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SUMMARY 

Influenza A virus (IAV) infections are frequent every year and result in a range of disease 

severity. Given that transposable elements (TEs) contribute to the activation of innate immunity, 

we wanted to explore their potential role in this variability. Transcriptome profiling in monocyte-

derived macrophages from 39 individuals following IAV infection revealed significant inter-

individual variation in viral load post-infection. Using ATAC-seq we identified a set of TE 

families with either enhanced or reduced accessibility upon infection. Of the enhanced families, 

15 showed high variability between individuals and had distinct epigenetic profiles. Motif 

analysis showed an association with known immune regulators in stably enriched TE families 

and with other factors in variable families, including KRAB-ZNFs. We also observed a strong 

association between basal TE transcripts and viral load post infection. Finally, we built a 

predictive model suggesting that TEs, and host factors regulating TEs, contribute to the variable 

response to infection. 
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INTRODUCTION 

Influenza A virus (IAV) infection causes seasonal epidemics worldwide and results in a wide 

range of disease severity between individuals. The underlying reasons for this variability remain 

largely elusive (Clohisey and Baillie, 2019; Fukuyama and Kawaoka, 2011) but are determined 

by viral and host factors (Gounder and Boon, 2019). Indeed, viral determinants alone cannot 
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account for the varied responses observed in individuals challenged by the same virus 

(Ciancanelli et al., 2016; Clohisey and Baillie, 2019; Gounder and Boon, 2019). The human 

innate immune system, which involves the modulation of several cellular pathways, is a critical 

component of the response to infection (Iwasaki, 2012). Upon sensing of a virus such as IAV by 

recognition receptors, including RIG-I and TLR3, several signal transduction pathways are 

triggered which further modulate various transcription factors (Bierne et al., 2012; Paschos and 

Allday, 2010; Xu et al., 2020). These regulators, including NF-kB/RELs, IRFs, and STATs, will 

engage the immune transcriptional network through the alteration of chromatin state, and in turn 

mediate the differential expression of hundreds of genes involved in the pro-inflammatory and 

antimicrobial programs to restrict virus replication and transmission (Smale, 2012; Zhang and 

Cao, 2021). Host factors involved in this cascade likely contribute to the variable response to 

IAV infection. Other factors also associated with influenza pathogenesis and that influence the 

response include pre-existing immunity, age, sex, obesity, and the microbiome (Gounder and 

Boon, 2019; Keenan and Allan, 2019). Yet, whether there exist other host factors that are 

important in determining the response to infection remains unknown. 

Transposable elements (TEs), which occupy half of the human genome, play critical roles 

as cis-regulatory elements in various human biological processes (Bourque, 2009; Bourque et al., 

2018; Chuong et al., 2017). Notably, a particular subclass of TEs, Endogenous Retroviruses 

(ERVs), are derived from ancient retrovirus, suggesting a potential association with infection and 

immunity (Buttler and Chuong, 2021; Kassiotis and Stoye, 2016; Srinivasachar Badarinarayan 

and Sauter, 2021). Confirming this, an ERV family, MER41, was found to be co-opted as cis-

regulatory elements in the primate innate immune response (Bogdan et al., 2020; Chuong et al., 

2016). TEs are also drastically upregulated in human immune cells upon extracellular stimuli, 
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including viral infection (Macchietto et al., 2020; Mikhalkevich et al., 2021; Nellåker et al., 2006; 

Schmidt et al., 2019; Wang et al., 2020). Meanwhile, loss of SETDB1 or SUMO-modified 

TRIM28, which are associated with histone methylation and Kruppel-associated box domain 

(KRAB) zinc finger proteins (ZNFs), will lead to the significant derepression of TEs in the 

immune response (Cuellar et al., 2017; Schmidt et al., 2019). Together, these studies suggest that 

TEs play a prominent role in human innate immunity. Moreover, given that many TE families 

have integrated after the divergence of primates from other mammals (Benton et al., 2021) and 

are polymorphic in humans (Bourque et al., 2018), they could represent host factors contributing 

to the variable response to infection. Indeed, TE transcription is linked with aging (Bogu et al., 

2019; Gorbunova et al., 2021; LaRocca et al., 2020) and microbiota (Lima-Junior et al., 2021), 

which are associated with the response to infection (Gounder and Boon, 2019; Keenan and Allan, 

2019).  

To test whether TEs and associated regulators are important host factors in the variable 

response to infection, we used data from a multi-omics study that profiled the transcriptome and 

epigenome before and after IAV infection in monocyte-derived macrophages derived from 39 

individuals (Aracena et al., 2022). During the course of IAV infection, the amount of viral 

transcripts produced is variable and has been associated with disease severity (Clohisey and 

Baillie, 2019; Granados et al., 2017; de Jong et al., 2006; Li et al., 2010). Moreover, the amount 

of viral reads observed in the macrophages post-infection can be used as a surrogate for viral 

load (Thorburn et al., 2015). Indeed, in a similar experimental system this metric was shown to 

be stable and reproducible across individuals (O’Neill et al., 2021). Notably, by studying the 

infected macrophages from these 39 individuals, we observed extensive variation in the levels of 

viral reads and discovered a set of TEs displaying high inter-individual variability in chromatin 
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accessibility following infection. By looking for binding motifs in these variable regions we 

identified novel transcription factors likely contributing to the response to infection. Lastly, using 

TEs and these new host factors, we were able to build models that were predictive of the 

response to infection as measured by the amount of viral transcripts.  

