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Abstract

Potato is one of the world’s major staple crops and like many important crop plants it

has a polyploid genome. Polyploid haplotype assembly poses a major computational

challenge, hindering the use of genomic data in breeding strategies. Here, we

introduce a novel strategy for the assembly of polyploid genomes and present an

assembly of the autotetraploid potato cultivar Altus. Our method uses low-depth

sequencing data from an offspring population, which is available in many plant

breeding settings, to achieve chromosomal clustering and haplotype phasing directly

on the assembly graph. This involves a novel strategy for the analysis of k-mers

unique to specific graph nodes. Our approach generates assemblies of individual

chromosomes with phased haplotig N50 values of up to 13 Mb and haplotig lengths

of up to 31 Mb. This major advance provides high-quality assemblies with

haplotype-specific sequence resolution of whole chromosome arms and can be

applied in common breeding scenarios where collections of offspring are available.
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MAIN

Polyploidy is common in plant genomes and two forms are recognized.

Allopolyploids arise from interspecific or intergeneric hybridization events, and the

difference between subgenomes is usually sufficient to assemble them like diploids.

This has been demonstrated for rapeseed, wheat and strawberry, among others

(Kyriakidou et al. 2018). In contrast, autopolyploids arise from genome duplications,

and the presence of multiple sets of the same homologous chromosomes means

that haplotype-resolved sequence assemblies are much more challenging. One

example is potato (Solanum tuberosum), most cultivars of which are autotetraploid

(Petek et al. 2020). Potato is a vital food crop in many developing countries (Devaux,

Kromann, and Ortiz 2014), and the global production volume exceeds 300 million

tons per year (Birch et al. 2012). Because of this agronomic value, efforts to

assemble potato genomes are of crucial importance.

The haplotype-resolved assembly of diploid genomes has been progressively refined,

and accurate results are now possible as we have shown previously (Ebert et al.

2021; Porubsky et al. 2021). In contrast, computational methods for polyploid

haplotype assembly rarely lead to satisfying results, particularly for autotetraploids.

Reference-based approaches for haplotype phasing in polyploid species align reads

to an existing reference sequence but are often inaccurate (Motazedi et al. 2018).

Especially in the presence of structural variation, reference-based approaches in

general have severe limitations (Porubsky et al. 2021). For potato haplotype phasing,

two reference genomes are currently used: the synthetic double monoploid potato

clone DM1–3 516 R44 (Pham et al. 2020) and Solyntus, which is based on a diploid

potato cultivar (van Lieshout et al. 2020). Reference-based algorithms for polyploid

haplotype phasing include HapTree (Berger et al. 2014) and H-PoP (Xie et al. 2016).

Other methods target selected genomic regions to resolve haplotypes locally, for

example using integer linear programming (Siragusa et al. 2019). We previously

developed WhatsHap polyphase, which was an improvement over contemporaneous

methods but still relied on a reference genome (Schrinner et al. 2020).

The de novo assembly of polyploid genomes without a reference is still an emerging

strategy. Recently proposed workflows involve the building of a “squashed” assembly
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with no or limited haplotype resolution at first, and using this as the basis for

haplotype phasing. Even long sequencing reads are generally insufficient for

long-range phasing, and auxiliary data types are required. One example is single

pollen cell sequencing (Zhang et al. 2021), which was recently used for

comprehensive haplotype reconstruction in autopolyploid potato (Sun et al. 2022).

Here, we propose an alternative method in which PacBio HiFi reads of the potato

cultivar Altus are combined with cost-effective low-coverage short-read sequences

from multiple offspring samples. Accordingly, we generated PacBio HiFi reads (96×

coverage) and created an initial assembly using hifiasm (Cheng et al. 2021). We

assembled the individual haplotypes from the resulting assembly graph using

sequencing data from 193 offspring of two potato cultivars (Altus and Colomba) at

low coverage (~1.5× per haplotype) combined with a novel approach based on

k-mers to identify the four haplotypes. Our assembly mapped well to the latest

version of the monoploid DM1–3 516 R44 reference (DMv6.1) and yielded

haplotype-resolved assemblies of individual chromosomes with phased haplotype

block lengths of up to 31 Mb, phased contig N50 values of up to 13 Mb, and a

genome-wide phased contig N50 value of 7.2 Mb. Our approach also allows the

detection and correction of assembly errors in the assembly graph as well as in

previously published references.

