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Abstract  
Lentigo maligna (LM), a form of melanoma in situ that predominantly affects sun-exposed areas such 

as the face, has an ill-defined clinical border and has a high rate of recurrence. Atypical Intraepidermal 

Melanocytic Proliferation (AIMP) is a term used to describe the melanocytic proliferation of an 

uncertain malignant potential. Clinically and histologically, AIMP can be difficult to distinguish from 

LM, and indeed AIMP may in some cases progress to LM. Reflectance Confocal Microscopy (RCM) 

is often used to investigate these lesions non-invasively, however, RCM is often not readily available 

nor is the associated expertise for RCM image interpretation. Here, we demonstrate machine learning 

architectures that can correctly classify lesions between LM and AIMP on stacks of RCM images. 

Overall, our methods showcase the potential for computer-aided diagnosis in dermatology, which in 

conjunction with the remote acquisition, can expand the range of diagnostic tools in the community. 

Introduction 
Reflectance confocal microscopy (RCM) is an in vivo imaging modality that enables large cutaneous 

lesions in cosmetically sensitive areas to be visualised to the depth of the papillary dermis without the 

requirement of a biopsy for formal histological assessment. The changes seen in Lentigo maligna (LM) 

and atypical intraepidermal melanocytic proliferation (AIMP, elsewhere known as atypical 

melanocytic hyperplasia, or AMH) involve the levels above the papillary dermis and are thus ideal 

candidates for the use of RCM for diagnosis (Koller et al., 2009; Rocha et al., 2022). 

Distinguishing between AIMP and LM is important as AIMP may only require ongoing monitoring 

while LM usually requires some form of definitive treatment before it may progress to invasion and 

possibility of metastasis (lentigo maligna melanoma). AIMP, in contrast to LM, can continue to be 

monitored in vivo and tends not to respond to topical or radiotherapy treatments (Rocha et al., 2022). 

Thus, correct diagnosis determines the level of treatment required. A number of clinical, histological, 

and reflectance confocal microscopy (RCM) criteria have been proposed and validated to assist in 

distinguishing AIMP and LM. RCM findings suggestive of LM include major criteria: non-edged 

papillae and round large pagetoid cells, and minor criteria: three or more atypical cells at the 

dermoepidermal junction in five RCM fields, follicular localisation of atypical cells, and nucleated 

cells within the dermal papillae. The presence of a broadened honeycomb is a significant negative 

feature for LM and is more suggestive of a benign seborrheic keratosis (Guitera JID 2010). 

Nevertheless, it can be difficult to distinguish early LM from AIMP given the common histological 

features of basal atypical melanocytic hyperplasia (Gómez-Martín et al., 2017). Further complicating 

the issue, AIMP has been shown to be, in fact, LM on further excision in 5% of cases (Bou-Prieto et 

al., 2021). Predictors of AIMP progression to LM have not been well defined, though could include a 
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target-like pattern and high-density vascular network on dermoscopy, and the presence of contact 

between dendritic cells on RCM (Rocha et al., 2022). This may indicate that a binary classification 

approach to diagnosis is a simplification of an underlying spectrum of pathologies between AIMP and 

LM. 

RCM enables longitudinal study of large heterogeneous lesions, tracking heterogeneity spatially and 

change over time non-invasively over multiple follow-ups and thus, may be a more suitable modality 

for investigation of AIMP and LM.  Despite a treatment code, which acknowledges the utility of RCM 

based diagnosis, access to RCM and specialist interpretation of RCM images is often a limitation to 

its use, and thus, there is a need for automated approaches to improve medical equity. For example, in 

Australia, the country with the highest prevalence of LM, only ~10 RCM exist with a similar number 

of clinicians trained to interpret such images. Furthermore, a gold standard for borderline or uncertain 

malignancy does not exist and current criteria are neither reproducible nor accurate (Elmore et al., 

2017). Computer-aided diagnosis can help address the issue of access to diagnostics since the diagnosis 

and image acquisition can be physically separated (remote acquisition), and either entirely 

computational diagnosis or computer-aided diagnosis by the clinician can allow far greater patient 

throughput. Computer-aided diagnosis has further applications for the prediction of prognosis, and 

machine-learning has been employed in prostate and breast cancer to determine grades of 

differentiation which hold clearly defined risks of progression and prognostic outcomes (Fusano et al., 

2020; Khan et al., 2021). 

