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Abstract7

Balance impairment or the loss of balance control is one of the most debilitating consequences of Traumatic8

Brain Injury (TBI). The levels of balance impairment may not be necessarily associated with the severity9

level of TBI, which makes it more difficult to do the correlational analysis of the balance impairment and10

its neural underpinnings. Therefore, we conducted a study where we collected the neurophysiological data11

(EEG and EMG) during a balance control task on a computerized posturography platform in a group of 1712

TBIs and 15 age-matched healthy controls. Further, to distinguish balance-impaired TBIs (BI-TBI) from13

non-impaired TBIs (BN-TBI), we stratified the level of balance impairment using the Berg Balance Scale,14

a functional outcome measure widely used in both research and clinical settings. We computed the brain15

functional connectivity features between different cortical regions of interest using the imaginary part of16

coherence in different frequency bands. These features are then studied in a mean-centered Partial Least17

Squares Correlation analysis, which is a data-driven framework with the advantage of handling more features18

than the number of samples, thus making it suitable for a small-sample study. Based on the nonparametric19

significance testing using permutation and bootstrap procedure, we noticed that theta-band connectivity20

strength in the following ROIs significantly contributed to distinguishing balance impaired from non-impaired21

population: left middle frontal gyrus, right precuneus, right precentral gyrus, bilateral middle occipital gyrus,22

right middle temporal gyrus, left superior frontal gyrus, left post-central gyrus, right paracentral lobule.23

The knowledge of specific neural regions associated with balance impairment helps better understand neural24

mechanisms of TBI-associated balance dysfunction and may guide the development of novel therapeutic25

strategies, including targeted noninvasive brain stimulation. Our future studies will investigate the effects26

of balance platform training on sensorimotor connectivity.27
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28

1. Introduction29

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability across the globe 1. With30

the immediate consequences of long-term disability due to the injury, TBI patients are often at elevated risks31

of impaired motor functions such as loss of postural control 2. While it is postulated that the postural imbal-32

ance could be attributed to the loss of sensorimotor integration after injury 3, the exact neurophysiological33

mechanisms are unknown 4.34

With the advances in the current neuroimaging technologies such as high-density electroencephalography and35

functional Near-Infrared Spectroscopy (fNIRS), mobile imaging of body-brain behavior is possible. Although36

there are some studies evaluating balance-related brain functional connectivity changes in healthy individuals37

using fNIRS 5 and EEG 6, there are hardly any such studies in TBI populations. The current state-of-the-art38

in understanding neuroanatomy and neurophysiology is limited to the findings from structural imaging using39

Diffusion Tensor Imaging (DTI) 7,8 and resting-state functional Magnetic Resonance Imaging (rs-fMRI) 9.40

This motivated us to fill the knowledge void of the underlying neural substrates of postural control in TBI.41

Identifying the neural markers of postural control can potentially guide us in developing novel therapeutic42

strategies to address the postural instability in TBI.43

This brings us to some of the key research questions:44

1. Why do some TBIs have more balance impairment than others?45

2. Which brain regions and networks play a crucial role in balance control?46

3. How does the TBI alters the modulation of motor-related functional networks during the postural control47

task?48

4. Can we identify a diagnostic neural marker of balance deficits in TBI?49

Addressing these questions requires stratifying the brain injury population into balance-impaired and balance50

non-impaired as not every TBI patient suffers from the same degree of postural instability. Moreover, the51

heterogeneity in the type of brain injury adds to the challenges of neural data processing. This motivates us52

to study the brain dynamics in balance-impaired as well as balance non-impaired populations in comparison53

with the healthy controls.54

While it is widely accepted that the external sensory cues trigger the shift of attention away from the ongoing55

balance task-irrelevant cognitive activity towards the balance task-relevant cognitive activity during postural56

control 10, the interaction between different networks is not well understood. We hypothesize that a relatively57

complex task of postural control when faced with external perturbation cues, requires the involvement of58

multiple networks. Our research motivation is further fuelled by the paucity of literature on the interacting59

effects of different brain networks pertaining to anticipatory postural control. To this end, not only are we60

interested in studying the network-level mechanisms of postural control but also in exploring the individual61

connectivity features associated with the balance impairment in a hypothesis-driven approach by defining62

the regions of interest (ROI).63

In a resting-state fMRI study focused on the functional connectivity alterations within- and between networks64

in the TBI population, it was observed that the Default Mode Network (DMN) showed reductions in within-65

network and also between-network connections with the Dorsal Attention Network (DAN) when compared66

to healthy controls 9. The authors state that these pronounced disruptions in between-network connectivity67

in chronic TBI would have been missed if the integrity of only a single network was evaluated. Motivated by68

this idea, we want to further study how TBI affects the task-specific cognitive-motor related network during69

the postural control which has not been previously explored.70
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Intuitively, some of the approaches that seem to address this question look at the correlation between the71

brain activity/functional networks in the brain and a quantifiable functional measure of balance deficits.72

