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: Abstract

s Balance impairment or the loss of balance control is one of the most debilitating consequences of Traumatic
o Brain Injury (TBI). The levels of balance impairment may not be necessarily associated with the severity
10 level of TBI, which makes it more difficult to do the correlational analysis of the balance impairment and
1 its neural underpinnings. Therefore, we conducted a study where we collected the neurophysiological data
2 (EEG and EMG) during a balance control task on a computerized posturography platform in a group of 17
13 TBIs and 15 age-matched healthy controls. Further, to distinguish balance-impaired TBIs (BI-TBI) from
11 non-impaired TBIs (BN-TBI), we stratified the level of balance impairment using the Berg Balance Scale,
15 a functional outcome measure widely used in both research and clinical settings. We computed the brain
1 functional connectivity features between different cortical regions of interest using the imaginary part of
17 coherence in different frequency bands. These features are then studied in a mean-centered Partial Least
18 Squares Correlation analysis, which is a data-driven framework with the advantage of handling more features
19 than the number of samples, thus making it suitable for a small-sample study. Based on the nonparametric
» significance testing using permutation and bootstrap procedure, we noticed that theta-band connectivity
2 strength in the following ROIs significantly contributed to distinguishing balance impaired from non-impaired
» population: left middle frontal gyrus, right precuneus, right precentral gyrus, bilateral middle occipital gyrus,
;s right middle temporal gyrus, left superior frontal gyrus, left post-central gyrus, right paracentral lobule.
2 The knowledge of specific neural regions associated with balance impairment helps better understand neural
»s  mechanisms of TBI-associated balance dysfunction and may guide the development of novel therapeutic
s strategies, including targeted noninvasive brain stimulation. Our future studies will investigate the effects
a7 of balance platform training on sensorimotor connectivity.
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» 1. Introduction

» Traumatic Brain Injury (TBI) is one of the leading causes of death and disability across the globe !. With
s the immediate consequences of long-term disability due to the injury, TBI patients are often at elevated risks
2 of impaired motor functions such as loss of postural control 2. While it is postulated that the postural imbal-
1 ance could be attributed to the loss of sensorimotor integration after injury 2, the exact neurophysiological

s mechanisms are unknown *.

s With the advances in the current neuroimaging technologies such as high-density electroencephalography and
s functional Near-Infrared Spectroscopy (fNIRS), mobile imaging of body-brain behavior is possible. Although
s there are some studies evaluating balance-related brain functional connectivity changes in healthy individuals
s using fNIRS ° and EEG 6, there are hardly any such studies in TBI populations. The current state-of-the-art
3 in understanding neuroanatomy and neurophysiology is limited to the findings from structural imaging using
w Diffusion Tensor Imaging (DTI) ™® and resting-state functional Magnetic Resonance Imaging (rs-fMRI) °.
s This motivated us to fill the knowledge void of the underlying neural substrates of postural control in TBI.
«2 Identifying the neural markers of postural control can potentially guide us in developing novel therapeutic
1 strategies to address the postural instability in TBI.

s This brings us to some of the key research questions:
s 1. Why do some TBIs have more balance impairment than others?
w6 2. Which brain regions and networks play a crucial role in balance control?

w  8. How does the TBI alters the modulation of motor-related functional networks during the postural control
w  task?

w 4. Can we identify a diagnostic neural marker of balance deficits in TBI?

s Addressing these questions requires stratifying the brain injury population into balance-impaired and balance
51 non-impaired as not every TBI patient suffers from the same degree of postural instability. Moreover, the
sz heterogeneity in the type of brain injury adds to the challenges of neural data processing. This motivates us
53 to study the brain dynamics in balance-impaired as well as balance non-impaired populations in comparison
s with the healthy controls.

ss  While it is widely accepted that the external sensory cues trigger the shift of attention away from the ongoing
s balance task-irrelevant cognitive activity towards the balance task-relevant cognitive activity during postural
57 control 19, the interaction between different networks is not well understood. We hypothesize that a relatively
ss  complex task of postural control when faced with external perturbation cues, requires the involvement of
so  multiple networks. Our research motivation is further fuelled by the paucity of literature on the interacting
o0 effects of different brain networks pertaining to anticipatory postural control. To this end, not only are we
o1 interested in studying the network-level mechanisms of postural control but also in exploring the individual
e connectivity features associated with the balance impairment in a hypothesis-driven approach by defining
63 the regions of interest (ROI).