Machine learning approaches in dermatology to date have typically focused on the distinction between 

benign and malignant lesions based on clinical images (Aractingi and Pellacani, 2019; Pérez et al., 

2021; Petrie et al., 2019). For this, extensive public libraries exist and dermatologist-level performance 

has been achieved with a CNN pre-trained on a fine-tuned subset of 130,000 images derived from the 

ImageNet dataset (Esteva et al., 2017). A similar approach to RCM images has been hampered by the 

limited availability of RCM infrastructure and labelled datasets, and the requirement of extensive pre-

processing, segmentation and feature extraction prior to classification.  

While RCM can image, with a cellular resolution, at a range of depths to reconstruct a 3D volume for 

an associated tissue, the classification of these 3D volumes is less established than the classification 

of 2D images using computer vision approaches. Processing of 3D volumes is also much more 

computationally expensive than 2D image analysis. One way to address this is to project 3D 

information into 2D, which can then be further analysed using various types of machine learning 

approaches. In this work, we have chosen to leverage the LZP projection, which is the latest fast 

approaches for projecting a 3D image into 2D while preserving information (Haertter et al., 2021). 
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Successful machine learning RCM decision support systems have been employed in the diagnosis of 

BCC (Campanella et al., 2021) with comparable performance achieved with a deep-learning based 

model and with RCM experts. Other applications have been in the diagnosis of congenital pigmented 

macules in infants (Soenen et al., 2021). More extensively, deep neural networks have been employed 

in RCM image quality assessment, assisting the interpretation of RCM mosaics, and automated 

detection of cellular and architectural structures within the skin (Bozkurt et al., 2021; D’Alonzo et al., 

2021; Kose et al., 2020, 2021; Wodzinski et al., 2020).  

Here, our hypothesis was that the projection of 3D virtual stacks into single 2D images could deliver 

high accuracy machine binary classification between LM and AIMP lesions with lesser computational 

requirements, primarily memory. Our aim was to demonstrate high accuracy machine classification of 

LM and AIMP lesions utilising projections of RCM stacks that had been validated by clinician 

diagnosis and subsequent biopsy. Our approach is fast and implementable on minimal computational 

architectures and achieves high accuracy to showcase the potential for computer-aided diagnosis for 

these pathologies. 

Methods  
Study design and participants 
The study population comprised a total of 151 patients, who attended the Sydney Melanoma 

Diagnostic Centre (Camperdown, NSW) RCM clinic between January 2019-December 2020 who 

had biopsy-proven LM or AIMP lesions. RCM stacks were obtained for these patients from the RCM 

image database (HREC/11/RPAH/123 - X15-0392 Sydney Local Health District Ethics Review 

Committee (RPAH zone)).  

RCM acquisition procedure and exclusion procedure 
Clinically identified atypical pigmented lesions were scanned using a handheld Vivascope 3000 

(Vivascope ID). Areas representing the diagnosis were identified by a trained confocal specialist, and 

stacks of 32 images were sampled at each site. Stacks were excluded when they were targeted at 

margins of the lesions. Following imaging, areas with RCM-detected atypia were biopsied, and 

pathology was confirmed via formal histological diagnosis to create our ground truth. For slice-level 

classification, the clinician revisited each stack and, for each individual image in the stack, assigned a 

diagnosis of LM, AIMP or neither. 