To this end, Partial Least Squares (PLS)-based approach is a powerful and robust statistical method used73

to find a fundamental relationship between a large set of variables, which has been recently explored and74

useful in identifying the brain-behavior association. Using this approach, Churchill et al. 11 observed higher75

connectivity between the default-mode and sensorimotor network to be associated with sport-related concus-76

sion and balance symptom severity. Extending further in this direction, we are using this data-driven PLS77

method (Fig. 1) to extract neural markers of balance impairment in chronic TBI.78
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Figure 1: The mean-centered Partial Least Squares correlation (MC-PLSC) analysis framework begins with
the vectorized functional connectivity features derived from preprocessed source-localized EEG. The mean-
centered vectorized features for each subject as a row vector constitute a matrix (X) for N subjects. The
product of the design matrix (Y) and brain imaging feature matrix (X) is then subjected to Singular Value
Decomposition (SVD) which results in a set of mutually orthogonal latent variables (LVs). Left singular
vector corresponds to the design/contrast LV (e.g., HC vs. TBI) whereas the right singular value corresponds
to the brain LV which indicates the functional connectivity pattern associated with the contrast.

2 Methodology79

2.1 Participant Characteristics80

This study enrolled 18 individuals with a chronic Traumatic Brain Injury (TBI) and 18 Age-matched healthy81

controls (HC). Due to the highly noisy EEG data of some participants, we had to exclude the data from 182

TBI and 3 HC subjects, thus we present the data from 17 TBI and 15 HC in this paper. More information83

on the subject demographics including the inclusion and exclusion criteria for the study participants can be84

found in 12. To identify a neural marker of balance deficit within the TBI population, we dichotomized the85

TBI group into balance-impaired (BI-TBI) vs. balance non-impaired TBI (BN-TBI) based on the threshold86

for Berg Balance Scale (BBS) score. A BBS threshold score of 49 (out of the maximum 56 points) was chosen87

to define balance impairment as it was shown to optimally identify individuals with balance deficits during88

ambulation in terms of needing a walking aid 13. Using this stratification based on the BBS threshold, we89

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2022. ; https://doi.org/10.1101/2022.05.15.491997doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.15.491997
http://creativecommons.org/licenses/by-nc/4.0/


Table 1: TBI Patient Demographics and Clinical Characteristics (N = 17)
Subj ID Group Gender Age Height

(cm)
Weight
(kg)

COP
(cm)

BBS Severity

ABI001 BI-TBI M 51 190.5 95.3 9.39 48 Severe
ABI002 BI-TBI M 58 182.9 88 7.31 42 Severe
ABI003 BI-TBI M 60 175.9 88.7 19.18 44 Severe
ABI004 BI-TBI M 59 178.4 143.8 13.49 49 Severe
ABI005 BN-TBI M 51 180.3 113.9 9.47 54 Mild
ABI006 BN-TBI M 52 177.8 97.5 12.86 54 Severe
ABI007 BN-TBI F 53 170.2 76.2 18.0 51 Mild
ABI008 BI-TBI M 60 180.3 111.1 8.19 48 Mild
ABI009 BN-TBI F 32 167.6 58.5 10.12 56 Mild
ABI010 BI-TBI M 49 172.7 66.7 14.14 46 Mild
ABI012 BN-TBI F 56 168.9 120.2 4.8 55 Mild
ABI013 BI-TBI F 60 154.3 72.6 17.27 34 Moderate
ABI016 BN-TBI M 56 182.9 86.2 7.32 56 Mild
ABI018 BI-TBI M 35 182.9 68 15.33 44 Moderate/severe
ABI019 BN-TBI M 23 177.8 63.5 7.44 55 Severe
ABI020 BN-TBI M 50 187.96 102.1 9.17 55 Moderate/severe
ABI021 BN-TBI M 23 182.88 89.4 14.54 52 Moderate/severe

obtained the subgroup sample of BN-TBI (N = 9) and BI-TBI (N = 8) (Fig. 2B). The patient demographics90

and clinical characteristics of TBI participants are presented in Table 1.91

2.2 Data Acquisition and Pre-processing92

We used multiple modalities to collect EEG and the posturography platform data during a balance pertur-93

bation task and MRI to obtain subject-specific anatomical data for EEG source localization.94

(A) MRI Data Acquisition: The MRI data (T1-weighted MPRAGE scan) was acquired at the Rocco95

Ortenzio Neuroimaging Center (Kessler Foundation, NJ) using the Siemens Skyra 3T scanner (Erlangen,96

Germany) with the following specifications: 1-mm isotropic voxel resolution, TE=3 ms, TR=2300 ms, 1-mm97

thick 176 slices, Field of View (FOV) 256x256 mm2.98

(B) Posturography Data Acquisition: The perturbation-related data was measured using the computer-99

ized dynamic posturography (CDP) platform (NeuroCom Balance Master, NeuroCom Intl, Clackamas OR).100

This computerized platform was pre-programmed to generate unpredictable sinusoidal perturbations at low101

amplitude (0.5 cm) or high amplitude (2 cm) in the anterior-posterior (or forward and backward) direction102

at 0.5Hz for 4s with a random intertrial interval between 4-8s. The posturography data were collected in103

