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Abstract

Recent advantages of brain decoding with functional magnetic resonance imaging
(fMRI) have enabled us to estimate individual differences in mental information
from brain responses to natural sensory inputs. However, the physical constraints
and costs of fMRI measurements prevent brain decoding from achieving real-
world applications. To address this issue, this study aims to build a framework
to decode individual differences in mental information under natural situations
via brain-response prediction using convolutional neural networks (CNNs). Once
the CNN-based prediction model is constructed using measured brain response,
mental information can be decoded from the predicted responses of individual
brains with no additional fMRI measurements. As per our analysis, it was found
that in 81 of 87 items to be decoded, this framework captured individual difference
patterns consistent with conventional decoding using measured brain responses.
Our framework has great potential to decode personal mental information with
minimal fMRI measuring constraints or costs, which substantially expands the
applicability of brain decoding in daily life.

1 Introduction

Brain decoding based on functional magnetic resonance imaging (fMRI) has been identified a
valuable tool for not only neuroscience research [[7, 26, 27]] but also real-world applications, such
as neuromarketing [[8,20]. Recent techniques of fMRI-based decoding successfully recovered rich
mental information from fMRI signals induced by natural scenes [9, (13| [18} |19} 124]. In addition,
several studies have attempted to decode the individual differences in mental information, for example,
when personal episodes of daily experiences are recalled [[1]. Although these techniques are promising
for real-world applications, the physical constraints and the high costs of fMRI measurements prevent
these techniques from achieving widespread application.

One approach to solve this problem uses alternative neuroimaging devices, such as electroencephalog-
raphy (EEG), that require weaker constraint and lower costs [21, 22]. However, signals collected
with these devices are noisier than fMRI, thus making it difficult to recover rich mental information
[3L[10]. Therefore, the extent of real-world application for brain decoding using these devices remains
to be limited. Another approach uses computational methods that can eliminate a large amount of
fMRI measurement for brain decoding. An example of such a method is the decoding of fMRI
responses predicted by computational models (predicted-response decoding) instead of measured
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responses [17]. Previous work has demonstrated that this predicted-response decoding achieves the
performance comparable to the decoding of measured fMRI responses (measured-response decoding)
[[L7]. Although this method has the potential to drastically reduce the constraints and the costs of
fMRI measurements and expand the applicability of brain decoding, the previous work only made
the comparison of its group-level performance with measured-response decoding. Thereby its full
potential remains unclear.

As an extension of the latter approach, this study aims to introduce predicted-response decoding into
the estimation of individual differences in mental information evoked by natural scenes. Inspired by
the previously developed method [[17]], we have constructed prediction models that simulate individ-
ual’s fMRI responses to arbitrary natural scenes and decoding models that estimate an individual’s
mental information from the predicted responses (Figure[T). Then, the validity of these models was
evaluated using a large variety of decoded items associated with natural scenes, in terms of whether
the model estimates accurately captured the individual differences in mental information derived
from measured-response decoding. This validation supports the notion that our framework based
on predicted-response decoding potentially enables us to achieve weak-constraint, low-cost brain
decoding to estimate rich mental information varying from person to person.

2 Predicted-Response Decoding Framework

2.1 Overview

Our framework based on predicted-response decoding consists of models to predict fMRI voxel
responses to movie scenes (CNN-to-voxel [cnn2vox] and voxel-to-voxel [vox2vox] models) and
to decode movie-associated cognitive labels from the predicted voxel responses (voxel-to-label
[vox2lab] models, Figure D First, the cnn2vox model transforms the features of movie scenes,
extracted via visual and auditory CNNs, to voxel responses. Next, the vox2vox model modifies the
predicted voxel response using the history of preceding voxel responses. Finally, the vox2lab model
estimates cognitive labels from the modified responses.

The cnn2vox and vox2vox models are pretrained using small datasets of movie-evoked voxel re-
sponses collected from individual brains using fMRI. Once the training is completed, these models
predict voxel responses to arbitrary movie scenes by transforming the CNN features to the response
of individual brains with no additional brain measurement. Then, the vox2lab model is trained using
paired datasets of predicted voxel response and cognitive labels linked with movie scenes.

2.2 CNN Feature Extraction

In this study, VGG-16 [25]] and SoundNet [2]], which are pretrained and available on the web, are
used to extract visual and acoustic features, respectively, from movies. To extract visual features
from movies via VGG-16 (originally applied to static images with a fixed size of 224 x 224 pixels),
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Figure 1: Predicted-response decoding framework.
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the movies are decomposed into frames and resized to the same size. Then, unit activations of
intermediate layers are calculated when inputting the movie frames and pooled for each second.
Finally, the maximum activation value of each unit for each second is used as the visual feature of the
movies. This study uses eight layers of pool1-5 and fc6-8 and obtains the visual features for each
layer. To extract acoustic features from the same movies, the sound waves of the inputs are resampled
with the fixed frequency of 44100 Hz and decomposed into each second. Then, unit activations
of intermediate layers in SoundNet are calculated when inputting the sound waves as the acoustic
features of the movies. This study uses seven layers of conv1—7 and obtains the acoustic features for
each layer. Finally, these processes produce eight series of visual features and seven series of acoustic
features of movies.

