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Abstract11

The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items12

held in working memory appears to be biased towards the average of past observations. It is assumed to be an13

optimal strategy by the brain, and commonly thought of as an expression of the brain’s ability to learn the statistical14

structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed,15

and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task16

in rats, suggest that both biases may be more related than previously thought: when the posterior parietal cortex17

(PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that18

may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting19

to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias.20

The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli, and are21

not due to a gradual shift of the memory towards the sensory distribution’s mean. Our results are consistent with a22

broad set of behavioral findings and provide predictions of performance across different stimulus distributions and23

timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our24

model by performing a set of human psychophysics experiments of an auditory parametric working memory task.25

Introduction26

A fundamental question in neuroscience relates to how brains efficiently process the statistical regularities of the27

environment to guide behavior. Exploiting such regularities may be of great value to survival in the natural28

environment, but may lead to biases in laboratory tasks. Repeatedly observed across species and sensory modalities29

is the central tendency (“contraction”) bias, where performance in perceptual tasks seemingly reflects a shift of30

the working memory representation towards the mean of the sensory history [1–6]. Equally common are sequential31

biases, either attractive or repulsive, towards the immediate sensory history [7, 5, 8–14, 6, 15].32

It is commonly thought that these biases occur due to disparate mechanisms - contraction bias is widely thought33

to be a result of learning the statistical structure of the environment, whereas serial biases are thought to reflect34

the contents of working memory [16, 17]. Recent evidence, however, challenges this picture: our recent study of35

a parametric working memory task discovered that the rat posterior parietal cortex (PPC) plays a key role in36

modulating contraction bias [7]. When the region is optogenetically inactivated, contraction bias is attenuated.37

Intriguingly, however, this is also accompanied by the suppression of bias effects induced by the recent history of38

the stimuli, suggesting that the two phenomena may be interrelated. Interestingly, other behavioral components,39

including working memory of immediate sensory stimuli (in the current trial), remain intact. In another recent study40

with humans, a double dissociation was reported between three cohorts of subjects: subjects on the autistic spectrum41
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(ASD) expressed reduced biases due to recent statistics, whereas dyslexic subjects (DYS) expressed reduced biases42

towards long-term statistics, relative to neurotypical subjects (NT) [16]. Finally, further complicating the picture is43

the observation of not only attractive serial dependency, but also repulsive biases [18]. It is as of yet unclear how44

such biases occur and what mechanisms underlie such history dependencies.45

These findings stimulate the question of whether contraction bias and the different types of serial biases are46

actually related, and if so, how. Although normative models have been proposed to explain these effects [19, 18, 16],47

the neural mechanisms and circuits underlying them remain poorly understood. We address this question through48

a model of the putative circuit involved in giving rise to the behavior observed in [7]. Our model consists of two49

continuous (bump) attractor sub-networks, representing a working memory (WM) module and the PPC. Given the50

finding that PPC neurons carry more information about stimuli presented during previous trials, the PPC module51

integrates inputs over a longer timescale relative to the WM network, and incorporates firing rate adaptation.52

We find that both contraction bias and short-term sensory history effects emerge in the WM network as a result53

of inputs from the PPC network. Importantly, we see that these effects do not necessarily occur due to separate54

mechanisms. Rather, in our model, contraction bias emerges as a statistical effect of errors in working memory,55

occurring due to the persisting memory of stimuli shown in the preceding trials. The integration of this persisting56

memory in the WM module competes with that of the stimulus in the current trial, giving rise to short-term history57

effects. We conclude that contraction biases in such paradigms may not necessarily reflect explicit learning of58

regularities or an “attraction towards the mean”, on individual trials. Rather, it may be an effect emerging at the59

level of average performance, when in each trial, errors are made according to the recent sensory experiences whose60

distribution follow that of the input stimuli. Furthermore, using the same model, we also show that the biases61

towards long-term (short-term) statistics inferred from the performance of ASD (DYS) subjects [16] may actually62

reflect short-term biases extending more or less into the past with respect to NT subjects, challenging the hypothesis63

of a double-dissociation mechanism. Last, we show that as a result of neuronal integration of inputs and adaptation,64

in addition to attraction effects occurring on a short timescale, repulsion effects are observed on a longer timescale65

[18].66

We make specific predictions on neuronal dynamics in the PPC and downstream working memory areas, as well67

as how contraction bias may be altered, upon manipulations of the sensory stimulus distribution, inter-trial and68

inter-stimulus delay intervals. We show agreements between the model and our previous results in humans and rats.69

Finally, we test our model predictions by performing new human auditory parametric working memory tasks. The70

data is in agreement with our model and not with an aternative Bayesian model.71

1 Results72

1.1 The PPC as a slower integrator network73

Parametric working memory (PWM) tasks involve the sequential comparison of two graded stimuli that differ along74

a physical dimension and are separated by a delay interval of a few seconds (Fig. 1 A and B) [20, 7, 19]. A key75

feature emerging from these studies is contraction bias, where the averaged performance is as if the memory of76

the first stimulus progressively shifts towards the center of a prior distribution built from past sensory history77

(Fig. 1 C). Additionally, biases towards the most recent sensory stimuli (immediately preceding trials) have also been78

documented [7, 5].79

In order to investigate the circuit mechanisms by which such biases may occur, we use two identical one-80

dimensional continuous attractor networks to model WM and PPC modules. Neurons are arranged according to81

their preferential firing locations in a continuous stimulus space, representing the amplitude of auditory stimuli.82

Excitatory recurrent connections between neurons are symmetric and a monotonically decreasing function of the83

distance between the preferential firing fields of neurons, allowing neurons to mutually excite one another; inhibition,84

instead, is uniform. Together, both allow a localized bump of activity to form and be sustained (Fig. 1 D and E)85

[21–29]. Both networks have free boundary conditions. Neurons in the WM network receive inputs from neurons in86

the PPC coding for the same stimulus amplitude (Fig. 1 D). Building on experimental findings [30–35], we designed87

the PPC network such that it integrates activity over a longer timescale compared to the WM network (Sect. 3.1).88

Moreover, neurons in the PPC are equipped with neural adaptation, that can be thought of as a threshold that89

dynamically follows the activation of a neuron over a longer timescale.90

To simulate the parametric WM task, at the beginning of each trial, the network is provided with a stimulus s1 for91

a short time via an external current Iext as input to a set of neurons (see Tab. 1). Following s1, after a delay interval,92

a second stimulus s2 is presented (Fig. 1 E). The pair (s1, s2) is drawn from the stimulus set shown in Fig. 1 B,93

where they are all equally distant from the diagonal s1 = s2, and are therefore of equal nominal discrimination, or94
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difficulty. The stimuli (s1, s2) are co-varied in each trial so that the task cannot be solved by relying on only one of95

the stimuli [36]. As in the study in Ref. [7] using an interleaved design, across consecutive trials, the inter-stimulus96

delay intervals are randomized and sampled uniformly between 2, 6 and 10 seconds. The inter-trial interval, instead,97

is fixed at 5 seconds.98
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Figure 1: The PPC as a slower integrator network. (A) In any given trial, a pair of stimuli (here, sounds) separated
by a variable delay interval is presented to a subject. After the second stimulus, and after a go cue, the subject must
decide which of the two sounds is louder by pressing a key (humans) or nose-poking in an appropriate port (rats). (B) The
stimulus set. The stimuli are linearly separable, and stimulus pairs are equally distant from the s1 = s2 diagonal. Error-free
performance corresponds to network dynamics from which it is possible to classify all the stimuli below the diagonal as s1 > s2
(shown in blue) and all stimuli above the diagonal as s1 < s2 (shown in red). An example of a correct trial can be seen in
(E). In order to assay the psychometric threshold, several additional pairs of stimuli are included (purple box), where the
distance to the diagonal s1 = s2 is systematically changed. The colorbar expresses the fraction classified as s1 < s2. (C)
Schematics of contraction bias in delayed comparison tasks. Performance is a function of the difference between the two
stimuli, and is impacted by contraction bias, where the base stimulus s1 is perceived as closer to the mean stimulus. This
leads to a better/worse (green/red area) performance, depending on whether this “attraction” increases (Bias+) or decreases
(Bias-) the discrimination between the base stimulus s1 and the comparison stimulus s2. (D) Our model is composed of two
modules, representing working memory (WM), and sensory history (PPC). Each module is a continuous one-dimensional
attractor network. Both networks are identical except for the timescales over which they integrate external inputs; PPC has a
significantly longer integration timescale and its neurons are additionally equipped with neuronal adaptation. The neurons
in the WM network receive input from those in the PPC, through connections (red lines) between neurons coding for the
same stimulus. Neurons (gray dots) are arranged according to their preferential firing locations. The excitatory recurrent
connections between neurons in each network are a symmetric, decreasing function of their preferential firing locations,
whereas the inhibitory connections are uniform (black lines). For simplicity, connections are shown for a single pre-synaptic
neuron (where there is a bump in green). When a sufficient amount of input is given to a network, a bump of activity is
formed, and sustained in the network when the external input is subsequently removed. This activity in the WM network is
read out at two time points: slightly before and after the onset of the second stimulus, and is used to assess performance. (E)
The task involves the comparison of two sequentially presented stimuli, separated by a delay interval (top panel, black lines).
The WM network integrates and responds to inputs quickly (middle panel), while the PPC network integrates inputs more
slowly (bottom panel). As a result, external inputs (corresponding to stimulus 1 and 2) are enough to displace the bump
of activity in the WM network, but not in the PPC. Instead, inputs coming from the PPC into the WM network are not
sufficient to displace the activity bump, and the trial is consequently classified as correct. In the PPC, instead, the activity
bump corresponds to a stimulus shown in previous trials.

We additionally include psychometric pairs (indicated in the box in Fig. 1 B) where the distance to the diagonal,99

hence the discrimination difficulty, is varied. The task is a binary comparison task that aims at classifying whether100
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s1 < s2 or vice-versa. In order to solve the task, we record the activity of the WM network at two time points:101

slightly before and after the onset of s2 (Fig. 1 E). We repeat this procedure across many different trials, and use102

the recorded activity to assess performance (see (Sect. 3.2) for details). Importantly, at the end of each trial, the103

activity of both networks is not re-initialized, and the state of the network at the end of the trial serves as the initial104

network configuration for the next trial.105

1.2 Contraction bias and short-term stimulus history effects as a result of PPC106

network activity107

Probing the WM network performance on psychometric stimuli (Fig. 1 B, purple box, 10% of all trials) shows that the108

comparison behavior is not error-free, and that the psychometric curves (different colors) differ from the optimal step109

function (Fig. 2 A, green dashed line). The performance on pychometric trials is also better for shorter inter-stimulus110

delay intervals, as has been shown in previous work [37, 7]. In our model, errors are caused by the displacement of111

the activity bump in the WM network, due to the inputs from the PPC network. These displacements in the WM112

activity bump can result in different outcomes: by displacing it away from the second stimulus, they either do not113

affect the performance or improve it (Fig. 2 B right panel, “Bias+”), if noise is present. Conversely, the performance114

can suffer, if the displacement of the activity bump is towards the second stimulus (Fig. 2 B left panel, “Bias-”).115

Note, however, that in these two specific trials, the activity bump in PPC is strong, and it displaces the activity116

bump in the WM network, but this is not the only kind of dynamics present in the network (see Sect.1.3 for a more117

detailed analysis of the network dynamics).118

Performance on stimulus pairs that are equally distant from the s1 = s2 diagonal can be similarly impacted and119

the network produces a pattern of errors that is consistent with contraction bias: performance is at its minimum for120

stimulus pairs in which s1 is either largest or smallest, and at its maximum for stimulus pairs in which s2 is largest121

or smallest (Fig. 2 C, left panel) [19, 38, 7, 39, 40]. These results are consistent with the performance of humans and122

rats on the auditory task, as previously reported (Fig. 2 C, middle and right panels, data from Akrami et al 2018 [7]123