5 blocks where each block consisted of 20 trials randomly sorted among a 2 x 2 combination of High/Low104

amplitude and Forward/Backward perturbations. In this study, we mainly present the findings from a total105

of 29 trials of high amplitude backward perturbation, the most challenging condition with the highest range106

of body sway across subjects. The center of pressure (COP) time-series data from the balance platform107

was collected at 200 Hz, and offline low-pass filtered (10Hz), epoched, and mean-centered (zero-mean), and108

averaged across trials and conditions for each subject. The COP displacement was calculated as the trial109

average (in cm) of the cumulative distance traveled by the COP vector for the first 2s of the perturbation110

in the forward/backward direction.111

(C) EEG Data Acquisition: The brain activities during the balance perturbation were noninvasively112

recorded using the 64-channel EEG system (ActiCAP BrainAmp standard, Brain Products®, Munich,113

Germany) at a sampling rate of 500 Hz. The EEG electrodes were positioned according to the extended114
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10-10 montage with the electrodes FCz serving as the common reference and AFz the ground.115

2.3 Data Processing116

The recorded EEG was processed offline using EEGLAB and BrainStorm toolboxes. First, we preprocessed117

the raw continuous EEG by downsampling it into 250 Hz followed by band-pass filtering between 1Hz and118

50Hz using a Butterworth filter (4th order) to ensure the frequency bands of interest are covered. The119

electrical line noise was removed using the Cleanline plugin for EEGLAB. Thereafter, the noisy bursts120

in the continuous EEG were corrected using Artifact Subspace Reconstruction. The burst detection criteria121

threshold (k in the ASR algorithm) was set at 20 based on the comprehensive evaluation by 14. After applying122

the common-average referencing to the ASR-corrected data, we ran the Independent Component Analysis123

(ICA) (extended Infomax algorithm)15. The independent components resulting from ICA decomposition124

were then classified into one of the following labels ((1) Brain, (2) Muscle, (3) Eye, (4) Line noise, (5)125

Channel noise, (6) Heart or (7)‘other’) using a machine-learning tool ICLabel plugin within EEGLAB 16.126

The dipole fitting was done using the DIPFIT tool in EEGLAB which can be used to assess whether the127

dipoles corresponding to the ICs are ‘brain’-based or not.128

We retained only those ICs that are classified as ‘Brain’ (posterior probability > 0.5) and the residual variance129

(relative to the scalp topography) of 20%. Upon selecting these ICs, the back-projected sensor-space EEG130

was used for EEG Source Localization.131

2.4 EEG Source Localization (ESL)132

Since the brain activity recorded at the scalp level gets attenuated due to the volume conduction effect133

(propagation of electric current flow through different layers of the brain and skull), it is advisable to estimate134

the cortical source activity 17. To achieve this, we used the OpenMEEG tool 18 in the Brainstorm toolbox 19
135

to compute the forward head model wherein a realistic head model made of 4 layers (brain, inner skull, outer136

skull, and scalp surface) is reconstructed using individual T1 MRI scans and the 3D EEG electrode positions137

using Brainsight Neuronavigation System (Rogue Research, Montreal, Canada). The volume conduction138

effect is realized using the Boundary Element Model 20. Once the forward model is obtained, we used139

sLORETA 21 algorithm as a distributed source model to solve the ill-posed inverse problem. Estimating140

the solution using sLORETA requires the computation of the noise covariance matrix in addition to the141

forward head model. Therefore, the noise covariance estimation was done using the ’baseline’ EEG which is142

essentially the pre-perturbation period (-1s to 0s). Once we obtained the source-localized EEG, we parcellated143

the cortical surface into 66 anatomical regions using a surface-volume registration tool in BrainSuite software144

22. Thereafter, the key regions of interest for further analyses (functional connectivity estimation and the145

partial least squares analysis) were determined based on the literature and our preliminary study 12 in which146

we identified which cortical regions were significantly more activated during the perturbation compared to147

the baseline period. To avoid any bias concerning the hemispheric dominance, we included bilateral ROIs148

from the middle frontal gyrus, superior frontal gyrus, middle temporal gyrus, paracentral lobule, precentral149

gyrus, postcentral gyrus, precuneus, cingulate gyrus, superior parietal lobule, and middle occipital gyrus.150

2.5 Functional Connectivity151

The brain functional connectivity between two regions of interest was calculated for the time segments (0s-152

2s) corresponding to the perturbation task and baseline state using imaginary coherence (iCOH) 23. Here,153

the time instant at which perturbation occurs is noted as t = 0s. The imaginary coherence is considered154

to be a robust estimate of phase synchronization between two time-series data. To ensure computational155

tractability, we measured the iCOH between the ‘seed’ voxels of different ROIs instead of every pair of voxels156

in an ROI. Mathematically, we denote the iCOH as the imaginary part of coherence i.e., Im(Γ) with ,157

where, Γ ∈ CU×U×V is a three-way tensor, where U and V are the number of ROIs and frequency bins158

of interest, respectively. Since the iCOH values are computed for each frequency bin, we averaged the iCOH159
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values corresponding to the frequency bins within each frequency band (θ = 4 − 8Hz, α = 8 − 13Hz, β =160

