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Abstract
Short tandem repeats (STRs) comprising repeated sequences of 1-6 bp are one of the largest
sources of genetic variation in humans. STRs are known to contribute to a variety of disorders,
including Mendelian diseases, complex traits, and cancer. Based on their functional importance,
mutations at some STRs are likely to introduce negative effects on reproductive fitness over
evolutionary time. We previously developed SISTR (Selection Inference at STRs), a population
genetics framework to measure negative selection against individual STR alleles. Here, we
extend SISTR to enable joint estimation of the distribution of selection coefficients across a set
of STRs. This method (SISTR2) allows for more accurate analysis of a broader range of STRs,
including loci with low mutation rates. We apply SISTR2 to explore the range of feasible
mutation parameters and demonstrate substantial variation in mutation and selection
parameters across different classes of STRs. Finally, we show that de novo STR mutations tend
to confer a greater selective burden compared to standing STR variation in the population and
measure the relative burden of STRs vs. single nucleotide variants in a typical genome. Overall,
we anticipate that the evolutionary insights gained from this study will be important for future
studies of variation at STRs and their role in evolution and disease.
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Introduction

Short tandem repeats (STRs) are DNA sequences consisting of repeated 1-6 base pair motifs

that comprise approximately 1.6 million loci in the human genome1. Due to their high prevalence

in the genome and rapid mutation rates, variation in copy number at STRs represents a large

portion of human genetic variation. Recent evidence supports a role for STRs in diverse

biological processes that control gene regulation2,3 and contribute to a wide range of human

traits4. Based on their functional importance, mutations at some STRs are likely to introduce

detrimental effects on reproductive fitness. Understanding these fitness effects can provide

insights into the role of STRs in evolution.

Previous studies have used multiple approaches to measure the effects of natural selection on

STRs. Haasl and Payseur developed a detailed model of STR evolution including mutation,

genetic drift, and natural selection at an STR implicated in Friedreich's Ataxia5. However, fitting

their model is computationally intensive due to the large number of parameters, making it

infeasible to fit individually at each of the more than one million STRs in the genome. We

previously developed an STR constraint metric based on comparing observed vs. expected

mutation rates6. This metric could broadly distinguish neutrally evolving STRs from those

implicated in severe early-onset disorders. However, that score is based on noisy STR mutation

rates that are computationally expensive to estimate from individual-level genotypes, does not

model the known dependence of mutation rate on allele length, and only produces locus-level,

rather than allele-level scores.

Recently, we introduced SISTR (Selection Inference at Short Tandem Repeats), a

computationally efficient method to measure negative selection at STRs7. SISTR estimates

per-locus selection coefficients by finding the selection parameters that best fit the allele

frequency distribution for one STR at a time. These fine-grained scores enable predicting the

fitness impact of individual alleles at a specific locus. However, this approach faces several

limitations. First, it has low power to detect weak selective effects. Furthermore, at STRs with

extremely low mutation rates, such as short trinucleotide repeats, it is unable to precisely

estimate selection coefficients since low levels of genetic variation could be due to the low

mutation rate, strong negative selection, or a combination of both forces.

Here, we extend SISTR to enable joint estimation of the distribution of selection coefficients

across a set of STRs. This method allows us to more accurately analyze a broader range of
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STRs, including loci with low mutation rates. We apply SISTR2 to explore the range of feasible

mutation parameters and demonstrate substantial variation in mutation and selection

parameters across different classes of STRs. Finally, we show that de novo STR mutations tend

to confer stronger selective burden compared to standing STR variation in the population and

measure the relative burden of STRs vs. single nucleotide variant (SNV) mutations in a typical

genome. Overall, we anticipate that the evolutionary insights gained from this study, including a

more detailed understanding of STR mutation and selection parameters for different types of

STRs, will be important for future studies of variation at STRs and their role in evolution and

disease.

Results

Overview and validation of the SISTR2 joint inference method

We previously developed SISTR, a population genetics framework that estimates selection

coefficients at individual STRs7. SISTR incorporates an evolutionary model of STR variation that

includes mutation, negative natural selection, and genetic drift. Our mutation model is based on

a generalized stepwise mutation (GSM) model with two modifications, including a

length-dependent mutation rate and a directional bias in mutation sizes toward an optimal

(central) allele length (Fig. 1a). Since the optimal allele is typically unknown, for most

applications we assume the modal allele in the population is the optimal allele and treat these

interchangeably. To model negative selection, we assume that the modal allele at each STR has

a fitness of 1, and that the fitness of other alleles decreases linearly with their distance, in

number of repeat units, from the optimal allele. The decrease in fitness of non-optimal alleles

scales with s, which ranges from 0 (no effect on fitness) to 1 (any allele other than the optimal

allele is lethal). SISTR leverages a previously developed technique5 that incorporates mutation,

selection, and demographic models (Methods) to simulate allele frequencies forward in time

(Supplementary Fig. 1). Using approximate Bayesian computation (ABC), we determine the

posterior distribution of s at each locus by comparing observed allele frequencies to those

simulated by our model. We previously showed that SISTR performs well on STRs with high

mutation rates, but is underpowered to detect selection at STRs with low mutation rates or

under only modest selection. In those cases, information contained in genetic variation at a

single locus is insufficient to accurately infer selection.
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To address these challenges, we developed SISTR2, an extension of SISTR that enables joint

estimation of the distribution of fitness effects (DFE) across a set of STRs (Methods; Fig. 1a;
Supplementary Fig. 2). By leveraging information across a set of loci, SISTR2 can obtain more

precise estimates of the DFE. Instead of estimating s at each STR individually, the joint method

assumes s for each STR is drawn from a gamma distribution and infers the𝑠 ∼ Γ(𝑎,  𝑏)

parameters of this distribution.