).124

Can the same circuit also give rise to short-term sensory history biases [7, 41]? We analyzed the fraction of trials125

the network response was “s1 < s2” in the current trial conditioned on stimulus pairs presented in the previous trial,126

and we found that the network behavior is indeed modulated by the preceding trial’s stimulus pairs (Fig. 2 D, panel127

1). We quantified these history effects as well as how many trials back they extend to. We computed the bias by128

plotting, for each particular pair (of stimuli) presented at the current trial, the fraction of trials the network response129

was “s1 < s2” as a function of the pair presented in the previous trial minus the mean performance over all previous130

trial pairs (Fig. 2 D, panel 2) [7]. Independent of the current trial, the previous trial exerts an “attractive” effect,131

expressed by the negative slope of the line: when the previous pair of stimuli is small, s1 in the current trial is, on132

average, misclassified as smaller than it actually is, giving rise to the attractive bias in the comparison performance;133

the converse holds true when the previous pair of stimuli happens to be large. These effects extend to two trials134

back, and are consistent with the performance of humans and rats on the auditory task (Fig. 2 D, panels 3-6, data135

from Akrami et al 2018 [7]).136

It has been shown that inactivating the PPC, in rats performing the auditory delayed comparison task, markedly137

reduces the magnitude of contraction bias, without impacting non-sensory biases [7]. We assay the causal role of the138

PPC in generating the sensory history effects as well as contraction bias by weakening the connections from the139

PPC to the WM network, mimicking the inactivation of the PPC. In this case, we see that the performance for the140

psychometric stimuli is greatly improved (yellow curve, Fig. 2 E, top panel), consistent also with the inactivation of141

the PPC in rodents (yellow curve, Fig. 2 E, bottom panel, data from Akrami et al 2018 [7]). Performance is improved142

also for all pairs of stimuli in the stimulus set (Fig. S3 A). The breakdown of the network response in the current143

trial conditioned on the specific stimulus pair preceding it reveals that the previous trial no longer exerts a notable144

modulating effect on the current trial (Fig. S3 B). Quantifying this bias by subtracting the mean performance over145

all of the previous pairs reveals that the attractive bias is virtually eliminated (yellow curve, Fig. 2 F, left panel),146

consistent with findings in rats (Fig. 2 F, right panel, data from Akrami et al 2018 [7]).147

Together, our results suggest a possible circuit through which both contraction bias and short-term history effects148

in a parametric working memory task may arise. The main features of our model are two continuous attractor149

networks, both integrating the same external inputs, but operating over different timescales. Crucially, the slower150

one, a model of the PPC, includes neuronal adaptation, and provides input to the faster one, intended as a WM151

circuit. In the next section, we show how the slow integration and firing rate adaptation in the PPC network give152

rise to the observed effects of sensory history.153
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Figure 2: Contraction bias and short-term sensory history effects as a result of PPC network activity. (A)
Performance of network model for psychometric stimuli (colored lines) is not error-free (green dashed lines). A shorter
inter-stimulus delay interval yields a better performance. (B) Errors occur due to the displacement of the bump representing
the first stimulus s1 in the WM network. Depending on the direction of this displacement with respect to s2, this can give
rise to trials in which the comparison task becomes harder (easier), leading to negative (positive) biases (top and bottom
panels). Top sub-panel: stimuli presented to both networks in time. Middle/ bottom sub-panels show activity of WM and
PPC networks (in green). (C) Left: performance is affected by contraction bias – a gradual accumulation of errors for stimuli
below (above) the diagonal upon increasing (decreasing) s1. Colorbar indicates fraction of trials classified as s1 < s2. Middle
and Right: for comparison, data from the auditory version of the task performed in humans and rats. Data from Ref. [7]. (D)
Panel 1: For each combination of current (x-axis) and previous trial’s stimulus pair (y-axis), fraction of trials classified as
s1 < s2 (colorbar). Performance is affected by preceding trial’s stimulus pair (modulation along the y-axis). For readability,
only some tick-labels are shown. Panel 2: bias, quantifying the (attractive) effect of previous stimulus pairs. Colored lines
correspond to linear fits of this bias for each pair of stimuli in the current trial. Black dots correspond to average over all
current stimuli, and black line is a linear fit. These history effects are attractive: the smaller the previous stimulus, the higher
the probability of classifying the first stimulus of the current trial s1 as small, and vice-versa. Panel 3: human auditory trials.
Percentage of trials in which humans chose left for each combination of current and previous stimuli; vertical modulation
indicates attractive effect of preceding trial. Panel 4: Percentage of trials in which humans chose left minus the average value
of left choices, as a function of the stimuli of the previous trial, for fixed previous trial response choice and reward. Panel 5
and 6: same as panels 3 and 4 but with rat auditory trials. Data from Ref. [7]. (E) Top: performance of network, when the
weights from the PPC to the WM network is weakened, is improved for psychometric stimuli (yellow curve), relative to the
intact network (black curve). Bottom: psychometric curves for rats (only shown for one rat) are closer to error-free during
PPC inactivation (yellow) than during control trials (black). (F) Left: the attractive bias due to the effect of the previous
trial is present with the default weights (black line), but is eliminated with reduced weights (yellow line). Right: while there
is bias induced by previous stimuli in the control experiment (black), this bias is reduced under PPC inactivation (yellow).
Experimental figures reproduced with permission from Ref.[7].
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1.3 Multiple timescales at the core of short-term sensory history effects154

The activity bumps in the PPC and WM networks undergo different dynamics, due to the different timescales155

with which they integrate inputs, the presence of adaptation in the PPC, and the presence of global inhibition.156

The WM network integrates inputs over a shorter timescale, and therefore the activity bump follows the external157

input with high fidelity (Fig. 3 A (purple bumps) and B (purple line)). The PPC network, instead, has a longer158

integration timescale, and therefore fails to sufficiently integrate the input to induce a displacement of the bump159

to the location of a new stimulus, at each single trial. This is mainly due to the competition between the inputs160

from the recurrent connections sustaining the bump, and the external stimuli that are integrated elsewhere: if the161

former is stronger, the bump is not displaced. If, however, these inputs are weaker, they will not displace it, but162

may still exert a weakening effect via the global inhibition in the connectivity. The external input, as well as the163

presence of adaptation (Fig. S1 B and C) induce a small continuous drift of the activity bump that is already present164

from the previous trials (lower right panel of Fig. 2 B, Fig. 3 A (pink bumps) and B (pink line)). The build-up of165

adaptation in the PPC network, combined with the global inhibition from other neurons receiving external inputs,166

can extinguish the bump in that location (see also Fig. S1 for more details). Following this, the PPC network can167

make a transition to an incoming stimulus position (that may be either s1 or s2), and a new bump is formed. The168

resulting dynamics in the PPC are a mixture of slow drift over a few trials, followed by occasional jumps (Fig. 3 A).169

As a result of such dynamics, relative to the WM network, the activity bump in the PPC represents the stimuli170

corresponding to the current trial in a smaller fraction of the trials, and represents stimuli presented in the previous171

trial in a larger fraction of the trials (Fig. 3 C). This yields short-term sensory history effects in our model (Fig. 2 D,172

and E), as input from the PPC lead to the displacement of the WM bump to other locations (Fig. 3 D). Given that173

neurons in the WM network integrate this input, once it has built up sufficiently, it can surpass the self-sustaining174

inputs from the recurrent connections in the WM network. The WM bump, then, can move to a new location, given175

by the position of the bump in the PPC (Fig. 3 D). As the input from the PPC builds up gradually, the probability176

of bump displacement in WM increases over time. This in return leads to an increased probability of contraction177

bias (Fig. 3 E), and short-term history (one-trial back) biases (Fig. 3 F), as the inter-stimulus delay interval increases.178

Additionally, a non-adapted input from the PPC has a larger likelihood of displacing the WM bump. This is179

highest immediately following the formation of a new bump in the PPC, or in other words, following a “bump180

jump” (Fig. 3 F). As a result, one can reason that those trials immediately following a jump in the PPC are the181

ones that should yield the maximal bias towards stimuli presented in the previous trial. We therefore separated182

trials according to whether or not a jump has occurred in the PPC in the preceding trial (we define a jump to have183

occurred if the bump location across two consecutive trials in the PPC is displaced by an amount larger than the184

typical width of the bump (Sect. 3.1)). In line with this reasoning, only the set that included trials with jumps in185

the preceding trial yields a one-trial back bias (Fig. 3 G).186

Removing neuronal adaptation entirely from the PPC network further corroborates this result. In this case, the187

network dynamics show a very different behavior: the activity bump in the PPC undergoes a smooth drift (Fig. S2 A),188

and the bump distribution is much more peaked around the mean (Fig. S2 B), relative to when adaptation is present189

(Fig. 4 A). In this regime, there are no jumps in the PPC (Fig. S2 A), and the activity bump corresponds to the190

stimuli presented in the previous trial in a fewer fraction of the trials (Fig. S2 C), relative to when adaptation is191

present (Fig. 3 B). As a result, no short-term history effects can be observed (Fig. S2 C and D), even though a strong192

contraction bias persists (Fig. S2 E).193

As in the study in Ref.[7], we can further study the impact of the PPC on the dynamics of the WM network194

by weakening the weights from the PPC to the WM network, mimicking the inactivation of PPC (Fig. 2 E and F,195

Fig. S3 A and B). Under this manipulation, the trajectory of the activity bump in the WM network immediately196

before the onset of the second stimulus s2 closely follows the external input, consistent with an enhanced WM197

function (Fig. S3 C and D).198

The drift-jump dynamics in our model of the PPC give rise to short-term (notably one and two-trial back)199

sensory history effects in the performance of the WM network. In addition, we observe an equally salient contraction200

bias (bias towards the sensory mean) in the WM network’s performance, increasing with the delay period (Fig. 3 E).201

However, we find that the activity bump in both the WM and the PPC network corresponds to the mean over202

all stimuli in only a small fraction of trials, expected by chance (Fig. 3 B, see Sect. 4.1 for how it is calculated).203

Rather, the bump is located more often at the current trial stimulus (st
1), and to a lesser extent, at the location of204

stimuli presented at the previous trial (st−1
2 ). As a result, contraction bias in our model cannot be attributed to the205

representation of the running sensory average in the PPC. In the next section, we show how contraction bias arises206

as an averaged effect, when single trial errors occur due to short-term sensory history biases.207
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Figure 3: Multiple timescales at the core of short-term sensory history effects. (A) Schematics of activity bump
dynamics in the WM vs PPC network. Whereas the WM responds quickly to external inputs, the bump in the PPC drifts
slowly and adapts, until it is extinguished and a new bump forms. (B) The location of the activity bump in both the PPC
(pink line) and the WM (purple line) networks, immediately before the onset of the second stimulus s2 of each trial. This
location corresponds to the amplitude of the stimulus being encoded. The bump in the WM network closely represents the
stimulus s1 (shown in colored dots, each color corresponding to a different delay interval). The PPC network, instead, being
slower to integrate inputs, displays a continuous drift of the activity bump across a few trials, before it jumps to a new
stimulus location, due to the combined effect of inhibition from incoming inputs and adaptation that extinguishes previous
activity. (C) Fraction of trials in which the bump location corresponds to the base stimulus that has been presented (st

