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Abstract 12 

Landmark-based and self-motion-based navigation are two fundamental forms of spatial 13 

navigation, which involve distinct cognitive mechanisms. A critical question is whether these 14 

two navigation modes invoke common or distinct spatial representations for a given 15 

environment in the brain. While a number of electrophysiological studies in non-human 16 

animals have investigated this question but yielded inconsistent results, it still awaits rigorous 17 

investigation in humans. In the current study, we combined ultra-high field fMRI at 7T and 18 

desktop virtual reality with state-of-the-art fMRI data analysis techniques. Using 19 

a novel linear track navigation task, we dissociated the use of landmarks and self-motion cues, 20 

so that participants used different spatial cues to encode and retrieve the same set of spatial 21 

locations.  Focusing on the retrosplenial cortex (RSC) and the hippocampus, we observed that 22 

RSC contained both cue-specific and cue-independent spatial representations, which were 23 

driven by objective location (where the participant was actually located) and subjective 24 

location (the participant’s self-reported location), respectively. The hippocampus showed 25 

strong functional coupling with RSC and exhibited a similar spatial coding scheme, but with 26 

reduced effect sizes. Taken together, the current study demonstrated for the first time 27 

concurrent cue-specific and cue-independent spatial representations in RSC in the same 28 

spatial context, suggesting that this area might transform cue-specific spatial inputs into 29 

coherent cue-independent spatial representations to guide navigation behavior. 30 

 31 
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INTRODCTION 32 

The ability to localize and orient oneself as one navigates an environment is crucial for the 33 

survival of humans and non-human animals. Visual landmarks – salient objects in the 34 

environment – and self-motion cues represent two major and distinct types of cues used in 35 

spatial navigation. Landmark-based navigation is inherently discrete, in that a landmark can 36 

immediately inform about one’s whereabouts. On the contrary, self-motion cues are 37 

generated by one’s own movement and include body-based cues (e.g., vestibular feedback, 38 

proprioceptive cues, and motor efference copies) and optic flow. Navigation with self-motion 39 

cues alone is termed path integration, as one needs to infer self-position through continuous 40 

integration of self-motion inputs during locomotion.  41 

Given the considerable body of evidence that landmark-based navigation and path 42 

integration recruit relatively independent cognitive 1,2 and neural processes 3,4, a critical 43 

question is whether these two navigation modes invoke common or distinct spatial 44 

representations in the brain. On the one hand, because landmarks and self-motion cues 45 

represent different sensory inputs, they may invoke separate neural representations of space. 46 

On the other hand, both cues typically denote the same space, hence spatial knowledge 47 

acquired from different cues should be integrated to generate a coherent representation that 48 

can guide navigation behavior. Deciding between these alternatives is fundamental to 49 

understanding the nature of cognitive maps, because it would provide important insights into 50 

an overarching question in spatial navigation – how different sources of spatial information 51 

are integrated to form a coherent cognitive map in the brain 5–7.   52 

In non-human animals, cue-specific vs. cue-independent neural representations for 53 

the same environment have been examined intensively in the retrosplenial cortex (RSC) and 54 

hippocampus. For example, in bats, Geva-Sagiv and colleagues (2016) found that alternation 55 

between visual information and echolocation caused reorganization of hippocampal place 56 

fields within the same environment (i.e., remapping) 9, indicating that the hippocampus 57 

created cue-specific spatial maps even in the same environment. Studies in rodents usually 58 

manipulated the availability of visual information by switching a light on and off, but the 59 

results are mixed as to whether this manipulation would induce hippocampal remapping 10–60 
12. Recently, Radvansky and colleagues (2021) showed that whether a common map or 61 

distinct maps were recruited for visual and odor cues depended on the behavioral relevance 62 
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of these cues, i.e., whether different cue types were congruent or incongruent in defining a 63 

reward location 13. In RSC, researchers have also observed neurons exhibiting position-64 

selective firing 14,15; these place-cell-like cells maintained the same firing patterns when the 65 

environment was illuminated vs. dark 14, suggesting cue-independent spatial representations.  66 

In humans, the question of cue-independent vs. cue-specific spatial maps has rarely 67 

been investigated. One notable exception is an fMRI study by Huffman & Ekstrom (2019) who 68 

varied the degree of body-based self-motion cues in different virtual reality environments 16.  69 

This study yielded preliminary evidence for cue-independent spatial representations in a 70 

large-scale brain network, as well as in RSC and the hippocampus. However, it is currently 71 

unknown whether the neural representations for a given environment are independent of or 72 

specific to the cue type used to encode and retrieve spatial locations.  73 

To address this critical question, we employed ultra-high resolution fMRI at 7T, 74 

desktop virtual reality, and a mnemonic spatial navigation task to investigate whether cue-75 

specific vs. cue-independent spatial representations are invoked by landmarks and self-76 

motion cues. Specifically, we designed a spatial localization task in which participants 77 

encoded and retrieved the same set of four locations on a linear track, using either landmarks 78 

or self-motion cues alone; in other words, the two cue types were fully dissociated in the 79 

same spatial context (Figure 1a&b). We focused on RSC and the hippocampus, which have 80 

been investigated intensively in non-human animal studies on cue-specificity of spatial maps. 81 

We investigated spatial distance coding by exploiting two different types of fMRI effects well-82 

suited to indexing neural representations of spatial relations – fMRI adaptation (fMRIa) and 83 

multi-voxel pattern similarity (MVPS). fMRIa and MVPS have been proposed to interrogate 84 

different aspects of the neuronal processing 17. Therefore, by investigating both effects, we 85 

aimed to obtain a more complete understanding of the neural mechanisms underlying spatial 86 

navigation in multi-information environments. 87 

To preview, we found the most pronounced effects in RSC, which displayed both cue-88 

specific and cue-independent spatial coding for landmarks and self-motion cues. Cue-specific 89 

coding was revealed by fMRIa and driven by objective location (i.e., the stimulus input, where 90 

the participant was actually located), whereas cue-independent coding was revealed by MVPS 91 

and driven by subjective location (i.e., the response output, where the participant thought 92 

they were located), indicating that RSC might transform cue-specific spatial inputs into 93 

abstract cue-independent spatial representations. The hippocampus exhibited a spatial 94 
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coding scheme similar to that of RSC, but with reduced effect sizes. Taken together, the 95 

current study demonstrates for the first time the coexistence of cue-specific and cue-96 

independent spatial representations in the human RSC. 97 

 98 

RESULTS 99 

Twenty young healthy participants took part in the experiment. There were two different 100 

environments that shared the same object layout (Figure 1a). Participants needed to 101 

memorize the positions of four test locations that were evenly spaced along a linear track in 102 

a desktop virtual reality setup. Four balls of different colors were positioned at the four test 103 

locations. Participants performed a location identification task through the first-person 104 

perspective while undergoing MRI scanning at 7T on two consecutive days (Figure 1b, STAR 105 

Methods).  In each trial, the participant was passively moved to a test location, and needed 106 

to identify the test location by recalling the color of the ball positioned at the location. The 107 

ball remained invisible throughout the trial. The arrows and the tree were positioned at the 108 

two ends of the ball object layout in the linear track, with the arrows closer to the starting 109 

position of the passive movement. We dissociated the use of landmark cues (a tree) and self-110 

motion cues (optic flow elicited by the ground texture) in the task, so that on a given trial 111 

subjects could use only one cue type to encode and retrieve the test locations in the same 112 

environment. In the landmark condition, the tree served as the anchoring point, because it 113 

was the only spatial cue available and was informative of the participant’s self-position. In the 114 

self-motion condition, the position of the arrows served as the anchoring point, because once 115 

the participant had moved past the arrows, there were no further landmarks in sight, forcing 116 

the participant to estimate the travelled distance relative to the arrows by continuously 117 

integrating optic flow inputs.  118 

 119 

Behavioral evidence for a dissociation of landmarks and self-motion cues 120 

Behavioral results are summarized in Figure 2. We submitted behavioral accuracy score to a 121 

repeated-measures ANOVA, with cue type, test location, scanning day, and environment as 122 

independent variables. This analysis revealed main effects of cue type (F(1,19) = 10.552, p = 123 

0.004, ηp
2 = 0.357) and location (F(3,57) = 9.170, p < 0.001, ηp

2 = 0.326), which were qualified 124 

by a significant interaction between the two factors (F(3,57) = 25.051, p < 0.001, ηp
2 = 0.569) 125 
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(Figure 2a): in the landmark condition, behavioral accuracy increased as the test location got 126 

closer to the tree (i.e., the anchoring point for landmark-based navigation), whereas in the 127 

self-motion condition, behavioral accuracy increased as the test location got closer to the 128 

arrows (i.e., the anchoring point for path integration). Accordingly, the interaction between 129 

cue type and the linear trend of test location was significant (t(57) = 8.487, p < 0.001). A closer 130 

look revealed that the linear trend of test location was significant in both the landmark 131 

condition (t(112) = 3.020, p = 0.003) and the self-motion condition (t(112) = 9.798, p < 0.001). 132 

No effects involving scanning day or environment were significant (ps > 0.3).  133 

 Since behavioral accuracy is jointly determined by representational precision and 134 

response bias, we tested whether using different navigational cues affected the underlying 135 

cognitive representations of the test locations. First, we aggregated data across participants 136 

and computed a group-level behavioral confusion matrix to characterize how participants 137 

confused the test locations (e.g., choosing location 1 as the response while actually occupying 138 

location 2). As can be seen in Figure 2b, mistakes mostly occurred between adjacent locations 139 

(e.g., Loc1 & Loc2), but rarely between locations that were farther apart (e.g., Loc1 & Loc4). 140 

Next, the group-level behavioral confusion matrices were submitted to an extension of signal 141 

detection theory, which we developed to accommodate tasks with more than two choices 142 

(Figure 2c; STAR Methods). The results showed that this model fitted the data very well (Rs > 143 

0.94; Figure 2c.4). Furthermore, as shown in Figure 2c.1 and Figure 2c.2, in both cue 144 

conditions, the standard deviation of the underlying representation for the test location (i.e., 145 

the inverse of precision) decreased as the test location became closer to the respective 146 

anchoring points (i.e., the tree in the landmark condition and the arrows in the self-motion 147 

condition), which corresponds to the behavioral accuracy results (Figure 2a).  148 

In summary, the primary behavioral finding was the differential performance profiles 149 

across test locations in the two cue conditions. Importantly, this finding was not confounded 150 

by possible response biases, because the underlying representational precision was 151 

influenced by test location and cue type in the same manner. Taken together, the behavioral 152 

results indicated that our cue dissociation manipulation was successful. 153 

 154 

fMRI results 155 

fMRI analyses focused on the location occupation phase of the location identification 156 

task, when the camera was panned down to the ground to render visual inputs identical 157 
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between the landmark condition and self-motion condition (Figure 1b). We examined 158 

whether BOLD signals in RSC contained information about allocentric distance-based spatial 159 

relations among the test locations. To this end, by adopting a continuous carry-over design 160 
18,19, we simultaneously investigated fMRI adaptation (fMRIa) and multi-voxel pattern 161 

similarity (MVPS), both of which have been used to evaluate neural representations of 162 

allocentric spatial relations between locations 20. fMRIa refers to the phenomenon that the 163 

BOLD signal is reduced if the current location is preceded by the same or a nearby location, 164 

and the degree of repetition suppression is proportional to the spatial proximity of the two 165 

locations 3,21,22. MVPS exploits the voxel-to-voxel distribution of brain activation that indexes 166 

neural representation, based on the rationale that spatial locations that are closer to each 167 

other should evoke more similar neural representations 23,24. One hypothesis postulates that 168 

fMRIa and MVPS respectively interrogate the neuronal input stage, which is associated with 169 

stimulus input, and the neuronal output stage, which is associated with response output 17. 170 

This hypothesis has received empirical support (see discussion for details). Motivated by this 171 

hypothesis, we analyzed fMRIa and MVPS in terms of both stimulus input (e.g., objective 172 

location, where the participant was actually located) and response output (i.e., subjective 173 

location, where the participant reported he/she was located), and then corrected for multiple 174 

comparisons. fMRI analyses focused on the RSC and the hippocampus. For completeness, 175 

results for other areas in the medial temporal lobe (i.e., parahippocampal cortex, perirhinal 176 

cortex, and entorhinal subregions) are summarized in the supplemental information (Table 177 

S3).   178 

 179 

RSC showed fMRIa-based spatial distance coding for both landmarks and self-motion cues, 180 

which was driven by objective location 181 

To examine whether RSC encoded spatial distance information in the form of fMRIa, we 182 

conducted univariate fMRIa analyses, in which we included parametric regressors that 183 

modeled modulatory effects of spatial distances between successively visited test locations 184 

in the first-level general linear models (STAR Methods, fMRIa-GLM1). The parametric 185 

regressors were defined either by objective or subjective locations. In the self-motion 186 

condition, the parametric regressors modeled spatial distances between successively visited 187 

test locations in a continuous manner by default, with four possible values of 0m, 4m, 8m, 188 

and 12m. Given a previous study showing that in retrosplenial regions fMRIa associated with 189 
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landmark-defined locations only differentiated between same vs. different locations (but not 190 

between different spatial distances between different locations) 22, the parametric regressors 191 

in our landmark condition reflected whether the currently visited location was identical to 192 

(value = 0)  or different from (value = 1) the preceding one. For each parametric regressor, 193 

beta estimates were averaged across all voxels in RSC. 194 

We analyzed fMRIa averaged across the two environments and the two scanning days. 195 

We tested objective-location-based and subjective-location-based fMRIa for the two cue 196 

conditions against 0 using one-tailed simple t tests, with the familywise type I error controlled 197 

at 0.05 using the permutation-based Holm-Bonferroni method for the four individual t tests 198 

(STAR Methods). As shown in Figure 3a and Table 1, RSC showed significant objective-199 

location-based fMRIa for landmarks (pcorrected = 0.005) and self-motion cues (pcorrected = 0.012). 200 

The subjective-location-based fMRIa was significant in the landmark condition (pcorrected = 201 

0.010) but not in the self-motion condition (pcorrected = 0.061). Additional analyses showed that 202 

in the landmark condition, fMRIa was stronger on the 2nd than the 1st scanning day (p = 0.012): 203 

fMRIa was highly significantly on the 2nd day (objective location, p1-tailed,uncorrected = 0.0004, 204 

BF10= 80.494; subjective location, p1-tailed,uncorrected = 0.002, BF10 = 18.596), but not significant 205 

on the 1st day (ps1-tailed,uncorrected > 0.45, BFs10 < 0.25). No significant influences of environment 206 

were observed (Table S1). Overall, these results suggest that fMRIa was associated more 207 

strongly with objective location than subjective location. 208 

To rigorously disentangle the contributions of objective vs. subjective location, we 209 

directly compared them by including parametric regressors for objective-location-defined 210 

and for subjective-location-defined spatial relations in the same first-level general linear 211 

model (STAR Methods, fMRIa-GLM2). As shown in Figure 3b and Table 1, the unique 212 

contribution of objective location was significant in both the landmark (p1-tailed = 0.025) and 213 

the self-motion condition (p1-tailed = 0.039). In contrast, the unique contribution of subjective 214 

location was not significant in either the landmark condition (p1-tailed = 0.454) or the self-215 

motion condition (p1-tailed = 0.636). Given that high behavioral accuracy levels could cause 216 

unreliable beta estimates of the parametric regressors due to high correlations between 217 

objective-location-defined and subjective-location-defined spatial relations, we excluded 218 

participants with behavioral accuracy > 90% from the analysis; the pattern of results remained 219 

unchanged.  220 
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Additional analyses showed that these results could not be explained by potential 221 

differences in the relative detection power (DPrel) between the objective-location-defined 222 

and subjective-location-defined parametric regressors (STAR Methods). Although the 223 

objective-location sequences had significantly higher DPrel for fMRIa than subjective-location 224 

sequences (p < 0.001), the magnitude of the difference was negligible (DPrel = 64% vs. 63%). 225 