 

RESULTS 

Many TE families are upregulated following IAV infection but few are correlated with 

viral load post-infection 

To characterize individual differences in the response to IAV infection, we used RNA-seq data 

obtained from monocyte-derived macrophages of 39 individuals before and after exposure to 

IAV for 24 hours (Table S1, see Methods and Aracena et al. 2022). As expected, we observed 

extensive gene expression changes upon infection (Figure 1A). Despite the fact that all samples 

engaged a strong transcriptional response to infection, we noticed extensive variation in the 

levels of viral reads (from 3.77% to 65.7%, Figure 1B), suggesting varying capacity to infection 

and/or to limit viral replication across individuals. Consistent with this hypothesis, viral load was 

inversely correlated with the expression fold change (FC) of several master regulators of the 

innate immune response, including transcription factors (TFs, e.g., IRF3, STAT2), adaptor 

molecules (e.g., MYD88, TICAM1) and interferon-inducible molecules (e.g., IFNAR1, IFNAR2) 

(Figure S1A). More globally, genes for which the transcriptional response to IAV infection was 

found to be correlated with viral load (R2 ≥ 0.3, p value ≤ 0.05, Figure S1B), were significantly 

enriched for pathways involved in the viral response. Similar to protein-coding genes, TE 

transcription levels were also significantly changed upon infection (Figure 1A). We inspected 

TE regulation at the level of families and identified 204 upregulated and seven downregulated 
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families (|log2FC| ≥ 1, adjusted p value ≤ 0.001), respectively (Figure 1C and Table S2). In line 

with prior studies, we observed that ERVs (also known as LTRs) were the most commonly 

upregulated families (179 out of 204, 85.5%) and had the strongest FC (Figure 1C bottom).  

Next, we looked at the correlation between TE expression FCs and viral load post-

infection. Among the 902 examined families, we only identified 17 and 77 families that were 

positively and negatively correlated with viral load (R2 ≥ 0.3 and p value ≤ 0.05), respectively 

(Figure 1D and Table S3). For example, PABL_A-int was positively correlated with viral load 

(Figure 1E), while MER61F was negatively correlated with viral load (Figure 1F). Families 

from the LTR subclass, and ERV1 superfamily in particular, were slightly enriched for being 

positively correlated with viral load (Figure S1C). In contrast, families from the DNA subclass 

were more prone to negatively correlate with viral load. Taken together, we observed significant 

upregulation of ERVs following IAV infection but the upregulation across individuals was 

correlated with viral load for only a small number of repeat families. 

 

TEs contribute to dynamic chromatin regions in response to influenza infection 

Beyond transcriptional changes, viral infection also induces significant epigenetic changes in 

immune cells (Zhang and Cao, 2021). We wanted to explore whether epigenetic profiles at TEs 

could help explain the inter-individual variability in the response to IAV infection. We used data 

profiling 35 of the 39 samples before and after infection using transposase-accessible chromatin 

using sequencing (ATAC-seq) and chromatin immunoprecipitation followed by sequencing 

(ChIP-seq) technologies characterizing various histone marks (Table S1, see Methods) (Aracena 

et al., 2022). Across these samples we obtained an average of 137,478 peaks for ATAC-seq, 

73,190 for H3K27ac, 230,292 for H3K4me1, 33,700 H3K4me3, and 209,119 for H3K27me3 
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(Figure 2A and Table S4). The number of peaks across all marks was slightly higher in infected 

compared to non-infected samples. We observed that on average 19.5% to 47.6% of peaks were 

located in TEs across marks (Figure 2B and Table S4). These proportions were found to be 

slightly but significantly increased post-infection for H3K4me3 and H3K27me3 (student’s t test, 

p value ≤ 0.05). Next, to infer whether repeat regions display epigenetic variability, we measured 

the coefficients of variation (cv) in consensus peak regions (Aracena et al., 2022) and identified 

similar proportions of variable regions in TE and non-TE regions for most marks (0.4% to 6.4%, 

cv ≥ 0.5, Figure 2C, see Methods). That being said, we observed higher variability of H3K4me3 

and lower variability of H3K27me3 mark in TEs compared to non-TE regions, respectively. 

Given that H3K4me3 is typically associated with transcription, these results are consistent with 

some variability of TE transcription post infection.  

To explore the TE families with accessibility changes upon IAV infection, we compared 

the normalized number of accessible instances per family as measured by ATAC-seq in infected 

versus non-infected samples (Figure S2A). We identified 37 families with enhanced 

accessibility exhibiting 1.5-fold (adjusted p value ≤ 0.05) or greater abundance of peaks-

associated instances in infected relative to non-infected samples (Figure S2B and Table S5). For 

instance, we observed on average 584.2 peaks overlapping the THE1B repeat family in the flu 

samples, while only 79.5 were observed in the uninfected samples. The enrichment observed in 

these families can also be visualized relative to a random genomic background (Figure 2D) and 

include MER41B that was previously reported in K562, Hela, and CD14+ cell lines (Chuong et 

al., 2016). Notably, some families displayed a high degree of variation between samples post-

infection (e.g. LTR12C, highlighted in blue). A similar analysis revealed that enhanced families 

were also frequently enriched for histone modifications, especially H3K27ac and H3K4me3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491101doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491101
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

(Figure 2E). For instance, many H3K27ac peaks overlapped with THE1B and MER41B in 

infected samples (Figure S2C).  