SISTR2 takes as input allele frequencies for a set of STR loci, prior distributions on the gamma

distribution parameters, and the mutation, selection, and demographic models used as input to

SISTR. It first computes heterozygosity (defined as , where is the frequency of the1 − Σ
𝑖
𝑝

𝑖
2 𝑝

𝑖
𝑖

th allele) as a summary statistic for each locus (Methods). It then uses our simulation

framework to simulate a set of STR loci such that the selection coefficient for each locus is

drawn from for some a and b. Using ABC, SISTR2 determines the median posteriorΓ(𝑎,  𝑏)

estimates of a and b by comparing heterozygosity distributions of observed vs. simulated data

for different values of a and b.

Using simulated data, we validated the ability of the joint method implemented in SISTR2 to

obtain a posterior estimate of the gamma distribution parameters describing a DFE for a set of

STRs. We tested the method on different mutation models as well as a variety of gamma

distribution parameters capturing a range of distributions of selective effects. In each simulation,

we first chose a mutation model and optimal allele length, then simulated STR allele frequencies

for 1,000 loci, drawing the value of s for each locus from a gamma distribution. We then used

SISTR2 to estimate a and b from each simulated dataset and compared inferred values to the

true values used to simulate the data (Methods). We found SISTR2 accurately recovered

simulated gamma distribution parameters for mean s values ranging from 10-5 to 10-1, that our

point estimates of s are unbiased (Fig. 1b), and that inferred distributions of s match well to the

true distributions used to simulate the data (Fig. 1c). Further, these estimates are robust to

common STR genotyping errors (Supplementary Fig. 3, Methods).

Next, we compared joint estimates of s obtained from SISTR2 to per-locus estimates output by

SISTR. To this end, we used SISTR to estimate individual s values for each simulated locus

above, and compared the distribution of s values to those from the true underlying gamma

distribution (Fig. 1d, Supplementary Fig. 4). We found that joint estimation with SISTR2 shows

several important advantages. First, it can distinguish between weaker selection (e.g. s = 10-5

vs. 10-4) and neutrality (s=0) which is difficult to do using SISTR. Second, it can more accurately
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infer selection at loci with low mutation rates. We further evaluated the impact of the number of

loci used on SISTR2’s performance. As expected, precision increases with the number of loci

used as input to the joint estimation. For most settings, accurate estimates of s can be obtained

with as few as 10 loci (Supplementary Fig. 5). For sets of loci with lower mutation rates (<10-5),

several hundred loci are needed.

Figure 1: SISTR2 estimates the distribution of fitness effects (DFE) across a set of STRs.
(a) Overview of SISTR2. For a set of STRs, SISTR2 takes priors on the parameters of the gamma distribution of
fitness effects (s), a mutation model, a selection model, demographic parameters, and the observed distribution of
heterozygosities across a set of STRs as input. It outputs a posterior estimate of the parameters a and b that
describe the gamma distribution of fitness effects (DFE) across loci. Bolded red variables indicate input parameters
describing the mutation, selection, and demographic models. The full model is described in Methods.
(b) Validation of SISTR2 using simulated data. The x-axis indicates the simulated gamma distribution parameters.
Dashed vertical lines separate simulation settings with the same mean s value. For a given mean s value, various
simulations with different gamma distribution shapes (controlled by a) were run. The y-axis gives the estimated mean
s of 20 estimates.
(c) Inferred distribution of s values for four gamma distribution parameter (a, b) combinations. The x-axis
denotes bins of s values. The y-axis gives the fraction of loci inferred to be in each bin. The black stars give the
ground truth fraction of s values in each bin. For (b) and (c) each color represents a different mutation model setting
(Methods).
(d) Comparison of DFEs inferred by SISTR (per-locus) vs. SISTR2 (joint). Plots show the cumulative frequency
distribution of s for various simulation rounds estimated either individually at each locus using SISTR (red) or inferred
jointly across all loci using SISTR2 (blue). The black line shows the ground-truth distribution of s values. The left
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panel shows a setting with low mutation rate and low selection (mean s=1e-5), highlighting a case where SISTR, but
not SISTR2, overestimates s. The right panel shows a setting with high mutation rate and high selection (mean
s=0.01), where both methods perform well. In both settings, SISTR2 produces unbiased estimates of the distribution
of s values.

Inferring feasible mutation parameters for various types of STRs using SISTR2

Accurate models of the mutational process are necessary to infer selection on putatively

functional STRs. In addition to inferring DFEs, SISTR2’s framework allows us to determine the

range of feasible mutation parameters for a set of neutrally evolving loci. To do so, we draw

mutation rates from a uniform prior, fix s=0, and run SISTR2’s ABC method on a target set of

presumed neutral loci. If the posterior distribution of accepted mutation rates is wide, it indicates

that a broad range of mutation models are consistent with the observed heterozygosity

distribution or that there is not enough data available to determine which mutation model

feasibly explains the observed data. On the other hand, if the posterior distribution is tight, it

indicates that only one mutation model fits best.

We performed STR genotyping using GangSTR8 in 534 samples of European descent

(Discussion) from the 1000 Genomes Project9 for which deep whole-genome sequencing data

was available10 (Methods). We restricted our analysis to STRs with repeat unit lengths 2-4 bp,

which are abundant in the genome and can be reliably genotyped. We further filtered very short

STRs (Methods) since those loci are typically not polymorphic in repeat copy number. After

filtering, 86,327 STRs remained for analysis. We then applied SISTR2 using the strategy

described above to explore feasible ranges for mutation parameters across STRs with a range

of repeat unit lengths, sequences, and modal (optimal) allele lengths. For dinucleotides, we

tested 6 different mutation rate models (Fig. 2a), and for trinucleotides and tetranucleotides, we

tested 7 models (Fig. 2b and 2c), each of which models a linear relationship between repeat

length and mutation rate. For each setting, we applied SISTR2 to intergenic loci which we

expect are mostly neutral, and set the gamma distribution parameters a and b such that the s

value drawn is always 0. Then, we recorded which mutation models were accepted via ABC for

each class of loci and assessed whether accepted simulations were enriched for particular

mutation models (Fig. 2d-f). The model with the highest number of ABC acceptances

corresponds to the maximum likelihood mutation model.