Together, these results indicate that fMRIa was predominantly driven by objective 226 

rather than subjective location. 227 

To visualize objective-location-based fMRIa (Figure 3c; STAR Methods, fMRIa-GLM3), 228 

in the self-motion condition, RSC activation increased in a linear manner as inter-location 229 

distance increased from 0m to 12m; in the landmark condition, RSC activation was higher at 230 

the non-zero inter-location distances relative to the zero inter-location distance (i.e., when 231 

two successively visited locations were the same), but remained at similar levels for different 232 

non-zero distances. 233 

Finally, we conducted the voxel-wise analysis to investigate fMRIa in the entire-234 

volume (Figure S1).  In posterior cingulate areas (including RSC proper and the putative 235 

retrosplenial complex), fMRIa appeared to be stronger when based on objective location than 236 

subjective location in both cue conditions. This trend also existed in other brain regions, e.g., 237 

precuneus, calcarine, and angular gyrus. 238 

To summarize, the results showed that RSC encoded spatial information for both cue 239 

types in the form of repetition suppression, which was mainly driven by objective rather than 240 

subjective location. For landmarks, the spatial coding mainly differentiated between same vs. 241 

different locations, whereas for self-motion cues the spatial coding differentiated different 242 

inter-location distances in a continuous manner. 243 

 244 

fMRIa-based distance coding was spatially distinct between cue types in RSC 245 

To uncover whether or not the underlying fMRIa-based neural representations were 246 

distinct between the two cue types, we analyzed the similarity of the fMRIa patterns (Figure 247 

4a; STAR Methods, fMRIa-GLM1), i.e., we determined whether voxels showing higher fMRIa 248 

for one cue also showed higher fMRIa for the other cue. Specifically, we derived a fMRIa 249 

pattern distinction score, which was quantified as within-cue similarity (cross-validated 250 

Pearson correlation 25 between fMRIa vectors of the same cue type) minus between-cue 251 

similarity (Pearson correlation between fMRIa vectors of different cue types). A pattern 252 
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distinction score significantly greater than 0 would indicate that the across-voxel fMRIa 253 

pattern was distinct between the two cue types. The analysis was based on objective location, 254 

given the previous finding that fMRIa was mainly driven by objective location instead of 255 

subjective location. 256 

As shown in Figure 4b, because the within-day pattern distinction score was 257 

significantly greater than the between-day distinction score (t(19) = 2.825, p2-tailed = 0.011, 258 

BF10 = 4.799), we analyzed them separately. The within-day pattern distinction score was 259 

significantly greater than 0 (t(19) = 2.885, p1-tailed = 0.005, BF10 = 10.625), because the within-260 

cue similarity was significantly positive (t(19) = 2.708, p1-tailed = 0.007, BF10 = 7.694) while the 261 

between-cue similarity was not (t(19) = -0.807, p1-tailed = 0.785, BF10 = 0.141). These results 262 

mean that while the fMRIa pattern remained stable for a given cue type, it differed between 263 

the two cue types.  264 

In contrast, the between-day pattern distinction score was not significantly greater 265 

than 0 (t(19) = -1.145, p1-tailed = 0.867, BF10 = 0.120), because neither the within-cue similarity 266 

nor the between-cue similarity was significantly greater than 0 (within-cue, t(19) = -0.292, p1-267 

tailed = 0.613, BF10 = 0.189; between-cue, t(19) = 1.717, p1-tailed = 0.051, BF10 = 1.513). Note that 268 

the within-cue similarity was also significantly greater for within-day than between-day (t(19) 269 

= 2.368, p2-tailed = 0.029, BF10 = 2.162). 270 

Further analyses showed that the same pattern of results existed in each environment, 271 

meaning that the above-mentioned results were not solely driven by a single environment 272 

(Figure S2a). More control analyses revealed the same pattern of results, when we analyzed 273 

the subjective-location-based fMRIa and when the inter-location distance was modeled 274 

continuously in both cue conditions (Figure S2b).  275 

To summarize, the fMRIa patterns were correlated within the same cue type but 276 

uncorrelated between different cue types. This effect occurred within the same scanning day, 277 

and was driven by the temporally stable within-cue fMRIa patterns. Taken together, these 278 

results suggest that although RSC encoded spatial distances for both landmarks and self-279 

motion cues in the form of fMRIa, the underlying spatial representations were distinct 280 

between the two cue types.  281 

 282 

RSC showed MVPS-based spatial distance coding for both cue types, which was cue-283 

independent and mainly driven by subjective location 284 
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Previous results have shown that RSC activation showed adaptation as a function of spatial 285 

distance. Here, we investigated whether RSC also contained a similar spatial coding in the 286 

form of multi-voxel pattern similarity (MVPS) (Figure 5a). The rationale is that locations closer 287 

to each other in space should evoke more similar neural representations as indexed by the 288 

multi-voxel activation pattern. First, we calculated MVPS between two test locations as 289 

correlational similarity between their corresponding across-voxel activation patterns. Next, a 290 

spatial information score was obtained by correlating activation pattern similarity with inter-291 

location distance. A spatial information score greater than 0 would indicate that distances 292 

between test locations were encoded in the brain activity. We calculated spatial information 293 

scores both within and between the two cue types. The within-cue spatial information scores 294 

informed whether distances were encoded for a given cue type. The between-cue spatial 295 

information score informed whether the spatial coding was generalizable between cue types, 296 

which would be indicative of common spatial representations for both cue types. For all the 297 

three measurements, we modeled spatial distances among test locations in a continuous 298 

manner by default (STAR Methods, MVPS-GLM1). 299 

We calculated spatial information scores based on objective and subjective locations 300 

and tested them against 0 using one-tailed simple t tests, with the familywise type I error 301 

controlled at 0.05 using the permutation-based Holm-Bonferroni procedure for the six 302 

individual t tests (measurement (landmark vs. self-motion vs. between-cue) × location type 303 

(objective vs. subjective) (STAR Methods). As shown in Figure 5b and Table 1, when objective 304 

locations were modeled, spatial information scores were significant in the landmark condition 305 

(pcorrected = 0.010) but neither in the self-motion condition (pcorrected = 0.067) nor between cue 306 

types (pcorrected = 0.159). When subjective locations were modeled, spatial information scores 307 

were significant in both the landmark (pcorrected = 0.002) and the self-motion condition 308 

(pcorrected = 0.046). Critically, the between-cue spatial information score was also significant 309 

(pcorrected = 0.010). Additional analyses showed that day (Figure 5b) and environment (Table 310 

S1) did not affect subjective-location-based MVPS, which was also generalizable between 311 

days (Figure 5b) and environments for all three measurements (Table S1). These results 312 

suggest that overall MVPS was associated more strongly with subjective than objective 313 

location. 314 

To rigorously disentangle objective and subjective location, we directly compared 315 

objective-location-defined and subjective-location-defined spatial distances when computing 316 
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the spatial information scores (STAR Methods, MVPS-GLM2). As shown in Figure 5c and Table 317 

1, the unique contribution of objective location was not significant for all the three 318 

measurements (ps1-tailed > 0.09). The unique contribution of subjective location was significant 319 

for self-motion cues (p1-tailed = 0.006) and between cue types (p1-tailed = 0.019), but not for the 320 

landmarks (p1-tailed = 0.254). When excluding participants with high behavioral accuracies (> 321 

90%) that could cause unreliable estimates, the unique contribution of subjective location 322 

was significant for all three measurements (ps1-tailed < 0.03), while the unique contribution of 323 

objective location remained non-significant (ps1-tailed > 0.15). These results showed that MVPS 324 

was predominantly driven by subjective rather than objective location. These subjective-325 

location-based MVPS effects are visualized in Figure 5d, which shows that activation pattern 326 

similarity decreased in a linear manner as inter-location distance increased for landmarks, 327 

self-motion cues, and between cue types.  328 

Finally, we conducted the searchlight analysis to investigate MVPS in the entire-329 

volume (Figure S3 & Table S2). In posterior cingulate areas (including RSC proper and the 330 

putative retrosplenial complex), MVPS was generally stronger when based on subjective than 331 

subjective location in all the three measurements. This is most obvious for self-motion cues 332 

and between cue types. This trend also existed in other brain regions, e.g., precuneus, middle 333 

occipital gyrus, middle temporal gyrus, and angular gyrus. 334 

To summarize, we found that i) RSC encoded spatial distances for both cue types in 335 

the form of MVPS, ii) the coding was mainly driven by subjective rather than objective location, 336 

and iii) the coding was generalizable between the cues. Together, these results suggest cue-337 

independent spatial representations in RSC, which also seemed to be cue-invariant, because 338 

the spatial information score did not differ among landmarks, self-motion cues, and between 339 

cue types (ps > 0.4, BFs10 < 0.33).  340 

 341 

Neural space reconstructed from MVPS in RSC resembled navigation behavior  342 

The preceding analyses showed that RSC contained fMRIa-based cue-specific and MVPS-343 

based cue-independent spatial representations. However, a major limitation of both analyses 344 

is that different location pairs with the same inter-location distance value were treated 345 

equally, which could have obscured potential subtle aspects of the underlying neural 346 

representations as suggested by participant’s behavioral performance pattern (Figure 2). 347 

Therefore, to better characterize the spatial codes in RSC and their relations to participants’ 348 
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behavior, we applied a neural space reconstruction analysis and recovered the entire neural 349 

space with positional estimates for all the four test locations. The neural space was 350 

reconstructed based on neural distances between the four test locations defined by objective 351 

location, which was then compared to participants’ behavior and the original physical space 352 

(Figure 6a; STAR Methods). Resemblance with the behavioral pattern would indicate that 353 

imperfections of the neural representations in RSC for the external physical space might have 354 

mediated the behavioral mistakes participants made, whereas resemblance with the original 355 

physical space would indicate that the physical space was represented faithfully in RSC. 356 

For fMRIa, we first submitted the participant-specific reconstructed neural distances 357 

between adjacent locations to a repeated-measures ANOVA, with cue type (landmark vs. self-358 

motion) and adjacent location pair (Loc1-2 vs. Loc2-3 vs. Loc3-4) as independent variables 359 

(Figure 6b.1). Unlike the behavioral pattern, the interaction effect between the linear trend 360 

of location pair and cue type was not significant (F(1,19)  = 0.239, p1-tailed = 0.630, hp
2 = 0.012). 361 

Next, to assess the similarity with the original physical space, we conducted a permutation-362 

based test on the group-level neural distance matrix (Figure 6b.2). In the landmark condition, 363 

the neural space did not significantly resemble the original space (p = 0.741), with some 364 

locations even swapped in order (e.g., Loc3 was to the left of Loc1). This echoes with the 365 

earlier observation that in the landmark condition, the repetition suppression effect seemed 366 

to only discriminate between same and different locations, but not between different non-367 

zero inter-location distances (Figure 3c). On the contrary, in the self-motion condition, the 368 

neural space significantly resembled the original physical space (p1-tailed = 0.018). This also 369 

echoes with the earlier observation that in the self-motion condition, the repetition 370 

suppression effect appeared to occur in a linear manner over the entire range of inter-371 

location distance (Figure 3c). In brief, fMRIa-based neural space (i) bore no similarities to 372 

behavior in the two cue conditions and (ii) significantly resembled the original physical space 373 

in the self-motion condition.  374 

For MVPS, first, we analyzed participant-specific neural distances, and observed 375 

significant interaction between cue type and the linear trend of location pair (F(1,19)  = 12.016, 376 

p = 0.003, hp
2 = 0.387): the neural distance between adjacent locations decreased as the 377 

locations became farther away from the landmark in the landmark condition, whereas the 378 

pattern was reversed in the self-motion condition (Figure 6c.1). This is parallel to the 379 
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behavioral performance pattern (Figure 2). Next, we analyzed the group-level neural distance 380 

matrix, and found that the recovered neural space did not significantly resemble the original 381 

physical space in either cue condition (landmark, p1-tailed = 0.100; self-motion, p1-tailed = 0.173; 382 

Figure 6c.2); furthermore, the group-level neural space (Figure 6c.2) exhibited a structure 383 

qualitatively similar to the behavioral performance pattern (Figure 2).  384 

To summarize, the fMRIa-based neural spaces did not resemble participants’ behavior. 385 

Furthermore, in the self-motion condition, the fMRIa-based neural space resembled the 386 

original physical space, suggesting a map-like spatial code that maintained Euclidean 387 

distances among test locations without salient spatial distortions. In contrast, the MVPS-388 

based neural spaces exhibited a pattern similar to participants’ behavior and did not resemble 389 

the original physical space. Taken together, compared to fMRIa, MVPS was more closely 390 

associated with behavior along the stimulus-response spectrum, which is consistent with the 391 

preceding observation that MVPS was fitted better by subjective-location-defined than 392 

objective-location-defined spatial distances.  393 

 394 

Hippocampus contained a spatial coding scheme similar to RSC 395 

We found that the hippocampus, whose trial-by-trial activation was strongly correlated with 396 

RSC (Figure S4), also showed a spatial coding scheme similar to that of RSC. In particular, the 397 

hippocampus exhibited a trend towards fMRIa-based cue-specific spatial representations 398 

(Figure S5), and MVPS-based cue-independent spatial representations that resembled 399 

participants’ behavior (Figure S6). However, compared to RSC, these effects in the 400 

hippocampus were evidently reduced in magnitudes, and objective location and subjective 401 

location were less well dissociated in the neural coding (e.g., Figure S6b&e).  402 

 403 

DISCUSSION 404 

The current study investigated whether landmark-based navigation and path integration 405 

recruit cue-specific or cue-independent spatial representations in the human RSC and 406 

hippocampus. Participants completed a spatial navigation task on a linear track, in which the 407 

use of landmarks and self-motion cues was dissociated, but they used these cues to encode 408 

and retrieve the same set of spatial locations. In RSC, we found clear evidence for the 409 

existence of both cue-specific and cue-independent spatial representations. Cue-specific 410 

spatial representations were revealed through fMRIa: while RSC displayed repetition 411 
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suppression for both landmarks and self-motion cues, the distributed fMRIa patterns were 412 

distinct between cue types. Cue-independent spatial representations were revealed through 413 

MVPS, in that the similarity of multi-voxel activation patterns between two locations – 414 

defined by the same or different cue types – decreased as the inter-location distance 415 

increased. Additionally, while fMRIa-based spatial representations were more related to 416 

objective sensory inputs, MVPS-based spatial representations were more strongly associated 417 

with behavior that differed from the  sensory inputs. The hippocampus exhibited strong 418 

functional connectivity with RSC and showed a similar spatial coding scheme, but the effects 419 

were generally weaker. To our knowledge, the current study is the first demonstration in 420 

humans that both types of spatial representations co-existed in the same brain region while 421 

participants were performing a navigation task in the same spatial context. 422 

One prominent feature of the current study is that landmarks and self-motion cues 423 

were clearly dissociated, which is evident in the differential behavioral profiles of the two cue 424 

conditions. Specifically, behavioral performance increased as the test location got closer to 425 

the landmark in the landmark condition, whereas the opposite pattern was observed in the 426 

self-motion condition. This is because while the spatial precision afforded by the landmark 427 

(i.e., the anchoring point of landmark-based navigation) deteriorates as the location becomes 428 

farther away from it 3,26, path integration gets noisier as the navigator travelled along the path 429 

and away from its anchoring point – the fixed starting position 27. This finding is broadly 430 

consistent with previous studies showing a relative independence of path integration and 431 

landmark-based navigation in behavior 1,2, which suggests that our cue dissociation 432 

manipulation successfully elicited distinct navigational strategies in the two different cue 433 

conditions. On the contrary, spatial cues were not clearly dissociated in most of the previous 434 

related studies 10–12,14,16.  For example, in Huffman and Ekstrom’s human fMRI study 16, visual 435 

information was present in all conditions that differed in the degree of body-based self-436 

motion cues, raising the possibility that the reported cue-independent neural representations 437 

may have been driven by the ever-present visual information. 438 

The simultaneous investigation of fMRIa and MVPS was the key factor to reveal both 439 

cue-specific and cue-independent spatial representations in RSC (and potentially in the 440 

hippocampus as well). When the sensory inputs for encoding the same physical space 441 

changed, previous studies have observed either cue-specific spatial representations in the 442 

hippocampus 9, or cue-independent spatial representations in RSC 14 and in the brain-wide 443 
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functional connectivity pattern 16. A recent study found that whether altering spatial inputs 444 

invoked cue-specific or cue-independent spatial representations in the hippocampus 445 

depended on whether different cue types were congruent in defining the reward location 13. 446 