RESULTS

Overall assembly strategy

A high-level overview of our workflow is shown in Fig. 1. Starting with PacBio HiFi

reads derived from the Altus genome (Fig. 1a), we built an assembly graph using

hifiasm, resulting in a partially haplotype-resolved graph with bubble-like structures

representing the different haplotypes (Fig. 1b). For each so-called unitig in the

assembly graph, we detected unique k-mers (Fig. 1b). We then estimated the dosage

of each unitig, defined as the number of haplotypes to which each unitig contributes

(Fig. 1c). In the next step, we counted the formerly detected unique k-mers in the

Illumina reads for each of the 193 offspring samples (Fig. 1d). Each unitig is thus

represented by a k-mer count pattern consisting of 193 values. Nodes with similar
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count patterns, implying the inheritance of a node by the same subset of offspring

samples, are therefore likely to be part of the same haplotype. We then made use of

the k-mer count patterns to perform an initial clustering of the nodes into

chromosomes (Fig. 1e). The clustering procedure was followed by a step to

determine the four haplotypes among nodes with dosage 1 (Fig. 1f), and another

step to add nodes with higher dosages (Fig. 1g). Ultimately, this yielded a set of four

haplotype clusters for each chromosome (Fig. 1h). We completed the assembly by

finding graph traversals through the clustered assembly graph and thereby

assembling haplotype blocks (haplotigs).
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Fig. 1: Overview of the workflow. a. The Altus genome was sequenced using PacBio HiFi technology,
whereas the 193 genomes of the cross Altus × Colomba were sequenced on the Illumina platform.
b. We used hifiasm to assemble the Altus HiFi reads into an assembly graph. For each contig in the
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graph, unique k-mers were detected (denoted by the colored bars). c. The HiFi reads were aligned to
the contigs and the mapping depth was used to estimate dosages (1 to 4) for each contig. The
different dosages are denoted by the thickness of the contig line (thicker outlines mean higher
dosage). d. The unique k-mers were counted in the short reads of the offspring samples in order to
compose a count pattern for each contig. e. For all nodes from the assembly graph components, the
pairwise correlation of k-mer count patterns was computed and components were clustered to
represent chromosomes. f. In each chromosome cluster, the nodes with estimated dosage 1 were
first clustered into the four haplotypes, again based on pairwise correlations. g. The contigs with
dosages > 1 were added to the clusters that contain most matching nodes in terms of k-mer count
pattern correlations. h. This process resulted in chromosome clusters that contain subclusters for
each haplotype.

Initial assembly

We first sequenced the Altus genome using PacBio HiFi technology to produce

highly accurate long reads with an average coverage of 24× per haplotype (73.7 Gb in

total). We also acquired Illumina short-read sequencing data representing 193

offspring of the cross between Altus and another cultivar (Colomba). The data

consisted of 2 × 150 bp paired-end reads with an average coverage of 1.5× per

haplotype.

We assembled the HiFi reads using hifiasm v0.13, which outputs an assembly graph

that contains all the assembled, unprocessed (raw) unitigs, which partially resolve

the four haplotypes. Variation is represented by bubble structures in the graph, where

a unitig branches into two or more other unitigs.

The initial graph consisted of 20,216 nodes (unitigs), 26,566 edges and contained

2798 Mb of sequence data. The N50 value of the unitigs was 1.34 Mb. The nodes of

the unitig graph (Supplementary Fig. 1) within the 10 largest connected components

covered 91–190 Mb each (1.27 Gb in total), 11 further components covered 45–66

Mb each (555.2 Mb in total) and a set of smaller components covered 20–32 Mb

each (249.1 Mb in total). Additionally, 699 unitigs were not connected to any other

node. In summary, the initial raw unitig graph provided a certain degree of haplotype

resolution, indicated by the total amount of sequence data (3.8× the size of the

DMv6.1 reference genome), but did not provide longer-range phasing at many loci,

indicated by the substantial number of nodes shorter than 50 kb (Fig. 2a).
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Dosage analysis