We assessed the goodness of fit of each model using a post-hoc Kolmogorov-Smirnov (KS) test

to compare distributions of heterozygosity values for loci simulated under the model to the

observed heterozygosity distribution for a set of STRs (Supplementary Fig. 6). We repeated
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this test 100 times for each class of STRs and recorded the percentage of simulation rounds

where the observed distributions were significantly different (nominal KS p<0.05). Notably, STR

classes with the highest numbers of loci have the highest power to detect even small differences

in heterozygosity distributions. To reduce this bias in power, we repeated the analysis after

subsetting the number of loci in each class to a maximum of 50 STRs (Supplementary Fig. 7).

For most classes of loci, the percentage of simulations that are similar to the observed values is

high, indicating the maximum likelihood mutation model fits well. However, for certain classes of

loci (e.g. long AC repeats, short trinucleotide repeats), simulated and observed heterozygosity

distributions were significantly different (KS p<0.05). We plotted examples of observed versus

simulated heterozygosity distributions to visually assess their similarity (Supplementary Fig. 8).

We found in most cases, the observed heterozygosity distribution is still largely similar to that

produced by the inferred maximum likelihood model. Overall, these results suggest that there

may be aspects of the mutational process at these loci that are not captured by our model, but

that the maximum likelihood mutation model still provides a reasonable fit for use in downstream

analyses.

We found that even among loci with the same repeat unit length, there is notable variation in

feasible mutation rates across different repeat unit sequences. For example, within

dinucleotides, we found that a single mutation model fits most loci with repeat units AC and AG

well, whereas our analysis suggests most AT repeats have higher mutation rates (Fig. 2d). This

trend is consistent with mutation rates we7 and others11 previously inferred from de novo STR

mutations, which found that STRs with repeat unit AT mutate several times faster than other

dinucleotides STRs (Supplementary Fig. 9).

Most trinucleotide repeats are fit by a single mutation model, with some notable exceptions (Fig.
2e). For example, AAT repeats with modal alleles greater than 8 repeat units fit best with higher

mutation rates than expected even accounting for a linear increase of mutation rate with repeat

length. One explanation for this deviation could be that mutation processes at long AAT repeats

are not captured by our model and that mutation rates scale super-linearly with repeat length.

An alternative explanation is that intergenic AAT repeats may not be truly neutrally evolving,

which could bias our mutation model inference. Within trinucleotides, we also estimate that AAG

have consistently higher mutation rates, which matches previous observations that these

repeats are unstable and prone to large expansions12.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.12.491726doi: bioRxiv preprint 

https://paperpile.com/c/BImrBQ/79d37
https://paperpile.com/c/BImrBQ/9c1Si
https://paperpile.com/c/BImrBQ/peN1X
https://doi.org/10.1101/2022.05.12.491726
http://creativecommons.org/licenses/by-nc/4.0/


Maximum likelihood mutation models for tetranucleotides showed more variability across repeat

unit sequences, and are consistent with previous reports that AAAG, AAGG, and AGAT repeats

exhibit higher mutation rates than other tetranucleotide STRs12. Overall, this analysis highlights

substantial differences in mutation rate across STRs with different repeat units. We used these

results to inform repeat unit-specific mutation rate parameters for selection inference performed

below.

Figure 2: Exploring feasible mutation rates consistent with observed allele frequencies.
(a-c) Mutation rate models tested for dinucleotide, trinucleotide, and tetranucleotide STRs. The x-axis shows
the allele length in base pairs, and the y-axis gives the corresponding log10 mutation rate.
(d-f) Mutation model fit for different STR classes. Each STR class (x-axis) is defined by the repeat sequence and
modal (optimal) allele length. Top panels denote the number of loci in each class (truncating at 1,000 for categories
with more loci). For bottom panels, each row denotes one mutation setting corresponding to models shown in a-c.
The color of each cell represents the proportion of the ABC acceptances each mutation model represents.

Distinct types of repeats have different fitness effects

Next, we applied SISTR2 genome-wide to estimate the DFE at different STR classes. As inputs,

we used allele frequencies from 86,327 STRs computed from European samples as described
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above, and set mutation parameters at each STR based on the maximum likelihood mutation

model for each repeat unit sequence and optimal allele identified in Fig. 2. We first examined

DFEs for different repeat classes and functional categories weighted by the number of loci for

each optimal allele (Fig. 3a, Methods). We found, as expected, that coding STRs are under

strongest selection whereas intergenic STRs are under the weakest selection (Fig. 3a). Intronic

STRs and those in UTRs or promoters are under slightly stronger selection than STRs in

intergenic regions. Full results for each category are summarized in Supplementary Table 1.

Next, we compared DFEs for STRs with different repeat unit sequences and optimal allele

lengths (Fig. 3b-d; Supplementary Table 2). As in our mutation rate analysis, we tested the

goodness of fit of the DFE estimated by SISTR2 using a KS-test and found that in most cases

inferred DFEs resulted in good fits to observed heterozygosity distributions (Supplementary
Fig. 10). Similar to our mutation rate analysis, observed data at most repeat classes fit well to

SISTR2’s inferred model with several exceptions. In particular, short trinucleotides, AT repeats,

and AAT repeats were not fit well, indicating inferred DFEs for those loci may be unreliable

(Discussion).