Taken together, previous studies have observed either cue-specific or cue-independent 447 

spatial representations but not both at the same time in the same spatial context. Note that 448 

in the current study, participants always performed the same navigation task by encoding and 449 

retrieving the same spatial locations in the same environment with the same reward 450 

configuration; the sole difference between different cue conditions was the type of spatial 451 

information available. Therefore, our observation of concurrent cue-specific and cue-452 

independent spatial representations could not have been confounded by factors like task 453 

requirement or reward setup. Moreover, our findings suggest that previous studies reporting 454 

cue-independent spatial representations might have missed parallel cue-specific 455 

representations reflected in a different form of neural activity 13,14,16. For this reason, the 456 

current study highlights the importance of investigating complementary neural phenomena 457 

to obtain a more complete understanding of the neural representations underlying cognitive 458 

maps. 459 

Cue-specific and cue-independent representations were revealed by fMRIa and MVPS, 460 

respectively. These two approaches can yield inconsistent results 17,28–32, which may indicate 461 

that they interrogate different aspects of neural operations. One hypothesis posits that fMRIa 462 

is related to the processing of neuronal inputs, whereas MVPS reflects neuronal output 17. 463 

Consistent with this hypothesis, neuronal adaptation  (i.e., reduction in neural responses to 464 

the same or a similar stimulus) in the macaque inferior temporal cortex was smaller between 465 

two different stimuli –  compared to two identical stimuli –, even though both stimuli 466 

activated the neuron to the same extent 33–35. This stimulus dependency indicates that 467 

neuronal adaptation may occur locally at the level of the synapses onto the neuron 35. 468 

Consistently, fMRIa seems to be relatively independent of top-down cognitive operations 469 

such as task requirement 36 and attentional state 33 that typically affect behavior. In contrast, 470 

previous human neuroimaging studies frequently observed tight relationships between MVPS 471 

and overt behavior 29, e.g., more distinct MVPS-based neural representations of different 472 

items correspond to better discrimination performance 37–40. Consistently, the collective 473 

activity of the place cell population in the rodent hippocampus encodes the animal’s 474 

subjective recognition of the reward location, regardless of whether it matched the true 475 
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reward location or not 41. This indicates that the collective neuronal output of hippocampal 476 

place cells is rather linked to response output instead of stimulus input.  477 

Our results also provide support for the input-versus-output hypothesis, in that fMRIa 478 

and MVPS effects in RSC were associated with objective and subjective locations, respectively. 479 

What does this reveal about the underlying neural mechanisms in RSC? First, fMRIa patterns 480 

based on objective locations were spatially dissociated between landmarks and self-motion 481 

cues, which would be consistent with separate location-sensitive neuronal subpopulations 482 

that were driven by sensory inputs from the two cue types, respectively. These 483 

subpopulations should display adaptation to the stimulation from external spatial inputs. 484 

Second, MVPS based on subjective locations was spatially generalizable between cue types, 485 

which would be consistent with a location-sensitive neuronal subpopulation whose ensemble 486 

activity represented the navigator’s subjective location in a cue-independent manner. 487 

Importantly, this particular subpopulation should not display adaptation, because the fMRIa 488 

patterns would otherwise have shown spatial overlap between the cue types and hence 489 

eliminated the cue-specificity we observed in the distributed fMRIa patterns. Finally, 490 

additional analyses showed that MVPS and fMRIa were relatively independent at the voxel 491 

level (Figure S7), indicating that the non-adapting subpopulation representing subjective 492 

locations was probably anatomically separable from the adapting subpopulations encoding 493 

objective locations.  494 

This interpretation is corroborated by recent observations in rodents. Brennan et al. 495 

(2019) discovered different types of cells in the rodent RSC, with one cell type adapting to 496 

external stimulation and the other type showing no adaptation but firing persistently in the 497 

presence of continued stimulation 42. Importantly, their modeling work suggests that it is the 498 

activity of the non-adapting cells – but not the adapting cells – that represents the animal’s 499 

current head direction when the animal remains still, a scenario similar to the navigation task 500 

used in the current study (i.e., we analyzed fMRI data acquired from when the participants’ 501 

first-person perspective was fixed at the test locations for 4 seconds). Furthermore, Fischer 502 

et al. (2019) found in rodents that V1 projections to RSC displayed similar spatial tuning as 503 

the place-cell-like cells in RSC, but with less modulation of the animal’s navigation state (i.e., 504 

active vs. passive navigation) 43. This echoes with our observation that cue-specific fMRIa 505 

effects were tied closely to objective locations and less so to overt navigation behaviors. 506 
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Taken together, findings of these rodent studies accord with our interpretation that different 507 

neuronal subpopulations may serve different computational purposes in RSC.  508 

The functional properties of RSC put it in a good position to support participants’ 509 

navigation behavior in the current study. The completion of the location identification task 510 

recruited two main cognitive components: a long-term memory component, which 511 

corresponds to the cue-independent memory traces of the four test locations learned over 512 

time, and a perception component, which corresponds to perceiving instantaneous cue-513 

specific sensory inputs. Participants had to compare the two components to judge which of 514 

the four stored memory traces best matched the current sensory inputs. RSC subserves long-515 

term spatial memories 44–46 and receives projections from brain regions that process a variety 516 

of sensory information, including several visual areas (incl. V1, V3 and V4 47) , thalamus 48, and 517 

areas in the medial temporal lobe 49. Therefore, RSC appears to mediate the interaction 518 

between long-term memory (likely reflected in MVPS) and perception (likely reflected in 519 

fMRIa) to facilitate cognitive map formation 5–7, e.g., by integrating different spatial inputs 520 

with preexisting memory traces to construct coherent spatial representations. This might 521 

explain why RSC’s neuronal output was closely related to the response output (i.e., 522 

participants’ behavior), and why RSC’s spatial coding scheme corresponded to the input-523 

versus-output hypothesis in the current study. 524 

Finally, we found that RSC and the hippocampus showed strong functional 525 

connectivity along with similar spatial coding schemes, which accords with recent findings in 526 

rodents 14,15,50,51. Note that like RSC, the hippocampus is also well-suited to mediate the 527 

interaction between long-term memory and perception, because it is crucial for memory 528 

formation 52,53 and also receives multisensory inputs via the entorhinal cortex 54. However, 529 

although BOLD signal quality in terms of the temporal signal-to-noise ratio was comparable 530 

between the two regions (Table S4), effects were generally weaker in the hippocampus. This 531 

difference could be related to the memory stage our participants were at during the scanning. 532 

Past work has indicated that hippocampal and RSC activity reflects the learning rate and the 533 

learning amount, respectively, so that the hippocampal involvement decreases whereas RSC 534 

involvement increases as spatial memories are being formed 44,55. In addition, spatial 535 

representations appeared to shift from the hippocampus to RSC during the course of memory 536 

formation 45. Our results showed that compared to the behavioral training day prior to the 537 

MRI scanning, participants’ performance improved on the first scanning day but remained 538 
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unchanged between the two scanning days (Figure 2 & Table S5), indicating that participants 539 

might have already reached late stages of memory formation during scanning. Consistently, 540 

additional fMRI analyses revealed that RSC, but not the hippocampus, was more activated 541 

during successful than failed trials (Table S6). This might also explain why we barely observed 542 

fMRIa in the entorhinal cortex, except that in the posterior-medial entorhinal cortex the 543 

fMRIa-based neural space resembled the original physical space (Table S3). This finding is 544 

inconsistent with our previous report of fMRIa-based distance coding in the entorhinal cortex 545 

for both landmarks and self-motion cues 3. Considering that the hippocampus receives 546 

sensory information from cortical areas via the entorhinal cortex 54, it is conceivable that the 547 

entorhinal cortex should be minimally recruited if the downstream area hippocampus was 548 

not much involved in the task. Consistent with the interpretation, we found that along with 549 

the hippocampus, the entorhinal subregions contributed to successful navigation in our 550 

previous study but not in the current study (Table S6). Therefore, future work is needed to 551 

investigate the temporal dynamics between the hippocampal formation and RSC in 552 

representing spatial information at different memory stages. 553 

 554 

CONCLUSION 555 

In this study, we investigated a core question in spatial navigation– whether landmark-556 

based navigation and path integration recruit common or distinct spatial representations in 557 

the brain. We demonstrated the coexistence of cue-specific and cue-independent spatial 558 

representations in the human RSC. Furthermore, by establishing a human fMRI paradigm 559 

highly similar to paradigms widely used in non-human animal studies, we hope the current 560 

study will facilitate inter-species comparisons in spatial navigation.   561 
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STAR Methods 747 
 748 

 749 
EXPERIMENTAL SETUP AND SUBJECT DETAILS 750 
 751 
Participants 752 

Twenty healthy adult volunteers from the Magdeburg community participated in this 753 

experiment (10 male; mean age = 25.35 year old, standard deviation of age = 3.91 year). All 754 

participants were right-handed, had normal or corrected-to-normal vision, and had no 755 

neurological diseases. Three additional participants were tested but were excluded from data 756 

analysis, either because they dropped out in the middle of the experiment or because the 757 

fMRI data were corrupted by technical problems. All participants gave informed consent prior 758 

to the experiment and received monetary compensation after the experiment. The 759 

experiment was approved by the Ethics Committee of the University of Magdeburg. 760 

 761 

Stimuli and navigation task 762 

Virtual environments were created and rendered in Worldviz 5.0 (https://www.worldviz.com). 763 

There were two different virtual environments, a city environment and a nature environment 764 

(Figure 1a). These two environments had different background views and different ground 765 

textures. A linear track was included in both environments. The linear tracks were covered 766 

with the same texture but rendered in different colors in the two environments. The linear 767 

tracks shared the same object configuration in the two environments (Figure 1b). Three 768 

arrows and a tree were positioned at the object layout on the track. The tree was slightly to 769 

the left from the imagery midline of the linear track (= 0.5 m). In between the arrows and the 770 

tree were four balls of different colors positioned at four test locations. The four test locations 771 

were evenly spaced in the linear track with intervals of 4 m. To further distinguish the two 772 

environments, the order of the four balls was reversed between the two environments, but 773 

they occupied the same four test locations in both environments. Both the arrows and the 774 

tree were identical but rendered in different colors in different environments.  775 

Learning task 776 

Participants used a MRI-compatible joystick to navigate around in the virtual environments 777 

and give responses. Participants were trained to learn four test locations that were evenly 778 

spaced on the linear track (Figure 1a). Four balls of different color were positioned at the four 779 
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test locations. Participants needed to remember the colors of the balls associated with the 780 

test locations (see the video – the part “LEARNING”).  781 

Test: Location identification task 782 

In the ‘location identification task’, the participant was passively transported to one 783 

of the four test locations, and was required to recall the color of the ball positioned at this 784 

test location, while the ball remained invisible throughout the trial. The time course of a trial 785 

is depicted in Figure 1b (also see the video – the part “TEST: location identification task”). In 786 

each trial, the starting position of the passive movement was randomly sampled from a 787 

uniform distribution U(-18m, -4m) on a trial-by-trial basis (Figure 1a). Once the passive 788 

movement had stopped, the participant’s first-person perspective was fixed at the test 789 

location for 4s, after which they had to report the color of the ball positioned at the location 790 

they thought they were now occupying. Importantly, the order of the four options appearing 791 

on the screen was randomized from trial to trial, and a randomly selected option was 792 

highlighted as the initial answer before the participant started to make response. In addition, 793 

participants pressed only one particular button on the joystick to switch among the options 794 

in a loop. In this way, each test location was not associated with any fixed option position on 795 

the screen or with any consistent pattern of finger movement on the joystick. To prevent pure 796 

timing or counting strategies, the movement speed was randomly sampled from a uniform 797 

distribution U(2 m/s, 5 m/s) on a trial-by-trial basis. Accuracy was emphasized, but 798 

participants were instructed to not spend longer time than necessary.  799 

The use of self-motion cues and landmark cues was dissociated in the task, in a way 800 

similar to Chen et al. (2019) with minor adjustments 3. This manipulation followed the logic 801 

of dissociation of landmark and self-motion cues in established behavioral paradigms 1,56,57. 802 

In the self-motion condition, the arrows and the linear track texture were both visible. 803 

Because the arrows could serve as the anchoring point for path integration on travelled 804 

distance, the participant could perform path integration on travelled distance based on optic 805 

flow after he/she had passed the arrows. The landmark was not visible, meaning that 806 

landmark-based navigation was eliminated. To prevent participants from associating the test 807 

locations with any spatially isolated features on the ground, which would resemble the 808 

landmark-based navigation strategy (e.g., the red ball’s position was always within the 809 

brightest patch of the ground), both the texture of the linear track and the texture of the floor 810 
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outside of the linear track were randomly shifted in position along the long dimension of the 811 

track from trial to trial based on a uniform distribution U(-50m, 50m).   812 

On the contrary, in the landmark condition, the landmark was visible, meaning that 813 

the participant could rely on the landmark for localization. To eliminate path integration, the 814 

arrows were invisible, and the ground of the linear track remained blank to remove the 815 

texture information. Although there was still peripheral optical flow stemmed from the floor 816 

texture outside of the linear track, since the starting position of the passive movement was 817 

randomized on a trial-by-trial basis and the anchoring point for path integration (i.e., the 818 

arrows) was invisible, the participant could not perform path integration to solve the task, i.e., 819 

the participant would not know how far he/she needed to travel to reach a ball location. The 820 

cue manipulation in the landmark condition is analogous to the disorientation manipulation 821 

typically used to eliminate self-motion information in spatial navigation studies 58,59.  822 

 823 

Experimental procedure 824 

The experiment took place on three consecutive days, with behavioral training on the 1st day 825 

(Pre-scan_day) and MRI scanning on the 2nd day (MRI_day1) and 3rd day (MRI_day2) (Figure 826 

1c). The time interval between Pre-scan_day and MRI_day1 varied between 1-17 days 827 

(mean=2.75), and the time interval between MRI_day1 and MRI_day2 varied between 1-17 828 

days (mean = 4.35). For two participants, the time interval between the two scanning days 829 

was 17 days, due to the restricted availability of the participants and the MRI scanner.  830 

Behavioral training (Pre-scan_day) 831 

The behavioral training allowed the participants to get familiar with the virtual reality 832 

environment and to learn the four test locations. The training consisted of three parts. Each 833 

part had a learning stage and a test stage. During the learning stage (see the video – the part 834 

“LEARNING”), first, participants learned the colors of the balls positioned at the four test 835 

locations and were tested on their memory of the colors. Next, they learned the locations of 836 

the four balls. In each trial, one ball was displayed, and the participant actively moved from a 837 

randomized starting position to the ball’s location. Both the landmark and self-motion cues 838 

were available, meaning the arrows, the tree, and the ground texture of the linear track were 839 

all visible. Each ball was learned twice, with the order of the four balls counterbalanced. The 840 

learning stage was performed twice for each environment, with the order of the two 841 

environments counterbalanced. The learning stage was identical for all the three parts in the 842 
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Pre-scan day. During the test stage, the participant was tested in the ‘location identification 843 

task’, as described in the preceding section (Figure 1b; also see the video – the part “TEST: 844 

location identification task ” ). There were four blocks in total (counterbalanced), 845 

corresponding to the four combinations of environment (city vs. nature) and cue condition 846 

(self-motion vs. landmark). In the first part, each block had 4 trials, corresponding to the four 847 

ball locations (counterbalanced). In the second and the third parts, during the test stage, each 848 

block had 16 trials, with 4 trials for each ball location (counterbalanced). The experimenter 849 

carefully instructed the participants from the beginning to the end during the first part of the 850 

Pre-scan training. For the remaining two parts of the training, participants were left alone to 851 

perform the tasks, but were attended by the experimenter when needed.  852 

MRI scanning (MRI_day1 & MRI_day2) 853 

The two scanning day sessions shared the same procedure. On each scanning day, we first re-854 

familiarized participants with the task by requiring them to practice the task while they were 855 

undergoing structural scanning inside the scanner. The practice stage was exactly the same 856 

as the first part in the behavioral training day (Pre-scan_day). This practice stage lasted about 857 

5 minutes and was not analyzed further. During the subsequent functional scanning, 858 

participants performed the ‘location identification task’ (Figure 1b; also see the video –  the 859 

part “TEST: location identification task”). On each scanning day, there were eight runs in 860 

total, with two runs for each of the four combinations of environment (city vs. nature) and 861 

cue condition (self-motion vs. landmark). The eight runs were organized in two blocks, and in 862 

each block, each of the four runs corresponded to one of the four condition combinations. In 863 

each block, the four condition combinations were semi-randomized in order, using Latin 864 

square designs and with the restriction that the combinations occurring in two successive 865 

runs must be different within the same day.  866 

We adopted a continuous carry-over design 18. We used the eight de Bruijn sequences 867 

from our previous study with relatively high detection power and low correlation coefficient 868 
3. These de Bruijn sequences were generated with 2nd order counterbalancing, using the 869 