13− 30Hz). We also obtained the Weighted Node Degree (or Node Strength) for a given ROI by summing161

the Γ values of all its connections. In the context of graph theory, Weighted Node Degree is one of the162

simplest and the most intuitive local network measures to evaluate the contribution of a given node (or an163

ROI) to the connectivity network.164

2.6 Mean-centered Partial Least Squares Correlation (MC-PLSC)165

Partial Least Squares Correlation (PLSC) for neuroimaging applications was introduced by McIntosh 24.166

PLSC algorithm is a multivariate technique that is used to explore the statistical association between two167

sets of variables. Depending on the research question, we can choose one of the variants of PLSC such168

as behavior PLSC (brain- and behavior measures as two different variables), task PLSC (brain measures169

corresponding to two different conditions/tasks such as attention vs. rest), or seed PLSC (to analyze the170

functional connectivity in a particular ‘seed’ or a brain region of interest) 25. PLS algorithm has an inherent171

advantage of dealing with more variables (P ) than the number of observations (or samples N) which is172

suitable for most neuroimaging studies. In this study, we used the Mean-Centered task PLSC (called MC-173

PLSC henceforth), which is conceptually very similar to Barycentric Discriminant Analysis (BADA) 26 in the174

sense MC-PLSC allows us to find sets of features (brain measures) that best maximize the absolute differences175

between the groups. In MC-PLSC, group labels are used as the dummy coded categorical variables (instead176

of the continuous behavioral measure in the case of Behavioral PLSC). To know more about the intricacies177

of different forms of PLSC, we recommend a review article by 25.178

To briefly explain the procedure of mean-centered PLSC, one can consider the brain measure matrix X ∈179

RN×P and the dummy coded matrix Y ∈ RN×m, where ‘m’ - the number of columns corresponds to the180

number of groups. Here, the number of columns in X (i.e. P ) corresponds to the number of features derived181

from the brain imaging (e.g. functional connectivity/structural connectivity/power-spectrum density values,182

etc.). The number of rows in both X and Y corresponds to the number of subjects N . In this study, we183

used the weighted node degree values corresponding to 20 ROIs as our brain imaging variables, and also184

in secondary analysis, we used the functional connectivity values between 20 ROIs (a vector of 20C2 = 190185

connections per subject) as brain imaging variables. After standardizing the X using z-score normalization,186

we define a matrix M such that M = diag(1TY)−1YTX, where 1 is a N × 1 vector of 1s. This matrix187

scales the X according to the mass of X (the values are scaled such that the sum of the masses is equal to188

one). Thereafter, the mean-centered matrix is computed as Rmean−centered = M− 1[ 1
N 1TM], where 1 is a189

N-length vector of 1s 25.190

R is then subjected to the singular value decomposition as R = U∆V>where U and V are matrices191

composed of left and right singular column vectors (uk and vk) and ∆ a diagonal matrix of singular va-192

lues (δk), k being the number of latent variables corresponding to the number of groups ( k =3 in our193

study). In the context of our PLSC study, U and V are termed design/group salience and brain salience194

reflecting the group contrast and weighted contribution by the brain functional connectivity features respec-195

tively. Furthermore, the projection of Y and X onto these salience matrices (Uand V) reflects the design196

scores (i.e. LY = YU) and brain scores (LX = XV) respectively. The mean-centered PLSC effectively197

decomposes R into kcomponents that optimally separate the groups by finding pairs of group/design and198

brain latent vectors with maximal covariance.199

To assess the statistical significance of the PLSC models, we ran non-parametric permutation testing, whe-200

rein, each latent variable (LV) is tested for its significance. In this procedure, the brain imaging features201

are randomly shuffled 1000 times and the latent variables are computed using PLSC every time. This way,202

the original relationship between brain imaging (X) and group label data (Y) is no longer valid. The latent203

variable k is considered significant if the empirical singular value (δk) is higher than 95% of the values ob-204

tained from the null distribution. Provided the latent variable is significant, we tested which of the loading205

weights (vk,i) are robust/stable amongst the brain connectivity features. For this, we conducted a bootstrap206

procedure wherein, the rows of the X and Y were sampled with replacement. Since the permutation and207
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bootstrapping procedure can affect the alignment(rotation) of the LVs, we applied Procrustes rotation to208

these LVs so that they correspond to the original data 27.209

Confidence Intervals: To test whether the separation between groups was significant, we used generalized210

Principal Component Analysis to project the factor scores 26. The factor scores were obtained as the product211

of the left singular vector and singular values, i.e., F = U∆. These factor scores were then projected onto a212