Image processing 
Individual images were exported from microscope software Vivascan (Vivascope ID) as 24-bit TIFF 

single images according to z-slice. Folders of individual TIFFs were imported into FIJI (ImageJ 
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reference) as a virtual stack, and then initial projections were calculated using z-projection with the 

maximum and median. For subsequent classification using predictive modelling, stacks were projected 

using the FIJI plugin for local z projection (LZP) (https://biii.eu/local-z-projector), an optimal method 

for structure-specific projections that can be computed rapidly (Haertter et al., 2021). LZP was run in 

default settings for these stacks for the reference surface, with a max of the mean method with a 21 

pixel neighbourhood search size and a 41 pixel median post-filter size, and using MIP to extract the 

projection. Projections were then exported as 8-bit JPGs (1000 x 1000 pixels) and uploaded to Google 

Drive where they were read using cv2.imread (Bradski, 2000) and resized to 256 x 256 pixel images. 

Augmentation was performed only on the AIMP data set using cv2 similarly (8 images augmented to 

32 images by adding either horizontal flip or vertical flip or both horizontal and vertical flips). Resizing 

to 256×256 pixels was done using cv2 resize function with inter-cubic interpolation. For the slice level 

ternary classification, individual TIFFs were read in using cv2.imread and resized to 256 x 256 pixel 

images.  

Predictive Modelling  
Model development 
Different popular convolutional neural network (CNN) architectures were employed to classify AIMP 

vs LM projections, including ResNet50 (He et al., 2015), ResNet101 (He et al., 2016), InceptionV3 

(Szegedy et al., 2016), VGG16 (Simonyan and Zisserman, 2015), and DensNet169 (Huang et al., 

2018). These models were pre-trained on ImageNet (https://www.image-net.org), and the model 

parameters were then fine-tuned on our projections of RCM stacks. We also developed a 6-layer CNN 

to evaluate the predictive performance on a simple architecture that is potentially less prone to 

overfitting. The Adam optimisation algorithm (Kingma and Ba, 2017) was adopted to optimise the 

learning rate of neural network parameters for all the architectures except for ResNet50 and 

InceptionV3, for which the RMSProp algorithm (Kurbiel and Khaleghian, 2017) was used. Images 

were augmented to increase sample sizes. The strategy used for augmentation was flipping (vertical, 

horizontal, and a combination of both). The performance of the models was assessed on the validation 

set, a subset of projections that was held back from the training projections and used to give an estimate 

of model’s accuracy while tuning model’s parameters. As detailed in the next subsection, the best-

performing model as per the validation accuracy was further evaluated on a completely unseen test set 

containing projections not accessible during the model training to mitigate overfitting risk and select 

a model with more a generalisable performance.  

To extend the diversity of the models evaluated, we also combined deep-learning-based feature 

extraction with other traditional classifiers. Accordingly, latent features were extracted from the 
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DenseNet169 and ResNet50 models (i.e.,  the first and second best-performing CNN models). 

Extracted latent features derived from ResNet50 have shown better performance once used as 

predictive variables of different commonly-used classifiers, including support vector machines (SVM), 

random forest (RF), and k-nearest neighbours (KNN), and AdaBoost (Wang, 2012). Models were 

developed in Python using Keras neural network library on the TensorFlow platform. For slice level 

classification, an additional activation function, SoftMax, was included in order to perform ternary 

classification. 

Model validation and performance metrics 

The k-fold cross-validation (Kohavi, 1995)  was employed for model validation to give a more robust 

and generalisable estimate of the model’s predictive performance. Accordingly, patients (not images) 

were split into test and train sets. The test set was held out, and the training set was randomly 

partitioned into k complementary subsets; one is taken as a validation set for model optimisation and 

the rest as the training set. Projected images were randomly split into test and train sets with a constraint 

that multiple projected stacks from a single patient were included in either test or train sets (i.e., patient-

level splitting) to avoid any potential information linkage from train to test set. Accordingly, roughly 