‘path-guided’ approach 19.  In these de Bruijn sequences, the ‘carry-over’ effects (i.e., the 870 

influence of a prior item on the brain response to the current item) were counterbalanced, 871 

allowing us to investigate fMRI adaptation and multi-voxel pattern similarity simultaneously 872 

with the same set of trials 18,22. There were five types of events in each sequence – fixation 873 
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periods at the four test locations, in which participants stayed at the test locations for 4s, and 874 

null events, in which participants fixated their eyes at a cross displayed in the middle of the 875 

blank screen. Each de Bruijn sequence contained 25 events in total, with five repetitions for 876 

each event type. To allow the hemodynamic response to reach a steady state before the 877 

sequence started, we duplicated the very last event in the sequence and placed it at the very 878 

beginning. This duplicated event was modeled in the first-level GLMs, but was not included 879 

for the analyses of the fMRIa or MVPS effects. Therefore, in each run, there were 20 effective 880 

trials in total for the fMRIa and MVPS analyses, with five trials for each of the four test 881 

locations. These eight de Bruijn sequences were then randomly assigned to the eight runs in 882 

each scanning day for each participant.  883 

On each day, the functional MRI scanning lasted up to about 1 hour, and the total 884 

scanning time lasted up to about 1.75 hour. 885 

 886 
MRI acquisition  887 

Structural and functional images were acquired in a 7T MR scanner (Siemens, Erlangen, 888 

Germany) at the Leibniz Institute for Neurobiology in Magdeburg with a 32-channel head coil 889 

(Nova Medical, Wilmington, MA). A high-resolution whole-brain T1-weighted structural scan 890 

was acquired with the following MP-RAGE sequence: TR = 1700 ms; TE = 2.01 ms; flip angle = 891 

5º; slices = 176; orientation = sagittal; resolution = 1 mm isotropic. A partial-volume turbo spin 892 

echo high-resolution T2-weighted structural scan was acquired perpendicular to the long axis 893 

of the hippocampus (TR = 8000 ms; TE = 76 ms; flip angle = 60º; slices = 55; slice thickness = 1 894 

mm; distance factor = 10%; in-plane resolution =   0.4 × 0.4 mm; echo spacing = 15.1 ms, 895 

turbo factor = 9, echo trains per slice = 57). Functional scans were acquired with a T2*-896 

weighted 2D echo planar image slab centered on the hippocampus and parallel to its long axis 897 

(TR = 2000 ms, TE = 22 ms; flip angle = 85 º; slices = 35; resolution = 1 mm isotropic, parallel 898 

imaging with grappa factor 1, echo spacing = 0.82 ms). We also obtained 10 volumes of whole 899 

brain functional scans for the purpose of co-registering anatomical masks obtained on the T2-900 

weighted structural scan to functional scans with a MPRAGE sequence (TR = 5000 ms, TE = 22 901 

ms; flip angle = 85 º; slices = 100; resolution = 1.6 mm isotropic). The T1-weighted structural 902 

image was bias-corrected in SPM12. Functional scans were motion and distortion corrected 903 

online via point spread function mapping 60. Functional scans were left spatially unsmoothed. 904 
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Figure 1d shows the T2-weighted structural scan and a functional scan overlaid on the T1-905 

weighted structural scan for an exemplary participant. 906 

 907 

Anatomical masks for regions of interest  908 

As our regions of interest (ROI), we focused the retrosplenial cortex (RSC) and brain regions 909 

in the medial temporal lobe (MTL), including hippocampus, parahippocampal cortex (PHC), 910 

entorhinal cortex (EC), and perirhinal cortex (PRC). All the anatomical masks were obtained 911 

in the native space of each participant’s structural scans. To illustrate, Figure 1d, Figure S4a, 912 

and Figure S5c displays the anatomical masks for an exemplary participant. 913 

The procedure for obtaining the anatomical mask for RSC was identical to that used in 914 

a previous study in our lab (Shine et al., 2016). RSC mask was automatically extracted from 915 

each participant’ T1-weighted structural scan (bias-corrected in Advanced Normalization 916 

Tools (ANTs)) in Freesurfer 62, using the ‘recon-all’ command. RSC was defined as the 917 

posterior-ventral portion of the cingulate gyrus, which mainly consists of BA29/30. Note that 918 

the definition of RSC is anatomically different from the retrosplenial complex, which is a 919 

functionally defined region typically extending into the parieto-occipital sulcus 63. Although 920 

we did not investigate the retrosplenial complex in the ROI-based analyses, we conducted 921 

corresponding fMRI analyses to explore in the entire volume that likely included the putative 922 

retrosplenial complex (Figure 1d).   923 

Brain regions in MTL were manually segmented in each participant’s T2-weighted 924 

structural scan in ITK-SNAP (Yushkevich et al., 2006;  925 

http://www.itksnap.org/pmwiki/pmwiki.php), following the protocol developed by Berron, 926 

Vieweg and colleagues 65. As shown in Figure S5c, the hippocampus was further segmented 927 

into different subfields (CA1, CA2, CA3, subiculum (SUB), dentate gyrus (DG), and  tail), using 928 

the same protocol 65.  As shown in Figure S4a, EC was further divided into the anterior-lateral 929 

subregion (alEC) and the posterior-medial subregion (pmEC), following the procedure 930 

developed in our previous study 3.  931 

The anatomical mask for RSC was first co-registered to the mean functional scan along 932 

with the T1-weighted structural scan in SPM12; then the co-registered anatomical mask was 933 

resliced using the nearest-neighbor interpolation, with the mean functional scan as the 934 

reference image.  The anatomical masks for the MTL regions were co-registered to the mean 935 

functional scan of the first scanning day in SPM12, using the same procedure adopted in our 936 
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previous study 3: first, the mean whole-volume functional scan was co-registered to the mean 937 

functional scan; second, the T2-weighted structural scan, along with the anatomical masks, 938 

were co-registered to the mean whole-volume functional scan obtained from the first step; 939 

third, the co-registered anatomical masks were re-sliced using nearest-neighbor interpolation, 940 

with the mean functional scan as the reference image.  941 

 942 
 943 
STATISTICAL ANALYSIS 944 
 945 
Behavioral data analyses 946 

We calculated behavioral accuracy based on whether the answer was correct (coded as 1) or 947 

not (coded as 0), with a chance level of 0.25. For the two scanning days, the first trial of the 948 

sequence in each block was not included in the analysis, because it was not included in the 949 

main fMRI analyses and did not appear to differ from other trials in the sequence. In the main 950 

text, we focused on behavioral data from the two scanning days (Figure 2). We reported 951 

results of the behavioral data from all the three days in the supplemental information (Table 952 

S5).  953 

 954 

Cognitive modeling to recover representational precision from behavior 955 

To dissociate representational precision from response bias in behavioral performance, we 956 

applied an extension of signal detection theory to our location identification task with four 957 

choices. In the modeling, we included eight free parameters to model i) the four standard 958 

deviations of the underlying representations of the four test locations (S1, S2, S3, S4), ii) the 959 

three response criterions (C12, C23, C34), and iii) the lapse rate (𝑙𝑟). The lapse rate represents 960 

the proportion of trials in which participants completely failed in attention and simply chose 961 

a response randomly. The centers of the representation distributions (i.e., µ1, µ2, µ3, µ4) were 962 

assumed to be at the true positions of the test locations (i.e., µ1 = -6m, µ2 = -2m, µ3 = 2m, and 963 

µ4 = 6m).  964 

In each simulation, we constructed the behavioral confusion matrix, given a set of 965 

algorithm-generated values for the eight free parameters. Specifically, for the (1 − 𝑙𝑟 ) 966 

proportion of the trials, we randomly sampled a sensory input ( 𝑥 ) from the normal 967 

distribution of the underlying representation corresponding to the test location presented in 968 
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that trial, N(µr, Sr). Then, a response 𝑅(𝑥) was made by comparing the sensory input to the 969 

three response criterions:  970 

𝑅(𝑥) = +

𝐿𝑜𝑐1,																						𝑥 < 𝐶!"
𝐿𝑜𝑐2, 𝐶!" ≪ 𝑥 < 𝐶"#
𝐿𝑜𝑐3, 								𝐶"# ≪ 𝑥 < 𝐶#$	
𝐿𝑜𝑐4,																					𝑥 > 𝐶#$	

 971 

 972 

For the remaining 𝑙𝑟 proportion of the trials, we randomly selected one of the four choices as 973 

the response, regardless of the current sensory input. 974 

In each simulation, we simulated 10000 trials for each of the four test locations to 975 

construct the 4x4 theoretical behavioral confusion matrix. We normalized the theoretical 976 

behavioral confusion matrix so that elements in the matrix ranged from 0 to 1, each 977 

representing the probability of a response falling to a certain cell of the matrix (i.e., 𝑃%,' 	– 978 

probability of location 𝑟 recognized as location 𝑐). We then compared the actual behavioral 979 

confusion matrix (Figure 2b) to the theoretical behavioral confusion matrix, by computing the 980 

probability of observing each actual response given the theoretical matrix (log-transformed). 981 

Finally, we summed the probabilities of all actual responses,  982 

9log	(𝑃%,')
(

)*!

 983 

in which n represents the trial number and N represents the total number of trials in the 984 

actual experiment. We repeated the simulation to maximize this summed probability (i.e., 985 

maximum likelihood estimation). We used the Hooke & Jeeves hill-climbing algorithm for 986 

model optimization 66, as implemented in Matlab_R2020a. To avoid the potential local-987 

minima problem, the model-fitting procedure was repeated 20 times with randomized 988 

starting values for the parameters each time, and the parameter estimates with the best fit 989 

were selected (Figure 2c.1).  990 

We performed bootstrapping to estimate variabilities of the estimates for these free 991 

parameters. In each iteration, we randomly sampled the same number of responses from the 992 

actual responses with replacement for each test location. We then submitted the sampled 993 

data to the abovementioned model fitting procedure, and obtained the estimates for the free 994 

parameters. The procedure was repeated 600 times, resulting in distributions for all the eight 995 

free parameters. 95% confidence intervals of these estimates were obtained from these 996 

bootstrapped distributions (i.e., error bars in Figure 2c.2 and Figure 2c.3). 997 
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To evaluate how well the model fitted the data (Figure 2c.4), we simulated the 998 

behavioral confusion matrix, using the best-fitting values of the eight parameters. We 999 

simulated 1000 trials for each test location. We then calculated Pearson correlation between 1000 

the simulated confusion matrix with the actual confusion matrix. R-squared was taken as a 1001 

measurement of goodness-of-fit of the model, i.e., the proportion of variance in the data 1002 

explained by the model. Because the numbers of correct trials and incorrect trials differed 1003 

dramatically, we evaluated the model fit separately for correct and incorrect trials, as well as 1004 

separately for the landmark condition and the self-motion condition. 1005 

 1006 

Functional MRI analyses 1007 

Univariate analysis of fMRI adaptation  1008 

We constructed a first-level general linear model (fMRIa-GLM1) to assess fMRI adaptation 1009 

(fMRIa). In the model setup, for the regressors that modeled the location occupation periods 1010 

(Figure 1b, phase 4 ‘location occupation’), we included parametric regressors modeling the 1011 

modulatory effects of the spatial distance between two successively visited locations. In the 1012 

self-motion condition, these parametric regressors modeled inter-location distance in a 1013 

continuous manner by default, i.e., containing values of 0m, 4m, 8m, and 12m. In the 1014 

landmark condition, these parametric regressors modeled same locations vs. different 1015 

locations, i.e., containing values of 0 (the two locations were the same) and 1 (the two 1016 

locations were different), based on a previous report 22. The location occupation periods that 1017 

could not be modeled for fMRIa (i.e., test locations preceded by the null event and the first 1018 

location occupation event) were modeled with separate regressors. The passive movement 1019 

phase was modeled with separate regressors, separately for each run and each cue type, but 1020 

irrespective of the test location. The 16 runs were modeled with separate regressors. The 1021 

events were convolved with the canonical hemodynamic response function, with the time 1022 

derivative modeled. Head motion parameters (three rotations and three translations) were 1023 

entered into the model as nuisance regressors, separately for the 16 runs. Each run was 1024 

modeled with a constant variable.  1025 

We conducted univariate fMRIa analyses based on both objective location (where the 1026 

participant was actually located) and subjective location (the participant’s response, i.e., 1027 

where the participant thought he/she was located). Because in the location identification task, 1028 

the participant was required to explicitly judge the identity of each ball, we could construct 1029 
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the parametric modulation regressors of inter-location distance in terms of subjective 1030 

location in addition to objective location. For example, if the participant visited Loc1 and Loc3 1031 

in two successive trials, but reported “Loc2” and “loc3” in these two trials, the objective-1032 

location-based spatial distance was calculated as the physical distance between Loc1 and 1033 

Loc3 (= 8m), and the subjective-location-based spatial distance was calculated as the physical 1034 

distance between Loc2 and Loc3 (= 4m). First, we assessed the overall contributions of 1035 

objective location and subjective location to fMRIa via two versions of fMRIa-GLM1. In fMRIa-1036 

GLM1a the parametric regressors of spatial relations were defined by objective location, 1037 

whereas in fMRIa-GLM1b defined by subjective location. The beta estimates of the 1038 

parametric regressors represented the overall contributions of objective location in fMRIa-1039 

GLM1a and subjective location in fMRIa-GLM1b to fMRIa. Images of the beta estimates for 1040 

the regressors were left spatially unsmoothed. 1041 

At the group-level, in the ROI-based analysis, beta estimates for fMRIa of all the voxels 1042 

in the ROI were averaged. Then participant-specific beta estimates of the four fMRIa 1043 

measurements (i.e., location type (objective-location-based vs. subjective-location-based) X 1044 

cue type (landmark vs. self-motion)) were tested using directional one-sample t tests 1045 

separately to obtain the uncorrected significance levels (i.e., puncorrected). Next, the four 1046 

measurements were submitted to a multiple comparisons correction approach that combines 1047 

the nonparametric permutation-based maximum-t-statistic method 67 and the Holm-1048 

Bonferroni method, to control the familywise type I error at 0.05. Specifically, first, in every 1049 

permutation, every entry in each measurement was randomly multiplied by -1 or +1, and the 1050 

t statistic was calculated for the permuted data of each measurement. Next, the maximum t 1051 

statistic was obtained out of all the measurements. After 5000 permutations, we obtained a 1052 

surrogate distribution of maximum t statistic, to which we compared the observed t statistic 1053 

calculated from the actual data in each measurement. The significance level (i.e., pcorrected) 1054 

equaled to the proportion of values in the surrogate distribution of maximum t statistic that 1055 

were greater than the observed t statistic. This permutation procedure was performed 1056 

iteratively, in that if the measurement with the lowest uncorrected p value survived the test, 1057 

this measurement was deemed significant after multiple comparisons correction and was 1058 

excluded from further analysis. Next, the remaining measurements were submitted to the 1059 

same permutation test again. This procedure was repeated until the measurement with the 1060 
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lowest uncorrected p value did not pass the statistical significance threshold or no 1061 

measurements were left for testing. Results are depicted in Figure 3a. 1062 

For each of the directional one-sample t tests, we calculated the Bayes factor (BF10), 1063 

which indicates the relative likelihood of the alternative hypothesis (i.e., the group mean was 1064 

greater than 0) over the null hypothesis (i.e., the group mean was not greater than 0) 68. The 1065 

scale r on effect size we adopted was 0.707. BF10 greater than 3/10/30 indicates 1066 

moderate/strong/very-strong evidence for the alternative hypothesis, whereas BF10 less than 1067 

0.333/0.1/0.03 indicates moderate/strong/very-strong evidence for the null hypothesis 69. 1068 