2.3 Cnn2vox Model

The construction of the cnn2vox, vox2vox, and vox2lab models is based on the voxelwise modeling
technique [15]. Using a time series of CNN features and voxel responses, the cnn2vox model
acquires the linear mapping from a CNN feature space to a response space of each voxel through
statistical learning. The learning objective is to estimate weights of N voxels, as denoted by
Wev = {Wev(1), " s Wev(n) }» Of the linear model: R = f(X)W,, + ¢, where R = {r1,---,ry}
is a series of responses in each of N voxels, X is a series of movie scenes, f(X) is its feature
representation with the dimensionality of D, and ¢ is isotropic Gaussian noise. A set of linear
temporal filters is used to capture the hemodynamic delay in the response [19]]. The matrix f(X) is
constructed by concatenating four sets of D-dimensional feature vectors with temporal shifts of 3, 4,
5, and 6 seconds. This means that voxel response at a time point ¢, as denoted by R(t) t=1,---,1),
is modeled by a weighted linear combination of the preceded series of CNN features:

Ry = Z J(X—r))Wev ke + €,
k=3,4,5,6

where W, . denotes the weights corresponding to the delay k. The weight estimation is performed
using L2-regularized linear least-squares regression. The optimal regularization parameter for each
model is determined by 10-fold cross validation of training data and shared across all voxels. In
this study, f(X) represents a series of unit activations induced by movies for each layer of VGG-16
or SoundNet. Since the substantial number of units in lower layers of the CNNs took too much
computational cost for the regression process, the dimensionality of unit-activation features for each
layer is reduced in advance by principal component analysis on training datasets. This study reduces
the dimensionality, D, to 1000. Finally, eight models for eight VGG-16 layers (pool1-5 and fc6-8)
and seven models for seven SoundNet layers (conv1-7) are constructed for each brain.

Each of the estimated linear models predicts voxel responses to new movie scenes. Then, the predicted
voxel responses from individual models are integrated using linearly weighted averages for each voxel.
The weight for a given voxel is calculated based on the prediction accuracy (Pearson correlation
coefficient between measured and predicted voxel responses) for that voxel calculated during the
cross-validation in model training. Specifically, the weight for the ¢-th model, as denoted by w;, is
determined by w; = a;/ ij aj , where qa; is the prediction accuracy of the model. This integration
process produces a single series of predicted voxel responses to the new movie scenes.

2.4 Vox2vox Model

The vox2vox model predicts response in one voxel at a given time point from responses in a group of
voxels at preceding time points. Hence, this model captures endogenous properties of voxel responses,
such as intrinsic connectivity between different brain regions [4]. Meanwhile, the cnn2vox model
captures exogenous properties of voxel responses, such as stimulus selectivity. The vox2vox model
was reported to improve performance in predicting voxel response to movie scenes [17]].

In the vox2vox model, a response in each of N voxels at a time point ¢, as denoted by R(t), is
modeled by a weighted linear combination of responses in the set of M voxels preceded by 1, 2, and

3 seconds:
R(t) = Z R/(t—k)WVVJﬂ + €.
k=1,2,3
The M voxels are selected based on the cnn2vox model prediction accuracy on model training data.
In this study, the top 2000 voxels with the highest prediction accuracies after the weighted average
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of all the models are used as the M voxels. The regression procedure is the same as that used in
the cnn2vox model. Response predictions from the cnn2vox and vox2vox models are thereafter
combined as a weighted sum. The weight is determined by the relative accuracy of each prediction
for each voxel.

2.5 Vox2lab Model

The vox2lab model estimates cognitive labels associated with movie scenes from predicted voxel
responses. In this model, a series of z-scored cognitive labels at a time point ¢, denoted by L) (t =
1,---,T"), is regressed by a series of predicted responses to the scenes in the set of N voxels with
the hemodynamic delay, k, of 3, 4, and 5 seconds [[L8]]:

Ly = Z Ry Wik + €.
k=34,5

The regression procedure is the same as that used in the other models, except that the regularization
parameters are determined separately for each dimension of label vectors. This model learns the
association between predicted voxel responses (but not measured voxel responses) and cognitive
labels.