20% of projections were withheld as a test set. This process was repeated k times so that each subset 

would be considered as a validation set in one iteration. The performance metrics over the holdout test 

set were then evaluated and reported for each of the k models trained. We performed a 5-fold cross-

validation, and in each iteration, we used multiple metrics to measure the prediction performance on 

the test set, including accuracy (rate of correct classifications), recall or sensitivity (true positive rate), 

precision (positive predictive value), and F1-score that is the harmonic mean of the precision and 

recall, i.e., F1-score = 2/(recall-1 + precision-1). The quality of models was also depicted by the receiver 

operating characteristic (ROC) curve, which plots the true positive rate (i.e., sensitivity) against the 

false positive rate (i.e., 1-specificity) at various threshold settings (Hoo et al., 2017). The area under 

the ROC curve (AUC) was computed, which varies between 0.5 and 1. The higher the AUC, the better 

the performance of the model at distinguishing between AIMP versus LM; a random or uninformative 

classifier yields AUC=0.5. The confusion matrix was also reported on the selected model detailing the 

total number of correct and incorrect predictions – i.e., true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN). For a sensible model, the diagonal element values will be 

high (TP and TN), and the off-diagonal element values will be low (FP and FN).  

Prediction Interpretation 

We used Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) [2] 

algorithm to produce visual explanation heatmaps highlighting the important regions in the images 
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that contribute to the decision made by the best-performing CNN model (i.e., DenseNet169). 

Accordingly, AIMP and LM projected images in the test sets were run through the DenseNet169 model 

that is cut off at the layer for which we want to create a Grad-CAM heatmap. The layer output and the 

loss were then taken, and the gradient of the output of the model layer with respect to the model loss 

was found. The gradient which contributes to the prediction was taken, reduced, resized, and rescaled 

so that the heatmap can be overlaid with the original image. The implementation was made in Python 

using the TensorFlow platform and is available in the study’s code repository (c.f., Code and Data 

Availability). 

Statistical analysis  
The statistical hypothesis tests comparing the significance of the performance enhancement comparing 

the best performing method (DenseNet169) and other competing algorithms were conducted using the 

paired two-tailed t-test. Statistical significance was defined as a p-value < 0.05. Statistical analyses were 

performed in R using the ‘stats’ library.  

Results 
The information of the patients is detailed in Supplementary Table 1. Overall, 541 RCM stacks of 

28 – 40 images (750 µm – 750 µm with 3.5 – 5.0 µm depth spacing) were collected from 135 patients. 

Figure 1A illustrates the image processing and diagnostic modelling pipeline developed in this study. 

The imbalance in the proportion of LM versus AIMP cases was partially handled via augmenting 

AIMP images by flipping them horizontally, vertically, and in both directions. Together, the training 

set included 537 projections (389 labelled LM and 148 AIMP) and the test set comprised 115 

projections (83 LM and 32 AIMP).  

Among selected CNN architectures pre-trained on the ImageNet dataset, DenseNet169 achieved the 

highest predictive power on the validation set (validation accuracy = 0.84). The predictive power of 

DenseNet169 was assessed on the test set (115 unseen images) using multiple metrics, including 

accuracy, weighted-average recall, weighted-average precision, and F1-scores for models developed 

via cross-validation (Figure 1B). The class-specific precision and recall were averaged with the 

consideration of the class imbalance (i.e., weighted average). The best-performing DenseNet169 

model was achieved via the first run of cross-validation (c.f. Run 1 in Figure 1B, ROC curves) with 

the accuracy of 0.80 on the test set (Figure 1C). The test accuracy of DenseNet169 as a standalone 

feature learning and classifier was higher than traditional classifiers (using default hyper-parameters) 

(Figure 1D). However, the performance improvement was only significantly higher as compared to 
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SVM and KNN (p-value < 0.05, paired, two-tailed t-test). Since DenseNet169 performed better or on 

par with the other classifiers, it was used for the subsequent patient-level prediction interpretation.  