e In aresting-state fIMRI study focused on the functional connectivity alterations within- and between networks
s in the TBI population, it was observed that the Default Mode Network (DMN) showed reductions in within-
s network and also between-network connections with the Dorsal Attention Network (DAN) when compared
& to healthy controls ®. The authors state that these pronounced disruptions in between-network connectivity
6 in chronic TBI would have been missed if the integrity of only a single network was evaluated. Motivated by
6 this idea, we want to further study how TBI affects the task-specific cognitive-motor related network during
7 the postural control which has not been previously explored.
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= Intuitively, some of the approaches that seem to address this question look at the correlation between the
2 brain activity/functional networks in the brain and a quantifiable functional measure of balance deficits.
7z To this end, Partial Least Squares (PLS)-based approach is a powerful and robust statistical method used
7 to find a fundamental relationship between a large set of variables, which has been recently explored and
5 useful in identifying the brain-behavior association. Using this approach, Churchill et al. '* observed higher
s connectivity between the default-mode and sensorimotor network to be associated with sport-related concus-
77 sion and balance symptom severity. Extending further in this direction, we are using this data-driven PLS
s method (Fig. 1) to extract neural markers of balance impairment in chronic TBI.
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Figure 1: The mean-centered Partial Least Squares correlation (MC-PLSC) analysis framework begins with
the vectorized functional connectivity features derived from preprocessed source-localized EEG. The mean-
centered vectorized features for each subject as a row vector constitute a matrix (X) for N subjects. The
product of the design matrix (Y) and brain imaging feature matrix (X) is then subjected to Singular Value
Decomposition (SVD) which results in a set of mutually orthogonal latent variables (LVs). Left singular
vector corresponds to the design/contrast LV (e.g., HC vs. TBI) whereas the right singular value corresponds
to the brain LV which indicates the functional connectivity pattern associated with the contrast.

» 2 Methodology

» 2.1 Participant Characteristics

s This study enrolled 18 individuals with a chronic Traumatic Brain Injury (TBI) and 18 Age-matched healthy
&2 controls (HC). Due to the highly noisy EEG data of some participants, we had to exclude the data from 1
s TBI and 3 HC subjects, thus we present the data from 17 TBI and 15 HC in this paper. More information
& on the subject demographics including the inclusion and exclusion criteria for the study participants can be
es found in '2. To identify a neural marker of balance deficit within the TBI population, we dichotomized the
s TBI group into balance-impaired (BI-TBI) vs. balance non-impaired TBI (BN-TBI) based on the threshold
e for Berg Balance Scale (BBS) score. A BBS threshold score of 49 (out of the maximum 56 points) was chosen
s to define balance impairment as it was shown to optimally identify individuals with balance deficits during
% ambulation in terms of needing a walking aid 3. Using this stratification based on the BBS threshold, we
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Table 1: TBI Patient Demographics and Clinical Characteristics (N = 17)

Subj_ID Group Gender | Age Height Weight COP | BBS | Severity
(m) | () | (cm)
ABI001 BI-TBI | M 51 190.5 95.3 9.39 | 48 Severe
ABI002 BI-TBI | M 58 182.9 88 7.31 42 Severe
ABI003 BI-TBI | M 60 175.9 88.7 19.18 | 44 Severe
ABI004 BI-TBI | M 59 178.4 143.8 13.49 | 49 Severe
ABI005 BN-TBI | M 51 180.3 113.9 9.47 54 Mild
ABI006 BN-TBI | M 52 177.8 97.5 12.86 | 54 Severe
ABIO007 BN-TBI | F 53 170.2 76.2 18.0 | 51 Mild
ABI008 BI-TBI | M 60 180.3 111.1 8.19 | 48 Mild
ABI009 BN-TBI | F 32 167.6 58.5 10.12 | 56 Mild
ABIO10 BI-TBI | M 49 172.7 66.7 14.14 | 46 Mild
ABIO12 BN-TBI | F 56 168.9 120.2 4.8 55 Mild
ABIO13 BI-TBI | F 60 154.3 72.6 17.27 | 34 Moderate
ABIO16 BN-TBI | M 56 182.9 86.2 7.32 56 Mild
ABIO18 BI-TBI | M 35 182.9 68 15.33 | 44 Moderate/severe
ABIO19 BN-TBI | M 23 177.8 63.5 744 | 55 Severe
ABI020 BN-TBI | M 50 187.96 102.1 9.17 | 55 Moderate/severe
ABI021 BN-TBI | M 23 182.88 89.4 14.54 | 52 Moderate/severe

o obtained the subgroup sample of BN-TBI (N = 9) and BI-TBI (N = 8) (Fig. 2B). The patient demographics
o1 and clinical characteristics of TBI participants are presented in Table 1.

» 2.2 Data Acquisition and Pre-processing

o3 We used multiple modalities to collect EEG and the posturography platform data during a balance pertur-
o bation task and MRI to obtain subject-specific anatomical data for EEG source localization.

s (A) MRI Data Acquisition: The MRI data (T1-weighted MPRAGE scan) was acquired at the Rocco
s Ortenzio Neuroimaging Center (Kessler Foundation, NJ) using the Siemens Skyra 3T scanner (Erlangen,
o Germany) with the following specifications: 1-mm isotropic voxel resolution, TE=3 ms, TR=2300 ms, 1-mm
¢ thick 176 slices, Field of View (FOV) 256x256 mm2.