3 Data

3.1 Movie

Two sets of movies were used for experiments and analysis. One includes 368 Japanese ad movies
broadcasted on the web between 2015 and 2018 (web ad movies). The other includes 420 Japanese
ad movies broadcasted on TV between 2011 and 2017 (TV ad movies). The movies are all unique,
include a wide variety of product categories (Table S1), and have the same resolution (1280 x 720
pixels) and frame rate (30 Hz). The lengths of the movies are either 15 or 30 seconds. They are also
accompanied by PCM sounds with the sampling rate of 44100 Hz and are normalized so that they
have the same RMS level. To create movie stimuli for experiments, the original movies in each set
were sequentially concatenated in a pseudo-random order. Each stimulus set of the movies has the
length of 8400 seconds in total and was divided into 7200 seconds and 1200 seconds to collect voxel
responses for the training (training dataset) and test (test dataset), respectively, of all the three models.

3.2 fMRI Data

fMRI responses to the movie stimuli were collected from Japanese participants using a 3T MRI
scanner with a sampling rate of 1 Hz. In total, 40 (15 females; age [mean + SD] = 26.6 £ 9.0
years) and 28 (12 females; age [mean + SD] = 26.4 + 7.6) participants were assigned to the fMRI
experiments with the web ad movie set and those with the TV ad movie set, respectively. Of these,
16 participants overlapped between the two experiments. The experimental protocol is approved by
the ethics and safety committees of the authors’ institution. Written informed consent was obtained
from all participants. For the modeling in each participant, the fMRI data were preprocessed and all
voxels within the whole cortex were extracted. For more details, see Supplementary Methods.

3.3 Cognitive Labels

The five categories of cognitive labels associated with movie scenes used to assess the validity of
predicted-response decoding are as follows: (1) scene descriptions, (2) impression ratings, (3) ad
effectiveness indices, (4) ad preference votes, and (5) subjective preference ratings. The categories
(1) and (2) are linked to both movie sets. The category (3) is linked to the web ad movie set. The
categories (4) and (5) are linked to the TV ad movie set. The category (5) was collected fully from
the fMRI participants. Each of the categories (2)—(4) has subordinate items. In total, 87 labels are
assigned to the time series of the movie sets. The details of each category are described below. For
additional details, see Supplementary Methods and Table S2.

Scene Descriptions Manual descriptions given for every 1-second movie scene were collected from
human annotators who were instructed to describe each scene. The descriptions contain a variety of
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expressions reflecting not only their objective perceptions but also their subjective perceptions (e.g.,
feeling). To evaluate the scene descriptions quantitatively, the descriptions were transformed into
vectors of word2vec [14]]. Individual words in each description were projected into the pretrained
word2vec vector space. Then, the word vectors obtained from all descriptions within each scene were
averaged. This procedure yielded one 100-dimensional vector for each 1-second scene. Thus, one
label set was assigned to each movie set.

Impression Ratings Manual ratings given for every 2-second movie scene on 30 different impres-
sion items (e.g., "beautiful”) were collected from human annotators. While the annotators sequentially
watched separate 2-second clips of the movies, they evaluated each item on a 5-point scale from 0 to
4. The mean impression ratings in every 2-second scene were obtained by averaging multiple ratings
and then oversampled to obtain time series of rating labels in every 1-second scene. Thus, 30 label
sets were assigned to each movie set.

Ad Effectiveness Indices Two types of mass behavior indices were collected from the Internet.
One type is click-through rate, or the fraction of viewers who clicked the frame of a movie and
jumped to a linked web page. The other type is view completion rate, or the fraction of viewers
who continued to watch an ad movie until a specific time point of the movie (25%, 50%, 75%, or
100% from the start) without choosing a skip option. Hence, each movie has four indices of the view
completion rate. Although a single value of each index was assigned to each ad, time series of indices
in every 1-second scene were obtained by filling all scenes in an ad with an identical index value
assigned to the ad. Thus, five label sets were assigned to the web ad movie set.

Ad Preference Votes Reputation surveys of TV ads for commercial purposes were conducted
using questionnaires to large-scale testers. Each tester was asked to freely recall a small number of
her/his favorite TV ads from among the ads recently broadcasted. The total number of recalls of an
ad was regarded as the preference vote. In addition, the questionnaires also include 15 subordinate
items that ask why the ads are favorable for her/him (e.g., humorous”). Three additional items
reflected how effective the ads were for her/his usage and purchase of products (e.g., “purchase
intention”). Although one value of each item was assigned to each ad, the time series of the value in
every 1-second scene were obtained by filling all scenes in an ad with an identical value assigned to
the ad. Since these values are distributed in a similar form of a gamma distribution, the logarithm of
the data was taken. Thus, 19 label sets were assigned to the TV ad movie set.