One of the advantages of comparing two conditions is that we could also look for TE 

families showing reduced accessibility upon infection. We identified 39 such families (Figure 

2F, Figure S2D and Table S5). For instance, although on average 54.3 peaks overlapped L1M4c 

in non-infected samples, this number dropped to 26.0 in infected samples. Notably, 24 of the 39 

(61.5%) reduced accessibility families were LINEs. This contrasts with the fact that only two out 

of 37 (1.7%) enhanced families were LINEs. While some families with enhanced accessibility 

showed high variability between individuals, families with reduced accessibility displayed a 

uniform profile across most individuals (Figure 2F). Lastly, by inspecting the enrichments of 

other histone modifications, we identified seven families with reduced H3K27ac (Figure 2G and 

Table S5). Taken together, these results highlight that a large number of epigenetically changing 

regions of the human genome upon IAV infection are in TEs.  

 

A number of TE families display high inter-individual variability upon infection 

Metaplots and heatmaps of chromatin accessibility further supported the higher variability 

observed in some of the enhanced families post-infection. For instance, upon infection, THE1B 

(Figure 3A and Figure S3A) showed less variation in chromatin accessibility across individuals 

than LTR12C (Figure 3B and Figure S3A). To better understand why, we performed semi-

supervised clustering analysis of the chromatin accessibility of the 37 enhanced families among 

the 35 infected samples (Figure 3C). This analysis revealed three groups of individuals post-

infection. One outlier sample (EU37), was observed to consistently have the lowest fraction of 

reads in peaks (FRiP) scores among both infected and non-infected samples, suggesting a 
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technical artifact rather than a biologically distinctive response to flu. Using this approach, a total 

of 15 enhanced families had the highest variability (Figure 3C, bottom), which we defined as 

“high var. families”, especially between Group 1 and Group 3 individuals. In contrast, 22 

enhanced families showed consistent enrichment patterns between three individual groups, and 

were defined as “low var. families”. A similar analysis in the non-infected samples did not reveal 

any groupings, suggesting an association specific to IAV infection (Figure S3B). Group 3 

individuals tended to be slightly older and present higher viral loads as compared with other 

groups but the differences were not statistically significant (Figure S3C-S3D).  

Next, we asked what fraction of repeat loci from the high var. families were contributing 

to the variability observed between individuals. Unsupervised clustering analysis of these loci 

(instances) revealed that a large number displayed high variability post infection (Figure S3E). 

Among high var. families we consistently observed more commonly (≥ 25% individuals of one 

group) and rarely (< 25%) accessible instances that were specific to Group 3 individuals (Figure 

3D and Methods). To further identify features that were associated with variability in 

accessibility in TEs, we performed a comparative analysis between high var. and low var. 

families. We focused on flu-specific instances (ATAC-seq peak present in ≥ 1 infected but not in 

non-infected samples) and found that high var. families had a significantly higher proportion as 

compared to low var. (student’s t test, p value = 2.4 × 10-6) (Figure 3E and Figure S3F). In 

contrast, we did not observe significant differences in the estimated evolutionary age of high var. 

versus low var. TE families (Figure 3F and Figure S3G). Overall, we did find that high var. 

families had a significantly higher proportion of instances that overlap ATAC-seq peaks, that 

their repeat consensus length was longer and that they had a higher GC content (Figure 3G-3I 

and Figure S3H). Taken together, we identified 15 TE families with increased accessibility upon 
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infection and that have high epigenetic variability between individuals and display unique 

features. 

 

Enhanced and reduced TE families act as cis-regulatory elements in the response to 

influenza infection  

Next, we asked if TE families with enhanced and reduced accessibility acted as cis-regulatory 

elements regulating nearby genes in response to IAV infection. We found that upregulated genes 

were more likely to be located near instances from low var. and high var. families that become 

accessible upon infection (flu-specific instances) (Figure 4A). Lower enrichments were 

observed for high var. compared to low var. families, indicating their weaker association to gene 

expression. In contrast, we observed a depletion of upregulated genes near non-infected (NI)-

specific instances (accessible in ≥ 1 non-infected but not in infected samples) from TE families 

with reduced accessibility (Figure 4A). Notably, the opposite was observed for down-regulated 

genes (Figure 4B). These effects were stronger for flu-/NI-specific instances as compared to 

instances associated with shared peaks (Figure S4A). Splitting the enrichment at the TE family 

level, we observed consistent overrepresentation of accessible instances post-infection near 

upregulated genes within a 100 kb window for most enhanced families (Figure 4C, red color).  

Next, we investigated the properties of chromatin post infection more broadly by 

examining DNA methylation (Figure 4C, blue color) and sets of histone modifications (Figure 

4C, green color). Instances from high var. families were highly DNA methylated (an average of 

83.8%) and prone to overlap with H3K27me3 (47.3%), meanwhile they had a relatively small 

fraction of accessible instances overlapped with active marks (e.g. 15.1% for H3K27ac and 31.4% 

for H3K4me1). In contrast, low var. families were highly enriched for active histone marks (33.2% 
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for H3K27ac and 60.7% for H3K4me1). Overall, low var. and high var. showed distinctive 

chromatin patterns post infection. 