To visualize fMRIa, we constructed first-level fMRIa-GLM3, in which different 1069 

regressors modeled the location occupation periods with different inter-location distances 1070 

between successively visited locations (i.e., 0m, 4m, 8m, and 12m). We then plotted beta 1071 

estimates of these regressors (i.e., estimated brain activation levels) as a function of inter-1072 

location distance. Results are depicted in Figure 3c. 1073 

 1074 

Disentangling objective location and subjective location in fMRIa 1075 

We constructed a first-level general linear model (fMRIa-GLM2) to directly compare 1076 

objective location and subjective location by disentangling their unique contributions to 1077 

fMRIa. In the model setup, we included two parametric regressors defined by objective 1078 

location and subjective location in the model, with no orthogonalization. We created two 1079 

versions of fMRIa-GLM2. The only difference between the two versions was the order in 1080 

which the parametric regressors were entered into the model. In fMRIa-GLM2a, the 1081 

objective-location-defined parametric regressor was entered first, followed by the subjective-1082 

location-defined parametric regressor. In fMRIa-GLM2b, the order was reversed. We took the 1083 

beta estimate for the subjective-location-defined parametric regressor in fMRIa-GLM2a as 1084 

the unique contribution of subjective location, and the beta estimate for the objective-1085 

location-defined parametric regressor in fMRIa-GLM2b as the unique contribution of 1086 

objective location 70. Because some participants did not commit any mistakes in some runs, 1087 

which would result in exactly the same parametric regressors for objective location and 1088 

subjective location, we concatenated all the scans belonging to the same cue type together 1089 

across runs and days in SPM12. Run-wise head motions were modeled as nuisance regressors, 1090 

which resulted in 6 * 16 runs = 96 nuisance regressors in total. Images of the beta estimates 1091 

for the regressors were left spatially unsmoothed. 1092 
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At the group-level, in the ROI-based analysis, beta estimates for fMRIa of all the voxels 1093 

in the ROI were averaged. Then participant-specific beta estimates for the unique 1094 

contributions of objective location and subjective location were tested using directional one-1095 

sample t test, separately.   1096 

For each of the directional one-sample t tests conducted here, we calculated the Bayes 1097 

factor (BF10). 1098 

Results are depicted in Figure 3b. 1099 

 1100 

fMRIa pattern similarity analysis  1101 

To investigate the voxel-to-voxel distribution patterns of fMRIa, we developed the fMRIa 1102 

pattern similarity analysis, which is analogous to the representational similarity analysis (RSA) 1103 
71. RSA is a form of multi-voxel pattern analyses. Conventionally, the multi-voxel pattern 1104 

analysis is applied to activation levels of voxels in fMRI studies 72. Recently, these techniques 1105 

have been applied to other measurements, e.g., inter-region functional connectivity 16. Here, 1106 

we applied the RSA technique to fMRIa, meaning that the basic elements in the computations 1107 

were the voxels’ fMRIa magnitudes instead of their activation levels. If the spatially 1108 

distributed pattern of fMRIa across voxels was distinct between landmarks and self-motion 1109 

cues, this would indicate that the two cue types recruited dissociable neural representations 1110 

in terms of fMRIa. 1111 

The fMRIa pattern similarity analysis was based on beta estimates of fMRIa as 1112 

estimated in fMRIa-GLM1. Images of the beta estimates for the regressors were left spatially 1113 

unsmoothed. The procedure is illustrated in Figure 4a. First, one fMRIa vector was estimated 1114 

for each run. The fMRIa vector contained the fMRIa estimates of all the voxels in the ROI, with 1115 

each element of the vector corresponding to the fMRIa magnitude (signed) of a voxel in the 1116 

ROI. Second, for each cue condition, in each scanning day, we divided the data into two parts 1117 

based on the chronological order, resulting in four parts in total for each cue type. In this way, 1118 

for each cue type, each part contained two fMRIa vectors from the two different 1119 

environments in two consecutive runs. To eliminate any subtle effects of environment, which 1120 

was not of our primary interest, we computed the mean fMRIa vector by averaging fMRIa for 1121 

each voxel across the two environments within each part (see a similar treatment to eliminate 1122 

possible subtle influences of an uninterested factor in fMRI multi-voxel pattern analysis in 1123 

Shine et al., 2019). This resulted in four mean fMRIa vectors in total for each cue type, with 1124 
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two mean vectors in each scanning day. Third, fMRIa pattern similarity was computed in a 1125 

cross-validated manner by calculating the Pearson correlation between the mean fMRIa 1126 

vectors from different parts (Walther et al., 2016). Specifically, within-cue similarity was 1127 

calculated as the Pearson correlation between the mean fMRI vectors of the same cue type. 1128 

Within-cue similarity was first calculated for the two cue types separately (i.e., within-1129 

landmark similarity and within-motion similarity), and was then averaged across the cue types. 1130 

Between-cue similarity was calculated in the same manner, but the two mean fMRIa vectors 1131 

in the correlation calculation were from different cue types. We obtained the final estimates 1132 

of within-cue similarity and between-cue similarity by averaging all the Pearson correlations 1133 

(Fisher-transformed) calculated from all possible pairs of the mean fMRIa vectors. Finally, to 1134 

obtain the fMRIa pattern distinction score, we subtracted between-cue similarity from within-1135 

cue similarity. We then tested the fMRIa pattern distinction score against 0, using 1-tailed 1136 

one sample t tests. A positive fMRIa pattern distinction score would indicate that the voxel-1137 

to-voxel spatial distribution of fMRIa was distinct between the two cue types. Importantly, in 1138 

the analysis, we distinguished between within-day and between-day fMRIa pattern 1139 

distinction scores, given the possibility that the fMRIa pattern might not necessarily be stable 1140 

across days within the same cue type.  1141 

For each of the t tests conducted in this analysis, we calculated the Bayes factor (BF10). 1142 

Results are depicted in Figure 4b. 1143 

 1144 

Analysis of multi-voxel pattern similarity  1145 

To analyze multi-voxel pattern similarity of activation vectors (MVPS), we constructed MVPS-1146 

GLM1 as the first-level general linear model (GLM), in which separate regressors modeled the 1147 

location occupation phase for the four test locations. No parametric regressors were included. 1148 

Other aspects of the model were the same as in the above-mentioned fMRIa-GLM1.  The beta 1149 

images for the regressors were left spatially unsmoothed. Similar to the fMRIa analysis, we 1150 

created two versions of MVPS-GLM1: in MVPS-GLM1a, the location occupation regressors 1151 

were defined by objective locations (i.e., where the participant was actually located); in 1152 

MVPS-GLM1b, the location occupation regressors were defined by subjective locations (i.e., 1153 

where the participant reported he/she was located). 1154 

The MVPS analysis was conducted as follows (Figure 5a). In step 1, for each cue type 1155 

and scanning day, the dataset was divided into two parts chronologically, resulting in four 1156 
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parts in total for each cue type. For each cue type, within each part, the factor ‘environment’, 1157 

which was not of our main interest here, was averaged out by computing the mean activation 1158 

vector of the two consecutive runs belonging to the two environments for each test location. 1159 

Each element of the mean activation vector denotes the mean activation level averaged 1160 

across the two runs of each voxel in the ROI. Note that here, the test location was defined by 1161 

either objective location (MVPS-GLM1a) or subjective location (MVPS-GLM1b), as described 1162 

above. This resulted in four mean activation vectors for each location and each cue type. In 1163 

step 2, we calculated cross-validated activation pattern similarities by calculating Pearson 1164 

correlations between the mean activation vectors of pairwise test locations from different 1165 

parts. This resulted in the 4x4 activation pattern similarity matrix (Figure 5a.2). In step 3, the 1166 

activation pattern similarity matrix was averaged element-by-element across all possible part 1167 

pairs, resulting in the 4x4 mean activation pattern similarity matrix (Figure 5a.3). In step 4, 1168 

pairwise inter-location distances among the four test locations were calculated, resulting in 1169 

the 4x4 inter-location distance matrix that contained values of 0m, 4m, 8m, and 12m. In other 1170 

words, inter-location distance was modeled in a continuous manner. In the final step, the 1171 

spatial information score was calculated as the Pearson correlation between the mean 1172 

activation pattern similarity matrix (Fisher-transformed) and the inter-location distance 1173 

matrix, which was Fisher-transformed and reversed in sign. A positive information score 1174 

would indicate that spatial distance information among the test locations was encoded in the 1175 

BOLD signals, meaning that test locations were more similar to each other in neural 1176 

representations as the distance between them decreased.  1177 

We calculated spatial information scores for landmarks, self-motion cues, and 1178 

between cue types, in which the mean activation vectors in the correlation calculation in step 1179 

2 were estimated both from the landmark condition, both from the self-motion condition, 1180 

and from different cue conditions, respectively. Importantly, the between-cue spatial 1181 

information score would be informative of whether the neural coding of spatial distance 1182 

information was generalizable between different cue types. We calculated spatial 1183 

information scores based on objective location using MVPS-GLM1a or subjective location 1184 

using MVPS-GLM1b. 1185 

At the group-level, the six measurements of spatial information scores (i.e., location 1186 

type (objective-location-based vs. subjective-location-based) X measurement type (landmark 1187 

vs. self-motion vs. between-cue)) were tested using directional one-sample t tests separately, 1188 
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to obtain the uncorrected significance levels (i.e., puncorrected). Then, to control the familywise 1189 

type I error at 0.05, the six measurements were submitted to a multiple comparisons 1190 

correction approach that combines the nonparametric permutation-based maximum-t-1191 

statistic method 67 and the Holm-Bonferroni method, as described in the previous section on 1192 

fMRIa.  1193 

For each of the directional one-sample t tests conducted here, we calculated the Bayes 1194 

factor (BF10). 1195 

Results are depicted in Figure 5b and Figure 5d. 1196 

 1197 

Disentangling objective location and subjective location in MVPS 1198 

To directly compare objective location and subjective location in MVPS, we attempted 1199 

to estimate the unique contributions of objective and subjective location to the overall MVPS 1200 

by conducting the following analysis. In the first-level general linear model MVPS-GLM2, we 1201 

modeled individual trials with separate regressors. Each trial was associated with two location 1202 

labels, one defined by objective location and the other defined by subjective location. 1203 

Whether the two labels matched or mismatched depended on the behavioral accuracy in that 1204 

trial. We computed cross-validated Pearson r correlation between single-trial-based 1205 

activation patterns from two different runs, resulting in a 20x20 activation pattern similarity 1206 

matrix for a run pair. Two 20x20 inter-location distance matrices were constructed, one based 1207 

on objective location and the other on subjective location. We then used these two inter-1208 

location distance matrices (standardized) to predict the 20x20 activation pattern similarity 1209 

matrix (fisher-transformed and standardized) using the multiple linear regression analysis for 1210 

each run pair. The two regression coefficients (i.e., beta-unique; reversed in sign) denoted 1211 

the respective unique contributions of the two predictors, with the contributions of the other 1212 

predictor excluded. The multiple linear regression was performed for each run pair, and the 1213 

estimated regression coefficients were then averaged across all run pairs to obtain the final 1214 

estimates of unique contributions of objective location and subjective location, which were 1215 

then tested against 0 using directional one-sample t tests.  Bayes factors (BF10) were also 1216 

computed. 1217 

This analysis was conducted for the landmark condition, self-motion condition, and 1218 

between cue types, separately. For the landmark condition and self-motion condition, the 1219 

two runs in each run pair were from the same cue type, whereas for between cue types, they 1220 
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were from different cue types. Run pairs were assigned with a value of ‘NaN’ for the beta-1221 

unique estimates and excluded from further analysis, when the behavioral performance was 1222 

perfect in both runs (i.e., the objective-location-based and the subjective-location-based 1223 

inter-location distance matrices were identical and perfectly correlated with each other). 1224 

When all the participants were considered, for the landmark condition, 64 out of 28 * 20 1225 

subjects = 560 run pairs (= 11.43%) had 100% accuracy rate and ‘NaN’ as the beta-unique 1226 

estimates. For the self-motion condition, 18 out of 560 run pairs (= 3.21%) had 100% accuracy 1227 

rate. For between cue types, 31 out of 1280 run pairs (= 2.42%) had 100% accuracy rate).  1228 

Results are depicted in Figure 5c. 1229 

 1230 

Neural space reconstruction analysis  1231 

As an overview, in the neural space reconstruction analysis (Figure 6a), first, a certain form of 1232 

neural distance matrix was constructed for objective test locations, depending on the type of 1233 

fMRI effect being investigated. Elements in the neural distance matrix denote pairwise neural 1234 

distances between the test locations. Next, multi-dimensional scaling was performed on the 1235 

neural distance matrix to recover the spatial coordinates of the locations in the neural space, 1236 

following the basic principle that locations with greater representational similarities are 1237 

positioned closer to each other in the neural space 74. Finally, the Procrustes analysis was 1238 

performed to map the estimated coordinates of the locations to the original physical space 1239 

through rotations and reflections 75. The neural space reconstruction analysis is commonly 1240 

applied to multi-voxel activation patterns in fMRI studies 76. In the current study, we applied 1241 

this analysis to fMRIa, in addition to MVPS (see the rationale below). The neural space was 1242 

reconstructed based on the neural distances between objective test locations (instead of 1243 

participants’ subjective locations). 1244 

The procedure was the same for both MVPS and fMRIa, except for how the neural 1245 

distance matrix was constructed. For MVPS, in step 1, the neural distance between two test 1246 

locations (defined by objective location) was quantified by the degree of correlational 1247 

dissimilarity between their voxel-to-voxel activation patterns (e.g., 1-Pearson correlation), 1248 

based on MVPS-GLM1a. The neural distance between two test locations indicated how 1249 

‘dissimilar’ they were in neural representations. To obtain the neural distance matrix, we 1250 

constructed the 4X4 representational dissimilarity matrix, with each element equal to 1 minus 1251 

the Pearson correlation between the activation patterns of two test locations. In step 2, we 1252 
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averaged symmetrical off-diagonal elements in the matrix. The four diagonal entries were 1253 

manually set to 0, because multidimensional scaling only exploits relative distances between 1254 

different items (also see 77). Elements in the matrix were normalized to be within the range 1255 

[0, 1] as follows: normalized value= (original value- matrix minimum)/(matrix maximum – 1256 

matrix minimum). In step 3, the normalized neural distance matrix was subjected to 1257 

multidimensional scaling and the Procrustes analysis. 1258 

For fMRIa, the neural distance between two test locations (defined by objective 1259 

location) could be quantified as the brain region’s activation level for one location when 1260 

preceded by the other location - the lower the region’s activation to the current location 1261 

when preceded by the other location, the larger the repetition suppression effect, the closer 1262 

the two test locations would be positioned to each other in the neural space. In step 1, we 1263 

constructed the adaptation matrix, which is parallel to the representational dissimilarity 1264 

matrix in MVPS. We relied on MVPS-GLM2, which modeled the location occupation phase in 1265 

individual single trials with separate regressors. These trials were classified into 4´4 = 16 1266 

groups based on the combination of two locations visited in succession; the beta estimates 1267 

for trials from the same group were averaged, resulting in the 4´4 adaptation matrix. In the 1268 

adaptation matrix, rows represent the previous location, columns represent the current 1269 

location, and each element represents the activation level at the current location when 1270 

preceded by the previous location. To keep it consistent with the main fMRIa analysis, the 1271 

fMRIa-based neural space reconstruction analysis was restricted to trials that could be 1272 

modeled for fMRIa (i.e., locations not preceded by the null event and not the first event in 1273 

the sequence).  1274 

Nevertheless, to confirm that the baseline activation level was comparable for the 1275 

four test locations in RSC and the hippocampus, we estimated activation levels of RSC and 1276 

hippocampus for the four test locations using the trials that were not included in the 1277 

parametric regressors modeling fMRIa (i.e., test locations preceded by the null event and the 1278 

first event in the sequence in fMRIa-GLM1). We observed no significant differences among 1279 

the four locations in either RSC (F(3,57) = 0.742, p = 0.531, hp
2 = 0.038) or hippocampus 1280 

(F(3,57) = 0.875, p = 0.459, hp
2 = 0.044). In addition, there were no significant differences 1281 

among the four locations in baseline activation in any other ROIs in the medial temporal lobe 1282 

(Fs <2.1, ps > 0.1, hp
2 < 0.1). This verifies our choice of using the estimated brain activation 1283 
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level for the current location as an indicator of the neural distance between the current 1284 

location and the preceding location in fMRIa.  1285 

The following two steps were the same as in the MVPS-based neural space 1286 

reconstruction analysis. In step 2, we normalized the adaptation matrix as to render all the 1287 

16 elements within the range [0, 1]. Elements that were diagonally symmetrical to each other 1288 

in the matrix were averaged, and the diagonal elements were manually set to 0. In step 3, the 1289 

normalized neural distance matrix was then subjected to multidimensional scaling and the 1290 

Procrustes analysis. 1291 

To address the question of whether the neural space resembled the behavioral 1292 

performance pattern), we performed the neural space reconstruction analysis for each 1293 

participant. The reconstructed distances were submitted to a repeated-measures ANOVA test, 1294 

and with cue type (landmark vs. self-motion) and adjacent location pair (Loc1-2, Loc2-3, Loc3-1295 