Subjective Preference Ratings Manual preference ratings given for each TV ad movie were
collected from 14 of the fMRI participants. While the participants sequentially watched each movie
outside the MRI scanner, they rated their own preference for the movie on a 9-point scale from —4 to
4. The ratings were oversampled to obtain a time series of ratings in every 1-second scene. Thus, one
label set was assigned to the TV ad movie set.

4 Analysis

4.1 Model Construction

For the predicted-response decoding, the three models for each participant are constructed using the
pair data of web or TV ad movies, the participant’s fMRI data, and cognitive labels in the training
dataset. After the cnn2vox and vox2vox models are trained using movies and the measured voxel
responses to them, the vox2lab model for each cognitive label is trained using the predicted voxel
responses to the same movies and the label associated with them. Then, a time series of each label is
estimated using these three models with the test dataset.

The Pearson correlation coefficient between this estimated time series and a time series of the true
cognitive label is calculated for each participant as the measure of decoding accuracy for each label.
Note that since the label of scene description uses multidimensional vectors, the decoding accuracy
for this label is evaluated by calculating the correlation coefficient at each time point and averaging it
over all time points. Whether the decoding accuracy for a given label is significantly higher than zero
is evaluated with the Wilcoxon signed-rank test with correction for multiple comparisons using the
false discovery rate (FDR), drawing on each participant’s accuracy as a data sample (P < 0.05).
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Figure 2: Evaluation of individual-difference reflection.

For the comparison with the predicted-response decoding, this study has also constructed each
participant’s model for the measured-response decoding, in which cognitive labels are directly
estimated by decoding measured voxel responses to movies. The form of this model is the same as
in the vox2lab model of the predicted-response decoding, except that measured voxel responses are
used instead of predicted responses. The regression procedure and the significance test are the same
as those used in the predicted-response decoding.

4.2 Individual Difference

The individual differences of estimation from each of the two decoding methods is evaluated using the
participant-pair dissimilarity of the time series of decoded cognitive labels for the test dataset (Figure
. The dissimilarity is measured with the Pearson correlation distance (i.e., 1 — Pearson correlation
coefficient) of the time series between all possible pairs of the participants for each movie set. Then,
the Spearman correlation of participant-pair dissimilarities between predicted and measured-response
decoding is calculated for each label as a measure of how well the individual differences derived
from the predicted-response decoding reflect those derived from the measured-response decoding
(referred to as individual-difference reflection). Note, that this study uses Spearman correlation as
previously recommended for computing the correlation of dissimilarity measure [[16]. However,
comparable results are observed even when Pearson correlation was used (see Section[5.2). When
the Spearman correlation for a given label is significantly larger than O (P < 0.05, FDR corrected),
the predicted-response decoding is regarded as reflective of the individual differences in mental
information for that label.

5 Results

5.1 Model Performance

To validate the models constructed for the predicted-response decoding, we first examine the model
performance in terms of voxel-response prediction and decoding at the population level. The accuracy
of voxel-response prediction (prediction accuracy) in the cnn2vox models is evaluated by the Pearson
correlation between predicted and measured voxel responses. The localized pattern for the prediction
accuracy of the cnn2vox model across the cortex shows that the models based on the visual and
auditory CNNss selectively predict voxel responses in visual and auditory cortical regions, respectively
(Figure S1). This is consistent with previous findings in brain-response modeling studies using CNNs
(516, [11].

The decoding accuracy of the vox2lab model (see Section[d.T) is significantly higher than 0 for all
87 cognitive labels (0.11-0.82; Wilcoxon signed-rank test, P < 0.0005, FDR corrected) and strongly
correlated with that of measured-response decoding across all labels (Pearson r = 0.69, P < 0.0001;
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Figure 3: Individual-difference reflection for two example labels (A and B) and for all 87 labels (C).

Figure S2). Furthermore, the accuracy is rather higher for the predicted-response decoding than for
measured-response decoding (Wilcoxon signed-rank test, P < 0.0001) as reported previously [[17].
Thus, the models effectively work for estimating mental information, at least, at the population level.

5.2 Significant Individual-Difference Reflection for Almost All Cognitive Labels

We next examine how well the predicted-response decoding captures the individual differences in
mental information derived from the measured-response decoding. Among all cognitive labels, the
highest value of the individual-difference reflection (see Section @) is observed in the label of scene
descriptions for the web ad movies (0.74; Figure[3A). The estimation of this label is derived from
the pair data of predicted voxel response and cognitive label each of which is derived from different
persons. However, even when using the pair data derived from the same person (i.e., when estimating
the label of subjective preference ratings), we obtain a significant value of the individual-difference
reflection (P < 0.0005; Figure E]B). In addition, the individual differences of this label estimated from
the predicted-response decoding are also significantly correlated with the individual differences of
preference ratings themselves (Figure S3). These results suggest that the predicted-response decoding
successfully captures the individual differences in mental information associated with behavior.