2-dimensional map. 95% confidence interval of these factor scores was obtained using bootstrapped sampling,213

where the factor scores were obtained for every sampling. Fig. 3(c) and Fig. 4(c) shows the 95% confidence214

ellipses for each group on the 2-dimensional map.215

3 Results216

3.1 Univariate Analysis of Behavioral Measures217

This study compared the behavioral measures based on COP displacement during High backward pertur-218

bation and Berg Balance Scale (BBS). While the COP displacement measures the ability to dynamically219

maintain balance in response to balance perturbation, BBS is a measure of static and dynamic functional220

balance and thus provides complementary information 28. A univariate analysis based on a two-tailed t-test221

revealed that the TBI patients (mean ± SD = 11.64 ± 4.28, 95% CI =[4.79, 19.18]) showed significantly222

larger COP displacement (t = 3.07, p = 0.004, cohen’s D = 1.09) than HC( mean ± SD = 7.82 ± 2.33,223

95% CI = [4.7, 13.13]). These results are previously presented in 29. In this study, we further looked into the224

stratified analysis of COP displacement (shown in Fig. 2) by comparing the balance-impaired TBI (BI-TBI)225

and balance nonimpaired TBI (BN-TBI). The difference in COP displacement between BI-TBI (13.04 ±226

4.34) and BN-TBI (10.41 ± 4.1) was not significant as revealed by the two-tailed t-test (t = 1.28, p = 0.22).227

The BBS comparison showed a significant difference (t = 5.7, p = 10e-5) between BI-TBI (mean ± SD =228

44.37 ± 4.84) and BN-TBI (mean ± SD = 54.22 ± 1.72). Since the BBS data in HC was non-normal, we229

used the nonparametric Wilcoxon Ranksum test to compare the BBS in HC (median = 56, range =[55,56])230

with that of BI-TBI and BN-TBI. As expected, when compared to HC, both BI-TBI and BN-TBI showed a231

significantly lower BBS (z = 4.15, p = 10e-5 and z = 4.15 and p = 0.0023 respectively).232
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Figure 2: A group-level comparison of COP displacement (in cm) shown on the left. The black horizontal line
on the COP plot marks the mean and the colored horizontal line marks the standard deviation. A group-level
comparison of the Berg Balance Scale (BBS) is shown on the right as a boxplot due to its non-normal distri-
bution. The horizontal line marks the median. The lower- and upper-hinge of the boxplot corresponds to the
25th and 75th quartile respectively. Statistical significance values are plotted as ***(p<0.005), **(p<0.01)
respectively.

233

234
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Figure 3: (a) Histogram of the singular values obtained from the first latent variable (LV1) corresponding
to mean-centered PLSC. The latent variable denotes the contrast BI-TBI vs. (HC and BN-TBI). The brain
imaging variable here is Theta-band weighted node degree and the design variable is the group label. The
singular value obtained from the PLSC is tested for its significance using the permutation test. The red
dotted line denotes the empirical singular value (statistically significant- above 95th percentile of the singular
values obtained from null distribution), and the blue bar graph presents the histogram of values obtained
under null distribution. (b) Design saliences (u1 vector after SVD) indicate that the BI-TBI group is
significantly different from BN-TBI and HC, with the error bars indicating the 95% confidence interval. The
yellow background indicates robust salience values for all 3 groups. (c) 95% confidence ellipses denote a clear
separation of BI-TBI from BN-TBI and HC the first latent group/contrast vector (x-direction) associated
with LV1 but not so for the second latent vector (y-direction) associated with LV2 (p=0.93). (d) Highlighted
brain regions of interest for LV1 correspond to the robust variables selected based on the bootstrapping ratio
(BSR) and (e) the bar graph values indicate the brain saliences (v1 vector) associated with LV1 obtained
from bootstrapping. The robust ROIs (Bootstrap ratio>2.5); the robust region and bootstrap values are
denoted with a blue diamond mark.
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(b) (c)

Confidence Ellipses

Figure 4: (a) Histogram of the singular values obtained from the first latent variable (LV1) corresponding to
the contrast BI-TBI vs. (BN-TBI and HC). The brain imaging variable here is alpha-band weighted node
degree and the design variable is the categorical label (mild-impaired TBI as 1, severe-impaired TBI as -1).
The singular value obtained from the PLSC is tested for its significance using the permutation test. The red
dotted line denotes the empirical singular value (statistically significant- above 95th percentile of the singular
values obtained from null distribution), and the blue bar graph presents the histogram of values obtained
under null distribution. (b) Design saliences (u1) indicate that the BI-TBI group is significantly different
from HC with the error bars indicating the 95% confidence interval of bootstrapped saliences. The yellow
background indicates robust salience values for BI-TBI and HC groups but not BN-TBI. (c) Confidence
ellipses clearly denote the separation between HC and BI-TBI along the dimension-1 (x-axis) associated
with LV1, but not BN-TBI as its confidence ellipse is spanning both negative and positive x-values. Also,
confidence ellipses for LV2 (y-axis) overlap highlight the lack of significant group separation (p=0.99) (d)
Highlighted brain regions of interest correspond to the robust variables selected based on the bootstrapping
ratio (BSR) for LV1 and (e) the bar graph values indicate the brain saliences contribution (v1 vector)
associated with LV1 obtained from bootstrapping. The robustness of each variable is determined based on
the ratio (>2.5); the robust regions and bootstrap values are highlighted with a blue diamond mark.