1) in
the current trial, as well as the two preceding trials (st−1

2 to st−2
1 ). In the WM network, in the majority of trials, the bump

coincides with the first stimulus of the current trial st
1. In a smaller fraction of the trials, it corresponds to the previous

stimulus st−1
2 , due to the input from the PPC. In the PPC network instead, a smaller fraction of trials consist of the activity

bump coinciding with the current stimulus st
1. Relative to the WM network, the bump is more likely to coincide with the

previous trial’s comparison stimulus (st−1
2 ). (D) During the inter-stimulus delay interval, in the absence of external sensory

inputs, the activity bump in the WM network is mainly sustained endogenously by the recurrent inputs. It may, however, be
destabilized by the continual integration of inputs from the PPC. (E) As a result, with an increasing delay interval, given
that more errors are made, contraction bias increases. Green (orange) bars correspond to the performance in Bias+ (Bias-)
regions, relative to the mean performance over all pairs (Fig. 1 C). (F) Left and middle: longer delay intervals allow for a
longer integration times which in turn lead to a larger frequency of WM disruptions due to previous trials, leading to a larger
previous-trial attractive biases (2s vs. 6s vs. 10s). Right: Weak repulsive effects for larger delays become apparent. Colored
dots correspond to the bias computed for different values of the inter-stimulus delay interval, while colored lines correspond to
their linear fits. (G) When neuronal adaptation is at its lowest in the PPC i.e. following a bump jump, the WM bump is
maximally susceptible to inputs from the PPC. The attractive bias (towards previous stimuli) is present in trials in which the
PPC network underwent a jump in the previous trial (black triangles, with black line a linear fit). Such biases are absent
in trials where no jumps occur in the PPC in the previous trial (black dots, with dashed line a linear fit). Colored lines
correspond to bias for specific pairs of stimuli in the current trial, regular lines for the jump condition, and dashed for the no
jump condition.
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Figure 4: Errors are drawn from the marginal distribution of stimuli, giving rise to contraction bias. (A) The
bump locations in both the WM network (in pink) and the PPC network (in purple) have identical distributions to that of
the input stimulus (marginal over s1 or s2, shown in gray). (B) A simple mathematical model illustrates how contraction
bias emerges as a result of a volatile working memory for s1. A given trial consists of two stimuli st

1 and st
2. We assume that

the encoding of the second stimulus st
2 is error-free, contrary to the first stimulus that is prone to change, with probability ϵ.

Furthermore, when s1 does change, it is replaced by another stimulus, ŝ (imposed by the input from the PPC in our network
model). Therefore, ŝ is drawn from the marginal distribution of bump locations in the PPC, which is similar to the marginal
stimulus distribution (see panel B), pm (see also Sect. 4.2). Depending on the new location of ŝ, the comparison to s2 can
either lead to an erroneous choice (Bias-, with probability pe) or a correct one (Bias+, with probability pc = 1 − pe). (C) The
distribution of bump locations in PPC (from which replacements ŝ are sampled) is overlaid on the stimulus set, and repeated
for each value of s2. For pairs below the diagonal, where s1 > s2 (blue squares), the trial outcome will be an error if the
displaced WM bump ŝ ends up above the diagonal (red section of the pm distribution). The probability to make an error, pe,
equals the integral of pm over values above the diagonal (red part), which increases as s1 increases. Vice versa, for pairs
above the diagonal (s1 < s2, red squares), pe equals the integral of pm over values below the diagonal, which increases as
s1 decreases. (D) The performance of the attractor network as a function of the first stimulus s1, in red dots for pairs of
stimuli where s1 > s2, and in blue dots for pairs of stimuli where s1 < s2. The solid lines are fits of the performance of the
network using Eq. 9, with ϵ as a free parameter. (E) Numbers correspond to the performance, same as in (D), while colors
expresses the fraction classified as s1 < s2 (colorbar), to illustrate the contraction bias. (F) Performance of rats performing
the auditory delayed-comparison task in Ref.[7]. Dots correspond to the empirical data, while the lines are fits with the
statistical model, using the distribution of stimuli. The additional parameter δ captures the lapse rate. (G) Same as (F), but
with humans performing the task. Data in (F) and (G) reproduced with permission from Ref.[7].

1.4 Errors are drawn from the marginal distribution of stimuli, giving rise to con-208

traction bias209

In order to illustrate the statistical origin of contraction bias in our network model, we consider a mathematical210

scheme of its performance (Fig. 4 B). In this simple formulation, we assume that the first stimulus to be kept in211

working memory, st
1, is volatile. As a result, in a fraction ϵ of the trials, it is susceptible to replacement with another212

stimulus ŝ (by the input from the PPC, that has a given distribution pm (Fig. 4 A)). However, this replacement213

does not always lead to an error, as evidenced by Bias- and Bias+ trials (i.e. those trials in which the performance214

is affected, negatively and positively, respectively (Fig. 2 B)). For each stimulus pair, the probability to make an215

error, pe, is integral of pm over values lying on the wrong side of the s1 = s2 diagonal (Fig. 4 C). For instance, for216

stimulus pairs below the diagonal (Fig. 4 C, blue squares) the trial outcome is erroneous only if ŝ is displaced above217
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the diagonal (red part of the distribution). As one can see, the area above the diagonal increases as s1 increases,218

giving rise to a gradual increase in error rates (Fig. 4 C). This mathematical model can capture the performance219

of the attractor network model, as can be seen through the fit of the network performance, when using the bump220

distribution in the PPC as pm, and ϵ as a free parameter (see Eq. 9 in Sect. 4.2, Fig. 4 D, E).221

Can this simple statistical model also capture the behavior of rats and humans (Fig. 2 C)? We carried out the222

same analysis for rats and humans, by replacing the bump location distribution of PPC with that of the marginal223

distribution of the stimuli provided in the task, based on the observation that the former is well-approximated by224

the latter (Fig. 4 A). In this case, we see that the model roughly captures the empirical data (Fig. 4 F and G), with225

the addition of another parameter δ that accounts for the lapse rate. Interestingly, such “lapse” also occurs in the226

network model (as seen by the small amount of errors for pairs of stimuli where s2 is smallest and largest (Fig. 4 E).227

This occurs because of the drift present in the PPC network, that eventually, for long enough delay intervals, causes228

the bump to arrive at the boundaries of the attractor, which would result in an error.229

This simple analysis implies that contraction bias in the WM network in our model is not the result of the230

representation of the mean stimulus in the PPC, but is an effect that emerges as a result of the PPC network’s231

sampling dynamics, mostly from recently presented stimuli. Indeed, a “contraction to the mean” hypothesis only232

provides a general account of which pairs of stimuli should benefit from a better performance and which should233

suffer, but does not explain the gradual accumulation of errors upon increasing (decreasing) s1, for pairs below234

(above) the s1 = s2 diagonal [38, 39, 7]. Notably, it cannot explain why the performance in trials with pairs of235

stimuli where s2 is most distant from the mean stand to benefit the most from it. All together, our model suggests236

that contraction bias may be a simple consequence of errors occurring at single trials, driven by inputs from the237

PPC that follow a distribution similar to that of the external input (Fig. 4 B).238

1.5 Contraction bias in continuous recall239

Can contraction bias also be observed in the activity of the WM network prior to binary decision-making? Many240

studies have evidenced contraction bias also in delayed estimation (or production) paradigms, where subjects must241

retain the value of a continuous parameter in WM and reproduce it after a delay [15, 42]. Given that we observe242

contraction bias in the behavior of the network, we reasoned that this should also be evident prior to binary243

decision-making. Similar to delayed estimation tasks, we therefore analyzed the position of the bump ŝ, at the end of244

the delay interval, for each value of s1. Consistent with our reasoning, we observe contraction bias of the value of ŝ,245

as evidenced by the systematic departure of the curve corresponding to the bump location from that of the nominal246

value of the stimulus (Fig. 5 A). We also find that this contraction bias becomes greater as the delay interval increases247

(Fig. 5 A, right). We next analyzed the effect of the previous trial on the current trial by computing the displacement248

of the bump during the WM delay, as a function of the distance between the current trial’s stimulus and the previous249

trial’s stimulus s1(t) − s2(t − 1) (Fig. 5 B). We found that when this distance is larger, the displacement of the bump250

during WM is on average also larger (Fig. 5 B). This displacement is also attractive. Breaking down these effects by251

delay, we find that longer delays lead to greater attraction (Fig. 5 B, right).252

These results point to attractive effects of the previous trial, leading in turn to contraction bias in our model.253

To better understand the dynamics leading to them, we next looked at the distribution of bump displacements254

conditioned on a specific value of the second stimulus of the previous trial s2(t − 1) (Fig. 5 C). These distributions255

are characterized by a mode around 0, corresponding to a majority of trials in which the bump is not displaced,256

and another mode around s1(t) − s2(t − 1), corresponding to the displacement in the direction of the preceding257

trial’s stimulus described in Sect. 1.3 and Fig. 2 B. However, note that the variance of this second mode can be large,258

reflecting displacements to locations other than s2(t − 1), due to the complex dynamics in both networks that we259

have described in detail in Sect. 1.3.260
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trial's stimulus
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Attraction effect exerted by previous trial's stimulus B
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individual trials

Figure 5: Contraction bias in continuous recall. (A) We observe contraction bias of the bump of activity after the
delay period ŝ: the average ŝ over trials (black dots) deviates from the identity line (diagonal dashed line) toward the mean of
the marginal stimulus distribution (0.5). This effect is stronger as the delay interval is longer (left to right panel). (B) This
contraction bias is actually largely due to the effect of the previous trial: the larger the difference between the current trial
and the previous trial’s stimulus s2(t − 1), the larger is this attractive effect on average. Accordingly with panel (A), this
effect is stronger for longer delay intervals (left to right panel). (C) The distribution of the bump displacement during delay
period is characterized by two modes: a main one centered around 0, corresponding to correct trials where the WM bump
is not displaced during the delay interval, and another one centered around s1(t) − s2(t − 1), where the bump is displaced
during WM (delay interval is randomly selected between 2, 4 and 10 seconds. We show here this distribution for three values
of s2(t − 1).

1.6 Model predictions261

1.6.1 The stimulus distribution impacts the pattern of contraction bias through its cumulative262

In our model, the pattern of errors is determined by the cumulative distribution of stimuli from the correct decision263

boundary s1 = s2 to the left (right) for pairs of stimuli below (above) the diagonal (Fig. 4 C and Fig. S4 A). This264

implies that using a stimulus set in which this distribution is deformed makes different predictions for the gradient of265

performance across different stimulus pairs. A distribution that is symmetric (Fig. S4 A) yields an equal performance266

for pairs below and above the s1 = s2 diagonal (blue and red lines) when s1 is at the mean (as well as the median,267

given the symmetry of the distribution). A distribution that is skewed, instead, yields an equal performance when s1268

is at the median for both pairs below and above the diagonal. For a negatively skewed distribution (Fig. S4 B) or269

positively skewed distribution (Fig. S4 C) the performance curves for pairs of stimuli below and above the diagonal270

show different concavity. For a distribution that is bimodal, the performance as a function of s1 resembles a saddle,271

with equal performance for intermediate values of s1 (Fig. S4 D). These results indicate that although the performance272

is quantitatively shaped by the form of the stimulus distribution, it persists as a monotonic function of s1 under a273

wide variety of manipulations of the distributions. This is a result of the property of the cumulative function, and274

may underlie the ubiquity of contraction bias under different experimental conditions.275

We compare the predictions from our simple statistical model to the Bayesian model in [41], outlined in Sec. 4.3.276

We compute the predicted performance of an ideal Bayesian decision maker, using a value of the uncertainty in the277

representation of the first stimulus (σ = 0.12) that yields the best fit with the performance of the statistical model278