o (B) Posturography Data Acquisition: The perturbation-related data was measured using the computer-
w0 ized dynamic posturography (CDP) platform (NeuroCom Balance Master, NeuroCom Intl, Clackamas OR).
w1 This computerized platform was pre-programmed to generate unpredictable sinusoidal perturbations at low
02 amplitude (0.5 cm) or high amplitude (2 cm) in the anterior-posterior (or forward and backward) direction
w3 at 0.5Hz for 4s with a random intertrial interval between 4-8s. The posturography data were collected in
s 5 blocks where each block consisted of 20 trials randomly sorted among a 2 x 2 combination of High/Low
s amplitude and Forward /Backward perturbations. In this study, we mainly present the findings from a total
s of 29 trials of high amplitude backward perturbation, the most challenging condition with the highest range
w7 of body sway across subjects. The center of pressure (COP) time-series data from the balance platform
s was collected at 200 Hz, and offline low-pass filtered (10Hz), epoched, and mean-centered (zero-mean), and
109 averaged across trials and conditions for each subject. The COP displacement was calculated as the trial
uo average (in cm) of the cumulative distance traveled by the COP vector for the first 2s of the perturbation
w  in the forward/backward direction.

uz (C) EEG Data Acquisition: The brain activities during the balance perturbation were noninvasively
us  recorded using the 64-channel EEG system (ActiCAP BrainAmp standard, Brain Products®), Munich,
1 Germany) at a sampling rate of 500 Hz. The EEG electrodes were positioned according to the extended
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us  10-10 montage with the electrodes FCz serving as the common reference and AFz the ground.

s 2.3 Data Processing

w7 The recorded EEG was processed offline using EEGLAB and BrainStorm toolboxes. First, we preprocessed
us  the raw continuous EEG by downsampling it into 250 Hz followed by band-pass filtering between 1Hz and
uo  50Hz using a Butterworth filter (4th order) to ensure the frequency bands of interest are covered. The
120 electrical line noise was removed using the Cleanline plugin for EEGLAB. Thereafter, the noisy bursts
121 in the continuous EEG were corrected using Artifact Subspace Reconstruction. The burst detection criteria
122 threshold (k in the ASR algorithm) was set at 20 based on the comprehensive evaluation by 4. After applying
123 the common-average referencing to the ASR-corrected data, we ran the Independent Component Analysis
s (ICA) (extended Infomax algorithm)®. The independent components resulting from ICA decomposition
s were then classified into one of the following labels ((1) Brain, (2) Muscle, (3) Eye, (4) Line noise, (5)
s Channel noise, (6) Heart or (7)‘other’) using a machine-learning tool ICLabel plugin within EEGLAB '°.
12z The dipole fitting was done using the DIPFIT tool in EEGLAB which can be used to assess whether the
128 dipoles corresponding to the ICs are ‘brain’-based or not.

120 We retained only those ICs that are classified as ‘Brain’ (posterior probability > 0.5) and the residual variance
1w  (relative to the scalp topography) of 20%. Upon selecting these ICs, the back-projected sensor-space EEG
1 was used for EEG Source Localization.

» 2.4 EEG Source Localization (ESL)

133 Since the brain activity recorded at the scalp level gets attenuated due to the volume conduction effect
s (propagation of electric current flow through different layers of the brain and skull), it is advisable to estimate
s the cortical source activity '7. To achieve this, we used the OpenMEEG tool '® in the Brainstorm toolbox '°
136 to compute the forward head model wherein a realistic head model made of 4 layers (brain, inner skull, outer
137 skull, and scalp surface) is reconstructed using individual T1 MRI scans and the 3D EEG electrode positions
s using Brainsight Neuronavigation System (Rogue Research, Montreal, Canada). The volume conduction
1o effect is realized using the Boundary Element Model 2°. Once the forward model is obtained, we used
u sLORETA 2! algorithm as a distributed source model to solve the ill-posed inverse problem. Estimating
w1 the solution using SLORETA requires the computation of the noise covariance matrix in addition to the
12 forward head model. Therefore, the noise covariance estimation was done using the 'baseline’ EEG which is
s essentially the pre-perturbation period (-1s to 0s). Once we obtained the source-localized EEG, we parcellated
s the cortical surface into 66 anatomical regions using a surface-volume registration tool in BrainSuite software
us 22, Thereafter, the key regions of interest for further analyses (functional connectivity estimation and the
us partial least squares analysis) were determined based on the literature and our preliminary study '? in which
w  we identified which cortical regions were significantly more activated during the perturbation compared to
s the baseline period. To avoid any bias concerning the hemispheric dominance, we included bilateral ROIs
w9 from the middle frontal gyrus, superior frontal gyrus, middle temporal gyrus, paracentral lobule, precentral
10 gyrus, postcentral gyrus, precuneus, cingulate gyrus, superior parietal lobule, and middle occipital gyrus.

s 2.5 Functional Connectivity

12 The brain functional connectivity between two regions of interest was calculated for the time segments (0s-
153 2s) corresponding to the perturbation task and baseline state using imaginary coherence (iCOH) 2. Here,
152 the time instant at which perturbation occurs is noted as t = 0s. The imaginary coherence is considered
155 to be a robust estimate of phase synchronization between two time-series data. To ensure computational
156 tractability, we measured the iCOH between the ‘seed’ voxels of different ROIs instead of every pair of voxels
157 in an ROI. Mathematically, we denote the iCOH as the imaginary part of coherence i.e., Im(T) with ,
s where, I € CUXUXV is a three-way tensor, where U and V are the number of ROIs and frequency bins
159 of interest, respectively. Since the iCOH values are computed for each frequency bin, we averaged the iCOH
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10 values corresponding to the frequency bins within each frequency band (§ = 4 —8Hz,a = 8 — 13Hz,3 =
e 13 — 30Hz). We also obtained the Weighted Node Degree (or Node Strength) for a given ROI by summing
12 the I' values of all its connections. In the context of graph theory, Weighted Node Degree is one of the
163 simplest and the most intuitive local network measures to evaluate the contribution of a given node (or an
¢ ROI) to the connectivity network.