Overall for dinucleotides, AC repeats tend to be under the strongest selection (Fig. 3b).
However, this trend is dependent on the length of the STR. Analyzing STRs separately by

optimal allele length shows that longer AC repeats tend to be under increased selection,

whereas for shorter STRs AG repeats are under strongest selection (Supplementary Fig. 11).

We additionally observed that AT repeats tend to be under weaker selection than AC or AG

repeats, although this trend may be driven by the overall shorter average lengths of AT vs. AC

repeats (Fig. 2) or could reflect the relatively poor fit of our model to AT vs. other dinucleotide

repeats (Supplementary Fig. 10). For trinucleotides, we found that ACC and AAC repeats

tended to be under the strongest and weakest selection, respectively (Fig. 3c; Supplementary
Fig. 11). For tetranucleotides, AAGG, AAAG, and AGAT, which also showed higher mutation

rates than other tetranucleotide STRs12 (Fig. 2f), exhibited the weakest selection coefficients

(Fig. 3d; Supplementary Fig. 11).
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Figure 3: The distribution of selection coefficients for different STR classes.
(a) Functional category analysis. Red=coding, orange=introns, light green=5’UTR, dark green=3’UTR,

cyan=promoters; purple=intergenic.

(b-d) Repeat unit analysis. For all plots, the CDF is weighted by the number of loci for each modal allele (Methods).

Each color denotes a different repeat unit. All analyses presented here use the joint inference method implemented in

SISTR2.

Overall burden of deleterious mutations due to STRs vs SNVs

We used SISTR2 to quantify the genome-wide fitness burden of de novo STR mutations using

two different methods (predicted and directly observed) (Table 1). In each case, we assumed

the total mutation burden is additive across individual mutations and excluded STR mutation

classes which had poor model fit based on the KS-test described above (Supplementary Fig.
12, Methods). This excludes a large number of AAAT and long AC repeats, which likely have

deleterious effects but had unreliable estimates for s. First, we computed the predicted burden

of mutations within each STR class separately based on their mutation rates, inferred DFEs,

and mutation properties, and summed the burden across all classes. Second, we computed the

burden of directly observed de novo STR mutations in 3 trio families from the 1000 Genomes

Project with available deep WGS (Methods) by summing the predicted fitness effect of each

mutation relative to the parent allele as computed by SISTR2. Notably, since WGS is based on

cell-line derived DNA, some observed mutations are likely to be cell line artifacts rather than true

de novo mutations. Both methods for computing the fitness burden of de novo STR mutations

gave similar results (mean additive burden ranging from 0.01-0.03).

Mutation type Mean s # Mutations/generation Total burden

STRs - genome-wide+

Predicted
Observed (3 trios*)

NA12864
NA10865
NA10845

0.00077

0.00051
0.00055
0.00088

13.78

41
58
17

0.012 (0.00080-0.039)

0.021 (0.011-0.033)
0.032 (0.017-0.045)
0.015 (0.0048-0.028)
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SNVs - missense 0.0066 0.56 0.0037

SNVs - conserved
non-coding

0.00056 2.54 0.0014

Table 1: Comparison of estimated fitness burden from de novo STR vs. SNV mutations. Burden refers to the
sum of fitness effects across all mutations in each category. SNP burdens are computed based on average mutation
rates and fitness effects for each class (Methods). For STRs, the expected burden is summed across the burden
from each STR class (repeat unit and optimal allele). 95% confidence intervals were computed based on 100
bootstrap samples of mutations sampled from each class based on their relative proportions and sampling their
selection coefficients from the gamma distribution inferred by SISTR2 (Methods). For observed mutations, 95%
confidence intervals were computed based on 100 bootstrap samples of observed mutations.
+STR counts are considering only repeats with units 2-4bp that have repeat units common enough to be estimated by
SISTR2 and with relatively good model fits (Supplementary Table 2).
*For observed de novo mutations, only mutations predicted to have negative fitness consequences, and for which
SISTR2 scores were computed, were considered. Fitness effects for de novo mutations were computed as the
difference in fitness between the new allele and the parent allele.

We next compared the burden of genome-wide de novo STR vs. SNV mutations (Table 1). For

SNVs, we considered two classes of mutations for which mutation rates and fitness effects were

available13,14: nonsynonymous mutations and mutations occurring in conserved non-coding

regions (Methods, Supplementary Table 4). The expected fitness effect of an individual

single-nucleotide missense mutation (s=6.6e-3) is approximately 10 times higher than that of an

individual STR mutation (s=7.7e-4), whereas the effect of an individual single-nucleotide

mutation in conserved non-coding regions (s=5.6e-4) is similar to that of an STR mutation.

However, each individual genome is expected to have far more de novo STR mutations

(mean=14, considering genome-wide mutations at STRs with repeat units 2-4bp and reliable

selection models) compared to mutations resulting in missense SNVs (mean=0.56) or SNVs in

conserved non-coding regions (mean=2.5). Thus overall, the expected total burden of

genome-wide STR mutations is notably higher than either category of single-nucleotide

mutations (approximately 3.2x and 8.6x higher than missense and conserved non-coding,

respectively) and is higher than both categories of single-nucleotide mutations together.