(where the free parameter is ϵ = 0.5, Fig. S4 A, B, C, and D, second panels). Our model makes different predictions279

across all types of distributions from that of the Bayesian model. Across all of the distributions (used as priors, in280
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the Bayesian model), the main difference is that of a monotonic dependence of performance as a function of s1 for281

our model (Fig. S4 A, B, C, and D, second panels). The biggest difference can be seen with a prior in which pairs of282

stimuli with extreme values are much more probable than middle-range values. Indeed, in the case of a bimodal283

prior, for pairs of stimuli where our model would predict a worse-than-average performance (Fig. S4 D, third panel),284

the Bayesian model predicts a very good performance (Fig. S4 D, fourth panel).285

Do human subjects perform as predicted by our model (Fig. 6 A)? We tested 34 human subjects on the auditory286

modality of the task. The experimental protocol was identical to the one used in Ref.[7]. Briefly, participants287

were presented with two sounds separated by a delay interval that varied across trials (randomly selected from 2, 4288

and 6 seconds). After the second sound, participants were required to decide which sound was louder by pressing289

the appropriate key. We tested two groups of participants on two stimulus distributions: a negatively skewed290

and a bimodal distribution (Fig. 6 A, see Sect. 3.3 for more details). Participants performed the task with a mean291

accuracy of approximately 75%, across stimulus distribution groups and across pairs of stimuli (Fig. 6 B). The292

experimental data was compatible with the predictions of our model. First, for the negatively skewed stimulus293

distribution condition, we observe a shift of the point of equal performance to the right, relative to a symmetric294

distribution (Fig. 6 C, left panel). For the bimodal condition, such a shift is not observed, as predicted by our model295

(Fig. 6 C, right panel). Second, the monotonic behavior of the performance, as a function of s1 also holds, across296

both distributions (Fig. 6 C). Our model provides a simple explanation: the percent correct on any given pair is given297

by the probability that, given a shift in the working memory representation, this representation still does not affect298

the outcome of the trial (Fig. 4 C). This probability, is given by cumulative of the probability distribution of working299

memory representations, for which we assume the marginal distribution of the stimuli to be a good approximation300

(Fig. 4 A). As a result, performance is a monotonic function of s1, independent of the shape of the distribution, while301

the same does not always hold true for the Bayesian model (Fig. 6 C).302

We further fit the performance of each participant, using both our statistical model and the Bayesian model, by303

minimizing the mean squared error loss (MSE) between the empirical curve and the model, with ϵ and σ as free304

parameters (Fig. 6 C), respectively (for the Bayesian model, we used the marginal distribution of the stimuli pm as305

the prior). Across participants in both distributions, our statistical model yielded a better fit of the performance,306

relative to the Bayesian model (Fig. 6 D, left panel). We further fit the mean performance across all participants307

within a given distribution group, and similarly found that the statistical model yields a better fit, using the MSE as308

a goodness of fit metric (Fig. 6 D, right panel).309

Finally, in order to better understand the parameters that affect the occurrence of errors in human participants,310

we computed the performance and fraction classified as s1 < s2 separately for different delay intervals. We found311

that the larger the delay interval, the lower the average performance (Fig. 7 A), accompanied by a larger contraction312

bias for larger intervals (Fig. 7 B). We further analyzed the fraction of trials in which subjects responded s1 < s2,313

conditioned on the specific pair of stimuli presented in the current and the previous trial (Fig. 7 C) for all distributions314

(one negatively skewed, and two bimodal distributions, of which only one is shown in Fig. 6 C). Compatible with the315

previous results [7], we found attractive history effects that increased with the delay interval (Fig. 7 D and E).316

1.6.2 A prolonged inter-trial interval improves average performance and reduces attractive bias317

If errors are due to the persistence of activity resulting from previous trials, what then, is the effect of the inter-trial318

interval (ITI)? In our model, a shorter ITI (relative to the default value of 6s used in Figs. 2 and 3) results in a worse319

performance and vice versa (Fig. 8 A, B, C). This change in performance is reflected in reduced biases toward the320

previous trial (Fig. 8 D and E). A prolonged ITI allows for a drifting bump to vanish due to the effect of adaptation:321

as a result, the performance improves with increasing ITI and conversely, worsens with a shorter ITI.322

Do human subjects express less bias with longer ITIs, as predicted by our model? In our simulations, we set the323

ITI to either 2.2, 6 or 11 seconds, whereas in the experiment, since it is self-paced, the ITI can vary considerably. In324

order to emulate the simulation setting as closely as possible, we divided trials into two groups: “short” ITIs (shorter325

than 3 seconds), and “long” ITIs (longer than 3 seconds). This choice was motivated by the shape of the distribution326

of ITIs, which is bimodal, with a peak around 1 second, and another after 3 seconds (Fig. 8 F). Given the shape327

of the ITI distribution, we did not divide the ITIs into smaller intervals as this would result in too little data in328

some intervals. In line with our model, we found a better average performance with increasing ITI accompanied329

by decreasing contraction bias (Fig. 8 G). In order to quantify one-trial back effects, we used data pertaining to all330

of the distributions we tested – the negatively skewed, and also two bimodal distributions (of which only one was331

shown in this manuscript, in Fig. 6 C). This allowed us to obtain clear one-trial-back attractive biases, decreasing332

with increasing ITI (Fig. 8 H), in line with our model predictions (Fig. 8 B and D).333
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1.6.3 Working memory is attracted towards short-term and repelled from long-term sensory history334

Although contraction bias is robustly found in different contexts, surprisingly similar tasks, such as perceptual335

estimation tasks, sometimes highlight opposite effects, i.e. repulsive effects [43–45]. Interestingly, recent studies336

have found both effects in the same experiment: in a study of visual orientation estimation [18], it has been found337

that attraction and repulsion have different timescales; while perceptual decisions about orientation are attracted338

towards recently perceived stimuli (timescale of a few seconds), they are repelled from stimuli that are shown further339

back in time (timescale of a few minutes). Moreover, in the same study, they find that the long-term repulsive340

bias is spatially specific, in line with sensory adaptation [46–48] and in contrast to short-term attractive serial341

dependence [18]. Given that adaptation is a main feature of our model of the PPC, we sought to determine whether342

such repulsive effects can emerge from the model. We extended the calculation of the bias to up to ten trials back,343

and quantified the slope of the bias as a function of the previous trial stimulus pair. We observe robust repulsive344

effects appear after the third trial back in history, and up to six trials back (Fig. 8 I). In our model, both short-term345

attractive effects and longer-term repulsive effects can be attributed to the multiple timescales over which the346

networks operate. The short-term attractive effects occur due to the long time it takes for the adaptive threshold to347

build up in the PPC, and the short timescale with which the WM network integrates input from the PPC. The348

longer-term repulsive effects occur when the activity bump in the PPC persists in one location and causes adaptation349

to slowly build up, effectively increasing the activation threshold. The raised threshold takes equally long to return350

to baseline, preventing activity bumps to form in that location and thereby creating repulsion toward all the other351

locations in the network. Crucially, however, the amplitude of such effects depend on the inter-trial interval; in352

particular, for shorter inter-trial intervals, the repulsive effects are less observable.353

Stim. 1 < Stim. 2

Stim. 1 > Stim. 2

Bayesian model

Our statistical model

Stim. 1 < Stim. 2

Stim. 1 > Stim. 2

Model Predictions

Human performance

Human performanceA B

C D
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(N)
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Goodness of fit - subjects Goodness of fit -
mean subjects
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Figure 6: The stimulus distribution impacts the pattern of contraction bias through its cumulative. (A) Left
panel: prediction of performance (left y-axis) of our statistical model (solid lines) and the Bayesian model (dashed lines) for a
negatively skewed stimulus distribution (gray bars, to be read with the right y-axis). Blue (red): performance as a function of
s1 for pairs of stimuli where s1 > s2 (s1 < s2). Vertical dashed line: median of distribution. Right: same as left, but for a
bimodal distribution. (B) The distribution of performance across different stimuli pairs and subjects for the negatively skewed
(gray) and the bimodal distribution (black). On average, across both distributions, participants performed with an accuracy
of 75%. (C) Left: mean performance of human subjects on the negatively skewed distribution (dots, error-bars correspond
to the standard deviation across different participants). Solid (dashed) lines correspond to fits of the mean performance of
subjects with the statistical (Bayesian) model, ϵ = 0.55 (σ = 0.38). Red (blue): performance as a function of s1 for pairs of
stimuli where s1 < s2 (s1 > s2), to be read with the left y-axis. The marginal stimulus distribution is shown in gray bars, to
be read with the right y-axis. Right: same as left panel, but for the bimodal distribution. Here ϵ = 0.54 (σ = 0.73). (D) Left:
goodness of fit, as expressed by the mean-squared-error (MSE) between the empirical curve and the fitted curve (statistical
model in the x-axis and the Bayesian model in the y-axis), computed individually for each participant and each distribution.
Right: goodness of fit, computed for the average performance over participants in each distribution.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2022.05.16.491352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.491352


Humans: how delay intervals affect biases in performance
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Figure 7: Attractive effects of the previous trials lead to contraction bias in human subjects, both increasing
with delay interval. (A) The performance (in percentage correct, shown in numbers above each stimulus pair) of human
subjects is better with lower delay intervals (left, 2 seconds), than with higher delay intervals (right, 6 seconds). Colorbar
expresses the fraction of trials in which participants responded that s1 < s2. Results are for the negatively skewed stimulus
distribution, noted (N). (B) Concurrently, contraction bias on bias+ and bias- trials (quantification explained in text) also
increases with an increased delay interval, for both stimulus distributions (negatively skewed in gray and bimodal in black).
(C) History matrix, expressing the fraction of trials in which subjects responded s1 < s2 (in color) for every pair of current
(x-xis) and previous (y-axis) stimuli, for negatively skewed and bimodal stimulus distributions (N+B). The one-trial back
history effects can be seen through the vertical modulation of the color. Colorbar codes for the fraction of trials in which
subjects responded s1 < s2. (D) History matrices (as in (C)), computed for all distributions, and separated according to
delay intervals (left: 2 seconds and right: 6 seconds). (E) Bias, quantifying the (attractive) effect of previous stimulus pairs,
for 1 − 3 trials back in history. The attractive bias, computed for all distributions, increases with the delay interval separating
the two stimuli (light to dark green: increasing delay).

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2022.05.16.491352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.491352


A BPerformance psychometric 
trials

ITI = 11 s

Better average performance with increasing 
inter-trial interval

Previous trial stimuli pair affects current trial 
performance more for short inter-trial intervals

2.2 s (fit        )
ITI    6 s (fit        )

 11 s (fit        )

Different time-scales for 
attraction and repulsion

I

2.2 6 11

ITI

ITI     = 2.2 s

2.2 s

6 s

11 s

ITI = 2.2 s ITI = 11 s

One-trial back bias decreases 
with inter-trial interval

D E

ITI

C

Frac. class. 
stim 1 < stim 2

Frac. class. 
stim 1 < stim 2

2.2 s 6 s 11 s

Distribution of ITIs (N)F G

Frac. responded 
stim 1 < stim 2.