s 2.6 Mean-centered Partial Least Squares Correlation (MC-PLSC)

s Partial Least Squares Correlation (PLSC) for neuroimaging applications was introduced by McIntosh 24.
17 PLSC algorithm is a multivariate technique that is used to explore the statistical association between two
s sets of variables. Depending on the research question, we can choose one of the variants of PLSC such
160 as behavior PLSC (brain- and behavior measures as two different variables), task PLSC (brain measures
wo corresponding to two different conditions/tasks such as attention vs. rest), or seed PLSC (to analyze the
i functional connectivity in a particular ‘seed’ or a brain region of interest) 2°. PLS algorithm has an inherent
w2 advantage of dealing with more variables (P) than the number of observations (or samples N) which is
s suitable for most neuroimaging studies. In this study, we used the Mean-Centered task PLSC (called MC-
17 PLSC henceforth), which is conceptually very similar to Barycentric Discriminant Analysis (BADA) 20 in the
s sense MC-PLSC allows us to find sets of features (brain measures) that best maximize the absolute differences
s between the groups. In MC-PLSC, group labels are used as the dummy coded categorical variables (instead
wr of the continuous behavioral measure in the case of Behavioral PLSC). To know more about the intricacies
we  of different forms of PLSC, we recommend a review article by 2°.

19 To briefly explain the procedure of mean-centered PLSC, one can consider the brain measure matrix X €
w RY*P and the dummy coded matrix Y € RV*™_ where ‘m’ - the number of columns corresponds to the
11 number of groups. Here, the number of columns in X (i.e. P) corresponds to the number of features derived
12 from the brain imaging (e.g. functional connectivity/structural connectivity /power-spectrum density values,
13 etc.). The number of rows in both X and Y corresponds to the number of subjects N. In this study, we
18« used the weighted node degree values corresponding to 20 ROIs as our brain imaging variables, and also
s in secondary analysis, we used the functional connectivity values between 20 ROIs (a vector of 2°Cy = 190
18 connections per subject) as brain imaging variables. After standardizing the X using z-score normalization,
wr we define a matrix M such that M = diag(1TY) 1YTX, where 1 is a N x 1 vector of 1s. This matrix
s scales the X according to the mass of X (the values are scaled such that the sum of the masses is equal to
1o one). Thereafter, the mean-centered matrix is computed as Roecan—centered = M — 1[% 17M], where 1 is a
wo  N-length vector of 1s 25.

w1 R is then subjected to the singular value decomposition as R = UAV Twhere U and V are matrices
102 composed of left and right singular column vectors (u; and vi) and A a diagonal matrix of singular va-
03 lues (0x), k being the number of latent variables corresponding to the number of groups ( & =3 in our
e study). In the context of our PLSC study, U and V are termed design/group salience and brain salience
105 reflecting the group contrast and weighted contribution by the brain functional connectivity features respec-
s tively. Furthermore, the projection of Y and X onto these salience matrices (Uand V) reflects the design
wr scores (i.e. Ly = YU) and brain scores (Lx = XV) respectively. The mean-centered PLSC effectively
s decomposes R into kcomponents that optimally separate the groups by finding pairs of group/design and
109 brain latent vectors with maximal covariance.

20 To assess the statistical significance of the PLSC models, we ran non-parametric permutation testing, whe-
a0 rein, each latent variable (LV) is tested for its significance. In this procedure, the brain imaging features
22 are randomly shuffled 1000 times and the latent variables are computed using PLSC every time. This way,
23 the original relationship between brain imaging (X) and group label data (Y) is no longer valid. The latent
24 variable k is considered significant if the empirical singular value (dy) is higher than 95% of the values ob-
205 tained from the null distribution. Provided the latent variable is significant, we tested which of the loading
25 weights (vy ;) are robust/stable amongst the brain connectivity features. For this, we conducted a bootstrap
27 procedure wherein, the rows of the X and Y were sampled with replacement. Since the permutation and
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28 bootstrapping procedure can affect the alignment(rotation) of the LVs, we applied Procrustes rotation to
20 these LVs so that they correspond to the original data 27.

20 Confidence Intervals: To test whether the separation between groups was significant, we used generalized
a1 Principal Component Analysis to project the factor scores 26. The factor scores were obtained as the product
a2 of the left singular vector and singular values, i.e., F = UA. These factor scores were then projected onto a
a3 2-dimensional map. 95% confidence interval of these factor scores was obtained using bootstrapped sampling,
ae where the factor scores were obtained for every sampling. Fig. 3(c) and Fig. 4(c) shows the 95% confidence
a5 ellipses for each group on the 2-dimensional map.