Of all the 87 cognitive labels to be decoded, we observe significant individual-difference reflection
for 81 labels (Figure EC and Table S3; P < 0.05, FDR corrected). A similar result is observed even
when a different measure of individual-difference reflection is used (i.e., Pearson correlation instead
of Spearman correlation; Figure S4). Thus, these results suggest that the predicted-response decoding
successfully captures the individual differences in mental information for almost all the cognitive
labels used across different datasets.

5.3 Relationship Between Individual-Difference Reflection and Decoding Performance

The individual-difference reflection, however, varies across cognitive labels. This raises the question
of what factor determines the variation of the individual-difference reflection. To address this, we
hypothesize that the degree of the individual-difference reflection for a given label is affected by
the accuracy of the predicted-response decoding for that label. A significant correlation between
the individual-difference reflection and decoding accuracy indicates the validity of this hypothesis
(Pearson r = 0.49, P < 0.0005; Figure S5). Therefore, the more accurately we decode a cognitive
label using the predicted-response decoding, the more effectively the decoded contents reflect the
individual differences in mental information for the label.

6 Conclusion

In this study, we have aimed to build the framework of predicted-response decoding to estimate the
individual differences in mental information evoked by natural scenes with minimal fMRI measure-
ment. As per our findings, it was determined that this framework was able to successfully captures the
individual-difference patterns of mental information, derived from conventional measured-response


https://doi.org/10.1101/2022.05.16.492029
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.16.492029; this version posted May 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

decoding, for 81/87 (93.1%) of decoded cognitive labels associated with natural scenes. Our findings
suggest that this framework can be used to estimate personal mental information evoked by natural
scenes.

We examined the predicted-response decoding framework using moderate-performance CNNss (i.e.,
VGG-16 and SoundNet) for extracting features from movies and using linear regression for mapping
brain responses with movie features or cognitive labels, according to the settings in a previous study
[L7]. Although the framework successfully captures the individual differences in mental information
even for this setting, the reflection of the individual differences may be improved by employing
higher-performance CNNs [23]] and/or more sophisticated nonlinear regression (e.g., regression with
deep neural networks [12]]). It is important to note that our framework essentially allows us to apply
any methods to feature extraction and regression. Therefore, the optimal component methods for the
predicted-response decoding of individual differences should be addressed in future work.

We have confirmed that predicted-response decoding can capture the individual differences of not only
mental information, derived from measured-response decoding, but also the behavior of subjective
preference ratings for movies (Figure S3). This result suggests that the individual differences
estimated by predicted-response decoding potentially reflect subjective perception and cognition of
individuals during natural stimulation. This is similar to sensory input given in everyday situations.
Therefore, predicted-response decoding provides a low-cost, versatile tool for brain decoding to
estimate personal perception and cognition evoked by natural scenes, which has immense potential to
facilitate real-world applications of brain decoding.

However, the potential negative societal impacts of predicted-response decoding may include invol-
untary mind reading and negative bias against personality. Predicted-response decoding can evaluate
individual’s mental information evoked by natural scenes with no additional brain measurement.
Therefore, someone’s mental information may be evaluated by a third party without her/his realizing.
In addition, since specific types of the evaluated mental information (e.g., subjective preference)
are related to her/his personality, the evaluation may in some cases prejudice her/his personality.
Although predicted-response decoding may not yet have achieved the level of performance that raises
such concerns, the future development of this method will also need efforts to address how to ensure
the security of personal models and how to define the correct use of personal models by law.
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S1 Supplementary Methods

S1.1 fMRI Data Collection and Preprocessing

A 3T Siemens MAGNETOM Prisma scanner was used with a 32-channel Siemens volume coil and a
multiband gradient echo-EPI sequence [5] (TR = 1000 ms; TE = 30 ms; flip angle = 60°; voxel size =
2 X 2 X 2 mm; matrix size = 96 x 96; the number of axial slices = 72; multiband factor = 6). The
field of view covered the entire cortex. Using a T1-weighted MPRAGE sequence on the same 3T
scanner, anatomical data were also collected (TR = 2530 ms; TE = 3.26ms; flip angle = 9° ; voxel
size =1 x 1 x 1 mm; matrix size = 256 x 256; the number of axial slices = 208).

In these experiments, the participants viewed the movie stimuli on a projector screen inside the
scanner (27.9° x 15.5° of visual angle) and listened to the accompanying sounds through MR-
compatible headphones. The participants were given no explicit task. The fMRI response data for
each set of the web and TV ad movies were collected from individual participants in three separate
recording sessions over 3 days.