Finally, to further investigate which genes were potentially regulated by these TE-

embedded sequences upon infection, we performed a pathway enrichment analysis using the list 

of nearby differentially expressed genes (≤ 100 kb). We observed an enrichment in various 

immune-related pathways (Figure S4B). For example, an LTR12C instance with enhanced 

chromatin accessibility accompanied by an augmentation of H3K27ac upon infection can be 

found in the promoter of GBP2 (Figure 4D). GBP2 gene is an interferon-induced gene and 

exhibits antiviral activity against IAV infection (Tretina et al., 2019). In a different LTR12C 

instance near the up-regulated immune-related gene IL10RA, transcription was initiated at the 

open chromatin region within the repeat itself and was flu-specific (Figure 4E). We also 

confirmed the chromatin change at the MER41 instance that was shown to be an enhancer 

regulating AIM2 (Figure S4C) (Chuong et al., 2016). Lastly, we identified several immune-

related genes that were potentially regulated by adjacent instances from enhanced families, such 

as the TE gene pairs of THE1C-IFI44, THE1C-GBP3, THE1B-PSMA5, MLT2B3-CLEC4E, and 

THE1C-ABCG1 (Figure S4C). Thus, the enhanced and reduced TE families behave like cis-

regulatory elements regulating nearby immune genes.  

 

High var. families contribute transcription factor binding sites for potentially novel host 

factors in the response to infection 

To look for regulatory proteins associated with enhanced and reduced families, we aggregated 

the reads in open chromatin regions across samples to fine-map the actual peak summit on each 

TE instance, which was termed a “centroid”. A small fraction of instances with inaccurate or 
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inconsistent annotations were discarded, this mostly affected TE families with reduced 

accessibility (Figure S5A). As examples, we can visualize the peak centroids identified along 

the consensus sequences for THE1B, a high var. family (Figure 5A), and LTR12C, a low var. 

family (Figure 5B). We observed a higher complexity of open chromatin regions for LTR12C 

compared to THE1B. Centroids were mainly detected at around 180 bp for THE1B and were 

scattered between 150 to 600 bp for LTR12C. Next, we defined a “TE peak region” as a location 

within a TE that has a peak centroid in ≥ 5 instances, starting with the region with the largest 

number of instances, named Region 1, and so on. For most families, more than 80% of instances 

were accessible in one of the top 5 TE peak regions (Figure 5C, inset). The location of these TE 

peak regions can be shown on their consensus sequence and reveals that they are quite dispersed 

(Figure 5C). Notably, compared to low var. families, high var. families had significantly more 

TE peak regions (student’s t test, p value = 0.022) and lower proportions of accessible instances 

in the top TE peak region (student’s t test, p value = 0.0037) (Figure S5B). This is consistent 

with the longer length of high var. families (Figure 3H). 

To further investigate the molecular mechanism underlying the enhanced families, we 

examined the TF binding motifs that were enriched in TE peak regions (Figure 5D and Figure 

S5C). The enrichment of binding sites for STATs and IRFs in MER41B were previously 

reported (Chuong et al., 2016). Here we found that the STAT related motifs mainly came from 

Region 1 of MER41B while IRF related motifs came from Region 3. STATs were also observed 

in various Tigger3 and MER44 families while IRF related motifs were also enriched in various 

MER44 families, LTR8 and Tigger7. Other motifs of interest observed in TE peak regions 

included FOS/JUN, BATFs, NFkBs/NFYs and RELs. Notably, this analysis also revealed 

distinct sets of binding motifs between high var. and low var. families (Figure 5D). Specifically, 
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low var. families were enriched for motifs of known immune regulators; while high var. families 

were enriched for other motifs (e.g., ASCLs, CTCFs, EBFs, MAZ, MYOG, PLAGs, TFAP2s, 

ZKSCAN5, and ZNF460). We speculated that the binding of these other transcription factors 

may be associated with the individual epigenetic variability in high var. families post-infection. 

Indeed, by clustering accessible HERVE-int instances, we found that instances with peaks in 

Region 3 and 4, which were enriched for TFAP2 and ZNF460 motifs, were prone to be 

accessible in Group 3 rather than Group 1 individuals (Figure S5D-S5E). Supporting the 

potential role of KRAB-ZNFs in high var. families, we observed that binding sites for multiple 

ZNF TFs (Imbeault et al., 2017) were enriched in some high var. families (Figure S5G). ZNFs 

are commonly found to interact with the KAP1/TRIM28 machinery (Helleboid et al., 2019; 

Iyengar and Farnham, 2011). We inspected protein-protein interactions using the STRING 

database (Szklarczyk et al., 2019) and confirmed an association between ZKSCAN5 and 

TRIM28, and also between ZNF460 and TRIM28 (Figure S5F).  

Next, we performed a similar analysis to examine the TE peak regions and corresponding 

motifs enriched in the 39 families with reduced accessibility (Figure S6A-S6B). We identified 

the enrichment of IRF1, MEF2A/B/C/D and SPI related motifs in these families. Notably, 

L1MA2, L1MA4, L1MA6, L1MA7, and L1MA8 were significantly enriched for MEF2 related 

motifs. MEF2 TFs are central developmental regulators (Potthoff and Olson, 2007), which are 

also required in the immune response that functions as an in vivo immune-metabolic switch 

(Clark et al., 2013). Lastly, by further inspecting TFs with their binding motifs that were 

enriched in enhanced and reduced TE families, we found that TFs bound to high var. families 

were mainly enriched in transcription-related pathways while TFs bound to low var. and reduced 

families were mainly enriched in immune-regulated pathways (Figure S6C). Taken together, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491101doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491101
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

concluded that high var. families have a unique profile and are associated with potentially new 

host factors, e.g. ZNF460, which are known to be associated with the KAP1 machinery.  