2 3 Results

27 3.1 Univariate Analysis of Behavioral Measures

z2s This study compared the behavioral measures based on COP displacement during High backward pertur-
20 bation and Berg Balance Scale (BBS). While the COP displacement measures the ability to dynamically
20 maintain balance in response to balance perturbation, BBS is a measure of static and dynamic functional
21 balance and thus provides complementary information 28. A univariate analysis based on a two-tailed t-test
22 revealed that the TBI patients (mean + SD = 11.64 £ 4.28, 95% CI =[4.79, 19.18]) showed significantly
23 larger COP displacement (¢ = 3.07, p = 0.004, cohen’s D = 1.09) than HC( mean + SD = 7.82 + 2.33,
2 95% CI = [4.7, 13.13]). These results are previously presented in 2%. In this study, we further looked into the
25 stratified analysis of COP displacement (shown in Fig. 2) by comparing the balance-impaired TBI (BI-TBI)
26 and balance nonimpaired TBI (BN-TBI). The difference in COP displacement between BI-TBI (13.04 =+
ar 4.34) and BN-TBI (10.41 + 4.1) was not significant as revealed by the two-tailed t-test (¢ = 1.28, p = 0.22).
28 The BBS comparison showed a significant difference (¢ = 5.7, p = 10e-5) between BI-TBI (mean 4+ SD =
20 44.37 + 4.84) and BN-TBI (mean + SD = 54.22 + 1.72). Since the BBS data in HC was non-normal, we
20 used the nonparametric Wilcoxon Ranksum test to compare the BBS in HC (median = 56, range =[55,56])
an with that of BI-TBI and BN-TBI. As expected, when compared to HC, both BI-TBI and BN-TBI showed a
2 significantly lower BBS (z = 4.15, p = 10e-5 and z = 4.15 and p = 0.0023 respectively).
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Figure 2: A group-level comparison of COP displacement (in cm) shown on the left. The black horizontal line
on the COP plot marks the mean and the colored horizontal line marks the standard deviation. A group-level
comparison of the Berg Balance Scale (BBS) is shown on the right as a boxplot due to its non-normal distri-
bution. The horizontal line marks the median. The lower- and upper-hinge of the boxplot corresponds to the
25th and 75th quartile respectively. Statistical significance values are plotted as ***(p<0.005), **(p<0.01)
respectively.
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Figure 3: (a) Histogram of the singular values obtained from the first latent variable (LV1) corresponding
to mean-centered PLSC. The latent variable denotes the contrast BI-TBI vs. (HC and BN-TBI). The brain
imaging variable here is Theta-band weighted node degree and the design variable is the group label. The
singular value obtained from the PLSC is tested for its significance using the permutation test. The red
dotted line denotes the empirical singular value (statistically significant- above 95th percentile of the singular
values obtained from null distribution), and the blue bar graph presents the histogram of values obtained
under null distribution. (b) Design saliences (u; vector after SVD) indicate that the BI-TBI group is
significantly different from BN-TBI and HC, with the error bars indicating the 95% confidence interval. The
yellow background indicates robust salience values for all 3 groups. (c¢) 95% confidence ellipses denote a clear
separation of BI-TBI from BN-TBI and HC the first latent group/contrast vector (x-direction) associated
with LV1 but not so for the second latent vector (y-direction) associated with LV2 (p=0.93). (d) Highlighted
brain regions of interest for LV1 correspond to the robust variables selected based on the bootstrapping ratio
(BSR) and (e) the bar graph values indicate the brain saliences (v; vector) associated with LV1 obtained
from bootstrapping. The robust ROIs (Bootstrap ratio>2.5); the robust region and bootstrap values are
denoted with a blue diamond mark.
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Figure 4: (a) Histogram of the singular values obtained from the first latent variable (LV1) corresponding to
the contrast BI-TBI vs. (BN-TBI and HC). The brain imaging variable here is alpha-band weighted node
degree and the design variable is the categorical label (mild-impaired TBI as 1, severe-impaired TBI as -1).
The singular value obtained from the PLSC is tested for its significance using the permutation test. The red
dotted line denotes the empirical singular value (statistically significant- above 95th percentile of the singular
values obtained from null distribution), and the blue bar graph presents the histogram of values obtained
under null distribution. (b) Design saliences (u;) indicate that the BI-TBI group is significantly different
from HC with the error bars indicating the 95% confidence interval of bootstrapped saliences. The yellow
background indicates robust salience values for BI-TBI and HC groups but not BN-TBI. (c¢) Confidence
ellipses clearly denote the separation between HC and BI-TBI along the dimension-1 (x-axis) associated
with LV1, but not BN-TBI as its confidence ellipse is spanning both negative and positive x-values. Also,
confidence ellipses for LV2 (y-axis) overlap highlight the lack of significant group separation (p=0.99) (d)
Highlighted brain regions of interest correspond to the robust variables selected based on the bootstrapping
ratio (BSR) for LV1 and (e) the bar graph values indicate the brain saliences contribution (vy vector)
associated with LV1 obtained from bootstrapping. The robustness of each variable is determined based on
the ratio (>2.5); the robust regions and bootstrap values are highlighted with a blue diamond mark.