4) as independent variables. We were particularly interested in the interaction effect between 1296 

cue type and the linear trend of adjacent location pair, motivated by the observation of 1297 

differential representational precision patterns between the two cue types (Figure 2). Results 1298 

are depicted in Figure 6b.1 & 6c.1. 1299 

We also addressed the question of whether the neural space resembled the original 1300 

physical space. To increase statistical power, the normalized neural distance matrix was 1301 

averaged across participants to obtain the grand group-level neural distance matrix for the 1302 

four test locations (defined by objective location) 77–79, which was then subjected to 1303 

multidimensional scaling and the Procrustes analysis. We performed a nonparametric 1304 

permutation test as follows. First, we obtained the actual Procrustes distance calculated from 1305 

the group-level neural distance matrix. Procrustes distance indicates the deviation of the 1306 

reconstructed neural space from the original physical space. Second, we applied the 1307 

permutation procedure to obtain the surrogate distribution of Procrustes distance, to which 1308 

the actual Procrustes distance would be compared. Specifically, in each permutation, we 1309 

randomly shuffled the 12 off-diagonal entries in the grand group-level neural distance matrix. 1310 

Note that to allow for more permutations, this shuffling was done prior to the averaging of 1311 

symmetrical off-diagonal elements in the neural distance matrix. We obtained the Procrustes 1312 

distance by applying multidimensional scaling and the Procrustes analysis to the shuffled 1313 

neural distance matrix. This process was repeated 5000 times, resulting in a surrogate 1314 

distribution of Procrustes distance. Third, the actual Procrustes distance was compared to the 1315 
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surrogate distribution. The significance level (i.e., p value) was calculated as the proportion 1316 

of values in the surrogate distribution being smaller than the actual Procrustes distance, 1317 

analogous to directional one-sample t test. Results are depicted in Figure 6b.2 & 6c.2. 1318 

 1319 

Assessing spatial overlap between MVPS and fMRIa at the voxel level 1320 

To assess the spatial overlap between fMRIa and MVPS, we performed a fMRIa-based artificial 1321 

lesion analysis, in which we selectively excluded a certain proportion of voxels based on their 1322 

fMRIa magnitudes (spatially unsmoothed) prior to calculating the spatial information score in 1323 

MVPS 80,81. Since our previous results showed that in RSC, fMRIa was mainly objective-1324 

location-driven and MVPS effect was mainly subjective-location-driven, we conducted this 1325 

analysis using objective-location-based fMRIa as estimated from fMRIa-GLM1a and 1326 

subjective-location-based MVPS as calculated from MVPS-GLM1b.  We ranked voxels in the 1327 

ROI by the landmark or self-motion fMRIa magnitude (signed) from low to high, using the 1328 

unsmoothed beta images estimated from fMRIa-GLM1a. We conducted the MVPS analysis 1329 

(Figure 5a) with one quarter of voxels excluded at one time. To address the question of 1330 

whether voxels’ fMRIa levels affected MVPS, we conducted a repeated-measure ANOVA test, 1331 

with the excluded quarter as the independent variable and the resulted spatial information 1332 

score as the dependent variable.  1333 

As a critical comparison, we calculated the empirical chance level of the resulted 1334 

spatial information score, by conducting the same artificial lesion analysis, but with the voxels 1335 

randomized in order instead of being ordered by the fMRIa magnitude. In each randomization, 1336 

we calculated the spatial information score after deleting one quarter of the voxels. Voxel 1337 

randomization was performed for 1000 times, and the mean resulted spatial information 1338 

score averaged across all the randomizations was taken as the empirical chance level.  Hence, 1339 

the relative contribution of a certain voxel group can also be assessed by comparing the 1340 

resulted spatial information score to the empirical chance level.  1341 

Results are depicted in Figure S7. 1342 

 1343 
Analysis of empirical relative detection power for fMRI adaptation 1344 

In fMRI data analysis, blood-oxygen-level-dependent (BOLD) signals of certain frequencies are 1345 

attenuated or even eliminated: first, the convolution with the hemodynamic response 1346 

function (HRF) dampens high-frequency signals; second, the high-pass filter eliminates low-1347 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.491990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.491990
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

frequency signals. This means that only a proportion of the original BOLD signals will be 1348 

retained in further analysis, which is termed as ‘relative detection power (𝐷𝑃%+,). Specifically, 1349 

𝐷𝑃%+,is calculated as follows 19, 1350 

 1351 
𝐷𝑃%+, =	

-.%!
-.%"

                (1) 1352 

 1353 
in which 𝑣𝑎𝑟/ represents the hypothesized neural modulation after HRF convolution and 1354 

high-pass filtering (e.g., f > 1/128), and 𝑣𝑎𝑟!  represents the original hypothesized neural 1355 

modulation prior to HRF convolution and high-pass filtering. 𝐷𝑃%+,  ranges from 0 to 1. To 1356 

interpret, 𝐷𝑃%+,  of one means no loss of detection power, and 𝐷𝑃%+,  of zero means a 1357 

complete loss. Therefore, 𝐷𝑃%+,  reflects the probability for us to detect effects in fMRI BOLD 1358 

signals  .  1359 

In the current study, we used the eight de Bruijn sequences from our previous study 3. 1360 

These sequences were generated based on objective locations, and hence, were theoretically 1361 

optimized in terms of 𝐷𝑃%+,  with respect to objective locations. However, in the current study, 1362 

participants’ responses could not be known in advance, leading to the possibility that 𝐷𝑃%+,  1363 

was reduced for the subjective-location sequences compared to the objective-location 1364 

sequences. Therefore, our observation that fMRI adaptation was predominantly driven by 1365 

objective location rather than subjective location could have been confounded by potentially 1366 

higher 𝐷𝑃%+,  for the objective-location sequences than the subjective-location sequences.   1367 

To address this issue, we calculated the empirical 𝐷𝑃%+,  for objective-location and 1368 

subjective-location sequences separately, based on the first-level general linear models 1369 

(GLMs) using events and inter-location distances that actually occurred in the experiment for 1370 

each participant. These GLMs included regular regressors modeling the location occupation 1371 

events as a measure of the direct stimulus effect, and parametric regressors modeling the 1372 

inter-location distance as a measure of the adaptation effect, same as in the construction of 1373 

fMRIa-GLM1a and fMRIa-GLM1b in the main analysis. 1374 

Specifically, to calculate 𝑣𝑎𝑟!  in equation (1), we constructed these first-level GLMs with 1375 

no HRF convolution and no high-pass filtering applied. We then converted the simulated BOLD 1376 

signal of the parametric regressor from the time domain to the frequency domain, using the 1377 

fast Fourier transform (FFT). The variance of the hypothesized neural modulation for the 1378 
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parametric regressor (i.e.,  𝑣𝑎𝑟!) was calculated as the area under curve (AUC) using the 1379 

frequency-domain data. 1380 

To calculate var0 in equation (1), we convolved the predicted fMRI time-series for the 1381 

parametric regressor with the canonical hemodynamic response function (HRF), and adopted 1382 

a high-pass filter with a cut-off at 1/128s = 0.0078 Hz. The variance of the convolved and 1383 

filtered signal for the parametric regressor (i.e., 𝑣𝑎𝑟/) was calculated in the same way as var1. 1384 

Finally, to obtain 𝐷𝑃%+,, we divided 𝑣𝑎𝑟/ over 𝑣𝑎𝑟!.  1385 

 1386 

 1387 

 1388 

 1389 

 1390 

 1391 
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 1398 
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Videos 1411 

 1412 

Title: Demo of the experimental environments and tasks, related to Figure 1 and the section 1413 
‘Stimuli and navigation task’ in STAR Methods. Demo of the learning trials starts at 0’0” and 1414 
ends at 1’24”. Demo of the location identification task (i.e., test) starts at 1‘25“and ends at 1415 
2’48“. 1416 

 1417 

Video file: Learning_and_location_identification_task_demo.mp4 1418 
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Figures  
 
Figure 1. Environmental setup, navigation task, and MRI acquisition 

(a) There were two different virtual environments (left): nature (upper panel) and city (lower panel). 
The two environments shared the same object layout on the linear track (left). There were arrows, 
four differently colored balls on poles, and a tree on the linear track. The four balls were 
positioned at the four test locations, i.e., Loc1, Loc2, Loc3, and Loc4. To improve visibility, we used 
three identical arrows positioned above the ground to denote the same spatial position, meaning 
that the arrows vertically projected to the same position on the ground and only differed in height. 
The arrows, the tree, and the floor texture of the linear track had the same physical appearances 
but in different colors in the two environments. The four balls positioned at the test locations 
were the same but reversed in order in the two environments. The floor texture outside of the 
linear track also differed between the two environments. Displayed on the right are snapshots of 
the two environments, with the background environment, the linear track, the tree, the arrows, 
and the ball positioned closest to the arrows. 

(b) The time course of the location identification task. Here, the trial is depicted in the nature 
environment, which was exactly the same in the city environment. Each trial had six phases. In 
phase 1 ‘start’, the participant was positioned at the starting location, which was randomized trial 
by trial based on a uniform distribution [-18 m, -4 m] (see Figure 1a, right). In phase 2 ‘movement’, 
the participant was passively transported to one of the four test locations. In phase 3, after 
arriving at the test location, the participant’s first-person perspective was smoothly turned down 
to vertically face the ground. In phase 4 ‘location occupation’, the participant’s perspective was 
fixed at the ground for four seconds. In phase 5 ‘response’, participant was required to identify 
the color of the ball positioned at that location within 20 second. In phase 6 ‘feedback’, feedback 
was provided, telling the participant whether the response was accurate, and, if incorrect, what 
the correct answer was. Note that the balls remained invisible throughout the trial, so that 
participants needed to recall from memory the color of the ball associated with the test location. 
In the landmark condition, the arrows were invisible, the tree was displayed, and the floor of 
linear track remained blank. In the self-motion condition, the arrows were displayed, the tree was 
invisible, and the texture of the linear track was displayed. In both conditions, the background 
environment only appeared briefly at the beginning of the trial (= 0.7s), and disappeared once the 
passive movement started. The fMRI analyses focused on the 4-second location occupation period 
(i.e., phase 4), when the visual inputs were the same for both cue conditions.  

(c) Participants were familiarized with the virtual environments and trained in the location 
identification task on the first day (Pre-scan day). On the following two days (MRI_day1 & 
MRI_day2), they completed the location identification task while undergoing MRI scanning in the 
7T scanner.  

(d) MRI scanning and regions of interest. For an exemplary participant, the functional scan (in green), 
the T2-weighted structural scan (in blue), the anatomical mask of retrosplenial cortex (RSC; in red), 
and the anatomical mask of hippocampus (in violet) were overlaid on the brain extracted from 
the T1-weighted structural scan.  

For full details of the virtual environments and the experimental tasks, see STAR Methods and the 
video. 
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Figure 2. Behavioral results.  
(a) Behavioral accuracy is plotted as a function of test location and cue type in each scanning day. 

Error bars represent ± S.E. 
(b) Behavioral confusion matrix. Columns represent the objective locations (i.e., where the 

participant was actually located), whereas rows represent the subjective locations (i.e., where the 
participant reported he/she was located). Each cell represents the proportion of trials falling into 
the category. 

(c) Disentangling representational precision and response bias via modeling.  
(c.1) Graphic illustration of the estimated underlying representations and response criteria.  
(c.2) Estimated representational uncertainty (i.e., standard deviations of the Gaussian 
distributions in (c.1)) is plotted as a function of location and cue type. Error bars represent 95% 
confidence intervals obtained through a bootstrapping procedure. We further found that the 
interaction effect between cue type and the linear trend of test location on representational 
uncertainty was significant (i.e., the 95% confidence interval of the interaction effect did not 
contain zero).  
(c.3) Lapse rate was significantly higher than zero in both the landmark condition and the self-
motion condition (i.e., the 95% confidence intervals did not contain zero), indicating that 
participants failed to pay adequate attention to the task occasionally. The difference in lapse rate 
was not significant between the two cue types. Error bars represent 95% confidence intervals 
obtained through a bootstrapping procedure.  
(c.4) Goodness-of-fit of the model. Regarding the behavioral confusion matrices, the observed 
values in the observed matrices are plotted against the simulated values generated by the model 
using the optimal values of the parameters as depicted in (c.1), separately for landmarks and self-
motion cues, and separately for correct and incorrect trials. The linear regression line, R2 (i.e., 
goodness-of-fit), and the regression equation are displayed in each scatterplot. Additionally, 
goodness-of-fit remained at a very high level when all data points were analyzed together (R2 = 
0.9997).  

        See more details of the analyses in STAR Methods. 
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Figure 3. Univariate analysis of fMRIa in retrosplenial cortex.  
(a) Beta estimate of fMRIa is plotted as a function of location type (objective vs. subjective location), 

cue type (landmark vs. self-motion), and scanning day (MRI_day1 vs. MRI_day2). We conducted 
statistical tests on the mean fMRIa averaged across scanning days and environments (green bars). 
The displayed significance results were corrected for multiple comparisons of the four tests, using 
the permutation-based Holm-Bonferroni procedure. 

(b) Unique contributions of objective location (‘objective-unique’) and subjective location 
(‘subjective-unique’) to fMRIa. Results of the landmark condition and the self-motion condition 
are plotted separately. Significance levels displayed in the brackets refer to results when 
participants with behavioral accuracy > 90% were excluded from the analysis. 

(c) Beta estimate of RSC activation is plotted as a function of inter-location distance defined by 
objective locations for each cue type.  

See more details of the analysis in STAR Methods. 
n.s. denotes p1-tailed > 0.1, * denotes p1-tailed < 0.05, and ** denotes p1-tailed < 0.01; + denotes p1-tailed < 0.1. 
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Figure 4. fMRIa pattern similarity analysis in retrosplenial cortex.  
(a) Setup of the fMRIa pattern similarity analysis. First, runs were ordered chronologically for each 

cue type. Odd-numbered runs belonged to the nature environment, and even-numbered runs 
belonged to the city environment. Second, to minimize any subtle influences of environment, for 
each cue type, the fMRIa vectors estimated from the two adjacent runs from the two different 
environments were averaged to obtain the mean fMRIa vectors; that is, for each cue type, the 
fMRIa vectors from an odd-numbered run and the subsequent even-numbered run were 
averaged (e.g., 1st run and 2nd run were averaged, 3rd run and 4th run were averaged, etc.).  In 
particular, Ri,i+1 refers to the mean fMRIa vector averaged from the ith run (nature) and the (i+1)th 
run (city). Next, all the mean fMRIa vectors were paired up to one another, resulting in 3´3 = 9 
different types of pairing: cue type (within-landmark vs. within-motion vs. between-cue) ´ day 
type (within-day1 vs. within-day2 vs. between-days).  

(b) Results of the fMRIa pattern similarity analysis. Objective-location-based fMRIa pattern similarity 
is plotted as a function of cue type and day.  

See more details of the analysis in STAR Methods. 
n.s. denotes p1-tailed/2-tailed > 0.1, * denotes p1-tailed/2-tailed < 0.05, and ** denotes p1-tailed/2-tailed < 0.01; + 
denotes p1-tailed/2-tailed < 0.1. 
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Figure 5. MVPS analysis in retrosplenial cortex.  
(c) Setup of the MVPS analysis. (a.1) Pairing of the runs. Similar to the fMRIa pattern similarity 

analysis (Figure 4a), runs were ordered chronologically for each cue type. Odd-numbered runs 
belonged to the nature environment, and even-numbered runs belonged to the city environment. 
To minimize any subtle influences of environment, for each cue type, the activation vectors 
estimated from the two adjacent runs from the two different environments were averaged 
location by location. (a.2) For each link in (a.1), there are four different mean activation vectors 
corresponding to the four test locations (i.e., Loc1, Loc2, Loc3, Loc4) in each of the two nodes (i.e., 
Ri,(i+1) and Rm,(m+1), in which the subscripts ‘i’ and ‘m’ denote any odd numbers from 1 to 7). In (a.2), 
calculating the representational similarities between pairwise locations resulted in the 4x4 
activation pattern similarity matrix for the link. (a.3) We obtained the 4x4 mean activation pattern 
similarity matrix by averaging all the similarity matrices across all links in (a.1). Inter-location 
distances could be defined by either objective or subjective locations. The spatial information 
score was calculated as the Pearson R correlation between the mean activation pattern similarity 
matrix and the inter-location distance matrix (Fisher-transformed and reversed in sign).  