Network: how inter-trial intervals (ITI) affect behavior

Human: how inter-trial intervals (ITI) affect behavior
Better average performance with 
increasing inter-trial interval (N)

Bias decreases with 
inter-trial interval

short ITI (fit        )
 long ITI (fit        )

H One-trial back bias decreases 
with inter-trial interval (N+B)

Negatively Skewed (N)
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Figure 8: A prolonged inter-trial interval (ITI) improves average performance and reduces attractive biases.
Working memory is attracted towards short-term and repelled from long-term sensory history. (A) Performance
of the network model for the psychometric stimuli improves with an increasing inter-trial interval. Errorbars (not visible)
correspond to the s.e.m. over different simulations. (B) The network performance (numbers next to stimulus pairs) is on
average better for longer ITIs (right panel, ITI=11s), compared to shorter ones (left panel, ITI=2.2s). Colorbar indicates the
fraction of trials classified as s1 < s2. (C) Quantifying contraction bias separately for bias+ trials (green) and bias- trials
(orange) yields a decreasing bias as the inter-trial interval increases. (D) The bias, quantifying the (attractive) effect of the
previous trial, decreases with ITI. Darker shades of purple correspond to increasing values of the ITI, with dots corresponding
to simulation values and lines to linear fits. (E) Performance is modulated by the previous stimulus pairs (modulation along
the y-axis), more for a short ITI (left, ITI=2.2s) than for a longer ITI (right, ITI=11s). The colorbar corresponds to the
fraction classified s1 < s2. (F) The distribution of ITIs in the human experiment is bimodal. We define as having a “short”
ITI, those trials where the preceding ITI is shorter than 3 seconds and conversely for “long” ITI. (G) The human performance
for the negatively skewed stimulus distribution is on average worse for shorter ITIs (left panel), compared to longer ones
(right panel). Colorbar indicates the fraction of trials subjects responded s1 < s2. (H) The bias, quantifying the (attractive)
effect of the previous trial, increases with ITI in human subjects. Darker shades of purple correspond to increasing values
of the ITI, with dots corresponding to empirical values and lines to linear fits. (I) Although the stimuli shown up to two
trials back yield attractive effects, those further back in history yield repulsive effects, notably when the ITI is larger. Such
repulsive effects extend to up to 6 trials back.
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Figure 9: Apparent trade-off between short- and long-term biases, controlled by the timescale of neural
adaptation. (A) the bias exerted on the current trial by the previous trial (see main text for how it is computed), for three
values of the adaptation timescale that mimic similar behavior to the three cohorts of subjects. (B) As in (Fig. 2 D), for
three different values of adaptation timescale. The colorbar corresponds to the fraction classified s1 < s2. (C) GLM weights
corresponding to the three values of the adaptation parameter marked in (Fig. S6 A), including up to 4 trials back. In a GLM
variant incorporating a small number of past trials as regressors, the model yields a high weight for the running mean stimulus
regressor. Errorbars correspond to the standard deviation across different simulations. (D) Same as in C, but including
regressors corresponding to the past 10 trials as well as the running mean stimulus. With a larger number of regressors
extending into the past, the model yields a small weight for the running mean stimulus regressor. Errorbars correspond to
the standard deviation across different simulations. (E) The weight of the running mean stimulus regressor as a function of
extending the number of past trial regressors decays upon increasing the number of previous-trial stimulus regressors.

1.7 The timescale of adaptation in the PPC network can control perceptual biases354

similar to those observed in dyslexia and autism355

In a recent study [16], a similar PWM task with auditory stimuli was studied in human neurotypical (NT), autistic356

spectrum (ASD) and dyslexic (DYS) subjects. Based on an analysis using a generalized linear model (GLM), a357

double dissociation between different subject groups was suggested: ASD subjects exhibit a stronger bias towards358

long-term statistics – compared to NT subjects –, while for DYS subjects, a higher bias is present towards short-term359

statistics.360

We investigated our model to see if it is able to show similar phenomenology, and if so, what are the relevant361

parameters controlling the timescale of the biases in behavior. We identified the adaptation timescale in the PPC as362

the parameter that affects the extent of the short-term bias, consistent with previous literature [49], [50]. Calculating363

the mean bias towards the previous trial stimulus pair (Fig. 9 A), we find that a shorter-than-NT adaptation timescale364

yields a larger bias towards the previous trial stimulus. Indeed, a shorter timescale for neuronal adaptation implies365

a faster process for the extinction of the bump in PPC – and the formation of a new bump that remains stable366

for a few trials – producing “jumpier” dynamics that lead to a larger number of one-trial back errors. In contrast,367

increasing this timescale with respect to NT gives rise to a stable bump for a longer time, ultimately yielding a368

smaller short-term bias. This can be seen in the detailed breakdown of the network’s behavior on the current trial,369

when conditioned on the stimuli presented at the previous trial (Fig. 9 B, see also Sect. 1.3 for a more detailed370

explanation of the dynamics). We performed a GLM analysis as in Ref. [16] to the network behavior, with stimuli371

from four trials back and the mean stimulus as regressors (see Sect. 4.4). This analysis shows that a reduction in the372

PPC adaptation timescale with respect to NT, produces behavioral changes qualitatively compatible with data from373
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DYS subjects; on the contrary, an increase of this timescale yields results consistent with ASD data (Fig. 9 C).374

This GLM analysis suggests that dissociable short- and long-term biases may be present in the network behavior.375

Having access to the full dynamics of the network, we sought to determine how it translates into such dissociable376

short- and long-term biases. Given that all the behavior arises from the location of the bump on the attractor, we377

quantified the fraction of trials in which the bump in the WM network, before the onset of the second stimulus, was378

present in the vicinity of any of the previous trial’s stimuli (Fig. S6 B, right panel, and C), as well as the vicinity of379

the mean over the sensory history (Fig. S6 B, left panel, and C). While the bump location correlated well with the380

GLM weights corresponding to the previous trial’s stimuli regressor (comparing the right panels of Fig. S6 A and B),381

surprisingly, it did not correlate with the GLM weights corresponding to the mean stimulus regressor (comparing the382

left panels of Fig. S6 A and B). In fact, we found that the bump was in a location given by the stimuli of the past383

two trials, as well as the mean over the stimulus history, in a smaller fraction of trials, as the adaptation timescale384

parameter was made larger (Fig. S6 C).385

Given that the weights, after four trials in the past, were still non-zero, we extended the GLM regression by386

including a larger number of past stimuli as regressors. We found that doing this greatly reduced the weight of387

the mean stimulus regressor (Fig. 9 C, D and E, see Sect. 4.4 and 4.4 for more details). Therefore, we propose an388

alternative interpretation of the GLM results given in Ref. [16]. In our model, the increased (reduced) weight for389

long-term mean in the ASD (DYS) subjects can be explained as an effect of a larger (smaller) window in time of390

short-term biases, without invoking a double dissociation mechanism (Fig. 9 D and E). In Sect. 4.4, we provide a391

mathematical argument for this, which is empirically shown by including a large number of individual stimuli from392

previous trials in the regression analysis.393

2 Discussion394

2.1 Contraction bias in the delayed comparison task: simply a statistical effect or395

more?396

Contraction bias is an effect emerging in working memory tasks, where in the averaged behavior of a subject, the397

magnitude of the item held in memory appears to be larger than it actually is when it is “small” and, vice-versa,398

it appears to be smaller when it is “large” [51, 3, 4, 52, 19, 53, 54]. Recently, Akrami et al [7] have found that399

contraction bias as well as short-term history-dependent effects occur in an auditory delayed comparison task in rats400

and humans: the comparison performance in a given trial, depends on the stimuli shown in preceding trials (up to401

three trials back) [7], similar to previous findings in human 2AFC paradigms [5]. These findings raise the question:402

does contraction bias occur independently of short-term history effects, or does it emerge as a result of the latter?403

Akrami et al [7] have also found the PPC to be a critical node for the generation of such effects, as its optogenetic404

inactivation (specifically during the delay interval) greatly attenuated both effects. WM was found to remain405

intact, suggesting that its content was perhaps read-out in another region. Electrophysiological recordings as well as406

optogenetic inactivation results in the same study suggest that while sensory history information is provided by407

the PPC, its integration with the WM content must happen somewhere downstream to the PPC. Different brain408

areas can fit the profile. For instance there are known projections from the PPC to mPFC in rats [55], where neural409

correlates of parametric working memory have been found [40]. Building on these findings, we suggest a minimal410

two-module model aimed at better understanding the interaction between contraction bias and short-term history411

effects. These two modules capture properties of the PPC (in providing sensory history signals) and a downstream412

network holding working memory content. Our WM and PPC networks, despite having different timescales, are both413

shown to encode information about the marginal distribution of the stimuli (Fig. 4 A). Although they have similar414

activity distributions to that of the external stimuli, they have different memory properties, due to the different415

timescales with which they process incoming stimuli. The putative WM network, from which information to solve416

the task is read-out, receives additional input from the PPC network. The PPC is modelled as integrating inputs417

slower relative to the WM network, and is also endowed with firing rate adaptation, the dynamics of which yield418

short-term history biases and consequently, contraction bias.419

It must be noted, however, that short-term history effects (due to firing rate adaptation) do not necessarily need420

to be invoked in order to recover contraction bias: as long as errors are made following random samples from a421

distribution in the same range as that of the stimuli, contraction bias should be observed [56]. Indeed, when we422

manipulated the parameters of the PPC network in such a way that short-term history effects were eliminated (by423

removing the firing-rate adaptation), contraction bias persisted. As a result, our model suggests that contraction424

bias may not simply be given by a regression towards the mean of the stimuli during the inter-stimulus interval425

[57, 58], but brought about by a richer dynamics occurring at the level of individual trials [2], more in line with the426
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idea of random sampling [59].427

The model makes predictions as to how the pattern of errors may change when the distribution of stimuli is428

manipulated, either at the level of the presented stimuli or through the network dynamics. When we tested these429

predictions experimentally, by manipulating the skewness of the stimulus distribution, such that the median and the430

mean were dissociated (Fig. 6 A) the results from our human psychophysics experiments were in agreement with the431

model predictions. In further support of this, in a recent tactile categorization study [45], where rats were trained to432

categorize tactile stimuli according to a boundary set by the experimenter, the authors have shown that rats set433

their decision boundary according to the statistical structure of the stimulus set to which they are exposed. More434

studies are needed to fully verify the extent to which the statistical structure of the stimuli affect the performance.435

Finally, we note that in our model, the stimulus distribution is not explicitly learned (but see [60]): instead, the436

PPC dynamics follows the input, and its marginal distribution of activity is similar to that of the external input.437

This is in agreement with Ref. [45], where the authors used different stimulus ranges across different sessions and438

noted that rats initiated each session without any residual influence of the previous session’s range/boundary on the439

current session, ruling out long-term learning of the input structure.440

Importantly, our results are not limited to the delayed “comparison” paradigm, where binary decision making441

occurs. We show that by analyzing the location of the WM bump at the end of the delay interval, similar to the442

continuous recall tasks, we can retrieve the averaged effects of contraction bias, similar to previous reports [42].443

Such continuous readout of the memory reveals a rich dynamics of errors at the level of individual trials, similar444

to the delayed comparison case, but to our knowledge this has not been studied in previous experimental studies.445

Papadimitriou et al [15] have characterised residual error distribution, in an orientation recall task, when limiting446

previous trials to orientations in the range of +35 to +85 degrees relative to the current trial. This distribution447

is unimodal, leading the authors to conclude that the current trial shows a small but systematic bias toward the448

location of the memorandum of the previous trial. It remains to be tested whether the error distribution remains449

unimodal, if conditioned on other values of the current and previous orientations, similar to our analysis in Fig. 5 C.450

2.2 Attractor mechanism riding on multiple timescales451

Our model assumes that the stimulus is held in working memory through the persistent activity of neurons, building452

on the discovery of persistent selective activity in a number of cortical areas, including the prefrontal cortex (PFC),453

during the delay interval [61–67]. To explain this finding, we have used the attractor framework, in which recurrently454

connected neurons mutually excite one another to form reverberation of activity within populations of neurons coding455

for a given stimulus [68–70]. However, subsequent work has shown that persistent activity related to the stimulus is456

not always present during the delay period and that the activity of neurons displays far more heterogeneity than457

previously thought [71]. It has been proposed that short-term synaptic facilitation may dynamically operate to bring458

a WM network across a phase transition from a silent to a persistently active state [72, 73]. Such mechanisms may459

further contribute to short-term biases [74], an alternative possibility that we have not specifically considered in this460

model.461

An important model feature that is crucial in giving rise to all of its behavioral effects is its operation over462

multiple timescales (Fig. S2 F). Such timescales have been found to govern the processing of information in different463

areas of the cortex [30–32], and may reflect the heterogeneity of connections across different cortical areas [75].464