= 3.2 Mean-centered PLSC: Weighted Node Degree features

26 Upon dichotomizing the TBI group into BI-TBI and BN-TBI based on the BBS threshold, we ran mean-
2 centered PLSC with 3 groups (BI-TBI, BN-TBI, and HC) as design variables, and weighted node degree
28 features as the brain imaging variables. We suspected that the level of balance impairment would also play
29 a role in identifying the discriminative neural markers. Based on this analysis framework, we observed that
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20 the MC-PLSC using weighted node degree (WND) features in theta frequency band identified LV1 as a
2 significant latent variable (out of three) that maximally differentiates the groups by contrasting BI-TBI from
22 BN-TBI and HC together (Fig. 3(b)). The nonparametric permutation testing revealed that the empirical
23 singular value is in the top 5 percentile of the permutated singular values (Fig. 3(a)), thus highlighting
24 the statistical significance (p = 0.039) of LV1. Upon bootstrap testing of this LV, 9 ROIs were found to
25 be robustly associated with LV1 having their Bootstrap Ratio (BSR) > 2.5 (Fig. 3(e)) i.e., their salience
26 values/weighted contributions were found to be non-zero with a 99% confidence interval. The robust WND
ar features are presented in (Fig. 3(d & e)), the regions highlighted (in the descending order of their salience
us  values) are - left middle frontal gyrus, right precuneus, right precentral gyrus, bilateral middle occipital
uo  gyrus, right middle temporal gyrus, left superior frontal gyrus, left post-central gyrus, right paracentral
x0 lobule.

s In a post-hoc analysis of individual group-wise contrast PLSC (i.e., one group contrast at a time - BI-TBI
s vs. BN-TBI, and BI-TBI vs. HC) using theta-band WND features, we noticed that the robust ROIs were, in
»3  fact, the same set of cortical regions found in the above MC-PLSC analysis (BI-TBI distinguishing BN-TBI
¢ and HC). This supports the notion that the neural substrates of balance impairment for BI-TBI could be
»s  the very same ROIs when compared to both BN-TBI and HC.

»6 A similar analysis using the alpha-band WND features revealed LV1 to be significantly distinguishing BI-TBI
»s7 from BN-TBI and HC (Fig. 4(b) and Fig. 4(c)). LV1 was associated with a slightly different set of robust
»s  regions based on the bootstrap ratio: left superior frontal gyrus, right postcentral gyrus, right mid frontal
x0  gyrus, right superior parietal lobule, bilateral paracentral lobules, and bilateral precuneus.

w 3.3 Mean-centered PLSC: Individual Connectivity Features

s To further investigate the localized roles of individual functional connections which correlate with the contrast
%2 of different groups, we ran the MC-PLSC with the individual connectivity features (connection strength
%3 between two regions) derived from imaginary coherence in each frequency band (theta, alpha, and beta).
s This analysis revealed only theta-band connectivity features to be distinguishing impaired TBI from the rest
x5 (BI-TBI different from BN-TBI and HC) with a marginally significant result ( p = 0.069). The circular
26 connectivity plot is shown in Fig. 5. Significant connections are highlighted based on the bootstrapped
w7 ratio (BSR) > 2.6 suggesting that the connections have a 99% confidence level in terms of robustness to
%8 spurious connectivity features. Based on the connectivity pattern shown in Fig. 5, we observed that the
x0  distinction between the impaired and the non-impaired population (BN-TBI and HC) is reflected by weaker
a0 connections (BI-TBI < BN-TBI and HC) involving the left superior parietal lobule, left postcentral gyrus,
an right mid occipital gyrus, and right paracentral lobule. Most of these robust connections are associated with
a2 the sensorimotor network (postcentral gyrus, paracentral lobule, and even middle temporal gyrus) and visual
a3 network®?).
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Figure 5: Visualization of robust functional connections derived from theta-band imaginary coherence
based on the |[BSR| > 2.6. The color of the connectivity links corresponds to the first latent variable of
the brain salience matrix (v1). The thickness of the connectivity value (between two ROIs) indicates its
proportional contribution to the weighted node degree of a given ROI (thicker connection - higher proportion,
thinner connection - lower proportion). The color of the sector (outer circle) indicates the absolute sum of
connectivity values corresponding to a given ROI (darker color shade denotes a higher sum). The cortical
ROIs are visually represented as a volumetric ROI next to the label. The circular connectivity graph is
visualized using the R package circlize 3!.
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- 4. Discussion

s 4.1. Disentangling the levels of balance impairment in TBIs

a6 We noticed that the level of task-specific balance impairment was varied across individuals within the TBI
o group based on the measure of COP displacement. Although we hypothesized that the body sway during
a3 the external perturbation measured by COP displacement would be smaller in the BI-TBI group compared
a9 to the BN-TBI group, we did not see any significant differences. We suspect the reason could be that the
20 BBS is strongly correlated with the gross functional outcome measure (such as Timed Up-and-Go) rather
s than the laboratory measures of body sway (measured using COP displacement). We certainly recommend
s  future studies to investigate the association between the outcome measure specific to the experimental task
23 and the traditional functional outcomes such as BBS and/or Balance Error Scoring System.

s Recent literature suggests that balance complaints from chronic TBI individuals are explained more by the
25 dysfunction of central sensory systems than the peripheral vestibular or oculomotor systems 2. In the
2 following subsections, we discuss the role of different cortical regions and functional networks in the postural
27 control mechanisms in TBI.