(d) Spatial information score is plotted as a function of cue type (landmark vs. self-motion vs. 
between-cue), location type (objective vs. subjective location), and day type (MRI_day1 vs. 
MRI_day2). The lumped spatial information score was calculated regardless of day type (yellow 
bars). Displayed significance results were corrected for multiple comparisons across the six tests 
on the lumped spatial information score (yellow bars), using the permutation-based Holm-
Bonferroni procedure (STAR Methods). 

(e) Unique contributions of objective and subjective locations were disentangled in MVPS 
calculations. Significance levels displayed in the brackets refer to results when participants with 
behavioral accuracy > 90% were excluded from analysis. 

(f) To visualize MVPS, activation pattern similarity is plotted as a function of inter-location distance 
defined by subjective locations for landmarks, self-motion cues, and between cue types.  

See more details of the analysis in STAR Methods. 
* denotes p1-tailed/2_tailed< 0.05, and ** denotes p1-tailed/2-tailed < 0.01; + denotes p1-tailed/2-tailed < 0.1. 
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Figure 6. Neural space reconstruction analysis in retrosplenial cortex. 
(a) Setup of the analysis. For both fMRIa and MVPS, first a 4X4 neural distance matrix was constructed, 

with the elements denoting pairwise neural distances among the four test locations (defined by 
objective location). Next, this matrix was normalized, so all the elements were within the range 
[0, 1], and the four on-diagonal elements were manually set to 0 (dark cells). Third, the normalized 
neural distance matrix was submitted to the multi-dimensional scaling and then Procrustes 
analysis to obtain the reconstructed space. See STAR Methods for more details. 

(b) Results based on fMRIa. (b.1) The pattern of the reconstructed space did not resemble the 
observed behavioral pattern (Figure 2). The reconstructed distance between adjacent locations is 
plotted as a function of location pair and cue type, and the interaction between the linear trend 
of location pair and cue type was not significant. (b.2) Nonparametric permutation tests based on 
the grand group-level neural distance matrix revealed that the recovered neural space 
significantly resembled the original physical space for self-motion cues, but not landmarks (STAR 
Methods). 

(c) Results based on MVPS. (c.1) The structure of the reconstructed space resembled the observed 
behavioral pattern (Figure 2). The reconstructed distance between adjacent locations is plotted 
as a function of location pair and cue type, and the interaction between the linear trend of 
location pair and cue type was significant. (c.2) Nonparametric permutation tests based on the 
grand neural distance matrix revealed that the recovered neural space did not significantly 
resemble the original physical space for either cue type. 

See more details of the analysis in STAR Methods. 
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Tables 
Table 1. Statistical results for univariate fMRI adaptation and multi-voxel pattern similarity analyses. In 
correspondence to Figure 3a&b on fMRI adaptation (fMRIa) and Figure 5b&c on multi-voxel pattern 
similarity (MVPS). In paratheses are results with statistical outliers excluded from the analysis. df: degree 
of freedom; N/A: not applicable; BF10: Bayes factor, relative likelihood of the alternative hypothesis over 
the null hypothesis. 
 
  cue condition t df p1-tailed pcorrected Cohen's d BF10 

univariate fMRIa  

objective-location-
based 

landmark 3.356 19 0.002 0.005 0.750 26.000 

self-motion 2.940 19 0.004 0.012 0.657 11.768 

subjective-
location-based 

landmark 2.807 19 0.006 0.010 0.602 9.208 

self-motion 1.635 19 0.059 0.061 0.366 1.345 

objective-location-
unique 

landmark 2.093 19 0.025 N/A 0.468 2.694 

self-motion 1.860 19 0.039 N/A 0.416 1.871 

subjective-
location-unique 

landmark 0.117 19 0.454 N/A 0.026 0.254 

self-motion -0.354 19 0.636 N/A -0.079 0.182 

objective-location-
unique (accuracy 
<0.9) 

landmark 2.699 
(3.302) 

12 
(11) 

0.010 
(0.004) 

N/A  
(N/A) 

0.749 
(0.953) 

6.699 
(15.637) 

self-motion 1.983 16 0.032 N/A 0.481 2.312 

subjective-
location-unique 
(accuracy < 0.9) 

landmark -0.165 12 0.564 N/A -0.046 0.248 

self-motion -0.546 16 0.704 N/A -0.132 0.174 

MVPS (spatial information score)  

objective-location-
based 

landmark 3.207 
(3.311) 

19 
(18) 

0.003 
(0.002) 

0.010 
(0.009) 

0.717 
(0.76) 

19.486 
(22.95) 

self-motion 1.938 19 0.034 0.067 0.433 2.109 

between-cue 1.014 19 0.162 0.159 0.227 0.604 

subjective-
location-based 

landmark 3.795 
(3.991) 

19 
(18) 

0.001 
(0.0004) 

0.002 
(0.003) 

0.849 
(0.916) 

61.372 
(84.54) 

self-motion 2.319 19 0.016 0.046 0.519 3.905 

between-cue 3.143 19 0.003 0.010 0.703 17.248 

objective-location-
unique 

landmark 1.343 19 0.097 N/A 0.300 0.904 

self-motion -1.274 19 0.891 N/A -0.285 0.114 

between-cue -0.546 19 0.704 N/A -0.122 0.162 

subjective-
location-unique 

landmark 0.674 19 0.254 N/A 0.151 0.419 

self-motion 2.806 19 0.006 N/A 0.627 9.198 

between-cue 2.220 19 0.019 N/A 0.496 3.313 

objective-location-
unique (accuracy < 
0.9) 

landmark 1.077 12 0.151 N/A 0.298 0.754 

self-motion -0.485 12 0.683 N/A -0.118 0.181 

between-cue -0.678 12 0.746 N/A -0.164 0.162 

subjective-
location-unique 
(accuracy < 0.9) 

landmark 2.207 12 0.024 N/A 0.612 3.249 

self-motion 2.052 12 0.028 N/A 0.498 2.566 

between-cue 2.260 12 0.019 N/A 0.548 3.546 
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Figure S1. Voxel-wise analysis of fMRIa in the entire volume, related to Figure 3. Results are displayed 
for the landmark condition (upper) and the self-motion condition (lower), objective-location-based fMRIa 
(left) and subjective-location-based fMRIa (right). The parametric regressors modeled same vs. different 
locations in the landmark condition, and continuous inter-location distance in the self-motion condition, 
as in the main analyses (Figure 3). The participant-specific maps of fMRIa were normalized to the MNI 
template and spatially smoothed with 3mm isotropic FWHM. For the 2nd level analysis, we conducted 
directional one-sample t test against 0. The parametric t maps were overlaid on the MNI template and 
projected to the brain surface. Here, results are thresholded at puncorrected = 0.05. 

When corrected for multiple comparisons across the entire volume using the nonparametric 
permutation test (Nichols & Holmes, 2002), there were no significant voxels with the voxel-inference 
approach. When the cluster-inference approach (voxel-wise t > 3) was adopted, in the landmark objective 
location condition, there were three significant clusters (pFWE-corr < 0.05, 1-tailed), encompassing the 
angular gyrus (MNI coordinates of local maxima: [50, -71, 30], [-45,  -71, 28]), middle occipital gyrus (MNI 
coordinates of local maxima: [40, -79, 35], [45, -77, 27], [-34, -84, 33]), calcarine (MNI coordinates of local 
maxima: [3, -56, 12], [-12, -46, 7]), and precuneus (MNI coordinates of local maxima: [1, -63, 24]). In the 
other conditions, no significant clusters were detected. 
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Figure S2. Controlled analyses of fMRIa pattern similarity in retrosplenial cortex, related to Figure 4 and 
the main text section ‘fMRIa-based distance coding was spatially distinct between cue types in RSC’. (a) 
Separate analyses of objective-location-based fMRIa pattern similarity in the nature environment (a.2) 
and the city environment (a.3), with inter-location distance modeled continuously in the self-motion 
condition and ‘same vs. different locations’ modeled in the landmark condition, as in the main analysis 
(Figure 4). (a.1) Setup of the analyses is the same as in the main analysis (Figure 4a), except that fMRIa 
vectors were not averaged across different environments.   

(b) More controlled analyses. (b.2) Controlled analysis on subjective-location-based pattern 
similarity, with inter-location distance modeled continuously in the self-motion condition and ‘same vs. 
different locations’ modeled in the landmark condition, as in the main analysis (Figure 4). (b.3) Controlled 
analysis on objective-location-based fMRIa pattern similarity with inter-distance modeled continuously in 
both cue conditions. (b.1) Setup of the analyses is the same as in the main analysis (Figure 4a).   

All the controlled analyses revealed a pattern of results similar to the main analysis (Figure 4b).  
n.s. denotes p1-tailed/2-tailed > 0.1; + denotes p1-tailed/2-tailed < 0.1; * denotes p1-tailed/2-tailed < 0.05; ** 

denotes p1-tailed/2-tailed < 0.01. Error bars represent ± S.E.. 
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Figure S3. Searchlight analysis of MVPS in the entire volume, related to Figure 5. Results are displayed 
for the landmark condition (upper), self-motion condition (middle), and between cue types (lower), and 
for objective-location-based MVPS (left), and subjective-location-based MVPS (right). In all situations, the 
inter-location distance was modeled continuously, with distances of 0m, 4m, 8m, and 12m, as in the main 
analysis (Figure 5). The searchlight analysis was conducted in each participant’s native brain, using codes 
adapted from the TDT toolbox (Hebart et al., 2015) and a searchlight radius of 6mm. At each step, for 
voxels within the searchlight, the spatial information score was calculated, using the same procedure 
shown in Figure 5a; the score was then assigned to the voxel at the center of the searchlight. The 
participant-specific brain maps of spatial information score were normalized to the MNI template and 
spatially smoothed with 3mm isotropic FWHM. For the 2nd level analysis, we conducted directional one-
sample t test against 0. Here, the parametric t maps were overlaid on the MNI template and projected to 
the brain surface. Results are thresholded at puncorrected < 0.01. Detailed results are listed in Table S2. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.491990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.491990
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S4. Functional connectivity between retrosplenial cortex and hippocampus, related to the main 
text section ‘Hippocampus contained a spatial coding scheme similar to RSC’. (a) Results of the beta-
series functional connectivity analysis. Displayed on the left is the mean pairwise simple correlations 
among RSC and the medial temporal lobe (MTL) regions. Displayed on the right are anatomical masks of 
MTL regions for an exemplary participant. We assessed the functional connectivity between these regions 
using the beta-series connectivity analysis (Cisler et al., 2014), using MVPS-GLM2 that modeled individual 
trials with separate regressors (STAR Methods). For each brain region, we obtained a temporal sequence 
of activation estimates concatenated across individual trials, which were mean-centered within each run 
prior to the trial concatenation. We then calculated pairwise Pearson r correlations (fisher-transformed) 
between the temporal sequences of these regions for each participant. There existed strong functional 
coupling between RSC and hippocampus in both the landmark condition (p2-tailed < 0.001, BF10 > 1000) and 
the self-motion condition (p2-tailed < 0.001, BF10 > 1000).  

(b.1) The five pairs differed significantly in connectivity (F(4,76) = 36.079, p < 0.001, hp
2= 0.655). 

Planned comparisons showed that RSC-hippocampus connectivity was significantly stronger than RSC’s 
connectivity with other MTL regions. (b.2) The five pairs differed significantly in connectivity (F(4,76) = 
15.549, p < 0.001, hp

2 = 0.450). Planned comparisons showed that RSC-hippocampus connectivity was 
significantly stronger than the hippocampus’s connectivity with other MTL regions. Effects involving cue 
type were not significant. * denotes pholm,2-tailed < 0.05.  

(c) Scatterplot of trial-by-trial activation of the hippocampus and RSC in the landmark condition 
(c.1) and the self-motion condition (c.2) in an exemplary participant. 

RSC: retrosplenial cortex; HIPP: hippocampus; PHC: parahippocampal cortex; PRC: perirhinal 
cortex; alEC: anterior-lateral entorhinal cortex; pmEC: posterior-medial entorhinal cortex. 
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Figure S5. fMRIa results in hippocampus, related to the section ‘Hippocampus contained a spatial coding 
scheme similar to RSC’ in the main text and Figure 3&4&6. (a) The univariate fMRIa analysis that assessed 
objective-location-based and subjective-location-based fMRIa for landmarks and self-motion cues, 
displayed separately for different environments and scanning days. The continuous inter-location was 
modeled for both cue types by default, because a previous study reporting fMRIa-based neural coding of 
continuous distance between locations defined by landmarks in the hippocampus (Morgan et al., 2011). 
The mean fMRIa (green bars) was not significant for either cue type, even at the uncorrected significance 
level. (b) Mean fMRIa averaged across environments and days is displayed for each hippocampal subfield. 
No significant fMRIa was observed in any subfields. (c) Anatomical masks of hippocampal subfields for an 
exemplary participant (DG – dentate gyrus; SUB - subiculum). (d) fMRIa pattern similarity analysis based 
on objective location. Setup of this analysis is identical to Figure 4a. The within-day fMRIa pattern 
distinction score was significantly positive (t(19) = 2.090, p1-tailed = 0.018, BF10 = 2.682). This implies 
potential spatial coding in the hippocampus, though fMRIa averaged across voxels was not significant in 
the hippocampus (a). (e) Within-day fMRIa pattern distinction score for each hippocampal subfield. The 
score reached statistical significance in the dentate gyrus (DG, t(19) = 1.930, p1-tailed = 0.034, BF10 = 2.082), 
but not in other subfields (ps > 0.05). (f) Results of the neural space reconstruction analysis based on 
fMRIa in the hippocampus. The reconstructed neural spaces did not resemble participants’ behavior (left) 
or the original physical space in any cue conditions (right). 

n.s. denotes p1-tailed/2-tailed > 0.1, * denotes p1-tailed/2-tailed < 0.05, and ** denotes p1-tailed/2-tailed < 0.01; + 
denotes p1-tailed/2-tailed < 0.1. 
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Figure S6. MVPS results in the hippocampus, related to section ‘Hippocampus contained a spatial coding 
scheme similar to retrosplenial cortex’ in the main text and to Figure 5&6. (a) Spatial information score 
based on objective location and subjective location for landmarks, self-motion cues, and between cue 
types. The spatial information score was significant or marginally significant for all the three 
measurements (landmark, self-motion, between-cue) when based on subjective location. (b) Unique 
contributions of objective location or subjective location were not significant for any cue type or location 
type (objective vs. subjective). (c) To visualize the MVPS effects, activation pattern similarity is plotted as 
a function of inter-location distance defined by subjective location for landmarks, self-motion cues, and 
between cue types. (d) MVPS results in each hippocampal subfield. Statistical results were corrected for 
multiple comparisons within each subfield using the nonparametric permutation test and the Holm-
Bonferroni procedure (STAR Methods). In the subiculum (SUB), spatial information score was significant 
for all three measurements (landmark, self-motion, and between-cue) and for both location types 
(objective and subjective location). DG - dentate gyrus. (e) In the hippocampus, the MVPS-based neural 
spaces significantly resembled the participants’ behavior (i.e., the interaction between cue type and the 
linear trend of location pair was significant, pinteraction = 0.024), resembled the physical space in the 
landmark condition (p = 0.028), but did not resemble the physical space in the self-motion condition (p = 
0.293).  