 

TE-associated host factors can be used to predict viral load post infection  

Finally, we asked whether TE and TE-associated host factors can be predictive of viral load post 

infection. As we previously noted, the expression changes of most TE families were not 

correlated with viral load (Figure 1D), however, we further inspected the TE expression levels in 

non-infected and infected samples, respectively. Unlike expression changes, we observed that the 

basal and post-infection expression levels of many families were correlated with viral load 

(Figure 6A, Figure S7A and Table S3). Basal expression of most TE families had comparable 

correlation coefficients, in contrast to post infection expression levels. Combining reads across 

families, we found that there was a strong inverse correlation between the total amount of basal 

TE transcripts and viral load post-infection (R2 = 0.45, p value = 2.69 × 10-6, Figure 6B). Inverse 

correlations were also observed for each of the four main TE subclasses (Figure S7B). As 

expected, the basal activation of the immune system (interferon signature) was also inversely 

correlated with viral load (Figure 6C, R2 = 0.38, see Methods).  

To explore the role of other factors known to be associated with the regulation of TEs, we 

inspected both TRIM28 and SETDB1. We first examined the FC and observed a strong 

correlation to viral load post-infection for SETDB1 but not for TRIM28 (Figure S7C). Similarly, 

an inverse correlation was observed between SETDB1 basal expression and viral load (R2 = 0.42, 

p value = 7.83 × 10-6) but not for TRIM28 (R2 = 0.026, p value = 0.32) (Figure 6D-6E). Looking 

at the average DNA methylation in TEs pre-infection, we did not observe a correlation with viral 

load (Figure S7D). Age is another factor that is potentially associated with TEs, even though it 
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was not observed to correlate with viral load (Figure S7E). We noted that the variability of basal 

TE transcription increased as the age increased (Figure S7E). Actually, the inverse correlation 

observed between basal TE transcripts and viral load became even stronger (R2 = 0.76, p value = 

4.6 × 10-7) with the exclusion of individuals older than 40 years old (Figure S7F). 

We then expanded the analysis to look at the host factors that are associated with 

epigenetic variability in high var. families. First, we examined the correlations between basal 

expression levels of all expressed TFs and viral load (Figure 6F). As expected, known immune-

related TFs had higher correlation coefficients with viral load compared to non-immune TFs (p 

value = 3.7 × 10-3). Focusing on TFs associated with enhanced and reduced TE families, we 

found that many were strongly correlated with viral load (Figure 6G). From motifs found in the 

high var. families, we identified PLAGL1 and ZNF460 as the candidates with the highest 

correlation to viral load (Figure S7G, R2 = 0.41 and 0.36, respectively). Notably, PLAGL1, 

which is a family member of PLAG1, also encodes a C2H2 zinc finger protein that could be 

repressed by SUMOylation (Dyck et al., 2004).  

Lastly, we wanted to test our ability to combine all this information into predictive 

models to estimate the variable responses to IAV infection among the 35 individuals for which 

we had all the multi-omic datasets. We started with IFN related features as variables including 

the IFN signature and age to achieve a model explaining 36% of the variation (Figure S7H). 

Next, we included the top six immune factors bound to low var. families that were correlated 

with viral load as variables and used a stepwise approach to select the final set of features in a 

generalized linear model (see Methods). Age was also included as an interaction term variable 

due to its influence on multiple variables. Using this approach, we were able to build a better 

model (adjusted R2 = 0.625) (Figure 6H). Afterwards, we looked at all the TE-related host 
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factors described above in a correlation matrix chart with viral load (Figure S7I). Notably, when 

we included six non-immune factors associated with TEs and age in our model, we obtained a 

comparable fit with a model that includes TE transcripts and the new factor PLAGL1 (adjusted 

R2 = 0.624) (Figure 6I). Adding the top correlated immune TF, i.e., STAT2, further increased the 

accuracy of the model (adjusted R2 = 0.689) (Figure 6J). As expected, if we used age as an 

independent variable in these models, the predictive accuracies decreased significantly (Figure 

S7J). Altogether, we concluded that TEs and TE-related host factors can be used to predict viral 

load in macrophages post-infection.  

 

DISCUSSION 

Inter-individual variability in disease is at the core of precision medicine. By examining TE 

transcription and epigenetic state in macrophages derived from 39 individuals, we provided new 

insights into the contribution of TEs to the response to IAV infection. Specifically, we 

discovered a set of 15 TE families with high inter-individual variability in chromatin 

accessibility post-infection (Figure 3C). Besides the distinct sequence features and chromatin 

states they promote, we found that high var. families mainly contribute transcription factor 

binding sites (TFBSs) for potentially new host factors in the response to infection (e.g., ZNF460 

and ZKSCAN5); in contrast, other TE families of interest mainly contribute TFBSs for known 

immune regulators (Figure 7). Given that many of the TFBSs enriched in high var. families were 

associated with proteins that are known to interact with the KAP1/TRIM28 machinery, this 

suggests that KRAB-ZNFs may contribute to the inter-individual epigenetic variability post 

infection. We speculate that the enhanced accessibility in these families may be because of 
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gradual chromatin depression led by the reduced expression of SETDB1 or TRIM28 upon 

infection.  