3.2 Mean-centered PLSC: Weighted Node Degree features235

Upon dichotomizing the TBI group into BI-TBI and BN-TBI based on the BBS threshold, we ran mean-236

centered PLSC with 3 groups (BI-TBI, BN-TBI, and HC) as design variables, and weighted node degree237

features as the brain imaging variables. We suspected that the level of balance impairment would also play238

a role in identifying the discriminative neural markers. Based on this analysis framework, we observed that239
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the MC-PLSC using weighted node degree (WND) features in theta frequency band identified LV1 as a240

significant latent variable (out of three) that maximally differentiates the groups by contrasting BI-TBI from241

BN-TBI and HC together (Fig. 3(b)). The nonparametric permutation testing revealed that the empirical242

singular value is in the top 5 percentile of the permutated singular values (Fig. 3(a)), thus highlighting243

the statistical significance (p = 0.039) of LV1. Upon bootstrap testing of this LV, 9 ROIs were found to244

be robustly associated with LV1 having their Bootstrap Ratio (BSR) > 2.5 (Fig. 3(e)) i.e., their salience245

values/weighted contributions were found to be non-zero with a 99% confidence interval. The robust WND246

features are presented in (Fig. 3(d & e)), the regions highlighted (in the descending order of their salience247

values) are - left middle frontal gyrus, right precuneus, right precentral gyrus, bilateral middle occipital248

gyrus, right middle temporal gyrus, left superior frontal gyrus, left post-central gyrus, right paracentral249

lobule.250

In a post-hoc analysis of individual group-wise contrast PLSC (i.e., one group contrast at a time - BI-TBI251

vs. BN-TBI, and BI-TBI vs. HC) using theta-band WND features, we noticed that the robust ROIs were, in252

fact, the same set of cortical regions found in the above MC-PLSC analysis (BI-TBI distinguishing BN-TBI253

and HC). This supports the notion that the neural substrates of balance impairment for BI-TBI could be254

the very same ROIs when compared to both BN-TBI and HC.255

A similar analysis using the alpha-band WND features revealed LV1 to be significantly distinguishing BI-TBI256

from BN-TBI and HC (Fig. 4(b) and Fig. 4(c)). LV1 was associated with a slightly different set of robust257

regions based on the bootstrap ratio: left superior frontal gyrus, right postcentral gyrus, right mid frontal258

gyrus, right superior parietal lobule, bilateral paracentral lobules, and bilateral precuneus.259

3.3 Mean-centered PLSC: Individual Connectivity Features260

To further investigate the localized roles of individual functional connections which correlate with the contrast261

of different groups, we ran the MC-PLSC with the individual connectivity features (connection strength262

between two regions) derived from imaginary coherence in each frequency band (theta, alpha, and beta).263

This analysis revealed only theta-band connectivity features to be distinguishing impaired TBI from the rest264

(BI-TBI different from BN-TBI and HC) with a marginally significant result ( p = 0.069). The circular265

connectivity plot is shown in Fig. 5. Significant connections are highlighted based on the bootstrapped266

ratio (BSR) > 2.6 suggesting that the connections have a 99% confidence level in terms of robustness to267

spurious connectivity features. Based on the connectivity pattern shown in Fig. 5, we observed that the268

distinction between the impaired and the non-impaired population (BN-TBI and HC) is reflected by weaker269

connections (BI-TBI < BN-TBI and HC) involving the left superior parietal lobule, left postcentral gyrus,270

right mid occipital gyrus, and right paracentral lobule. Most of these robust connections are associated with271

the sensorimotor network (postcentral gyrus, paracentral lobule, and even middle temporal gyrus) and visual272

network30).273
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Figure 5: Visualization of robust functional connections derived from theta-band imaginary coherence
based on the |BSR| > 2.6. The color of the connectivity links corresponds to the first latent variable of
the brain salience matrix (v1). The thickness of the connectivity value (between two ROIs) indicates its
proportional contribution to the weighted node degree of a given ROI (thicker connection - higher proportion,
thinner connection - lower proportion). The color of the sector (outer circle) indicates the absolute sum of
connectivity values corresponding to a given ROI (darker color shade denotes a higher sum). The cortical
ROIs are visually represented as a volumetric ROI next to the label. The circular connectivity graph is
visualized using the R package circlize 31.
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4. Discussion274

4.1. Disentangling the levels of balance impairment in TBIs275

We noticed that the level of task-specific balance impairment was varied across individuals within the TBI276

group based on the measure of COP displacement. Although we hypothesized that the body sway during277

the external perturbation measured by COP displacement would be smaller in the BI-TBI group compared278

to the BN-TBI group, we did not see any significant differences. We suspect the reason could be that the279

BBS is strongly correlated with the gross functional outcome measure (such as Timed Up-and-Go) rather280

than the laboratory measures of body sway (measured using COP displacement). We certainly recommend281

future studies to investigate the association between the outcome measure specific to the experimental task282

and the traditional functional outcomes such as BBS and/or Balance Error Scoring System.283