* denotes p1-tailed < 0.05, and + denotes p1-tailed < 0.1, n.s. denotes p1-tailed > 0.1, * denotes p1-tailed < 
0.05, and ** denotes p1-tailed < 0.01; + denotes p1-tailed < 0.1. 
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Figure S7. Results of the fMRIa-based artificial lesion analysis, related to the discussion section in the 
main text. We conducted these analyses with objective-location-based fMRIa and subjective-location-
based MVPS. (a.1-a.2) Results of the fMRIa-based artificial lesion analysis for the retrosplenial cortex (RSC) 
when voxels were ranked from low to high by mean landmark fMRIa (a.1) and mean self-motion fMRIa 
(a.2). (b.1-b.2) Results of the fMRIa-based artificial lesion analysis for the hippocampus when voxels were 
ranked by mean landmark fMRIa (b.1) and mean self-motion fMRIa (b.2). In (a.2) (b.1) and (b.2), the main 
effect of excluded quarter was not significant (ps < 0.05). The main effect of excluded quarter was 
significant in (a.1) when the voxels were ranked by mean fMRIa for landmarks (F(3,57) = 4.119, pquarter = 
0.028,  hp

2 = 0.178): excluding voxels relatively lower in mean landmark fMRIa (i.e., the 2nd quarter) tended 
to result in lower spatial information scores than excluding other quarters of voxels. Excluding the 2nd 
quarter of voxels also resulted in significant lower spatial information scores than the empirical chance 
levels. Details of these analyses can be found in STAR Methods. * denotes p2-tailed < 0.05.  
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fMRIa 
Cue  Environment Objective-location-based Subjective-location-based 

Mean Std. Deviation Mean Std. Deviation 

landmark nature 0.108 0.257 0.086 0.232 
city 0.089 0.160 0.061 0.175 

self-motion nature 0.166 0.205 0.092 0.235 

city 0.006 0.267 0.021 0.261 

MVPS (spatial information score) 
Cue Environment Objective-location-based Subjective-location-based 

Mean Std. Deviation Mean Std. Deviation 

landmark within-nature 0.118 0.278 0.016 0.023 

within-city 0.128 0.255 0.018 0.032 

between environment 0.146 ** 0.226 0.012 ** 0.018 

self-motion within-nature 0.049 0.236 0.005 0.031 

within-city 0.010 0.227 0.004 0.026 
between environment 0.095 * 0.192 0.011 *** 0.012 

between cue within-nature 0.125 0.220 0.007 0.019 

within-city -0.006 0.283 0.004 0.020 

between environment 0.033 n.s. 0.152 0.006 ** 0.008 

 

Table S1. Influences of environment on univariate fMRIa and MVPS in retrosplenial cortex, related to 
Figure 3a and Figure 5b. (a) fMRIa is summarized as a function of location type (objective vs. subjective), 
cue type (landmark vs. self-motion), and environment (nature vs. city). fMRIa did not differ between the 
two environments (ps > 0.2). (b) Spatial information score in MVPS is summarized as a function of location 
type (objective vs. subjective), cue type (landmark vs. self-motion vs. between-cue), and environment 
type (nature vs. city vs. between-city). Similar to the factor day (Figure 5b), environment did not 
significantly modulate spatial information score (ps > 0.05): the within-nature scores did not differ from 
the within-city scores, and the within-environment scores (mean of the within-nature and within-motion 
scores) did not differ from the between-environment scores. Furthermore, also similar to the factor day 
(Figure 5b), the between-environment spatial information score was significant for all three 
measurements (landmark, self-motion, and between-cue) based on subjective location, indicating that 
the spatial coding was generalized between different environments.  n.s., p > 0.1; * p < 0.05; ** p < 0.01; 
*** p< 0.001. 
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AAL region Left hemisphere 

 
Right hemisphere T 

value 
pFWE-corr Cluster 

size x y z x y z 
landmark, objective-location-based 

Angular 
    

43 -68 31 7.76 0.004 810 
Temporal_Mid 

    
42 -61 22 7.36 0.007 

Temporal_Mid -60 -46 -3 
    

6.88 0.013 48 
Precuneus 

    
3 -65 31 6.54 0.024 21 

Occipital_Mid 
 

-34 -75 35     7.14 0.009 179     
34 -74 38 6.42 0.028 21 

landmark, subjective-location-based 
Temporal_Mid 

    
58 -63 7 9.34 <0.001 718 

Temporal_Mid  -62 -47 -2 
    

8.94 0.001 1238 
-57 -53 3 

    
7.56 0.003 

Temporal_Mid  
    

45 -52 16 8.51 0.001 370     
50 -57 20 6.36 0.027 

Temporal_Mid  -50 -64 21 
    

8.47 0.001 1236 
-54 -34 -8     7.10 0.007 68 

    47 -63 1 6.67 0.015 79 
-60 -28 -7     6.47 0.021 25 
-47 -63 0     6.26 0.037 11 

    57 -51 15 6.09 0.043 6 
Occipital_Mid  

    
45 -67 29 8.01 0.001 571 

    35 -75 40 6.45 0.022 22 
-34 -76 40     6.27 0.031 36 

    39 -67 7 6.09 0.044 2 
Precuneus  

    
3 -67 34 7.63 0.003 254     
7 -46 17 7.63 0.003 179 

Temporal_Inf -54 -57 -8 
    

6.17 0.038 11 
self-motion, objective-location-based 

Hippocampus -21 -11 -22 
    

8.26 0.001 19 
Occipital_Sup -27 -84 39 

    
6.31 0.039 3 

self-motion, subjective-location-based 
Occipital_Mid -28 -79 17 

    
8.31 0.003 395 

undefined -18 -79 16 
    

6.51 0.029 
Occipital_Sup -25 -85 39 

    
8.05 0.005 186 

undefined 
    

33 -62 7 6.8 0.020 12 
Temporal_Mid  -49 -50 10 

    
6.68 0.023 30 

-57 -44 0     6.29 0.043 5 
Occipital_Mid  -34 -86 24 

    
6.39 0.036 12 

-32 -69 34     6.22 0.047 2 
Cuneus 

    
12 -78 19 6.24 0.045 1 

between-cue, objective-location-based 
undefined -45 -15 -11 

    
8.93 0.001 78 

Occipital_Mid 
    

33 -83 20 7.34 0.006 49 
between-cue, subjective-location-based 

Occipital_Mid  
    

32 -83 20 10.55 <0.001 509     
36 -76 25 6.02 0.041 

Occipital_Mid  -31 -69 31 
    

9.69 <0.001 2720 
-45 -74 13 

    
8.38 0.001 

Angular -52 -67 25 
    

7.40 0.007 
undefined -44 -15 -11 

    
9.04 0.001 343 

Occipital_Mid -61 -46 -7 
    

8.36 0.002 3468 
Temporal_Inf -54 -56 -8 

    
7.59 0.005 

Temporal_Mid -50 -49 10 
    

7.56 0.006 
Occipital_Sup -20 -64 28 

    
8.11 0.003 134 

undefined 
    

43 -14 -9 7.10 0.010 77 
Occipital_Mid  

    
51 -70 30 6.99 0.011 269     
43 -73 30 6.88 0.013     
27 -75 28 6.84 0.014 45 

    34 -76 40 6.34 0.027 86 
ParaHippocampal 

    
35 -39 -5 6.55 0.020 10 

Angular 
    

44 -53 24 6.55 0.020 34 
Temporal_Mid 

    
61 -42 -5 6.39 0.025 59 

 
Table S2. The searchlight analysis of MVPS, corresponding to Figure S2 and related to Figure 5. Listed 
are region (AAL atlas), MNI coordinates (x, y, z), t-value, corrected p-value of the peak voxel (pFWE-corrected, 
1-tailed, voxel-inference, nonparametric permutation test, Nichols & Holmes, 2002), and cluster size at 
pFWE-corrected = 0.05. Mid: middle; Inf: inferior; Sup: superior. 
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fMRIa results 
Region Landmark Self-motion Resemble 

behavior 

 

Objective-location Subjective-location fMRIa 
pattern 

specificity 

Resemble 
physical 

space 

Objective-location Subjective-location fMRIa 
pattern 

specificity 

Resemble 
physical 

space based unique based unique based unique based unique 

right alEC no N/A no N/A no no no N/A no N/A no no no 
 

right pmEC no N/A no N/A no no no N/A no N/A no yes no 
 

left alEC no N/A no N/A no no no N/A no N/A no no no 
 

left pmEC no N/A no N/A no no no N/A no N/A no yes no 
 

PHC no N/A no N/A no no yes no no N/A no no no 
 

PRC no N/A no N/A no no no N/A no N/A no no no 
 

MVPS results 
Region landmark Self-motion Resemble 

behavior 
Between-cue 

Objective-location Subjective-location Resemble 
physical 

space 

Objective-location Subjective-location Resemble 
physical 

space 

Objective-location Subjective-location 

based unique based unique based unique based unique based unique based unique 

right alEC no N/A no N/A no no N/A no N/A no no no N/A yes no 

right pmEC no N/A no N/A no no N/A no N/A no no no N/A no N/A 

left alEC no N/A no N/A no no N/A no N/A no no no N/A no N/A 

left pmEC no N/A no N/A yes no N/A no N/A no no no N/A no N/A 

PHC yes no yes no no no N/A no N/A no yes no N/A no N/A 

PRC no N/A no N/A no no N/A yes no no no no N/A no N/A 

 
Table S3. fMRIa and MVPS results of other regions in the medial temporal lobe, related to Figure 
3&4&5&6. These areas were analyzed using the same methods as the retrosplenial cortex and 
hippocampus. Note that we did not attempt to disentangle the unique contributions of objective location 
and subjective location if the overall fMRIa or MVPS effects were not significant (i.e., N/A). ‘no’ denotes 
non-significant effect; ‘yes’ denotes significant effect at p < 0.05 (highlighted in red); ‘N/A’ denotes not 
applicable. alEC:  anterior-lateral entorhinal cortex; pmEC: posterior-medial entorhinal cortex; PHC: 
parahippocampal cortex; PRC: perirhinal cortex. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.491990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.491990
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

Region 
MRI_day1 MRI_day2 

mean Std. Deviation mean Std. Deviation 
RSC 15.625 1.326 16.837 1.847 
Hippocampus 16.050 1.268 17.118 1.879 
PHC 16.071 1.039 17.079 1.448 
PRC 16.349 1.439 17.588 1.695 
right alEC 13.443 1.173 14.204 1.726 
right pmEC 13.854 0.840 14.686 1.629 
left alEC 14.016 1.146 15.200 1.995 
left pmEC 14.008 1.003 15.142 1.335 

 
Table S4. Temporal signal-to-noise ratio (tSNR), related to the discussion section in the main text. tSNR 
was calculated for each voxel, which was then averaged across all voxels in the brain region. We submitted 
tSNR to a repeated-measures ANOVA test, with brain region (= 5; the four EC subregions were grouped 
together), day, and run as independent variables. The main effect of brain region was significant (F(4,76) 
= 65.432, p < 0.001, hp

2 = 0.775), meaning that the regions differed in tSNR. Post-hoc comparisons with 
Bonferroni-Holm correction showed that PRC had higher tSNR than RSC, hippocampus, and PHC (pscorrected 
< 0.001), which in turn had higher tSNR than EC (pscorrected < 0.001). The main effect of day was significant 
(F(1,19) = 16.422, p < 0.001, hp

2 = 0.464), and there were no significant interaction effects involving day, 
meaning that for all regions, tSNR significantly improved on the 2nd than the 1st scanning day. The 
interaction between region and run was significant (F(28,532)=2.634, p < 0.001). Following-up analyses 
showed that for RSC and PHC, the main effect of run was significant (ps < 0.02), meaning that tSNR 
decreased linearly across runs (the linear trend of run was significant, RSC, t=4.905, p < 0.001; PHC, t = 
4.383, p < 0.001), whereas the main effect of run was non-significant for other regions (ps > 0.07).  

We also looked more closely at EC by dividing it to four subregions, which were submitted to a 
repeated-measure ANOVA test, with hemisphere (left vs. right) and entorhinal subregion (alEC vs. pmEC) 
as independent variables. The main effect of hemisphere was significant (F(1,19) = 39.179, p < 0.001, hp

2 
= 0.673), meaning that the left EC had higher tSNR than the right EC. The main effect of subregion was not 
significant (F(1,19) = 1.503, p = 0.235, hp

2 = 0.073). The interaction between hemisphere and subregion 
was significant (F(1,19) = 4.560, p = 0.046, hp

2 = 0.194), in that alEC showed greater hemispheric specificity 
than pmEC. 

alEC:  anterior-lateral entorhinal cortex; pmEC: posterior-medial entorhinal cortex; PHC: 
parahippocampal cortex; PRC: perirhinal cortex. 

 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.491990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.491990
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

Day session 

 
landmark self-motion 

 
Mean Std. Deviation Mean Std. Deviation 

Pre-
scan_day 

run1 0.766 0.137 0.644 0.169 

run2 0.797 0.113 0.713 0.174 

run3 0.781 0.134 0.709 0.169 

run4 0.829 0.116 0.734 0.146 

MRI_day1 run1 0.843 0.134 0.770 0.126 

run2 0.848 0.129 0.777 0.094 

run3 0.840 0.143 0.792 0.123 

run4 0.838 0.137 0.787 0.113 

MRI_day2 run1 0.853 0.121 0.802 0.125 

run2 0.848 0.123 0.762 0.153 

run3 0.875 0.116 0.802 0.150 

run4 0.867 0.123 0.792 0.141 

 

Table S5. Behavioral performance over the entire course of experiment, related to Figure 2 and the 
discussion section of the main text. First, to evaluate the influences of day, we submitted accuracy data to 
a repeated-measures ANOVA, with day (Pre-scan vs. MRI_day1 vs. MRI_day2) and cue type (landmark vs. 
self-motion), and run (4 runs) as independent variables. The main effect of day was significant 
(F(2,38)=13.697 p < 0.001, hp

2 = 0.419). Post-hoc tests showed that the two MRI scanning days did not 
differ from each other in accuracy (pholm = 0.306), whereas the two scanning days had significantly higher 
accuracy than the pre-scan day (psholm = 0.001), indicating that while participants’ performance improved 
on the first scanning day compared to the pre-scan day, their performance stayed unchanged during the 
two scanning days. Main effect of cue type was significant (p < 0.001). No other effects were significant 
(ps > 0.1). These results indicate that the performance improvement mainly occurred between the 
behavioral training day and the first scanning day.  

Second, we looked into more details and tested whether behavioral performance changed over 
time within each day, by submitting behavioral accuracy into repeated-measures ANOVA tests, with cue 
type (landmark vs. self-motion) and run (4 runs) as independent variables. In the pre-scan day, the main 
effect of run was significant (F(3,57) = 3.520, p = 0.037, hp

2 = 0.156), and the linear trend of run was 
significant (t = 2.911, p = 0.005), meaning that behavioral accuracy gradually increased over time. By 
contrast, the main effect of run was not significant in either the first MRI scanning day (F(3,57) = 0.101 , p 
= 0.959, hp

2 = 0.005; linear trend, t = 0.386, p = 0.701) or the second MRI scanning day (F(3,57) = 1.561, p 
= 0.209, hp

2 = 0.076; linear trend, t = 0.802, p = 0.426), meaning that behavioral accuracy remained rather 
stable over time within the day. These results indicated that while there was learning during the first pre-
scan training day, no learning occurred during each of the two MRI scanning days. 
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Region 
Current study Chen et al., 2019 

F p ηp
2 F p ηp

2 
right EC 
 

<0.001 
(0.195) 

0.982 
(0.664) 

<0.001 
(0.011) 

9.344 
(9.01) 

0.006 
(0.007) 

0.308 
(0.311) 

left EC 
 

3.829 
(1.461) 

0.065 
(0.243) 

0.168 
(0.079) 

6.250 0.021 0.229 

RSC 
 

17.267 
(15.512) 

0.001 
(0.001) 

0.476 
(0.463) 

20.028 
(20.196) 

<0.001 
(<0.001) 

0.488 
(0.502) 

Hippocampus 
 

1.375 
(0.695) 

0.255 
(0.416) 

0.068 
(0.037) 

11.886 0.002 0.361 

PHC 
 

6.282 0.021 0.248 12.309 
(11.449) 

0.002 
(0.003) 

0.370 
(0.364) 

PRC 0.823 0.376 0.775 15.304 < .001 0.422 

 
Table S6. ROI-based analyses of navigational success effect in the current study and our previous study 
(Chen et al., 2019), related to the discussion section in the main text. In the current study, we constructed 
a GLM, in which the location occupation period of correct trials and incorrect trials were modeled with 
different regressors. Landmarks and self-motion cues were modeled with different regressors. Because 
some participants did not make any mistakes in the landmark condition in some runs, scans were 
concatenated across all the runs in SPM12. Other aspects of the GLM were the same as fMRIa-GLM2, but 
with no parametric regressors included. For each brain region, mean beta estimate of brain activation was 
submitted into a repeated measures ANOVA with cue type (landmark vs. self-motion) and correctness 
(correct vs. incorrect) as independent variables. The results showed that in the current study, only RSC 
and PHC exhibited significant effects of successful navigation, in that they were more strongly activated 
in correct trials than in incorrect trials. By contrast, the same analysis in our previous study showed that 
all the medial temporal lobe areas and RSC significantly contributed to successful navigation. 

Significant results are highlighted in red. Since there were two more participants in our previous 
study than in the current study (20 vs. 22 participants), the effect size (i.e., ηp

2) is more comparable 
between the two studies. Results with ROI-specific statistical outliers excluded are in parentheses. RSC: 
retrosplenial cortex; EC: entorhinal cortex; PHC: parahippocampal cortex; PRC: perirhinal cortex. 
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