288

» 4.2. Main PLSC findings

20 Our MC-PLSC analysis found a WND latent vector of brain regions that robustly and maximally separate
21 the 3 groups (BI-TBI, BN-TBI, and HC) for theta and marginally so for the alpha band. The associated
22 contrast vector for theta (Fig. 3(b)) reveals that the groups are maximally separated when contrasting BI-
23 TBI with BN-TBI and healthy controls combined. This suggests that the theta neural response for BN-TBI
2o is more like that of HC. But more importantly, BI-TBI individuals do present an impaired neural response
205 (decrease in WND) to the balance perturbation, which is specific to balance impairment as measured by
26 the BBS. This observation supports our hypothesis and rationale for separating TBIs into balance-impaired
27 and non-impaired populations. Furthermore, this could potentially explain why in our prior analysis 33, no
28 group difference in a global measure of WND connectivity was found when contrasting HC with both BI-
20 and BN-TBIs combined.

w0 In comparison, for alpha (Fig. 4(b)) the groups are maximally separated when only contrasting BI-TBI and
sm  HC alone, excluding BN-TBI. This would suggest that BN-TBI doesn’t separate well from either BI-TBI or
sz HC. Furthermore, based on the brain and contrast saliences of this latent variable, BN-TBI shows reduced
33 alpha WND compared to HC. However, given that BI-TBI and HC are defined both by BBS score but also
s the overall TBI pathology, this latent variable characterized by a reduced alpha WND in TBI may not be a
s specific marker of balance deficit. This is supported by the fact that no significant latent variable was found
w6 when running a post-hoc PLSC analysis between BI-TBI and BN-TBI (p=0.48; results not shown) which
a7 are solely differentiated by their BBS impairment score.

s Finally, similar to theta WND, our contrast analysis on individual connectivities reveals a close to a significant
w0 latent variable (p=0.07) that best differentiates groups when contrasting BI-TBI from both BN-TBI and
a0 HC. Similarly, based on the corresponding brain and contrast salience values, BI-TBI shows reduced theta
au  connectivities compared to HC and BN-TBI. The overall finding of theta band disconnectivity as a specific
sz marker of balance deficit in TBI is consistent with its critical role in postural control 3*

as 4.3. Balance-related cortical regions of interest and connectivity identified by
su PLSC:

a5 The current study found that the main ROIs identified by MC-PLSC across theta- and alpha-band coherence
s WND features are the right paracentral lobule and precuneus, and the left superior frontal gyrus. These
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a7 cortical regions are associated with the sensorimotor coordination required for postural control. Specifically,
ss  the paracentral lobule processes the motor commands for balance control 3° after receiving the sensory
a9 inputs from the visual, vestibular, and somatosensory cortices. In the context of theta-band functional
0 connectivity, the supplementary motor area located just in front of the paracentral lobule is associated with
s1 the pull perturbation while standing 3%.

2 Extending further, the entire closed-loop mechanism of balance control as coordination between several brain
23 regions is described as the 'body schema’ in the hypothetical model 36. As per this model of posture-gait
324 control, the midbrain and subcortical regions including the cerebellum, brainstem, thalamus, and cerebral
s cortex receive the sensory signals from the visual cortex, vestibular cortex, and primary sensory cortex, which
26 will then be processed by the temporoparietal cortex to construct the aforementioned body schema. Specif-
37 ically, the temporoparietal cortex assists in generating motor control commands from the supplementary
28 motor area (SMA) and premotor (PM) regions, with the help of basal ganglia and cerebellum. In our
20 study, the middle frontal gyri which include the SMA /PM region seem to play a distinctive role in the BI-
a0 TBI group (when compared to BN-TBI and HC) as revealed by its robust bootstrap ratio in the MC-PLSC
s model derived from theta-band WND features. From a functional perspective, the role of middle frontal
s2  gyri in anticipated postural control is highlighted in 37. Moreover, the middle frontal gyri are reported to be
s involved in the supraspinal motor network of stance and locomotion of walking in elderly adults 3.

s Once the sensory signals are received and processed by visual, vestibular, and somatosensory cortices, the
s motor commands for balance control are processed by the paracentral lobule and precentral gyrus 3 which
16 constitutes the leg region of the M1. In the framework of the posture-gait control model mentioned in 3¢,
7 we believe that the superior parietal region is involved in anticipatory postural adjustment as it detects
s postural instability 4°.  Along the same line of discussion, our findings of theta-band coherence-based
30 individual connectivity features show that significant functional connections are associated with the left
w0 superior parietal lobule in addition to the right paracentral lobule and left postcentral gyrus. Based on
s the role of the cingulate and angular gyrus in the dynamic regulation of attention to unpredictable events
s presented in 4!, and their anatomical relation with the basal ganglia and cerebellum, we expect that the
us  postural control signals generated by the motor regions are passed to the cortico-reticular and reticulospinal
s tracts via cingulate gyrus.