For each unitig, we estimated the dosage (number of haplotypes represented), which

for a tetraploid genome can be any value from the set {1, 2, 3, 4}. This was achieved

by analysing the coverage of reads aligned to the unitigs. First, we aligned all Altus

HiFi reads to the graph unitigs using minimap2 (Li 2018) and filtered out all

alignments with a mapping quality below 60. Using the remaining alignments, we

computed the sequencing depth at each base position. Given that hifiasm graphs

usually contain overlaps, we computed the intervals of non-overlapping sequences

per node (the region of each node that is not part of any overlap with its

neighbouring nodes) and only computed the depth in these unique regions, leading

to an average depth per node. Nodes with a non-overlapping sequence 100 kb or

longer (Fig. 2b) covered ~80% of the total sequence in the graph. Three peaks were

observed, representing approximate coverage values of 23, 46 and 69, consistent

with dosages of 1, 2, and 3. A fourth peak (~92) was missing for the long contigs

(Fig. 2b) and barely visible for all contigs (Supplementary Fig. 2). This may indicate

the existence of only a few homozygous regions and the complete absence of long

homozygous stretches exceeding 100 kb.

For 6212 contigs, the sequence consisted solely of overlaps to both neighbouring

nodes. Given the absence of a unique region, we therefore omitted these contigs

from the computation of coverage. Of the 8290 nodes with a depth value above zero,

72.77% were labelled as dosage one, 15.01% as dosage two, 7.95% as dosage three,

and 2.97% as dosage four. The remaining 1.3% of the contigs exceeded dosage four

and are presumed to represent repetitive regions.

Analysis of k-mers

In the next step, we counted all possible k-mers (fragments of length k, in our case

k = 71) within the unitigs. We then identified those appearing exactly once in the

entire graph and reported this set as unique k-mers. Approaches based on unique

k-mers have facilitated the haplotype-resolved assembly of diploid parent-offspring

trios (Koren et al. 2018) and challenging regions of human chromosome 8, such as

the centromere (Logsdon et al. 2021). In the latter example, the authors created a

library of singly unique nucleotide k-mers (SUNKs) to barcode long reads and
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assemble them into scaffolds especially in complex regions. Here, we have

developed a novel approach to phase the assembly graph of a parent genome from a

polyploid offspring panel. For each unitig, we used the corresponding set of unique

k-mers as an identifier for the node, making sure the k-mers are unique for the Altus

genome by disregarding those also found in the Colomba genome. The k-mer

counting process is based on the Jellyfish API (Marçais and Kingsford 2011).

The resulting set of unique k-mers was counted in the 193 offspring samples. Given

that each of the tetraploid offspring inherits two haplotypes from Altus and two from

Colomba, we inferred the number of inherited copies of a unitig by assessing the

abundance of unique k-mers for that unitig. Based on the unitig dosage in the

parental Altus genome, there are different possible dosages in the offspring. For

dosage 1 in the parent, the k-mer representing the unitig can be absent or present in

an offspring genome, whereas for parental dosage 2, the k-mer can be absent,

present once, or present twice in the offspring. For parental dosage 3, dosages of 1

and 2 are possible in the offspring, and for parental dosage 4, both inherited

haplotypes must arise from this unitig.

Based on the above, we can denote unitigs with unique k-mers as phase informative

and those without unique k-mers as phase uninformative. The analysis of node

lengths for the sets of phase informative and uninformative nodes is shown in Fig.

2c. As anticipated, the uninformative unitigs were generally the shorter ones. Among

the complete set of 20,216 nodes, we found that 10,784 (53.34%) were phase

informative. Recall that 6212 contigs did not have a unique region due to overlaps, so

that unique k-mers cannot be present in these nodes. The length of the sequence

covered by informative nodes in relation to the sequence covered by all nodes was

