failure-free delay circuit. In this figure

represents a NOT gate, an NIMPLY gate, and AND gate, and a buffer gate. Each
logic gate is represented with a different color to represent different gate assignments.
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