We examined predictions made by DenseNet169 models for each of 115 projected images in the test 

set across five runs of cross-validation (Figure 2A). Image IDs in this figure can be mapped to the 

corresponding RCM stacks using Supplementary Table 2. To further understand factors contributing 

to the model’s false or true predictions, we plotted Grad-CAM heatmaps of selected images (Figure 

2B) from the test set. The selection criteria were to include examples of LM and AIMP patients that 

are correctly classified (i.e., a true positive and a true negative) as well as examples of incorrectly 

diagnosed images (i.e., a false positive and a false negative) across the majority of the runs. We limited 

the selection to non-augmented images. The Grad-CAM heatmaps of the remaining test images are 

available in the GitHub repository (see Code Availability).  

To examine the effect of the projection, we visually compared projections using LZP with slice-by-

slice clinician diagnosis to examine how well LZP projection preserved diagnostic markers in our 

original RCM stacks. In general, while diagnostic markers were not recognisable by the clinician in 

the projected image, the classification was still accurate in that image information was preserved, and 

classification could be successful. Representative images are shown for each class in Fig. 3, alongside 

maximum z-projection (the highest pixel intensity at each location) and the median z-projection (the 

median pixel intensity at each location). Figure 3A indicates a representative True Positive, that is, an 

LM-diagnosis classified as LM where the stack had atypical enlarged melanocytes and dendritic cells 

present at superficial levels indicating pagetoid spread. This was preserved in the projection, indicating 

that melanocytes were present at most levels within the stack. Figure 3B shows a representative True 

Negative, that is, an AIMP-diagnosis that is classified as AIMP. The stack showed diffuse enlarged 

melanocytes at the basal layer with no dendritic cells. In the projection, the air bubble artifact in the 

top right is preserved, though did not interfere with the correct classification being made. Figure 3C 

shows a representative false positive, that is, an AIMP-diagnosis classified as LM. There the stack had 

diffuse enlarged melanoyctes at basal layer, with no pagetoid spread and no dendritic cells. The 

melanocytes were retained by projection. However, the information regarding at which depth the 

melanocytes were located was removed during projection. Lastly, Figure 3D shows a representative 

False Positive, that is, an LM-diagnosis classified as AIMP. There the stack was acquired too early in 

superficial skin layers, and the presence of a skin fold prevented the acquisition of the whole en-face 

image. Pagetoid spread of non-dendritic melanocytes was present; however, irregular skin surface and 

non-perpendicular z images made it hard to interpret pagetoid spread.  
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LZP can be seen to outperform simple max-projection since the individual detail and diagnostic 

markers remain clear (e.g. Figure 3A, Figure 3B true positive and true negative, respectively). 

However, when there are individual frames that are saturated at maximum brightness, these can 

dominate the signal in the projection (Fig. 3C), and where the image stack is bright in different regions, 

this local information is lost upon projection. Likewise, in Fig 3D, marker information that shows 

clearly enlarged melanocytes at the basal layer (Fig. 3 inset) is potentially misinterpreted as being 

present at all slices of the stack when considering only the projection.  

We compared the classification of projections to the classification of individual slices at the slice by 

slice level. We revisited all stacks to add clinician diagnosis to individual slices as containing LM 

features, AIMP features or non-pathological skin layers, respectively since not all slices in a stack 

contained pathology. This increased the total number of images but also altered the problem to a 

ternary classification problem. The best performing models for this ternary classifier were SVM and 

KNN, with average test accuracies of 0.59 and 0.70, respectively (with Resnet101 used for feature 

extraction). However, it is critical to note that these average accuracies included entire classes that 

were not classified correctly. For example, for AIMP, the recall was zero; that is, no slices diagnosed 

as AIMP were correctly classified as AIMP using this slice level ternary classifier.  