88.15% (2.466 of 2.798 Gb), showing that phase uninformative nodes tend to be

shorter than phase informative nodes. Specifically, the average node length in the set

of phase informative nodes was 228.7 kb (N50 = 1.89 Mb) whereas the average for

uninformative nodes was 35.1 kb (N50 = 37 kb). The longest unitig without a unique

k-mer was 237 kb, compared to 19.11 Mb for the longest informative unitig. Thus,

despite the relatively high number of phase uninformative nodes, most of the

sequence (88.15%) was generally amenable to offspring-based phasing using our

technique.
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Fig. 2: Initial assembly. a. Distribution of node lengths of the initial assembly graph. Red represents

the count of each binned contig length (the peak is 25–40 kb). Blue represents the aggregate length

of a contig bin, measured in bases. The two visible peaks show that the total sequence of contigs

between 25 and 40 kb is on par with the sequence taken up by those between 4.0 and 6.5 Mb.

b. Dosage distribution of contigs, excluding those with a unique sequence < 100 kb. The proportion of

sequence that is covered by contigs at least 100 kb in length is 80%. The dosage peaks are marked by

black bars (approximate coverage values of 23, 46 and 69). The peak for dosage 4 would be ~92.

c. Length distribution of contigs with unique k-mers compared to contigs without unique k-mers.
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Correlation analysis

For our correlation-based approach, we assumed that contigs from the same

haplotype have similar k-mer count patterns because they occur on the same subset

of offspring samples. Therefore, we computed Spearman correlation coefficients (ρ)

between the k-mer count patterns and analysed the distribution of correlations

throughout the assembly graph. Genomic loci that are at close distance (and thus,

tightly linked) are likely to be transmitted together to progeny, and accordingly, the

offspring-based haplotype signal gets weaker with increasing distance due to

recombination. In line with this expectation, we observed a strong correlation for

contigs at distances < 10 Mb and decreasing correlation for greater distances (Fig.

3a). For distances below 10 Mb, we observed a bimodal distribution indicative of

contig pairs on the same and on different haplotypes.

Based on high correlation values, we were able to reconstruct areas from the graph

that were unconnected in the initial assembly, such as broken bubble structures and

unconnected fragments. A representative reconstruction of chromosome 3 is shown

in Fig. 3b. In the initial assembly, this chromosome consisted of three connected

components and two longer unconnected contigs. By connecting contig pairs with

very high positive correlation coefficients (ρ = 0.8–1.0), we were able to reconstruct

the phased structure of the chromosome and to order the components and contigs

accordingly.
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Fig. 3: Correlation analysis. a. The correlation of all node pairs (nodes with dosage 1) in the 20 largest

connected components as a function of the distance between nodes (in megabases).

b. Reconstruction of the structure of chromosome 3 based on high correlation coefficients between

nodes. Chromosome 3 is shown above, with the red block labelling the centromere as reported in the

DMv6.1 annotation. The initial assembly consisted of three connected components and two

additional contigs, which were manually placed at their approximate genomic location along the x-axis

as determined by mapping the unitigs to DMv6.1 (the darker the colour of a contig, the higher the

maximum correlation to any other contig beyond its component). Contig pairs with the highest

correlation (here denoted by the darkest colour, representing a correlation coefficient of 0.8–1.0)

could then be connected, revealing a more complete structure of the haplotype-resolved

chromosome. The connected node pairs are marked by the dotted grey line.

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491293doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491293
http://creativecommons.org/licenses/by-nc-nd/4.0/


Graph traversal and final haplotype assembly

We assigned each unitig to a haplotype based on our novel clustering procedure,

which is described in more detail in the Online Methods. We extended the clustering

beyond the graph components and thereby matched the components belonging to

the same chromosome. This resulted in 12 pseudo-chromosomes, each consisting

of four clusters of haplotagged unitigs. Additionally, we connected the resulting

clustered contigs as far as possible by finding graph traversals within the assembly

graph, yielding blocks corresponding to the four haplotypes, which we describe as

haplotigs. The longest haplotig per chromosome ranged from 13.84 Mb on

chromosome 10 to 31.99 Mb on chromosome 11. The haplotig N50 value was ≤ 12

Mb and the total N50 value was 7.17 Mb. The full dataset is presented in Table 1.