The results above may overestimate the relative burden of STR vs. SNV mutations since it

considers genome-wide STRs but only a subset of possible SNV mutations collectively covering

less than 5% of the genome. We considered the theoretical mutation burden based on varying

the proportion of non-coding single-nucleotide mutations under selection from 5% to 30%

(Supplementary Table 4), and found that the overall burden in the most extreme case

(8.57E-03 for 30% of the non-coding genome under selection) is still substantially smaller than

the genome-wide STR burden (0.012). Overall, while this analysis faces several limitations
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(Discussion), our results suggest that although STR mutations individually have modest fitness

effects, the larger number of STR mutations per generation results in a total fitness burden that

is several times higher than that of missense, and similar or higher in magnitude to the

genome-wide burden of all single-nucleotide mutations.

Finally, we compared the relative burden of inherited STRs vs. SNVs in a typical genome

(Supplementary Tables 5-6). For STRs, we computed the fitness effects of inherited variation

in the children of each of the three trios analyzed above summed across all non-optimal STR

alleles (Methods). Similar to de novo mutations, we excluded repeat classes with poor model fit.

As expected, inherited STR variants tended to have lower selection coefficients compared to de

novo variants (Supplementary Fig. 13; KS two-sided p<0.01 for all samples). For SNVs, we

considered observed variants in two classes: nonsynonymous variants and variants falling in

conserved non-coding regions as measured by CADD15 score >15, corresponding to the top 3%

of genome-wide scores (Methods). The estimated STR burden is substantially lower than that

for SNVs in these categories (mean STR burden 8.81 excluding long AC/AAAT repeats, and

mean SNV burden 27). The majority of this SNV burden is attributed to nonsynonymous SNVs

(20 vs. 6.8 for conserved non-coding). Similar to our estimates for de novo mutations, we

additionally varied the proportion of non-coding variants potentially under selection by

considering a range of CADD score thresholds. For more permissive definitions of conserved

non-coding regions (CADD>10 or >5), the SNV burden increases to -44 and -127, respectively.

Overall our results suggest that while the total burden of de novo mutations is stronger for

STRs, the burden of inherited SNVs is stronger regardless of how conserved non-coding

regions were defined.

Discussion

Here, we presented SISTR2, a method for joint inference of the distribution of fitness effects

(DFE) across a set of STRs. SISTR2 allows for improved inference of selection compared to

SISTR at a broad range of repeat classes including those with low mutation rates or under only

weak negative selection. We additionally leverage SISTR2 to refine estimates of STR mutation

parameters, infer selection parameters across a diverse set of repeats, and estimate the relative

burden of STR vs. SNV mutations in a typical genome.

We found that mutation and selection parameters are highly variable across STR classes. For

example, we found that AT, AAG, AAAG, AAGG, and AGAT repeats have notably higher
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mutation rates than other STRs with the same repeat unit length. Further, while mutation rates

for the majority of STRs scale linearly with repeat unit length, we found evidence that AAT

repeats scale super-linearly with repeat length. Similarly, we estimate that STRs exhibit a wide

range of selection coefficients, depending on the repeat unit and functional annotation of the

repeat (Fig. 3).

We used SISTR2 to compare the expected overall fitness burden per individual of STR vs. SNV

mutations. We considered both the burden of de novo mutations, as well as the burden due to

inherited variants across the genome. The expected fitness of an individual STR mutation is

estimated to be modest (10-fold less than a missense SNV). However, STRs are highly

prevalent and experience a far greater number of mutations per individual. Thus, we estimate

the de novo burden of STR mutations to be greater than that of SNVs. On the other hand, we

found that the total burden of inherited variation is likely stronger for SNVs compared to STRs.

We hypothesize that this may be because the total space of possible SNV mutations is much

larger than that for STRs. Whereas only a small number of SNVs occur per generation, they

accumulate over time as more sites are mutated. In contrast, STR mutations largely occur at a

predetermined set of repeat elements already present in the genome. Further, STRs experience

frequent “back” mutations which may reverse the effects of deleterious mutations in previous

generations. Notably, our analysis was restricted to a subset of STR mutations with repeat unit

lengths 2-4 bp that could be analyzed by SISTR2, and is thus likely an underestimate of the

total burden of STR mutations. Still, our inferences of relative burden for both de novo and

inherited variants are robust across a range of definitions of the sets of SNVs and STRs used

for analysis.

Our study faced several limitations. First, one of the most significant challenges of our model is

that we assume a single known optimal allele length at each locus and must analyze STRs with

different optimal alleles separately. In practice, this optimum is unknown and is set to the modal

allele. Further, it is not immediately clear why different STR loci with the same repeat unit would

have different optimal lengths. Extending our model to relax this assumption or consider

alternative models such as directional, rather than symmetric, mutation models is a topic of

future study. Second, while our post-hoc analysis suggests inferred mutation and selection

models fit the majority of STR classes well (Supplementary Figs. 6-8, 10), for some classes

such as short trinucleotides or long AC and AAT repeats we could not identify a single best-fit

model. This suggests for some repeat classes that our models do not completely capture
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properties of STR mutation, potentially biasing estimates of selection. Third, the burden of

observed de novo STR mutations was found from analyzing Mendelian inconsistencies in trios

using lymphoblastoid cell lines. These cell lines are known to accumulate mutations over time16,

and thus mutation burdens computed from this dataset may be overestimated. To mitigate this

risk, we computed the burden of STR mutations using several orthogonal strategies and across

multiple trios (Table 1) and obtained similar results. Fourth, the model of selection within SISTR

and SISTR2 assumes that mutations away from the modal allele are deleterious and that

mutations act in an additive manner. Future work could examine whether more elaborate

models, including positive selection and dominance effects might better fit the data. Finally,

results here are based on allele frequencies from individuals of European descent. Computation

of DFEs, and comparison of per-locus STR selection coefficients across populations, is an

important topic of future work.