Discussion 
Machine learning approaches to RCM analysis strive to enable more efficient image interpretation by 

a human user and also to assist with the classification of skin lesions. In general, RCM image analysis 

is hindered by artefacts both within an individual field of view and in mosaics where multiple RCM 

fields are stitched together. Differences in exposure and image intensity can also make mosaic 

rendering difficult. The dermoepidermal junction (DEJ) is where specific pathology is located in a 

number of diagnoses, particularly in AIMP and LM, and thus automated identification of the DEJ 

location and relevant cellular structures can help to focus attention to areas of a stack that may offer a 

high diagnostic yield. Machine learning-driven processes to assess the quality of RCM mosaics and 

identify the DEJ and other cellular structures have been effective in improving the workflow of RCM 

image interpretation (D’Alonzo et al., 2021, 2021; Kaur et al., 2016; Kose et al., 2020, 2021).  

Machine learning approaches specifically to the classification of RCM images of skin lesions have 

focused until now on BCC and melanoma diagnosis (Campanella et al., 2021; Wodzinski et al., 2020), 

lentigos (Halimi et al., 2017a, 2017b; Zorgui et al., 2020), and congenital pigmented macules (Soenen 

et al., 2021).  
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The main features used to differentiate between LM and AIMP both histologically and on RCM are 

the confluence and location of atypical melanocytes (Rocha et al., 2022). In LM, these are present at 

all levels of the epidermis; however, in AIMP, whilst the melanocytes are enlarged, there is no pagetoid 

spread, and they are present only in basal layers. However, the biological differentiation between 

AIMP and LM is not entirely clear cut (Ensslin et al., 2018). A decision support system in this context 

can thus not only assist in diagnosis but may also identify specific features that may differentiate the 

two conditions and hence provide insight into the biological nature of AIMP vs LM. 

We optimised our model to deliver a binary classification that could differentiate between AIMP and 

LM samples with a test accuracy of 0.80. Our approach was robust in that we were agnostic to a 

particular architecture, trying a variety of approaches and testing which had the highest accuracy and 

AUC. For different pathologies or diseases, a similar agnostic approach could be applied to the dataset 

to identify the architecture best suited for efficient and accurate classification and diagnosis. 

Training data sets for these previous studies have included single images sometimes pre-selected in 

the vicinity of the DEJ (Soenen et al., 2021), RCM mosaics (Wodzinski et al., 2020) or 3D 

reconstructions (Zorgui et al., 2020). In contrast, we utilised a projection approach to project 3D and 

volumetric image data into a 2D representation of that volume as it offered some specific benefits. 

First, our computational performance was significantly optimised since we did not have to run large 

image stacks of raw TIFF image data. We could instead use compressed single JPG images, greatly 

reducing the memory overhead (projection ~ 500 kB; stack ~ 100 MB). If the projection method is 

optimised to preserve diagnostic markers, then diagnostic markers of relevance that can be shared over 

many layers, but not all, of the volume should be emphasised in the final projection, and thus a 

classifier can utilise these to make its prediction. 

Projection is of course, not without drawbacks. First, it requires good alignment between the individual 

slices of a stack, and it is influenced by any drift in x- and y- as the operator moves deeper into the 

tissues. Where there is large drift, the separate slices are not registered relative to each other and the 

projection will blur features during projection and may result in loss of diagnostic markers. Similarly, 

where individual slices are saturated or overly bright, this saturated signal may dominate in the final 

projection. An example of this is shown in Fig. 3C where saturation in individual slices is localised to 

specific regions, but upon projection, this data is preserved, and so the entire image is saturated, in that 

instance resulting in misclassification.  

The alternative to projection is to run a slice-by-slice classifier. However, this requires a clinician to 

provide a slice-by-slice diagnosis at the slice level, which is time-consuming. Furthermore, it 
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necessitates a ternary rather than binary classifier since there will be many slices that, in fact, contain 

no specific features for LM or AIMP. Thus, to test a slice-by-slice classifier appropriately, a ternary 

classifier must be used, which is even more susceptible to class imbalance. Our best accuracies 

achieved via ternary classification at the slice level were 0.70, with total misclassification of our AIMP 

cohort. 