In this study, multiple chromatin regions were identified for each TE family (Figure 5C-

5D). For example, we observed the top peak region of MER44D to be significantly enriched for 

FOS/JUN related motifs, while another region was mainly enriched for IRF related motifs. Thus, 

the same TE family appears to contribute multiple binding regions recognized by different TFs, 

suggesting that each family may play complex regulatory roles upon infection. Additionally, by 

comparing the TE enrichment levels between infected and non-infected monocyte-derived 

macrophages following IAV infection, we were able to identify families with reduced chromatin 

accessibility (Figure 2F). These families would have been missed by previous approaches that 

relied on an expected distribution as control (Bogdan et al., 2020; Chuong et al., 2016; Ito et al., 

2017; Sakashita et al., 2020). Moreover, although many LINE families were found to have 

reduced accessibility post-infection, we still observed two LINE families (L1PA12 and L1M2a) 

with enhanced accessibility. This may be due to the absence in these two LINE families of TFBS 

found enriched in their counterparts with reduced accessibility (SPIs and MEF2s).  

Our data also revealed a strong inverse correlation between the basal TE transcripts and 

viral load post-infection. In line with the involvement of TE transcripts in the activation of innate 

immunity (Cuellar et al., 2017; Rookhuizen et al., 2021; Schmidt et al., 2019), we speculate that 

TE regulation in macrophages before infection may be involved in the activation of the innate 

immune response to IAV infection. To further support this claim, we combined TE basal 

expression levels with other factors identified in the analysis of high var. families, such as TE 

DNA methylation, SETDB1 and PLAGL1 expression levels, and were able to build a model that 

was predictive of the response to infection (Figure 6H-J). Some polymorphic TEs were also 
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found to be eQTLs for genes upon infection, such as TRIM25 (Groza et al., 2021), thus we 

speculate that polymorphic TEs may further contribute to the variable response to infection. 

More samples will be needed to improve and validate the predictive model we constructed using 

TEs and TE-associated host factors.  

Altogether, our data depict major epigenetic shifts in TEs in human macrophages upon 

infection -- opening mostly in LTR/ERVs and closing in LINEs --, suggesting their critical role 

in the response to influenza infection. It is intriguing to consider that TEs might not only be an 

important source of regulatory innovation between species (Bogdan et al., 2020; Chuong et al., 

2016) but also of regulatory variation within a population. It will be interesting to expand this 

analysis and study the contributions of TEs in other immune cells, e.g. CD4+ T cells, 

pneumocytes and dendritic cells (Iwasaki, 2012; Marasca et al., 2022) and to challenges with 

other pathogens.  

 

DATA AND CODE AVAILABILITY 

All datasets used in this study have been deposited (Aracena et al., 2022), and are available at the 

European Genome-phenome Archive (EGA) as follows: RNA-seq & ATAC-seq & ChIP-seq - 

EGAD00001008422; and WGBS - EGAD00001008359. We also constructed a versatile browser 

(https://computationalgenomics.ca/tools/epivar), which allows users to explore genomic tracks 

for gene expression, chromatin accessibility, histone modifications, DNA methylation.  

 

Scripts for main analyses are available at https://github.com/xunchen85/Variability_In_TEs and 

will be deposited at Zenodo repository once the article is accepted. Any additional information 
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required to reanalyze the data reported in this paper is available from the lead contact upon 

request. 
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FIGURE LEGENDS 

Figure 1. TEs are upregulated post-infection but most expression changes are not 

correlated to viral load 

(A) PCA plots of genes (left) and TE families (right) expression of individuals before and after 

infection. Individuals with African (AF) and European (EU) ancestry are indicated. (B) Bar plots 

show viral load (% viral reads) across individuals post-infection. (C) TE upregulation at the 

family level in human macrophages in response to IAV infection. Up/down regulated families 

were detected as families with ≥ 1 log2 fold change (log2FC) in expression and adjusted p value 

≤ 0.001 upon infection (top). The highest 20 upregulated families based on fold change are 

highlighted. The total number of examined families per TE subclass is indicated in parentheses. 

The vertical line separates the upregulated (left) and downregulated (right) families. (D) Dot 

plots of correlation coefficients between TE FC and viral load post-infection. X-axis represents 

the log2FC of each family computed by DESeq2. Y-axis represents the correlation coefficients 

(R squared) between expression FCs and viral load among 39 individuals. The same 20 

upregulated families (Figure 1C) are highlighted here. A positively and negatively correlated 

family (green) is shown as examples in panel E and F respectively. (E) Example of positive 

correlation between PABL_A-int FCs and viral load. (F) Example of negative correlation 

between MER61F FCs and viral load. 

   

Figure 2. TEs contribute to dynamic chromatin regions in human macrophages in response 

to influenza infection 

(A) Number of peak regions detected in infected and non-infected samples for ATAC-seq and 

histone marks. (B) Proportion of ATAC-seq and histone marks peaks that overlap repeat regions. 
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Two-tailed paired student’s t-test was used to compare infected and non-infected samples for 

each mark. (C) Number and proportion of variable peak regions overlap TE and non-TE regions. 

Variable regions were determined with the threshold of coefficient of variation (cv) ≥ 0.5 (see 

Methods). Bars represent the proportions of peak regions that are variable while the dotted line 

represents the corresponding peak counts. Infected (Flu) and non-infected (NI) samples are 

shown separately. (D,F) Distribution of log2 enrichment levels of families with enhanced (D) 

and reduced (F) accessibility in infected and non-infected samples. Candidate families were 

identified using the optimized methodology as we described in Figure S3C. The enrichment 

level refers to the fold enrichment per sample relative to the corresponding random distribution 

(see Methods). Families with a high variability of enrichment levels between individuals 

(standard deviation divided by the mean value, cv ≥ 0.5) are highlighted in blue color (Table S5). 