Overall, our findings suggest STRs are widespread targets of natural selection and that

mutations at STRs contribute a substantial fitness burden in humans. Further, our results

highlight important differences in mutation and selection across STR classes. These findings will

inform future methods by enabling more accurate modeling of mutation and selection processes

at STRs including improved inference of the impact of individual mutations that may contribute

to evolution and disease risk.

Methods

SISTR2 mutation and selection models

The mutation, selection, and demographic history models are the same as those used

previously in SISTR7. Briefly, the mutation model is described by four parameters: is theµ
0

mutation rate of the optimal allele; is the length-dependent mutation rate, such that the𝐿

mutation rate of each allele x is determined as ; is the length constraint,µ
𝑥

= µ
0 

+ 𝐿𝑥 β

indicating the bias of long alleles to contract and short alleles to expand toward the optimal

allele length; is the step size parameter describing the geometric distribution from whichρ

mutation step sizes are drawn. The selection model assumes an optimal allele with fitness 1,

with the fitness of other alleles decreasing with each number of units away from the optimal

allele. We assume an additive fitness model, where the fitness of an individual is determined by
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summing the fitness of their two alleles at a locus. The demographic model is based on a

published model of European population history17.

Estimating the distribution of selection coefficients using SISTR2

SISTR2 uses ABC to estimate a distribution of values (the distribution of fitness effects, or𝑠

DFE) across a set of STRs (Fig. 1a). In this setting we assume the value of at each STR is𝑠
𝑖

drawn from and learn posterior distributions for and . SISTR2 takes as input observedΓ(𝑎, 𝑏) 𝑎 𝑏

heterozygosities computed from allele frequencies for a set of STRs, plus a mutation model,

selection model, demographic history model, and a prior distribution on the gamma distribution

parameters and . The heterozygosity of locus i is defined as , where gives𝑎 𝑏 ℎ
𝑖 

= 1 −
𝑗

∑ 𝑝
𝑖𝑗

2 𝑝
𝑖𝑗

the frequency of the jth allele at locus i. STRs for which a certain allele is fixed in the population

have heterozygosity 0, whereas heterozygosity approaches 1 for highly variable STRs. To

reduce computational complexity, SISTR2 first draws a random subset of 1000 loci from the

input set of STRs (or use all the loci if there are less than 1000) and obtains the heterozygosity

for each STR. It then repeats the following steps (typically 50,000) times:𝑧

1. Draw gamma distribution parameters from the priors, where is drawn from a(𝑎, 𝑏) 𝑎

uniform distribution from 0 to 1 and (mean value of the distribution) is drawn from a𝑎 * 𝑏

log normal distribution with a mean of 0.0003 and a standard deviation of 30.

2. For each STR in the subset, draw from the gamma distribution, simulate allele𝑖 𝑠
𝑖

frequencies5 forward in time using this value of , and compute the heterozygosity of the𝑠
𝑖

resulting allele frequencies.

3. Compare the distribution of the simulated heterozygosity for all loci within the set to the

distribution of the observed heterozygosity for all loci in the set by sorting both vectors,

obtaining the difference vector, and taking the mean of the absolute value of the

differences.

The a,b parameters that generate the top 1% of simulated heterozygosity distributions that are

most similar to the observed distribution based on the mean of differences in step 3 above are

accepted. We report the posterior estimate of the gamma distribution as the pair with the𝑎, 𝑏

median value of a*b (mean selection coefficient) out of all the accepted pairs. In practice to

improve computational efficiency, we first generate a lookup table for each STR class
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(determined by its period and optimal allele) containing a list of selection coefficients and

corresponding allele frequencies summary statistics. Then, for step 2 above, instead of

simulating allele frequencies for each STR, we determine what class it belongs to and use the

corresponding lookup table and randomly select a value of sufficiently close to the value𝑠
𝑖

𝑠
𝑖

drawn from the gamma distribution. For this, we rounded each s value to a single significant

digit. Values <10-5 were rounded to 0. Two s values were considered sufficiently close if their

rounded values matched.

Validation of SISTR2 using simulated data

We validated SISTR2 using simulated datasets for six classes of STRs defined by their period

(length in bp of the repeat unit) and optimal allele length. For each class we analyzed 12 pairs of

gamma distribution parameters (a, b). For each class of STRs, for each gamma distribution

parameter pair (a, b), we obtained the ground truth heterozygosity distribution obtained from

simulating 1000 allele frequency distributions using the mutation model for that class and s

values drawn from the gamma distribution characterized by . Then, we performed𝑠 ∼ Γ(𝑎,  𝑏)

ABC 20 times (each time with 2,000 simulations) to obtain 20 posterior estimates of the gamma

distribution parameters as described above. Next, we calculated the mean s value (given by

a*b) of each posterior estimate of a,b and plotted the mean of the 20 mean s values of

estimated a,b parameters (Fig. 1b). To obtain the distribution of s values in different s bins for a

given pair of parameters (a,b), we drew 1,000 s values using (a,b) and calculated the fraction of

s values in each bin (Fig. 1c).

Simulating genotyping errors

To evaluate the impact of STR genotyping errors on the results of SISTR2, we modified our

simulation framework to add errors to simulated observed genotypes. We set the error

probability for each observed allele to 0.1%. Each incorrect allele was set with 50% probability

to be either one repeat larger or shorter than the true allele length. We then re-ran SISTR2 with

these noisy observed genotypes as input (Supplementary Fig. 3).

Genotyping STRs in European samples from the 1000 Genomes Project

Aligned whole genome sequencing CRAM files for the European (except Finnish) samples of

the 1000 Genomes project were obtained from SRA accessions PRJEB31736 (unrelated
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samples) and PRJEB36890 (related samples). We excluded Finnish samples due to their

unique population demographic history9.