For each stimulus set, 14 non-overlapping movie clips of 610 seconds in length were obtained. The
individual movie clips were displayed in separate scans. The initial 10-second part of each clip was
a dummy to discard hemodynamic transients caused by clip onset. The fMRI responses collected
during the 10-second dummy movie were not used for the modeling. The 12 clips, including movies
of the training dataset, were presented once. The fMRI responses to these clips are used for model
training (7200 seconds in total). The other clips including movies of the test dataset were presented
four times each in four separate scans. The fMRI responses to these clips were averaged across four
scans and used for model test (1200 seconds in total).

For fMRI data preprocessing, motion correction in each functional scan was performed using the sta-
tistical parameter mapping toolbox (SPMS8, http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/). For each participant, all volumes were aligned to the first image from the first functional
run. Using a median filter with a 120-second window and subtracting from the signal, low-frequency
fMRI response drift was detected. Then, the response for each voxel was normalized by subtracting
the mean response and scaling it to the unit variance. FreeSurfer [1, 2] was used to identify cortical
surfaces from anatomical data and register them to the voxels of functional data. All voxels identified
within the whole cortex for each participant were used for the modeling. In addition, cortical voxels
were anatomically segmented into 358 regions based on the HCP-MMP1 atlas [3] in order to show
the localization of model performance on predicting voxel response.

S1.2 Details of the Cognitive Labels

In this study, five distinct categories of cognitive labels associated with movie scenes are used to
evaluate the validity of the predicted-response decoding. The details of each category are described
in the following and summarized in Table [S2!

1. Scene descriptions Manual scene descriptions using natural Japanese language were provided
for every 1-second scene of each of the web and TV ad movie sets. The annotators were native
Japanese speakers (web ad movies: 11 females and 2 males, age 20-56 years; TV ad movies: 68
females and 28 males, age 1962 years), who were not the fMRI participants. They were instructed to
describe each scene (the middle frame of each 1-second clip) using more than 50 Japanese characters.
Multiple annotators (web ad movies, 5 annotators; TV ad movies: 12—14 annotators) were randomly
assigned for each scene to reduce the potential effect of personal bias. The descriptions contain a
variety of expressions reflecting not only objective perceptions but also the subjective perceptions of
the annotator (e.g., impression, feeling, association with ideas). The following are the descriptions of
two example scenes:

Example scene 1

* In the middle of a light blue background, there is a man who has a tennis racket in his hand
and glares at the front. The scene tells me he is very serious.

* He is a tennis player who everyone really admires. He has a cool face. He is handsome and
refreshing. It looks like an advertisement for men.
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* A short-haired man with a suntanned skin looks at a point with a sharp look. He has a racket
in his hand. He is wearing blue clothes.

* The power of his eyes is amazing. His sharp eyes give me the impression that he intimidates
his opponent. As a sportsman, he seems to be clean even if he is sweating.

* A young Asian man with short black hair faces his eyes forward. I can see his racket. There
are white letters in the lower part of the screen.

Example scene 2

* Itlooks like a Christmas scene. It seems like Santa Claus is going back to the sky. It looks
good for a Christmas gift.

* A book on the green cover is opened. The book is on the brown table. In the book, there is a
round green character waving its hands.

* A thick open book with a green spine cover is placed on the table of brown trees. It looks
like a very funny picture book.

* A green book is opened on the desk of the tree. On the opened page, a moon is drawn with a
round green stuffed animal waving toward the moon.

e Itis cute. It seems to be waving bye-bye. Before Christmas? It seems like he is looking
down on Mr. Reindeer and Santa.

To evaluate the scene descriptions quantitatively, the descriptions were transformed into vectors of
word2vec [4] in the same way as in a previous work [6]. The word2vec (skip-gram) algorithm was
originally developed to learn a high-dimensional word vector space based on local (nearby) word
co-occurrence statistics in natural language texts. A word2vec vector space was constructed ahead
from a text corpus of the Japanese Wikipedia dump on January 11, 2016 (vector dimensionality
= 100; window size = 10; the number of negative samples = 5). All Japanese texts in the corpus
were segmented into words and lemmatized using MeCab (http://taku910.github.io/mecab).
The only parts of speech used were nouns, verbs, and adjectives. All the others were discarded. To
improve the reliability of the word2vec learning and restrict the vocabulary size to around 100000
words, words that appeared less than 178 times in the corpus were excluded.