Recent literature suggests that balance complaints from chronic TBI individuals are explained more by the284

dysfunction of central sensory systems than the peripheral vestibular or oculomotor systems 32. In the285

following subsections, we discuss the role of different cortical regions and functional networks in the postural286

control mechanisms in TBI.287

288

4.2. Main PLSC findings289

Our MC-PLSC analysis found a WND latent vector of brain regions that robustly and maximally separate290

the 3 groups (BI-TBI, BN-TBI, and HC) for theta and marginally so for the alpha band. The associated291

contrast vector for theta (Fig. 3(b)) reveals that the groups are maximally separated when contrasting BI-292

TBI with BN-TBI and healthy controls combined. This suggests that the theta neural response for BN-TBI293

is more like that of HC. But more importantly, BI-TBI individuals do present an impaired neural response294

(decrease in WND) to the balance perturbation, which is specific to balance impairment as measured by295

the BBS. This observation supports our hypothesis and rationale for separating TBIs into balance-impaired296

and non-impaired populations. Furthermore, this could potentially explain why in our prior analysis 33, no297

group difference in a global measure of WND connectivity was found when contrasting HC with both BI-298

and BN-TBIs combined.299

In comparison, for alpha (Fig. 4(b)) the groups are maximally separated when only contrasting BI-TBI and300

HC alone, excluding BN-TBI. This would suggest that BN-TBI doesn’t separate well from either BI-TBI or301

HC. Furthermore, based on the brain and contrast saliences of this latent variable, BN-TBI shows reduced302

alpha WND compared to HC. However, given that BI-TBI and HC are defined both by BBS score but also303

the overall TBI pathology, this latent variable characterized by a reduced alpha WND in TBI may not be a304

specific marker of balance deficit. This is supported by the fact that no significant latent variable was found305

when running a post-hoc PLSC analysis between BI-TBI and BN-TBI (p=0.48; results not shown) which306

are solely differentiated by their BBS impairment score.307

Finally, similar to theta WND, our contrast analysis on individual connectivities reveals a close to a significant308

latent variable (p=0.07) that best differentiates groups when contrasting BI-TBI from both BN-TBI and309

HC. Similarly, based on the corresponding brain and contrast salience values, BI-TBI shows reduced theta310

connectivities compared to HC and BN-TBI. The overall finding of theta band disconnectivity as a specific311

marker of balance deficit in TBI is consistent with its critical role in postural control 34
312

4.3. Balance-related cortical regions of interest and connectivity identified by313

PLSC:314

The current study found that the main ROIs identified by MC-PLSC across theta- and alpha-band coherence315

WND features are the right paracentral lobule and precuneus, and the left superior frontal gyrus. These316
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cortical regions are associated with the sensorimotor coordination required for postural control. Specifically,317

the paracentral lobule processes the motor commands for balance control 35 after receiving the sensory318

inputs from the visual, vestibular, and somatosensory cortices. In the context of theta-band functional319

connectivity, the supplementary motor area located just in front of the paracentral lobule is associated with320

the pull perturbation while standing 34.321

Extending further, the entire closed-loop mechanism of balance control as coordination between several brain322

regions is described as the ’body schema’ in the hypothetical model 36. As per this model of posture-gait323

control, the midbrain and subcortical regions including the cerebellum, brainstem, thalamus, and cerebral324

cortex receive the sensory signals from the visual cortex, vestibular cortex, and primary sensory cortex, which325

will then be processed by the temporoparietal cortex to construct the aforementioned body schema. Specif-326

ically, the temporoparietal cortex assists in generating motor control commands from the supplementary327

motor area (SMA) and premotor (PM) regions, with the help of basal ganglia and cerebellum. In our328

study, the middle frontal gyri which include the SMA/PM region seem to play a distinctive role in the BI-329

TBI group (when compared to BN-TBI and HC) as revealed by its robust bootstrap ratio in the MC-PLSC330

model derived from theta-band WND features. From a functional perspective, the role of middle frontal331

gyri in anticipated postural control is highlighted in 37. Moreover, the middle frontal gyri are reported to be332

involved in the supraspinal motor network of stance and locomotion of walking in elderly adults 38.333

Once the sensory signals are received and processed by visual, vestibular, and somatosensory cortices, the334

motor commands for balance control are processed by the paracentral lobule and precentral gyrus 39 which335

constitutes the leg region of the M1. In the framework of the posture-gait control model mentioned in 36,336

we believe that the superior parietal region is involved in anticipatory postural adjustment as it detects337

postural instability 40. Along the same line of discussion, our findings of theta-band coherence-based338

individual connectivity features show that significant functional connections are associated with the left339

superior parietal lobule in addition to the right paracentral lobule and left postcentral gyrus. Based on340

the role of the cingulate and angular gyrus in the dynamic regulation of attention to unpredictable events341

presented in 41, and their anatomical relation with the basal ganglia and cerebellum, we expect that the342

postural control signals generated by the motor regions are passed to the cortico-reticular and reticulospinal343

tracts via cingulate gyrus.344

In terms of the visual perception of the balance perturbation, we anticipate the regions around the occipital345

lobe will play an integral role in the visual perception of static vs. dynamic motion (or tilt) of the posturog-346

raphy platform based on the report of an Activation Likelihood Estimation (ALE) meta-analysis article 42.347