We compared the assembled pseudo-chromosomes to the latest version of the

monoploid reference, DMv6.1 (Pham et al. 2020). To compute the N50 measures, we

estimated the tetraploid genome size by using fourfold the length of DMv6.1. The

cumulative size comparison of each chromosome based on our assembled

pseudo-chromosomes and DMv6.1 is provided in Table 1. The size of the individual

phased chromosome was 3.5–4 times as large as the reference, and the total

phased length was ~3.8 times as large, consistent with structural variation and

sequence loss on some of the haplotypes as previously observed for other cultivars

(Sun et al. 2022).

For the comparison of the Altus assembly and DMv6.1, we mapped the resulting

clusters to the reference using minimap2. The corresponding mapping intervals (Fig.

4) indicated that all chromosomes in the assembly were nearly complete, and no

large gaps were detected. In all chromosomes, the assembly consisted entirely of

contigs from one single cluster, supporting the robustness of our clustering process.

Comparison of earlier reference assemblies to reveal structural differences

The correlation signal underlying our chromosome clustering approach was used to

detect structural differences between our assembly graphs and previous reference

assemblies. Such differences can indicate assembly errors in either of the two

assemblies, as well as structural differences in all or some haplotypes. When

comparing the initial assembly graph (the hifiasm output) to the DMv6.1 reference,
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we detected two sets of nodes present on the same component of the graph that

mapped to different chromosomes in DMv6.1 (Supplementary Fig. 3). For two contig

sets on separate chromosomes, we would expect to see little to no correlation

between node pairs from the two sets. Indeed, for the two sets in question, the

correlation distribution was very similar in shape to the correlation between one of

the sets and a comparison set from a different chromosome (Supplementary Fig.

3a). This probably indicates a false join in the hifiasm graph, which we corrected by

manual curation. In this way, correlation analysis provides an opportunity to detect

and correct residual assembly errors.

We then compared our assembly graphs to the diploid reference Solyntus (van

Lieshout et al. 2020) and found a number of larger structural differences

(Supplementary Fig. 4). One example can be found in chromosome 8, where two

regions are assembled from contigs that belong to the same clusters as

chromosome 7 and chromosome 1, respectively. To investigate whether this was a

clustering artefact, an error in the Solyntus assembly, or a true structural difference,

we mapped the connected components from the graph representing chromosome 8

individually to the Solyntus reference and identified one component that contained a

large fragment of chromosome 1 but also the inserted region on chromosome 8

(Supplementary Fig. 5). We again compared the k-mer count correlations of all node

pairs within the component (Supplementary Fig. S), distinguishing between the sets

of contigs mapping to chromosomes 1 and 8. The former contained 563 nodes,

covering 110.32 Mb, of which 315 featured unique k-mers and were thus suitable for

the correlation computations (covered sequence = 102.48 Mb), whereas the latter

contained 527 nodes, covering 74.6 Mb, of which 297 featured unique k-mers

(covered sequence = 67.05 Mb). Again, we expect to see little or no correlation if two

node sets originate from separate chromosomes. In this case, however, the

distribution of correlations was consistent with the connections suggested by the

assembly graph – contradicting the structure of the Solyntus reference

(Supplementary Fig. 5a). These results suggest there is either a large rearrangement

that distinguishes between the Altus and Solyntus genomes, or a structural error in

the Solyntus reference genome.
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Fig. 4: Clustering results. a. The contigs of each chromosome cluster are mapped to the
reference sequence DMv6.1, and the mapped interval is coloured accordingly. A different
colour is used for each cluster. Ideally, one chromosome contains a single colour. b. Length
comparison of the four haplotypes (grey bars) compared to the reference (coloured bars).
The length is computed as the sum of the contig lengths for all contigs in a haplotype
cluster.
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Chrom

osome
Length of
DMv6.1 (Mb)

N50 (Mb) Longest
haplotig
(Mb)

Sum of
haplotigs
(Mb)

01 88.59 5.45 25.62 336.93

02 46.10 13.57 24.22 243.73

03 60.71 7.46 27.81 221.22

04 69.24 4.96 15.19 283.36

05 55.60 10.44 19.85 218.84

06 59.09 12.19 31.37 234.13

07 57.64 9.47 24.22 174.88

08 59.23 4.54 21.75 222.27

09 67.60 6.99 17.59 232.99

10 61.04 3.46 13.84 243.39

11 46.78 11.93 31.99 171.28

12 59.67 8.74 20.75 218.84

Total 731.29 7.17 31.99 2801.26

Table 1: Comparative length of the reference genome, the phased assembly after clustering into

haplotypes, and the phased assembly after constructing the final haplotigs. The phased length is

defined as the sum of the contig lengths contained in the four haplotypes for each chromosome. The