GangSTR8 v2.4.5 was run on each sample separately with non default parameters --str-info

str_info_file (see below), --bam-samps sample_id, --samp-sex sample_sex, and --grid-threshold

250. We generated an initial set of reference STRs for the hg38 assembly using Tandem

Repeats Finder18 with the following parameters: match=2, mismatch=5, indel=17,

maxperiod=20, pm=80, pi=10 and minscore=24. We then refined the STR reference set by

applying a series of filtering steps. First, we removed repeats longer than 1Kb. Then, we kept a

single repeat with the shortest motif length among those with identical start or stop coordinates.

Compound and imperfect repeats were removed and any extra bases not matching the repeat

motif were trimmed from both sides. Any duplicated repeats were discarded post-trimming. We

then removed any repeats from the reference that did not have a minimum number of 10, 5, 4,

and 3 copies for homopolymers, di-, tri- and tetra/penta/hexa-nucleotide repeats respectively.

Finally, we filtered out any overlapping repeats if their motifs consisted of identical nucleotide

types.

The file str_info_file contains the per-locus stutter parameters obtained by training the stutter

model on 19 samples using a modified version of HipSTR v0.6.2

(https://github.com/mikmaksi/HipSTR) with non-default parameters --stutter-model-only (to skip

genotyping), --chrom (to run separately for each chromosome), --min-reads 20, and

--output-filters.

In the first merging step, mergeSTR19 v3.0.3 with non default parameter --vcftype gangstr was

used to merge the VCF files of each sample into a unified VCF file for each sub-population

(CEU, TSI, GBR, and IBS). The second merging step also uses mergeSTR v3.0.3 with non

default parameter --vcftype gangstr to merge all of the sub-population level VCFs into one

unified merged VCF for all European (except Finnish) samples. This merged VCF file was then

filtered using dumpSTR19 v3.0.3 using non-default parameters --vcftype gangstr,

--min-locus-callrate 0.8, --min-locus-hwep 0.00001, --filter-regions SEGDUP.bed,

--filter-regions-names SEGDUP, --gangstr-filter-spanbound-only, --gangstr-filter-badCI,

--gangstr-min-call-DP 20, --gangstr-max-call-DP 1000, --gangstr-require-support 2, and

--gangstr-readlen 150. A list of segmental duplications (SEGDUP.bed) for hg38 reference

genome build was obtained from UCSC table browser20.
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We then used statstr19 v3.0.3 with options --acount --numcalled to compute per-locus allele

counts and record the number of genotyped samples per locus. We then filtered STRs with call

rates <80%. We further excluded TRs with repeat lengths in hg38 <11 units for dinucleotides, <5

units for trinucleotides, and <7 repeats for tetranucleotides, since those repeats are typically not

polymorphic. After filtering 86,327 STRs remained for analysis. The genomic annotation of each

STR was assigned based on Ensembl21 build 92 for the GRCh38 reference genome.

Computing weighted CDFs of selection coefficients

Cumulative distribution plots (Fig. 3) were computed by weighting results across DFEs inferred

for all optimal allele lengths for each STR class. For each class, for each optimal allele we drew

a number of s values from the learned DFE equal to the number of loci in that class. We then

combined these randomly sampled s values across models for all optimal alleles, and computed

cumulative distributions based on these combined values.

Computing the burden of de novo STR mutations

We computed the reduction in fitness due to de novo STR mutations in two ways.

Predicted fitness burden: For each STR class (motif/optimal allele length category), we used𝑐

the model to compute the expected𝐵𝑢𝑟𝑑𝑒𝑛
𝑐
 =  𝑁

𝑐
* 2 * µ

𝑐
*

𝑖=−20..20
∑ (𝑃(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝑖
) * 𝑠

𝑐
* |𝑖|) 

burden of de novo mutations for that class of STRs. gives the number of loci in class ;𝑁
𝑐

𝑐 µ
𝑐

gives the mutation rate of the optimal (modal) allele for class ; represents all possible𝑐 𝑖

mutation lengths and ranges from -20 to 20 repeat units since mutations of larger sizes are

extremely rare; is the probability of a mutation resulting in a change i repeat𝑃(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
𝑖
)

copies, and is computed based on the step size parameter (see SISTR7 for the full mutationρ

model). represents the mean selection coefficient for an STR in class computeed by𝑠
𝑐

 𝐶 

SISTR2 (Supplementary Table 2). The expected burdens from all the classes were then

summed to obtain the genome-wide burden (Supplementary Table 3). We excluded STR

classes with poor fit (KS Score<50, Supplementary Table 2) from downstream analyses.

Fitness burden based on directly observed de novo mutations: We additionally computed the

observed burden of de novo mutations using three trios (children samples NA12864, NA10865,
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and NA10845 from the 1000 Genomes Project9). We first genotyped STRs using GangSTR as

described above. We then used mergeSTR from the TRTools toolkit v4.0.0 to merge VCF files

of individuals in each subpopulation. We applied call-level filtering on autosomal chromosomes

of resulted VCF file using dumpSTR, from the TRTools toolkit v4.0.0 with parameters

--min-call-DP 20, --max-call-DP 1000, --filter-spanbound-only, and --filter-badCI.

Then, filtered genotypes were subject to locus-level filtering with the parameters --filter-regions

hg38_segdup_sorted.bed.gz, --filter-regions-names SEGDUP, --min-locus-callrate 0.8, and

--drop-filtered to remove those loci that overlap with segmental duplications and those with low

call rate. We then used statSTR from TRTools v4.0.0 to check consistency of parent genotypes

with Hardy Weinberg Equilibrium (HWE) and used bcftools v1.12.14 to filter loci with a HWE

p-value less than 10-5.