2.3 Relation to other models465

In many early studies, groups of neurons whose activity correlates monotonically with the stimulus feature, known466

as “plus” and “minus” neurons, have been found in the PFC [65, 76]. Such neurons have been used as the starting467

point in the construction of many models [77, 78, 71, 79]. It is important, however, to note that depending on the468

area, the fraction of such neurons can be small [40], and that the majority of neurons exhibit firing profiles that vary469

largely during the delay period [80]. Such heterogeneity of the PFC neurons’ temporal firing profiles have prompted470

the successful construction of models that have not included the basic assumption of plus and minus neurons, but471

these have largely focused on the plausibility of the dynamics of neurons observed, with little connection to behavior472

[71].473

A separate line of research has addressed behavior, by focusing on normative models to account for contraction474

bias [19, 5, 59, 81]. The abstract mathematical model that we present (Fig. 4), can be compatible with a Bayesian475

framework [19] in the limit of a very broad likelihood for the first stimulus and a very narrow one for the second476

stimulus, and where the prior for the first stimulus is replaced by the distribution of ŝ, following the model in Fig. 4 B477

(see Sect. 4.2 for details). However, it is important to note that our model is conceptually different, i.e. subjects do478

not have access to the full prior distribution, but only to samples of the prior. We show that having full knowledge479
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of the underlying sensory distribution is not needed to present contraction bias effects. Instead, a point estimate of480

past events that is updated trial to trial suffices to show similar results. This suggests a possible mechanism for the481

brain to approximate Bayesian inference and it remains open whether similar mechanisms (based on interaction of482

networks with different integration timescales) can approximate other Bayesian computations. It is also important483

to note the differences between the predictions from the two models. As shown in Figs. 6 A and S4, depending on484

the specific sensory distributions, the two models can have qualitatively different testable predictions. Data from our485

human psychophysical experiments, utilizing auditory Parametric Working Memory, show better agreement with our486

model predictions as compared to the Bayesian model.487

Moreover, an ideal Bayesian observer model alone cannot capture the temporal pattern of short-term attraction488

and long-term repulsion observed in some tasks, and the model has had to be supplemented with efficient encoding489

and Bayesian decoding of information in order to capture both effects [18]. In our model, both effects emerge490

naturally as a result of neuronal adaptation, but their amplitudes crucially depend on the time parameters of the491

task, perhaps explaining the sometimes contradictory effects reported across different tasks.492

Finally, while such attractive and repulsive effects in performance may be suboptimal in the context of a task493

designed in a laboratory setting, this may not be the case in more natural environments. For example, it has been494

suggested that integrating information over time serves to preserve perceptual continuity in the presence of noisy495

and discontinuous inputs [6]. This continuity of perception may be necessary to solve more complex tasks or make496

decisions, particularly in a non-stationary environment, or in a noisy environment.497

3 Methods498

3.1 The model499

Our model is composed of two populations of N neurons, representing the PPC network and the putative WM500

network. We consider that each population is organized as a continuous line attractor, with recurrent connectivity501

described by an interaction matrix Jij , whose entries represent the strength of the interaction between neuron i and502

j. The activation function of the neurons is a logistic function, i.e. the output ri of neuron i, given the input hi, is503

ri = 1
1 + e−βhi

(1)

where β is the neuronal gain. The variables ri take continuous values between 0 and 1, and represent the firing rates504

of the neurons. The input hi to a neuron is given by505

τ
dhi

dt
+ hi =

∑
j( ̸=i)

Jijrj + Iext
i (2)

where τ is the timescale for the integration of inputs. In the first term on the right hand side, Jijrj represents the506

input to neuron i from neuron j, and Iext
i corresponds to the external inputs. The recurrent connections are given by507

Jij = 1
d0

(Kij − J0) , (3)

with508

Kij = Je e−
|xi−xj |

d0 . (4)

The interaction kernel, K, is assumed to be the result of a time-averaged Hebbian plasticity rule: neurons with509

nearby firing fields will fire concurrently and strengthen their connections, while firing fields far apart will produce510

weak interactions [82]. Neuron i is associated with the firing field xi = i/N . The form of K expresses a connectivity511

between neurons i and j that is exponentially decreasing with the distance between their respective firing fields,512

proportional to |i − j|; the exponential rate of decrease is set by the constant d0, i.e. the typical range of interaction.513

The amplitude of the kernel is also rescaled by d0, in such a way that
∑

i,j Kij is constant. The strength of the514

excitatory weights is set by Je; the normalization of K, together with the sigmoid activation function saturating to515

1, implies that Je is also the maximum possible input received by any neuron due to the recurrent connections. The516

constant J0, instead, contributes to a linear global inhibition term. Its value needs to be chosen depending on Je and517

d0, so that the balance between excitatory and inhibitory inputs ensures that the activity remains localized along518

the attractor, i.e. it does not either vanish or equal 1 everywhere; together, these three constants set the width of519

the bump of activity.520
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The two networks in our model are coupled through excitatory connections from the PPC to the WM network.521

Therefore, we introduce two equations analogous to Eq. (2), one for each network. The coupling between the two522

will enter as a firing-rate dependent input, in addition to Iext. The dynamics of the input to a neuron in the WM523

network writes524

τW
h

dhW
i

dt
+ hW

i =
∑

j∈jW

JijrW
j + JP →W rP

i + Iext
i , (5)

where jW indexes neurons in the WM network, and τW
h is the timescale for the integration of inputs in the WM525

network. The first term in the r.h.s corresponds to inputs from recurrent connections within the WM network. The526

second term, corresponds to inputs from the PPC network. Finally, the last term corresponds to the external inputs527

used to give stimuli to the network. Similarly, for the PPC network we have528

τP
h

dhP
i

dt
+ hP

i =
∑

j∈jP

JijrP
j − θP

i + Iext
i , (6)

where jP indexes neurons in the PPC, and where τP
h is the timescale for the integration of inputs in the PPC529

network; importantly, we set this to be longer than the analogous quantity for the WM network, τW
h < τP

h (see530

Tab. 1). The first and third terms in the r.h.s are analogous to the corresponding ones for the WM network: inputs531

from within the network and from the stimuli. The second term instead, corresponds to adaptive thresholds with532

dynamics specified by533

τP
θ

dθP
i

dt
+ θP

i = DP rP
i (7)

modelling neuronal adaptation, where τP
θ and DP set its timescale and its amplitude. We are interested in the534

condition where the timescale of the evolution of the input current is much smaller relative to that of the adaptation535

(τP
h ≪ τP

θ ). For a constant τP
θ , we find that depending on the value of DP , the bump of activity shows different536

behaviors. For low values of DP , the bump remains relatively stable (Fig. S1 C (1)). Upon increasing DP , the bump537

gradually starts to drift (Fig. S1 C (2-3)). Upon increasing DP even further, a phase transition leads to an abrupt538

dissipation of the bump (Fig. S1 C (4)).539

Note that, while the transition from bump stability to drift occurs gradually, the transition from drift to540

dissipation is abrupt. This abruptness in the transition from the drift to the dissipation regime may imply that541

only one of the two behaviors is possible in our model of the PPC (Sect. 1.3). In fact, our network model of the542

PPC operates in the “drift” regime (τP
θ = 7.5, DP = 0.3). However, we also observe dissipation of the bump, which543

is mainly responsible for the jumps observed in the model. This occurs due to the inputs from incoming external544

stimuli, that affect the bump via the global inhibition in the model (Fig. S1 A). Therefore external stimuli can allow545

the network to temporarily cross the sharp drift/dissipation boundary shown in Fig. S1 B. As a result, the combined546

effect of adaptation, together with external inputs and global inhibition result in the drift/jump dynamics described547

in the main text.548

Finally, both networks have a linear geometry with free boundary conditions, i.e. no condition is imposed on the549

profile activity at neuron 1 or N .550

3.2 Simulation551

We performed all the simulations using custom Python code. Differential equations were numerically integrated with552

a time step of dt = 0.001 using the forward Euler method. The activity of neurons in both circuits were initialized553

to r = 0. Each stimulus was presented for 400 ms. A stimulus is introduced as a “box” of unit amplitude and of554

width 2 δs around s in stimulus space: in a network with N neurons, the stimulus is given by setting Iext
i = 1 in555

Eq. 5 for neurons with index i within (s ± δs) × N , and Iext
i = 0 for all the others. Only the activity in the WM556

network was used to assess performance. To do that, the activity vector was recorded at two time-points: 200 ms557

before and after the onset of the second stimulus s2. Then, the neurons with the maximal activity were identified at558

both time-points, and compared to make a decision. This procedure was done for 50 different simulations with 1000559

consecutive trials in each, with a fixed inter-trial interval separating two consecutive trials, fixed to 5 seconds. The560

inter-stimulus intervals were set according to two different experimental designs, as explained below.561

3.2.1 Interleaved design562

As in the study in Ref. [7], an inter-stimulus interval of either 2, 6 or 10 seconds was randomly selected. The delay563

interval is defined as the time elapsed from the end of the first stimulus to the beginning of the second stimulus.564

This procedure was used to produce Figs. 1, 2, 3, 7, S2, S3.565
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3.2.2 Block design566

In order to provide a comparison to the interleaved design, but also to simulate the design in Ref. [16], we also ran567

simulations with a block design, where the inter-stimulus intervals were kept fixed throughout the trials. Other than568

this, the procedure and parameters used were exactly the same as in the interleaved case. This procedure was used569

to produce Figs. 9 and S6.570

3.3 Human auditory experiment - delayed comparison task571

Subjects received, in each trial, a pair of sounds played from ear-surrounding headphones. The subject self-initiated572

each trial by pressing the space bar on the keyboard. The first sound was then presented together with a blue square573

on the left side of a computer monitor in front of the subject. This was followed by a delay period, indicated by574

‘WAIT!’ on the screen, then the second sound was presented together with a red square on the right side of the575

screen. At the end of the second stimulus, subjects had 2 seconds to decide which one was louder, then indicate576

their choice by pressing the ‘s’ key if they thought that the first sound was louder, or the ‘l’ key if they thought577

that the second sound was louder. Written feedback about the correctness of their response was provided on the578

screen for each individual trial. Every ten trials, participants received feedback on their running mean performance579

calculated up to that trial. Participants then had to press spacebar to go to the next trial (the experiment was580

hence self-paced).581

The two auditory stimuli, s1 and s2, separated by a variable delay (of 2, 4 and 6 seconds), were played for582

400 ms, with short delay periods of 250 ms inserted before s1 and after s2. The stimuli consisted of broadband583

noise 2000-20000 Hz, generated as a series of sound pressure level (SPL) values sampled from a zero-mean normal584

distribution. The overall mean intensity of sounds varied from 60-92 dB. Participants had to judge which out of the585

two stimuli, s1 and s2, was louder (had the greater SPL standard deviation).586

We recruited 10 subjects for the negatively skewed distribution and 24 subjects for the bimodal distribution.587

The study was approved by the University College London (UCL) Research Ethics Committee [16159/001] (London,588

UK). Each participant performed approximately 400 trials for a given distribution. Several participants took part in589

both distributions.590

4 Supplementary Material591

4.1 Computing bump location592

In order to check whether the bump is in a target location (Figs. 3 B, S2 B, and S3 D), we check whether the position593

of the neuron with the maximal firing rate is within a distance of ±5% of the length of the whole line attractor from594

the target location (Figs. 3 A, S2 A and S3 C). In these figures, we compare the probability that, in a given trial, the595

activity of the WM network is localized around one of the previous stimuli (estimated from the simulation of the596

dynamics, histograms) with the probability of this happening due to chance (horizontal dashed line). Here we detail597

the calculation of the chance probability. In general, if we have two discrete independent random variables, X̂ and598