us  In terms of the visual perception of the balance perturbation, we anticipate the regions around the occipital
us  lobe will play an integral role in the visual perception of static vs. dynamic motion (or tilt) of the posturog-
w7 raphy platform based on the report of an Activation Likelihood Estimation (ALE) meta-analysis article 42.
us  Along this line of discussion, we believe the middle occipital gyrus identified by the theta-band WND features
s in our study may play a critical role in the sensory integration of visual and motor functions 3. Moreover,
0 the activation of middle temporal gyri has been reported in the simulation (or imagination) of a postural
s control study #44° wherein the activated areas were shown to be in close proximity to the PIVC (parietal
32 insular vestibular cortex) - a region that is generally regarded as responsible for processing the vestibular
33 signals related to the postural control 36.

= 4.4. Roles of different functional networks identified by PLSC

s For qualitative assessment of our findings, we now discuss the roles of functional networks to which the
16 aforementioned ROIs belong.

7 Although it is not trivial to assign the anatomical ROIs to specific functional networks, a recent study
s has tested the spatial correspondence between the anatomical regions (based on the Desikan-Killiany atlas)
30 and functional networks (based on the Yeo-Atlas) 6. The permutation testing of the normalized mutual
w0 information showed that the hypothesized overlap between the functional networks and anatomical ROIs
1 was not due to random chance. In other words, the nonparametric testing supported the evidence that
2 the functional networks and anatomical ROIs have good spatial correspondence. Motivated by this idea, we
%3 wanted to explore the role of the significant ROIs returned by the PLSC analysis in the context of functional
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s networks involved in postural control. In this regard, our focus is mainly on the two intrinsic functional
s networks: the sensorimotor network (SMN) and the visual network (VN), as these networks showed high
s spatial correspondence with the motor and visual areas as per the Desikan Killiany Atlas*®. Not surprisingly,
w7 the sensorimotor network (SMN) is reported to play the most critical role during postural control mechanisms
s by facilitating sensorimotor integration 7. While the roles of different regions within the SMN are widely
30 studied in the context of postural control 83937, the network-level mechanisms are not well studied in the
s TBI population. Our study shows preliminary evidence that the functional connectivity network strength of
sn the SMN comprising bilateral paracentral lobule is associated with distinguishing the balance-impaired TBI
sz from balance non-impaired TBI and healthy controls. We also noticed the strongest connectivity feature
s associated with the Middle Occipital Gyrus (MOG) and the left superior parietal lobule (SPL) (Fig. 5).
s This finding corroborates those of *° focused on the neuroimaging of normal and precision gait, where, it
s was shown that the precise spatial control of the gait depends on the functional interactions between the
s MOG (part of the visual network) and SPL 3°). Also, the connectivity between MOG and SPL is expected
s7 to be involved in the visuospatial perception °°. With regard to the functional networks, SPL is considered
ss  a core region of the dorsal attention network (DAN), which is generally preactivated during the anticipatory
;9 movement which will subsequently predict performance to upcoming targets. Also, under certain conditions,
0 the preparatory activation of the DAN will extend to the visual cortex reflecting the top-down mechanism
s of sensory control.

w2 4.5. Limitations

3 We acknowledge there are several limitations of our study. First, our sample size is relatively small for
s stratified analysis. Based on our observations, we suggest the future study design of postural control tasks
s in TBI must take into account the level of impairment (e.g. Berg Balance Scale or Balance Error Scoring
s System) and not just the level of severity (mild/moderate/severe) based on Glasgow Coma Scale at the time
ss7  of injury. Moreover, we did not study the task-specific activity of deep sub-cortical neural substrates such
ss  as the brainstem, basal ganglia, and pedunculopontine nucleus which are involved in the postural control 3°
s given the limited accuracy of EEG source localization of subcortical structures.

w Conclusion

s In this study, we present for the first time, a stratified analysis of balance deficits in TBI by studying
32 the brain connectivity features pertaining to the balance perturbation task. As the heterogeneity in TBI
33 poses the challenge in identifying robust brain imaging features correlated with the impairment, we used a
s multivariate statistical framework based on the partial least squares correlation. We made several interesting
35 observations including, (1) COP displacement - an outcome measure of balance control did not seem to
w6 distinguish the balance-impaired TBI from non-impaired TBI as we observed in the case of BBS; (2) The
s MC-PLSC algorithm with the theta-band functional connectivity network strength of selected anatomical
e regions as the brain imaging features showed specific ROIs that distinguished BI-TBI from BN-TBIs and HC.
30 These selected regions namely- paracentral lobules, precuneus, superior parietal lobule, superior frontal gyrus
w0 play a critical role in postural control; (3) The MC-PLSC algorithm with individual functional connectivity
w1 values as imaging features revealed that the weaker functional connections in BI-TBI (compared to BN-
w2 TBI and HC) linked to the leg motor region (paracentral lobule) may be indicative of maladaptive balance
w3 performance. Understanding the role of key regions of interest may help in designing novel therapeutic
ws interventions (e.g., neuromodulation and/or goal-directed movement therapies) for improving the balance
w5 functions in TBI.
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