Along this line of discussion, we believe the middle occipital gyrus identified by the theta-band WND features348

in our study may play a critical role in the sensory integration of visual and motor functions 43. Moreover,349

the activation of middle temporal gyri has been reported in the simulation (or imagination) of a postural350

control study 44,45, wherein the activated areas were shown to be in close proximity to the PIVC (parietal351

insular vestibular cortex) - a region that is generally regarded as responsible for processing the vestibular352

signals related to the postural control 36.353

4.4. Roles of different functional networks identified by PLSC354

For qualitative assessment of our findings, we now discuss the roles of functional networks to which the355

aforementioned ROIs belong.356

Although it is not trivial to assign the anatomical ROIs to specific functional networks, a recent study357

has tested the spatial correspondence between the anatomical regions (based on the Desikan-Killiany atlas)358

and functional networks (based on the Yeo-Atlas) 46. The permutation testing of the normalized mutual359

information showed that the hypothesized overlap between the functional networks and anatomical ROIs360

was not due to random chance. In other words, the nonparametric testing supported the evidence that361

the functional networks and anatomical ROIs have good spatial correspondence. Motivated by this idea, we362

wanted to explore the role of the significant ROIs returned by the PLSC analysis in the context of functional363
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networks involved in postural control. In this regard, our focus is mainly on the two intrinsic functional364

networks: the sensorimotor network (SMN) and the visual network (VN), as these networks showed high365

spatial correspondence with the motor and visual areas as per the Desikan Killiany Atlas46. Not surprisingly,366

the sensorimotor network (SMN) is reported to play the most critical role during postural control mechanisms367

by facilitating sensorimotor integration 47. While the roles of different regions within the SMN are widely368

studied in the context of postural control 48,39,37, the network-level mechanisms are not well studied in the369

TBI population. Our study shows preliminary evidence that the functional connectivity network strength of370

the SMN comprising bilateral paracentral lobule is associated with distinguishing the balance-impaired TBI371

from balance non-impaired TBI and healthy controls. We also noticed the strongest connectivity feature372

associated with the Middle Occipital Gyrus (MOG) and the left superior parietal lobule (SPL) (Fig. 5).373

This finding corroborates those of 49 focused on the neuroimaging of normal and precision gait, where, it374

was shown that the precise spatial control of the gait depends on the functional interactions between the375

MOG (part of the visual network) and SPL 30). Also, the connectivity between MOG and SPL is expected376

to be involved in the visuospatial perception 50. With regard to the functional networks, SPL is considered377

a core region of the dorsal attention network (DAN), which is generally preactivated during the anticipatory378

movement which will subsequently predict performance to upcoming targets. Also, under certain conditions,379

the preparatory activation of the DAN will extend to the visual cortex reflecting the top-down mechanism380

of sensory control.381

4.5. Limitations382

We acknowledge there are several limitations of our study. First, our sample size is relatively small for383

stratified analysis. Based on our observations, we suggest the future study design of postural control tasks384

in TBI must take into account the level of impairment (e.g. Berg Balance Scale or Balance Error Scoring385

System) and not just the level of severity (mild/moderate/severe) based on Glasgow Coma Scale at the time386

of injury. Moreover, we did not study the task-specific activity of deep sub-cortical neural substrates such387

as the brainstem, basal ganglia, and pedunculopontine nucleus which are involved in the postural control 35
388

given the limited accuracy of EEG source localization of subcortical structures.389

Conclusion390

In this study, we present for the first time, a stratified analysis of balance deficits in TBI by studying391

the brain connectivity features pertaining to the balance perturbation task. As the heterogeneity in TBI392

poses the challenge in identifying robust brain imaging features correlated with the impairment, we used a393

multivariate statistical framework based on the partial least squares correlation. We made several interesting394

observations including, (1) COP displacement - an outcome measure of balance control did not seem to395

distinguish the balance-impaired TBI from non-impaired TBI as we observed in the case of BBS; (2) The396

MC-PLSC algorithm with the theta-band functional connectivity network strength of selected anatomical397

regions as the brain imaging features showed specific ROIs that distinguished BI-TBI from BN-TBIs and HC.398

These selected regions namely- paracentral lobules, precuneus, superior parietal lobule, superior frontal gyrus399

play a critical role in postural control; (3) The MC-PLSC algorithm with individual functional connectivity400

values as imaging features revealed that the weaker functional connections in BI-TBI (compared to BN-401

TBI and HC) linked to the leg motor region (paracentral lobule) may be indicative of maladaptive balance402

performance. Understanding the role of key regions of interest may help in designing novel therapeutic403

interventions (e.g., neuromodulation and/or goal-directed movement therapies) for improving the balance404

functions in TBI.405
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