Finally, MonSTR7 v2.0 was used to call de novo mutations with non-default parameters --naive,

--gangstr, --min-num-encl-child 3, --max-perc-encl-parent 0.05, --min-encl-match 0.9,

--min-total-encl 10. We further removed de novo calls that were homozygous, removed loci that

were biased toward expansion and deletion (two-sided binomial p-value < 0.05), removed

mutations for which the de novo allele was supported by any reads in the parents and fewer

than 5 reads in the child, and removed STRs for which more than 6 mutations across 568 total

1000 Genomes trios were observed implying that they are most likely error-prone STRs.

To compute the burden of each mutation, we scored the fitness of each allele as |allele-optimal

allele|*s, where s is the mean selection coefficient for that STR according to its class

(motif/optimal allele category) based on SISTR2. Mutations at STR classes with poor model fit

were excluded from analysis. The fitness effect of each mutation was computed as the

difference in fitness between the new allele and the parent allele. Alleles resulting in fitness

increases were excluded from results in Table 1.

Computing the burden of inherited STR variants

The DFE for de novo mutations differs from the DFE for standing variation since the DFE for

standing variation is biased toward more neutral values of s. For example, the s values for loci

with inherited mutations that are a large number of repeat units away from the optimal alleles

are likely not a random draw of s from the DFE inferred from SISTR2. Instead, these variants

likely occur at loci that have values of s that are from the neutral portion of the DFE, otherwise
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those variants would have been removed by negative selection. Therefore, to compute the

burden of inherited STR variants, we took a Bayesian approach that takes into account the

frequency of a particular allele that is segregating in the population in the present-day.

For a given individual, for each STR variant at a locus with a SISTR2 score, we found which

class c (motif/optimal allele category) the STR belongs to. Then, we calculated the reduction in

fitness as |allele - optimal allele| * To obtain the s for each inherited allele, 1,000 values of s𝑠

from the gamma distribution corresponding to class c were drawn and allele frequencies were

simulated using those values of s. For each of the 1,000 s values, if the simulated allele

frequencies include the observed STR allele, the value of s and the STR allele’s frequency were

recorded. For example, if we drew s = 0.001 and it gave the observed STR variant (15) and the

allele 15 has a frequency of 0.2, we would record the pair (0.001, 0.2). From this, we get a table

of (s value, frequency of desired STR allele) pairs. We then draw an s value from this table, with

probability equal to the frequency of the mutant allele. For instance, if the table has (0.0001,

0.5), (0.001, 0.2), (0.01, 0.1), we would draw 0.0001 with a 5/8 chance, 0.001 with a 1/4 chance,

and 0.01 with a 1/8 chance.

Burdens less than 10-5 were rounded down to 0 and greater than 1 were set to 1. Furthermore, if

a variant was not found in any of the 1000 simulations, s was set to 0. Finally, for variants that

were greater than 12 repeat units away from the optimal allele, s was automatically set to 0

since the simulations only contain 25 alleles in total. The fitness reductions for all STRs were

summed to obtain the total STR burden for the individual. Mutations at STR classes with poor

model fit (defined above) were excluded from analysis.

Computing the burden of de novo single nucleotide mutations

To compute the burden of SNV mutations, we turned to previous estimates of the DFE for

nonsynonymous mutations13 as well as for conserved non-coding mutations14. The mutational

burden for each category was calculated as , where L represents the𝐵𝑢𝑟𝑑𝑒𝑛  =  2 * 𝐿 * µ *  𝑠

mutational target size (i.e. number of sites that could be mutated) in a haploid genome, theµ

per-base pair mutation rate, and , the mean selection coefficient, found from the inferred DFE𝑠

(Supplementary Table 4). Mutational target sizes for noncoding regions were taken from

Huber, et al.22. Given that the number of non-coding sites where mutations could have fitness

effects is not precisely known, we explored a range of values ranging from 5% to 30% of

non-coding sites being under selection (Supplementary Table 4).
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Computing the burden of inherited SNV variation

To compute the burden from standing genetic variation, we used an approach that links an

estimate of the DFE to standing genetic variation via forward simulations. First, we used SLiM23

to simulate non-synonymous variation in a European population using a demographic history

from Gravel et al 201124 and a DFE from Kim et al 201713. Similarly, we simulated non-coding

variation using a DFE from Torgerson et al 200914. From these simulations, we obtained the

distribution of selective effects for heterozygous non-synonymous, homozygous

non-synonymous, heterozygous conserved non-coding, and homozygous non-coding variants.

Then, using data from the 1000 Genomes high coverage sequencing dataset10, we computed

the number of heterozygous non-synonymous, homozygous non-synonymous, heterozygous

conserved non-coding, and homozygous non-coding variants for each individual. In the real

data, conserved non-coding mutations were annotated as having a CADD score >15 and

annotations for non-synonymous mutations were obtained from files released by the 1000

Genomes project team

(https://www.internationalgenome.org/data-portal/data-collection/30x-grch38).

For each mutation in each individual, we drew a selection coefficient from the simulated

distribution of standing genetic variation, conditional on whether the mutation was conserved

non-coding or non-synonymous and whether it was observed in a heterozygous or homozygous

state. We computed additive fitness as separately for both
𝑖=1

𝑀

∑ 𝑠
𝑖
ℎ𝑒𝑡 +  2 *  

𝑗=1

𝑁

∑  𝑠
𝑗
ℎ𝑜𝑚

nonsynonymous and conserved non-coding, where M is the number of heterozygous sites in an

individual and N is the number of homozygous sites in an individual.

Data availability

Analysis is based on data from the 1000 Genomes Project available at SRA accession

PRJEB31736.

Code availability

SISTR2 source code and documentation can be found at:

https://github.com/BonnieCSE/STRSelection.
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