N50 value is computed with four times the reference length as the underlying genome size.
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DISCUSSION

We have developed a de novo assembly approach that uses accurate long reads and

low-depth sequencing data from offspring samples to produce a phased assembly

with haplotig lengths up to the length of chromosome arms. To achieve this, our

method features multiple innovations. In particular, we designed a complete pipeline

that uses haplotype-unique k-mers to chromosome sort and phase an assembly

graph representing an autopolyploid genome. Importantly, this avoids intermediate

steps that flatten the assemblies into contigs, instead resolving the haplotypes

directly in the context of the graph topology, which might allow the unified integration

of additional data types in the future.

The pseudo-chromosomes resulting from our assembly mapped well to the current

monoploid reference genome, but we obtained ~3.8 times as much sequence data,

which indicates comprehensive haplotype resolution. By using low-pass offspring

sequencing, our approach is immediately accessible in breeding and research

settings where a population of offspring and standard sequencing facilities are

available. It avoids the need for single-cell pollen sequencing technology, which is an

alternative route to assemblies of comparable quality (Sun et al. 2022).

Despite the rapid advances in phased plant genome assembly, haplotype-resolved

chromosome-level assemblies remain challenging for complex autopolyploid

genomes. The complete resolution of a haploid human genome foreshadows this

development and highlights the methodological advantage of working directly on

assembly graphs (Nurk et al. 2021). To resolve the most recalcitrant genomic loci,

ultra-long Oxford Nanopore Technologies (ONT) reads have been aligned to

assembly graphs constructed from PacBio HiFi reads (Rautiainen and Marschall

2020). We envision that our approach will be combined with such additional data

types in future studies. This is currently hampered by difficulties in the preparation of

ultra-long sequencing reads (> 100 kb) for plant genomes, but we anticipate the

technical challenges will be overcome in the next few years. In our present

HiFi-based graphs, shorter contigs tended to lack unique k-mers and 12% of the

genome was part of such contigs. Mapping additional sequencing data such as
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ultra-long ONT reads to the graphs could help to bridge the remaining gaps, allowing

the inclusion of further graph nodes in the haplotype sequences.
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ONLINE METHODS

Dosage estimation in unitigs

For each contig, we computed the average coverage by aligning the HiFi reads with

the contigs using minimap2. We only considered positions covering the unique

sequence of the contig, meaning that overlaps to both neighbouring contigs (if they

exist) were not considered. The average coverage ci of a contig i was then computed

as the average read depth over all positions. We also computed the total average

coverage m. Finally, we estimated the dosage di of contig i as follows:

di = d for (d – 0.5)*m < ci ≤ (d + 0.5)*m, d in {1,2,3,4}.

For ci > 4.5*m, we assigned di = 5 to denote a repetitive contig.

Connection of graph components

The clustering of unitigs into haplotype-resolved chromosome clusters involved two

steps. First, we attempted to resolve the genome at the chromosome level.

Chromosomes may feature several connected components plus additional

singletons, so it was necessary to determine which components from the graph

belong together. Second, we divided each chromosomal cluster into four distinct

clusters, one for each haplotype.

We made use of the previously computed k-mer counts in the progeny to cluster

unitigs with a similar k-mer count pattern. Our clustering procedure followed the idea

that we can assign unitigs showing highly similar patterns to the same haplotype,

whereas unitigs with opposing patterns are likely to be from the same chromosome

but a different haplotype, and unitigs with seemingly unrelated count patterns are

probably from different chromosomes.

The similarity between the k-mer count patterns of two nodes was assessed by

computing the Spearman correlation coefficient (ρ). Two nodes with highly positively

correlated k-mer count patterns should therefore reflect the same haplotype,

whereas highly negative correlations would indicate that the nodes lie on distinct

haplotypes. Only nodes from the same chromosome should be highly correlated

(positively or negatively), whereas for nodes lying on two separate chromosomes,
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the k-mer counts should be unrelated and any similarities would occur by chance,

resulting in low correlation coefficients.