The dotted line at “0” represents the random distribution. Standard deviations were computed in 

non-infected and infected samples separately. (E,G) Heatmap of log2 fold enrichments (Flu/NI) 

of families with enhanced (E) and reduced (G) accessibility for ATAC-seq and each histone 

mark, i.e., H3K27ac, H3K4me1, H3K4me3, and H3K27me3. The fold enrichment was computed 

by dividing the average normalized number of peaks-associated instances in infected by non-

infected samples. Two-tailed paired student’s t-test was used to compute the p values (* p ≤ 0.05, 

** p ≤ 0.01, *** p ≤ 0.001). 

 

Figure 3. Uncovering a set of TE families that display high individual variability in 

chromatin accessibility post-infection 

(A-B) Peak count frequency of ATAC-seq peaks overlapped with THE1B (A) and LTR12C (B). 

Red and grey lines represent the infected or non-infected samples. Compared to THE1B, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491101doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491101
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

LTR12C shows a higher standard deviation between infected samples. Peaks overlapping each 

TE instance are centered at the median position of peak summits across samples. Upstream and 

downstream regions (2.5 kb) are shown. (C) Heatmap of log2 enrichment levels of 37 families 

with enhanced accessibility in 35 infected samples. Semi-supervised clustering analysis was 

performed. Three individual groups are shown with an outlier sample. High var. families are 

highlighted in blue color and have higher enrichment levels in Group 3 individuals than Group 1 

individuals. Enrichment level refers to the abundance of accessible instances in infected samples 

relative to the background. (D) Proportions of accessible instances per enhanced family are 

variable between three individual groups post infection. Commonly accessible instances 

represent instances that are accessible in more than 25% samples from at least one group (left); 

rarely accessible instances represent instances that are accessible in less than 25% samples from 

any groups (right). Enrichment in one individual group refers to instances that are accessible in 

more than 25% samples for commonly accessible instances and one or more samples for rarely 

accessible instances. High var. families are highlighted in blue color. (E-I) Comparative analysis 

of the proportion of flu-specific instances among all accessible instances (E), evolutionary ages 

(F), proportion of accessible instances among all instances (G), lengths (H) and GC contents (I) 

of accessible instances between high var. and low var. families. P values computed by two-tailed 

student’s t-test are shown above the dot plots. 

 

Figure 4. TE families with accessibility changes may play critical regulatory roles in the 

response to influenza infection 

(A,B) Fractions of differentially expressed genes near accessible TEs relative to the random 

distributions. Proportions of up (A) and down (B) regulated genes are shown within each of the 
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genomic intervals relative to nearby accessible TEs. Flu-specific instances from high var. and 

low var. families and NI-specific instances from reduced families are considered. The total 

number of instances are indicated in the figure legend. Expected distributions were computed by 

randomizing each set of accessible instances 1,000 times (shaded area, 95% confidence intervals), 

suggesting a statistical significance of p < 0.05 for values outside the distributions. The 

proportions of regulated genes are compared with corresponding expected distributions. (C) 

Properties of high var. and low var. families overlapped with histone marks and DNA 

methylation. The number and proportion of accessible instances with nearest significantly 

upregulated genes within 100 kb (log2FC ≥ 0.5, adjusted p value ≤ 0.05) are shown in red color 

(1st column). The number of CG sites and average DNA methylation levels are shown in blue 

color (2nd column). The number and proportion of accessible instances overlapped with each 

mark are shown in green color (3rd - 7th columns). The color ranges (proportion of accessible 

instances) are scaled by the minimum and maximum values for each mark. (D) Example 

genomic view of an accessible LTR12C instance potentially upregulating adjacent GBP2 gene 

expression post-infection. LTR12C is highlighted as the shaded area with the increased 

accessibility, expression and H3K4me3 activity. The dark shaded area denotes the distribution of 

the average RPM values and the light shaded area denotes the standard deviation. Signals of 

various epigenetic marks are shown in blue color for non-infected samples and red color for 

infected samples. For RNA-seq, forward and reverse transcripts are shown in blue and green 

color separately for non-infected samples; while forward and reverse transcripts are shown in red 

and brown color separately for infected samples. (E) Example genomic view of an accessible 

LTR12C with the expression was upregulated and initiated at the open chromatin region post-

infection. The LTR12C instance highlighted as the shaded area shows an upregulated 
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accessibility, expression, and H3K4me3 activity. IL10RA gene located near the LTR12C instance 

is also significantly upregulated (log2FC = 1.44, adjusted p value = 1.60-70) post-infection. 