Each description for a given scene was also segmented, lemmatized, and decomposed into nouns,
verbs, and adjectives using MeCab as has been described above. Individual words were projected into
the word2vec vector space. The word vectors were averaged within each description. Then, for each
scene, all vectors that were obtained from the different descriptions were averaged. This procedure
yielded one 100-dimensional vector (description vector) for each 1-second scene.

2. Impression ratings Manual ratings of 30 different impressions were provided for every 2-second
scene of each of the web and TV ad movie sets. The annotators for the web ad movie sets were
completely different from the fMRI participants (26 females and 6 males: age 24—61). However, the
annotators for the TV ad movie set were partly recruited from the fMRI participants (3 females and 3
males from the fMRI participants, age 22—46 years: 5 females and 1 male from others, age 20—45
years). The ratings were given for every 2-second scene of movies. All the impression items are
shown in Table[S2] While the annotators sequentially watched separate 2-second clips of the movies
with sounds, they evaluated each item on a 5-point scale from 0 to 4. To keep the motivation of the
annotators, only 15 labels were assigned to each annotator in single clip evaluation. All the items
were evaluated from 9 different annotators for each scene of the web ad movies and from 12 different
annotators for each scene of the TV ad movies. The mean impression ratings in every 2-second scene
were obtained by averaging all the ratings for each movie and then oversampled to obtain a time
series of rating labels in every 1-second scene.

3. Ad effectiveness indices To evaluate the effectiveness of individual web ad movies, two types
of mass behavior indices were collected on the web. One type is click-through rate, defined as the
fraction of viewers who clicked the frame of a movie and jumped to a linked web page. The other
type is view completion rate, or the fraction of viewers who continued to watch an ad movie until a
specific time point of the movie (25%, 50%, 75%, or 100%) without choosing a skip option (hence,
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there are four indices for each movie). These 5 indices were computed from 3783 to 12268028 (mean
= 632516) unique accesses for each movie. Although a single value of each index was assigned to
each movie clip, time series of indices in every 1-second scene were obtained by filling all 1-second
scenes in a clip with an identical index value assigned to the clip.

4. Ad preference votes Mass preference votes for each clip in the TV ad movies were collected for
commercial investigation using questionnaires conducted on large-scale testers. In the questionnaires,
each tester was asked to freely recall a small number of her/his favorite TV ads for her/him from
among the ads recently broadcasted on TV. In addition, the questionnaires also include 15 subordinate
items that asked why the ads were favorable for her/him (e.g., "humorous”). Three additional items
reflected how effective the ads were for her/his usage and purchase of products (e.g., ”purchase
intention”: Table[S2). To eliminate the bias of preference due to frequent exposure on TV, the number
of votes for each item of an ad was divided by its gross rating point (GRP). GRP is an index of how
many people see an ad over a particular period. It is calculated by the audience ratio multiplied by
the number of times the ad is broadcasted during the period. Although a single value for each item
was assigned to each movie clip, a time series of the value in every 1-second scene was obtained by
filling all 1-second scenes in a clip with an identical value assigned to the clip.

5. Subjective preference ratings Manual preference ratings given for each TV ad movie were
collected from 14 of the fMRI participants (9 females and 5 males: age 21-49) on separate days
after their fMRI experiments. While the participants sequentially watched each movie presented on a
computer screen outside the MRI scanner, they rated their own preference for the movie on a 9-point
scale from —4 (most unlikable) to 4 (most likable). To keep the motivation of the participants, the
ratings were conducted in separate seven blocks (600 seconds per block) with intervals on each of
two days. The values collected in the ratings were oversampled to obtain a time series of ratings in
every 1-second scene.
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S2 Supplementary figures
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Figure S1: Localization of cortical regions in which the response is predicted by cnn2vox models.
Participant-average prediction accuracy is shown within each of the 358 cortical regions segmented
with the HCP-MMP1 atlas. Colors indicate the mean prediction accuracy within each of the regions
denoted by the colormap (right). Accuracy less than 0.1 is not shown. The regions predicted
preferentially by the visual CNN-based models and the regions predicted preferentially by the
auditory CNN-based models are shown in distinct colors (red and blue, respectively). The visual
CNN-based models accurately predict voxel responses in visual regions, such as occipital and
posterior temporal cortical areas. In contrast, the auditory CNN-based models predict voxel responses
in auditory regions, such as anterior temporal cortical areas; A, anterior; P, posterior.
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Figure S2: Accuracy of predicted- and measured-response decoding. Each dot denotes accuracy for
each cognitive label. Blue and red dots are derived from web and TV ad movie sets, respectively.
The accuracy is significantly correlated between these two methods (Pearson r = 0.69; P < 0.0001).
The accuracy of predicted-response decoding is significantly higher than that of measured-response
decoding (Wilcoxon signed-rank test, P < 0.0001).
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Figure S3: Correlation between the individual differences of subjective preference ratings estimated
from predicted-response decoding and those of manual ratings themselves. Each dot denotes the
dissimilarity of each participant pair. The correlation (individual-difference reflection) is significant
(0.54; P < 0.0001), suggesting that the predicted-response decoding can capture the individual
differences even in mental information associated with behavior.
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Figure S5: Correlation between individual-difference reflection and the accuracy of predicted-
response decoding. Each dot denotes one cognitive label. Blue and red dots are derived from web
and TV ad movie sets, respectively. The correlation is significant (Pearson r = 0.47; P < 0.0001),
indicating that labels with higher decoding accuracy show higher individual-difference reflection.
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S3 Supplementary Tables