RCM-trained clinicians typically train on individual slices in the overall volume and make their 

diagnosis while imaging through the disease tissue. They typically start the imaging above the disease 

tissue and continue through the tissue to image past it. This extra information can confound machine 

classification, especially when an artefact is present, such as an air bubble or a follicle, as this 

information will be more prominent in the final projection. Clinicians make their diagnostic assessment 

from cellular appearance and not from a projection. In projections, depending on the approach used, 

local bright detail will be emphasised, and non-disease tissue may appear as disease tissue. Clinicians/ 

technicians could adapt their imaging approach in order to derive more benefit from computer-aided 

diagnosis in the future by avoiding drift in x- and y-, not projecting past the pathology or imaging too 

early, and avoiding saturation in any slice of the overall stack (adjusting the exposure, laser intensity, 

or the imaging conditions to guard against this). 

The rarity of RCM instrumentation and the paucity of skills and expertise with these instruments, 

particularly in remote areas with a high prevalence of melanoma, indicates that remote and computer-

based diagnosis has much to offer (Rao? JAAD 2013). Reduction in diagnostic time has been achieved 

with ML-driven pre-selection of specific images that need expert review in the context of prostate 

cancer(Campanella et al., 2021). A similar approach may be achieved with the method illustrated in 

this paper. Microscopy technology is improving rapidly and will continue to miniaturise further; as 

such, it may be much easier to locate an RCM or low-resolution microscope to a patient than to bring 

the patient and the expert together. Further training of machine learning classifiers, as well as training 

of operators in preparing ‘machine-friendly’ image stacks, will benefit patient outcomes in the field 

and the further implementation of computer diagnosis as technologies improve. 
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Figure Legends 

Figure 1. A. The schematic workflow of the study comprising image processing (projection and 

resizing), and deep learning model development and validation. B. The test-set performance of 

DenseNet196 model over five runs of cross-validation is represented as bar plots and receiver operator 

characteristic (ROC) curves. The bar plots represent the weighted-average of the performance metrics 

(accuracy, recall, precision, and F1-score) across five runs. The error bar represents the standard error. 

C. The confusion matrix representing the details of predictions made by the best-performing 

DensNet196 model (Run 1) and performance metrics in predicting LM and AIMP projections in the 

corresponding test set (20% of held-out data in Run 1 of 5-fold cross-validation). D. The Comparison 

of the DenseNet196 classifier with the traditional machine learning algorithms (AdaBoost, k-nearest 

neighbour (KNN), Random Forest, and Support Vector Machine (SVM)); the bar plots represent the 

weighted-average of the performance metrics (accuracy, recall, precision, and F1-score) across five 

runs. The error bar represents the standard error. 

Figure 2. A. Patient-level predictions of LM and AIMP images in the test set across five runs of the 

cross-validation. The heatmap represents the false predictions (false positives and false negatives) in 

red and correct predictions (true positives and true negatives) in light green. Each 2D projection image 

(equivalent to an RCM stack is identified by a unique ID (Supplementary Table 1) and colour-coded 

based on the diagnosis (LM or AIMP) and augmentation of the 2D projections (vertical flip, horizontal 

flip, both, and none, i.e., no augmentation). B. Selected projections in the test set and their 

corresponding Grad-CAM heatmaps enabling the interpretation of false and true predictions of LM 

(positive) and AIMP (negative) diagnoses.  

Figure 3. Comparison of LZP projection vs max- and median- projection for exemplary classification 

outcomes. Exemplary data for (A) LM-diagnosed image stack correctly classified at L; (B) AIMP-

diagnosed image stack classified as AIMP; (C) LM-diagnosed image stack misclassified as AIMP; and 

(D) LM-diagnosed image stack misclassified as LM. For all panels, projections are shown on left ( 

LZP: top; max-projection: middle; median-projection bottom) with individual slices at specific depths 

(z = 1, 6, 11, 16, 21) shown inset on right. Max-projection is generated by taking the maximum value 

pixel across all slices of the stack, median-projection is generated by taking the median value pixel 

across all slices of the stack. 
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