We initially clustered the components and single unitigs into chromosome clusters

by grouping all nodes showing the highest pairwise correlation coefficients (ρ > 0.5).

These initial clusters were merged when the contigs therein were found to stem from

the same graph components. This first clustering step yielded 12 large clusters that

were defined as the corresponding chromosomal clusters or pseudo-chromosomes.

Clustering of unitigs based on similar k-mer patterns

To determine the individual haplotypes for each chromosome, we used the

previously computed dosage estimation and started by clustering unitigs with

dosage 1, because those nodes can only be assigned to a single cluster. We followed

an agglomerative method that starts by building seed clusters with the highest

correlations and then merges them into larger clusters as well as adding more

nodes.

For each node n with dosage 1, we initially created one cluster for n containing only

those unitigs with a high correlation to n (ρ > 0.5), producing a set of seed clusters.

We then merged these clusters according to the number of common nodes they

contain. To distinguish the different linkage groups, we made use of the high

negative correlation between two nodes representing different haplotypes.

We created a negative edge between clusters ci and cj if there was one node pair (ni,

nj), where ni ∈ ci and nj ∈ cj, with high negative correlation (ρi,j < –0.3). Conversely, we

created a positive edge if at least one node pair (ni, nj) existed with a high positive

correlation (ρi,j > 0.5). Two clusters ci and cj that were connected by a positive edge

could be merged if no contradicting edge existed, such as a positive edge from ci to

another cluster ck connected negatively to cj.

After the merging steps, all nodes with the highest correlation to other nodes were

assigned to clusters. Given that the subset of nodes not highly correlated to any

other node (ρ < 0.5) was left out during this procedure, we included these remaining

nodes by assigning them to a cluster ci if the three best hits (the nodes na, nb and nc
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with the highest correlation to n) all belonged to ci. If this was not the case, we were

unable to assign n unambiguously to a single cluster and it was left unclustered.

Finally, we assigned unitigs with higher dosages to the previously computed

haplotype clusters. To cluster a node n with dosage x (x in {2, 3, 4}), we computed the

pairwise correlations between n and all nodes of all clusters c1, c2, c3 and c4 and

added the node to the x clusters with the highest ratio of nodes that correlated

positively with n.

Assembly of clustered unitigs

Starting with the cluster of contigs for each chromosome, we reconstructed the

ordering of contigs throughout the chromosomes to find all possible connections

between them in order to create haplotypes with the greatest contiguity. First, we

implemented the obvious extensions. If a phased node had only one neighbor in

either direction, that neighbor was also considered to be phased. For simple bubble

structures (four nodes, including source, sink and two branching nodes) where both

the source and the sink node were phased, one of the two branching nodes was

assumed to be on the phasing path. If both branches lacked phase, no information

was available to pick the correct one, so the node was chosen arbitrarily and the

corresponding sequence filled with placeholder characters instead of the node

sequence to indicate the absence of correct haplotype sequence information.

We then considered the set of all phased nodes isolated from the rest of the graph.

These formed a set of linear block structures, for each of which we were able to

identify the two end nodes and recreate the node path (and therefore the sequence)

through the block. To also reconstruct the order of these haplotype blocks, we then

searched for paths between the end nodes of different blocks that solely contained

unphased nodes. For blocks that could be connected uniquely to one additional

block, we concatenated the two block sequences and again used placeholder

characters for the length of the intervening unphased fragment. Finally, we resolved

any remaining overlaps between the extended node paths, resulting in the final

output sequences.
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DATA AVAILABILITY

The offspring short reads are available via the NCBI BioProject under accession

number PRJEB48582. Similarly, the HiFi reads for Altus are available under

accession number PRJNA778192 (Reviewer link

https://dataview.ncbi.nlm.nih.gov/object/PRJNA778192?reviewer=cpuvu8qltsolmka

5r28nlr9kup).

CODE AVAILABILITY

The implementation of the workflow described herein is available at the following

URL: https://github.com/rebeccaserramari/polyploid-potato-assembly.
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