Ŷ , with probability distributions pX and pY , the probability of them having the same value is599

Prob{X̂ = Ŷ } =
∑
i,j

Prob{X̂ = xi}︸ ︷︷ ︸
pi

X

Prob{Ŷ = yj}︸ ︷︷ ︸
pj

Y

I(xi = yj)

where i, j are the indices for different values of the two random variables and I(xi = yj) equals 1 where xi = xj and600

0 otherwise. If the two random variables are identically distributed, the above expression writes601

Prob{X̂ = Ŷ } =
∑
i,j

pi
X pj

Y δi,j =
∑

i

(
pi

X

)2

In our case, the two identically distributed random variables are “bump location at the current trial” and the602

“target bump location” (that are st−2
1 , st−2

2 , st−1
1 , st−1

2 and ⟨s⟩). With the exception of the mean stimulus ⟨s⟩, all603

the other variables are identically distributed, with probability pm (that is the marginal distribution over s1 or s2).604

We note that the bump location in the WM network follows a very similar distribution to pm (Fig. 4 A). Then, we605

compute the chance probability with the above relationship, where pX ≡ pm. For the mean stimulus, instead, we606

have a probability which is simply equal to 1 for s = 0.5 and 0 elsewhere; therefore, the chance probability for the607

bump location to be at the mean stimulus, then is pm(0.5).608
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The excess probability (with respect to chance) for the bump location to equal one of the previous stimuli gives a609

measure of the correlation between these two; in other terms, of the amount of information retained by the network610

about previous stimuli.611

4.2 The probability to make errors is proportional to the cumulative distribution of612

the stimuli, giving rise to contraction bias613

In order to illustrate the statistical origin of contraction bias consistent with our network model, we consider a614

simplified mathematical model of its performance (Fig. 4 B). By definition of the delayed comparison task, the615

optimal decision maker produces a label y equal to 1 if st
1 < st

2, and 0 if st
1 > st

2; the impossible cases st
1 = st

2 are616

excluded from the set of stimuli, but would produce a label which is either 0 or 1 with 50% probability. That is617

y(s1, s2) =

 1 if s1 < s2
0 if s1 > s2

Bernoulli(1/2) if s1 = s2

(8)

In this simplified scheme, at each trial t, the two stimuli st
1 and st

2 are perfectly perceived with a finite probability618

1 − ϵ, with ϵ < 1. Under the assumption that the decision maker behaves optimally based on the perceived stimuli,619

a correct perception would necessarily lead to the correct label. However, with probability ϵ, the first stimulus is620

randomly selected from a buffer of stimuli, i.e. is replaced by a random variable ŝ1 that has a probability distribution621

pt
m.622

The probability distribution pt
m is the statistics of previously shown stimuli. The information about the previous623

stimulus is given by the activity of the “slower” PPC network. As shown above, after the presentation of the first624

stimulus of the trial, the bump of activity is seen to jump to the position encoding one of the previously presented625

stimuli, st−1
2 , st−1

1 , st−2
2 , etc. with decreasing probability (Fig. 3 C). Therefore, in calculating the performance in626

the task, we can take pt
m to be the marginal distribution of the stimulus s1 or s2 across trials, as in the histogram627

(Fig. 4 A).628

The probability of a misclassification is then given by the probability that, given the pair (st
1, st

2), at trial t,629

1) the first stimulus is replaced by a random value, which happens with probability ϵ, and630

2) the value of ŝ1 replaced is larger than st
2 when st

1 is smaller and viceversa (Fig. 4 C).631

In summary, the probability of an error at trial t is given by632

Prob
{

error
∣∣∣ st

1 = s1, st
2 = s2

}
= ϵ ·

{
pt

m(s2)/2 +
∑

s<s2
pt

m(s) if s1 > s2 ,

pt
m(s2)/2 +

∑
s>s2

pt
m(s) if s1 < s2 .

(9)

4.3 Bayesian description of contraction bias633

We reproduce here the theoretical result from [41], which provides a normative model for contraction bias in the634

Bayesian inference framework, and apply it to the different stimulus distributions described in Sect. 1.6.1.635

A stimulus with value s is encoded by the agent through a noisy representation r̂ ∼ ℓ(·|s). Before the presentation636

of the stimulus, the agent has an expectation of its possible values which is described by the probability π. Assuming637

that it has access to the internal representation r, as well as the probability distributions ℓ and π, the agent can638

infer the perceived stimulus ŝ through Bayes rule:639

p(ŝ = s|r) = ℓ(r|s) π(s)
p(r) (10)

where p(r) =
∫

ds′ ℓ(r|s′) π(s′). In this Bayesian setting, the probability distributions for the noisy representation640

and for the expected measurement are interpreted as the likelihood and the prior, respectively.641

In the delayed comparison task, at the time of the decision, the two stimuli s1 and s2 are assumed to be encoded642

independently, although with different uncertainties, due to the different delays leading to the time of decision:643

ℓ(r1, r2|s1, s2) = ℓ1(r1|s1) ℓ2(r2|s2), with var[ℓ1] > var[ℓ2]. Similarly, the expected values of the stimuli are assumed644

to be independent but also identically distributed: π(s1, s2) = π(s1) π(s2).645

The optimal Bayesian decision maker uses the inference of the stimuli through Eq. (10) to produce an estimate of646

the probability that s1 < s2, given the internal representations,647

p(ŝ1 < ŝ2|r1, r2) =
∫∫

ds′
1 ds′

2 Θ(s′
2 − s′

1) p(s′
1|r1) p(s′

2|r2) (11)
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where Θ is the Heaviside function, and yields a label ŷ = 1 (truth value of “s1 < s2”) when such probability is higher648

than 1/2, and ŷ = 0 otherwise. Therefore, the probability that the Bayesian decision maker yields the response649

“s1 < s2” given the true values of the stimuli s1 and s2 is the average of the label ŷ over the possible values of their650

representations, i.e. over the likelihood:651

p(ŷ = 1|s1, s2) =
∫∫

dr′
1 dr′

2 Θ
(

p(ŝ1 < ŝ2|r′
1, r′

2) − 1
2

)
ℓ1(r′

1|s1) ℓ2(r′
2|s2) (12)

4.3.1 Application to our study652

In modelling our data, we assume that the likelihood functions ℓ1(·|s1) and ℓ2(·|s2) are Gaussian with mean equal to653

the stimulus, but with different standard deviations, σ1 and σ2, respectively, as in [41]. We restrict to the particular654

case where σ2 = 0, i.e. there is no uncertainty in the representation of the second stimulus, since there is negligible655

delay between its presentation and the decision. We instead assume a finite standard deviation σ1 = σ, which we656

use as the only free parameter of this model to produce Figs.S4 A-D, panels 2 and 4.657

The prior π is chosen to be the marginal distribution of the first stimulus – identical to the marginal of the658

second stimulus, because of symmetry.659

When σ2 = 0, ℓ2(r|s) = δ(r − s) (Dirac delta), and the predicted response probability, Eq. (12), reduces to660

p(ŷ = 1|s1, s2) =
∫

dr′
1 Θ

( ∫ s2

−∞
ds′

1p(s′
1|r1) − 1

2

)
ℓ1(r′

1|s1) . (13)

4.4 Generalized Linear Model (GLM)661

GLM as in Lieder et al.662

Similarly to Ref. [16], we performed a multivariate logistic regression (an instance of generalized linear model, GLM)663

to the output of the network in the delayed discrimination task with recent stimuli values as covariates:664

P (“st
1 < st

2”) = σ
(

α (st
1 − st

2) +
h∑

i=1
wi (st−i − st

1) + wmean (⟨s⟩ − st
1)

)
(14)

where σ is the sigmoidal function σ(z) = 1/(1 + e−z), sτ = (sτ
1 + sτ

2)/2 is the mean of the stimuli presented at trial665

τ , h is the number of “history” terms in the regression, and ⟨s⟩ is the mean of the stimuli within and across trials up666

to the current one. As in Ref. [16], we choose h = 4, i.e. we include in the short-term history, the four trials prior667

to the current one. The first term in Eq. (14), with weight α, controls the slope of the psychometric curve. The668

remaining terms, combined linearly with weights w, contribute to biases expressing the long and short-term memory.669

In Ref. [16], it is shown that subjects on the autistic syndrome (ASD) conserve the higher long-term weights, wmean,670

while losing the short-term weights expressed by neurotypical (NT) subjects. In contrast, dyslexic (DYS) subjects671

conserve a higher bias from the recent stimuli, w1, while losing the higher long-term weights, also expressed by672

neurotypical subjects.673

In order to gain insight into this regression model in terms of our network, we also performed a linear regression674

of the bump of activity just before the onset of the second stimulus, denoted ŝt
1, versus the same variables:675

ŝt
1 = st

1 +
h∑

i=1
wi (st−i − st

1) + wmean (⟨s⟩ − st
1) (15)

In this case, we see that the weights w in the linear regression for ŝt
1 have the same qualitative behavior as the676

weights for the bias term in the GLM regression for the performance (not shown). This is expected, since the677

decision-making rule in the network –based on the bump location just before and during the second stimulus, ŝ1 and678

ŝ2 ≃ st
2, respectively– is deterministic, following P (“st

1 < st
2”) = Θ(st

2 − ŝt
1). Therefore, the bias term in the GLM679

performed in Ref. [16], Eq. (14), corresponds to the displacement of the bump location ŝt
1 with respect to the actual680

stimulus st
1, modelled to be linearly dependent on the displacement of previous stimuli from st

1.681

Regression model with infinite history682

In the regression formulas in Eqs. (14) and (15), it is possible to give an interpretation of the parameter wmean, that683

is the weight of the contribution from the covariate corresponding to the mean of the past stimuli. Let us consider684
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two regression models, one in which, in addition to a regressor corresponding to the mean stimulus, regressors685

corresponding to the stimulus history are included up to trial h, and another in which h = ∞, i.e. infinitely many686

past stimuli are included as regressors. In this case, Eq. (15) rewrites687

ŝt
1 = st

1 +
∞∑

i=1
wi (st−i − st

1) . (16)

If we assume that the weights obtained from the regression have roughly an exponential dependence on time (Fig. 9 C688

and D), we can write689

wi = γ wi−1 = γi w0 . (17)

By equating Eqs. (15) and (16), we would find that690

wmean (⟨s⟩ − st
1) =

∞∑
i=h+1

wi (st−i − st
1)

= wi+1

∞∑
j=0

γj (st−(h+1+j) − st
1)

= wh+1

1 − γ
(⟨s⟩γ − st

1) (18)

where691

⟨s⟩γ =
∞∑

j=0
gj st−h−1−j (19)

that is an average over the geometric distribution gj = (1 − γ) γj , from time t − (h + 1) backward. Since for γ large692

enough we have ⟨s⟩γ = ⟨s⟩, we can identify693

wmean ∝ wh+1

1 − γ
. (20)

This derivation indicates that the magnitude wmean in the infinite history model, given by Eq. (15), is a function of694

the discount factor γ as well as the weight of the first trial left out from the finite-history regression (wh+1). A higher695

γ value, i.e. a longer timescale for damping of the weights extending into the stimulus history, yields a higher wmean.696

We can obtain γ for each condition (NT, ASD and DYS) by fitting the weights obtained as a function of trials697

extending into the history (Fig. 9 C and D). As predicted by Eq. (20), a larger window for short-term history effects698

(as in the ASD case relative to NT) yields a larger weight for the covariate corresponding to the mean stimulus.699