Table S1: The number of ad movies belonging to individual product/service categories.

Categories Web ad movies TV ad movies
Electronic & Precision 4 9
Audiovisual 5 1
Appliance 16 5
Car 31 33
Food & Confectionery 7 69
Beverage & Alcoholic drink 20 38
Medical & Health 35 21
Cosmetics 49 6
Sundries & Home equipment 10 45
Garment/apparel 9 11
Entertainment 42 43
Media & Education 41 16
Distribution & Retailer 12 20
Communication & Service 35 51
House & Construction 9 12
Finance 9 20
Enterprise, Public service, & Others 34 20
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Table S2: All items of cognitive labels associated with each movie set.

Categories Items Web ad movies TV ad movies

Scene descriptions -
Impression ratings Beautiful
Ugly
Cute
Nauseating
Urban
Rural
Modern
Traditional
Human
Mechanical
Feminine
Masculine
Lush
Cheap
Intelligent
Stupid
Complex
Simple
Amusing
Gloomy
Quiet
Noisy
Dynamic
Static
Clean
Filthy
Warm
Cool
Bold
Sensitive
Ad effectiveness indices Click through rate
25% view completion rate
50% view completion rate
75% view completion rate
100% view completion rate
Ad preference votes Preference
Cast/Character
Humorous
Sexy
Catchphrase
Music/Sound
Product attractiveness
Persuasive
Lame but lovable
Cutting-edge
Soothing
Story
Honest
Movie/Image
Reputable
Cute
Usage intention
Persistent use
Purchase intention
Subjective preference ratings -

SN N N N N N N R N R N N R NN NN

N N N N N O N N N R N R N N N N N N N N N N NN

A N N O R N N N N N N NN
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Table S3: Individual-difference reflection for each item of cognitive labels (*P < 0.05, **P < 0.01,
*#*P < (0.0001, FDR corrected).

Individual-difference reflection

Categories Items Web ad movies TV ad movies
Scene descriptions - 0.739"** 0.720"**
Impression ratings Beautiful 0.354™** 0.332"**
Ugly 0.271** 0.158*
Cute 0.457*** 0.399**~
Nauseating 0.303"** 0.369"**
Urban 0.455™** 0.388***
Rural 0.405*** 0.473***
Modern 0.223"** 0.290"**
Traditional 0.218™** 0.097
Human 0.394"** 0.469™**
Mechanical 0.465™** 0.253"**
Feminine 0.371*** 0.302"**
Masculine 0.265™** 0.151**
Lush 0.275%** 0.413***
Cheap 0.368"** 0.283"**
Intelligent 0.369**~ 0.421***
Stupid 0.109** 0.440""*
Complex 0.179*** 0.488"**
Simple 0.338™** 0.311***
Amusing 0.343*** 0.361**~
Gloomy 0.235™** 0.022
Quiet 0.238*** 0.551***
Noisy 0.289™** 0.052
Dynamic 0.420"** 0.367""*
Static 0.348™** 0.329™**
Clean 0.428*** 0.379***
Filthy 0.108** 0.209"**
Warm 0.480*** 0.264***
Cool 0.390*** 0.391™**
Bold 0.388*** 0.548***
Sensitive 0.438™** 0.430™**
Add effectiveness indices Click through rate 0.157***

25% view completion rate 0.121*
50% view completion rate 0.193"**
75% view completion rate  0.096™"
100% view completion rate  0.112**

Ad preference votes Preference 0.204™**
Cast/Character 0.262"**
Humorous 0.287***
Sexy 0.179**
Catchphrase 0.115*
Music/Sound 0.390"**
Product attractiveness 0.078
Persuasive 0.112*
Lame but lovable 0.106"
Cutting-edge 0.181**
Soothing 0.175**
Story 0.176™*
Honest 0.092
Movie/Image 0.370"**
Reputable 0.070
Cute 0.234***
Usage intention 0.156™"
Persistent use 0.198*
Purchase intention 0.327"**

Subjective preference ratings - 0.395"*
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