Finally, Eq. (20) also predicts that wmean is proportional to wh+1, the number of trials back we consider in the700

regression, h, implying that the number of covariates that we choose to include in the model may greatly affect701

the results. Both of these predictions are corroborated by plotting directly the value of wmean obtained from the702

regression (Fig. 9 E).703
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4.5 Supplementary Figures704
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Figure S1: Dynamics of responses in a one-dimensional continuous attractor network, in the presence of
adaptation. (A) We study a one dimensional line attractor in which neurons code for a stimulus feature that varies along a
physical dimension, such as amplitude of an auditory stimulus. The connections between pairs of neurons is a decreasing,
symmetric function of the distance between their preferred firing locations, allowing for a bump of activity to form and
self-sustain when sufficient input is given to the network. However, this self-sustaining activity may be disrupted if neuronal
adaptation is present. In particular, drifting dynamics may be observed. (B) Left: phase diagram of the average drift
velocity as a function of the adaptation timescale τP

θ and amplitude DP . The average drift velocity is simply computed as the
distance travelled by the center of the bump in a duration of 50 seconds. Color codes for the average drift velocity (a.u.).
Numbers indicate four points for which sample dynamics are shown in (C). (C) We observe three main phases: in the first,
the activity bump is stable when no or little neuronal adaptation is present (point 4). Larger values of neural adaptation
induce drift of the activity bump; the average drift velocity increases upon increasing the neural adaptation (points 2 and 3).
Finally, increasing it even further leads to the dissipation of the activity bump (point 1). The boundary between the drift and
dissipation phases is abrupt. In these simulations, periodic boundary conditions have been used in order to compute the
average average drift velocity over longer durations.
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A

D Performance by previous trial
stimulus pair

BBump location across trials

Bump location across trials

Fraction bump is in the vicinity
of a target location

C

Frac. class. 
stim 1 < stim 2

fit current trial

mean current trial 
(fit       )

No bias in performance

B

E Performance - strong 
contraction bias

Frac. class. 
stim 1 < stim 2

F

Bump distribution before onset of s2

Figure S2: The role of neuronal adaptation in generating short-term history biases. In order to better understand
the network mechanisms that give rise to short-term history effects, we removed neural adaptation in the PPC network and
assessed the performance in the WM network. (A) As in (Fig. 3 B). We track the location of the bump, in the PPC (pink),
and in the WM network (purple) before the onset of the second stimulus (the pink curve cannot be seen as the purple curve
goes perfectly on top). In this case, the displacement of the bump of activity is smooth and new sensory stimuli (colored dots)
induce only a minimal shift in the location of the bump. This behavior is to be contrasted with the case in which there is
adaptation in the PPC network, inducing jumps in the bump location (Fig. 3 A). An additional effect of no neural adaptation
is that the activity in the PPC network, completely overrides the activity in the WM network. (B) As in (Fig. 4 A). Marginal
distribution of the bump location in both networks (pink for PPC, purple for WM) before the onset of s2 is more peaked
than the marginal distribution of the stimuli (gray), as a result of the absence of “jumps”. (C) As in (Fig. 3 C). We compute
the fraction of times the bump is in a given location, current trial (st

1), four preceding trials (st−2
1 to st−1

2 ), the running
mean stimulus, or all other locations (overlapping sets). In this case, in the majority of the trials, the bump is either at the
running mean stimulus, or any other location. The fraction of trials in which it is in the position of the four previous stimuli
roughly corresponds to chance occurrence (dashed black lines), with only a minor increase for the current stimulus. (D) As in
(Fig. 2 D). Left: The network behavior conditioned on the previous trial stimulus pair does not exhibit any previous-trial
attractive dependence (vertical modulation). Colorbar corresponds to the fraction classified as s1 < s2. Right: This attractive
dependence can also be expressed through the bias measure (see main text for how it is computed). Colored lines correspond
to current trial pairs, the black dots to the mean over all current trial pairs, and the black line to its linear fit. (E) As in
(Fig. 2 C). Although there are no attractive previous trial effects, the performance expresses a very strong contraction bias,
and performance is as if the decision boundary is orthogonal to the optimal decision boundary. Color codes for fraction of
trials in which a s1 > s2 classification is made. (F) Phase diagram with τP

θ on the x-axis, τP on the y-axis, and in color, the
fraction of trials in which the bump, before the network is stimulated with the second stimulus, is in the vicinity of a target
(specified in the title of each panel). White dot corresponds to parameters of the default network Tab. 1.
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B DA Performance - no contraction bias Fraction of trials bump 
is in a location

Performance conditioned on 
previous trial stimulus pair

Frac. class. 
stim 1 < stim 2

Bump location across trialsC

Frac. class. 
stim 1 < stim 2

Figure S3: Inactivating the inputs from the PPC network improves performance, in line with experimental
findings. (A) As in (Fig. 2 C). The performance of the network when the strength of the inputs from the PPC to the WM
network is weakened (modelling the optogenetic inactivation of the PPC) is dramatically improved, and contraction bias is
virtually eliminated. The colorbar corresponds to the fraction classified as s1 < s2. (B) As in (Fig. 2 D). The performance for
each stimulus pair in the current trial is improved and no modulation by the previous stimulus pairs can be observed. The
colorbar corresponds to the fraction classified as s1 < s2. (C) As in (Fig. 3 B). This improvement of the performance can
be traced back to how well the activity bump in the WM network (in purple), before the onset of the second stimulus s2,
tracks the first stimulus s1 (shown in colored dots, each corresponding to a different value of the inter-stimulus delay interval).
Relative to the case in which inputs from the PPC are intact (Fig. 3 A), it can be seen that the location of the bump tracks
the first stimulus with high fidelity. The activity in the PPC (in pink), instead, is identical to that shown previously (Fig. 6 A),
as all the other parameters are kept constant. (D) As in (Fig. 2 C). The bump location can be quantified not only for the
stimulus s1 of the current trial (colored dots, each color corresponding to a given delay interval), but for the four preceding
stimuli from the two previous trials (from st−1

2 back to st−2
1 ). With weaker inputs from the PPC (pink), the WM (purple)

function of the circuit is disrupted less frequently, and in the majority of the trials, the bump of activity corresponds to the
first stimulus st

1.
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Model predictions for different distributions of stimuli
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Figure S4: The stimulus distribution impacts the pattern of contraction bias. The model makes different predictions
for the performance, depending on the shape of the stimulus distribution. (A) Panel 1: schema of model prediction. Regions
shaded in red correspond to the probability of correct comparison, for stimulus pairs above the diagonal, when replacing
s1 with a random value sampled from the marginal distribution with a resampling probability ϵ = 0.25 (see Fig. 4). Panel
2: prediction of both models for a unimodal symmetric (in this case quasi-uniform) stimulus distribution, statistical model
(solid line) and Bayesian model (dashed line). The marginal stimulus distribution is shown in grey bars (to be read with
the right y-axis). The value of s1 for which there is equal performance for pairs of stimuli below and above the diagonal
is indicated by the vertical dashed line, corresponding to the median of the distribution. Panel 3: for each stimulus pair,
fraction of trials classified as s1 < s2 (colorbar), for statistical model. Panel 4: same as panel 3, but for Bayesian model of
equal average performance (corresponding to a width of the likelihood of σ = 0.08 (see Sect. 1.6.1 and Sect. 4.3). (B) Similar
to A, for a negatively skewed distribution. (C) Similar to A, for a positively skewed distribution. (D) Similar to A, for a
bimodal distribution.
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Figure S5: Model predictions for a block design. (A) As in (Fig. 2 A). Performance of the network model for the
psychometric stimuli improves with a short delay interval and worsens as this delay is increased. (B) As in (Fig. 2 C).
Performance is affected by contraction bias – a gradual accumulation of errors for stimuli below (above) the diagonal
upon increasing (decreasing) s1. As the delay interval increases, the contraction bias is increased which results in reduced
performance across all pairs. Colorbar indicates the fraction of trials classified as s1 < s2. (C) As in (Fig. 3 C). The location
of the bump that corresponds to the value of s1 occupies a smaller fraction of trials, as the delay interval increases. (D) As in
(Fig. 2 D). Performance is affected by the previous stimulus pairs (modulation along the y-axis), and becomes worse as the
delay interval is increased. The colorbar corresponds to the fraction classified s1 < s2. (E) As in (Fig. 3 F). Bias, quantifying
the (attractive) effect of the previous stimulus pairs, each color corresponding to a different delay interval. These history
effects are attractive: the larger the previous trial stimulus pair, the higher the probability of classifying the first stimulus s1
as large, and vice-versa. Middle/right panels: same as the left panel, for stimuli extending two and three trials back. (F)
Quantifying contraction bias separately for Bias+ trials (green) and Bias- trials (orange) yields an increasing bias as the
inter-stimulus interval increases.
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Figure S6: Apparent trade-off between short- and long-term biases, controlled by the timescale of neural
adaptation. (A) Left: GLM weight associated with the regressor corresponding to the mean stimulus across trials (value
indicated by colorbar), as a function of the strength of the weights from the PPC to the WM network (x-axis), and the
adaptation timescale in the PPC (y-axis). Right: Same as left panel, but displaying the GLM weight associated with the
regressor corresponding to the previous trial’s stimulus. These two panels indicate that the adaptation timescale seemingly
exerts a trade-off between the two biases: while decreasing it increases short-term sensory history biases, increasing it increases
long-term sensory history biases. The values of the adaptation parameter marked by the three colored dots (in red, blue and
green) can mimic behaviors similar to dyslexic, neurotypical, and autistic spectrum subjects (see also Fig. 9). (B) Left: phase
diagram of the fraction of trials in which the activity bump at the end of the delay interval is in the location of the running
mean stimulus as a function of the strength of the weights from the PPC to the WM network (x-axis), and the adaptation
timescale in the PPC (y-axis). Right: Same as (left), but for the location of any of the two stimuli presented in the previous
trial. (C) The fraction of trials in which the activity bump at the end of the delay interval corresponds to different locations
shown in the x-axis, for three different values of the adaptation timescale parameter, corresponding to qualitatively similar to
dyslexic, neurotypical, and autistic spectrum subjects, shown in colors.
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4.6 Parameters705

Table 1: Simulation parameters, when not explicitly mentioned. Used to produce Figs. 1, 2, 3, 4, 5, 8, S2, S3, S5.

Parameter Symbol Default value
Number of neurons N 2000
Neuronal gain β 5
Range of excitatory interactions [in units of stimulus space length] d0 0.02
Strength of inhibitory weights J0 0.2
Strength of excitatory weights Je 1
Time scale of neuronal integration in WM net [s] τW 0.01
Time scale of neuronal integration in PPC [s] τP 0.5
Time scale of neuronal adaptation in PPC [s] τP

θ 7.5
Amplitude of adaptation current in PPC DP 0.3
Amplitude of external inputs Iext 1
Strength of weights from PPC to WM net JP →W 0.5
Duration of stimuli [s] 0.4
Delay interval [s] [2, 6, 10]
Inter-trial interval [s] 6
Width of box stimulus [in units of stimulus space length] δs 0.05

Table 2: Simulation parameters Fig. S1.

Parameter Symbol Default value
Number of neurons N 1000
Neuronal gain β 5
Range of excitatory interactions [in units of stimulus space length] d0 0.02
Strength of inhibitory weights J0 0.2
Strength of excitatory weights Je 1
Time scale of neuronal integration [s] τP 0.01
Amplitude of external inputs Iext 1
Duration of stimuli [s] 0.4
Width of box stimulus [in units of stimulus space length] δs 0.05

Table 3: Simulation parameters Fig. 9 and Fig. S6. Other parameters as in Tab. 1

Parameter Symbol Default value
Time-scale of neuronal adaptation in PPC [s] τP

θ 7.5 (DYS), 10 (NT), 15 (ASD)
Amplitude of adaptation in PPC DP 0.2
Delay interval [s] [2, 6, 10]
Inter-trial interval [s] 2.2
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