 

Figure 5. Low var. and high var. families contribute binding sites for distinct sets of 

potential host factors in the response to infection 

(A,B) Distribution of chromatin accessibility along the THE1B (A) and LTR12C (B) consensus 

sequence. Distribution plots (up) show aggregated (summed) reads per million (RPM) values 

across accessible instances. Infected and non-infected samples are shown separately. Upstream 

and downstream regions (± 20% of the consensus sequence length) are shown. Heatmaps 

(bottom) show z-scaled RPM values per accessible instance. In the heatmap, scaled RPM values 

below zero are shown in white color and the deletions relative to the consensus sequence are 

shown in grey color. The centroid (blue triangle) refers to the peak summit per instance. The 

total number of instances are indicated as the y-axis. (C) Distribution of TE peak regions on each 

enhanced family. A TE peak region was previously defined as a location within a TE that has a 

peak centroid in ≥ 5 instances. Here, the locations and proportions (%) of the top-five TE peak 

regions are shown on each consensus sequence. The number in each dot refers to the proportion 

among accessible instances (≥ 10%) in each TE peak region. Y-axis shows the family name, 

consensus name, and the number of accessible instances in TE peak regions. The inset barplot 

shows the proportion of instances in each TE peak region. Region 1 represents the TE peak 

region with the highest proportion and region 2 refers to the second-highest, and so on. High var. 

families are in blue color. (D) TF binding motifs enriched in enhanced families. Same motifs 

enriched across TE peak regions are aggregated. TE peak regions with the most number of 

instances are shown as representatives. Black boxes highlighted candidate motifs recognized by 
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known immune regulators enriched in low var. families and TF names are shown at the bottom; 

Brown boxes highlighted top candidate motifs recognized by potential novel host factors 

enriched in high var. families, including ZNF460 and ZKSCAN5. High var. families are 

highlighted in blue color. Mean TF activity was obtained from Aracena et al. 2022. Missing 

values are in grey color.   

 

Figure 6. TEs and TE-associated host factors are predictive of viral load post-infection 

(A) Distribution of correlation coefficients (R squareds) between the TE expression level (TPM) 

in non-infected and infected samples and TE expression fold changes with viral load post-

infection. Log2FCs and TPM values were calculated as we previously described. Four TE 

subclasses are shown separately. Correlation directions are shown in Figure S7A. (B) Inverse 

correlation between the amount of basal TE transcripts and viral load. The basal TE transcript 

refers to the proportion of aggregated normalized read counts in TEs among the global 

transcripts. Black line represents the regression line. R2 and p values computed by the linear 

regression model are shown. (C) Inverse correlation between the basal type I interferon (IFN) 

signature (score) and viral load. The IFN signature represents the median expression level (TPM 

value) of genes involved in Type I interferon signaling pathways (Table S6). (D,E) Correlations 

between the basal expression levels of SETDB1 (D) and TRIM28 (E) and viral load. It shows that 

SETDB1 (R2 = 0.42) rather than TRIM28 (R2 = 0.03) basal expression is associated with viral 

load. Basal SETDB1 expression is also positively correlated with the basal TE transcripts and 

IFN signature before infection (Figure S7G). (F) Violin plot of the correlation coefficients 

between basal TF expression levels and viral load. Basal TPM values were used for the 

correlation analysis as we previously described. Immune and non-immune TFs are compared 
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using the paired student’s t-test and the p value is also shown. Black bars represent mean values. 

TF genes were obtained from the JASPAR database as we previously used for the motif analysis 

and Immune TFs were obtained from the InnateDB database (Breuer et al., 2013). Only 

expressed TFs are shown. * highlights motifs that are enriched in different categories of families. 

(G) Bar plot of correlation coefficients between the basal expression of TFs bound to enhanced 

and reduced families. Highly expressed TFs (TPM ≥ 1) are considered and the expression fold 

changes upon infection are shown. TFs are ranked based on the R squared value. * highlights 

motifs that are enriched in different categories of families. (H) Multivariable regression model 

developed for the prediction of viral load using the expression levels of immune TFs in the basal 

state. The top six correlated TFs to viral load that are also associated with TEs were used. The 

model was generated as we described in the Methods. The formula and variables and adjusted R2 

are shown. (I) Multivariable regression model developed for the predictive of viral load using the 

TE-associated non-immune (novel) host factors in the basal state. Using the same approach (see 

Methods), a subset of features were selected among the age and six non-immune factors, 

including TRIM28, SETDB1, TE transcripts, TE methylation, ZNF460, and PLAGL1. (J) 

Multivariable regression model developed for the predictive of viral load using the TE-associated 

immune and non-immune host factors in the basal state. We included all the non-immune factors 

as well as STAT2 to generate the model. STAT2 was selected based on the correlation to viral 

load. 

 

Figure 7. Regulatory models of TEs in response to influenza infection in human primary 

macrophages 
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(A) Epigenetic states of enhanced and reduced families in macrophages pre-infection. Before 

infection, high var. and low var. families are not accessible due to the lack of corresponding TFs 

binding or repression by high DNA methylation or histone methylation. In contrast, reduced 

families are accessible and bound by a distinct set of known immune-related (IR) TFs, including 

MEF2s and SPIs. High var. families are relatively longer and show a higher DNA and histone 

methylation level compared with other families. (B) Epigenetic states of enhanced and reduced 

families in macrophages post-infection. Chromatin accessibility of high var. and low var. 

families are enhanced post infection. High var. families are mainly bound by potential novel host 

factors (Non IR TFs), including ZFN460 and ZKSCAN5; low var. families are mainly bound by 

known immune-related regulators (IR TFs), including IRFs and STATs. Reduced TEs are prone 

to be less accessible due to the decreased expression of various TFs (e.g. MEF2s) post-infection. 

High var. families display a high variability in accessibility post-infection and may differentially 

regulate nearby genes between individuals.  
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METHODS 

Materials and sequencing data generation 

To study the inter-individual variability in TEs following influenza A (IAV) infection, we 

collected primary macrophage cells from peripheral blood mononuclear cells of 39 healthy 

female individuals with African-American (n=19) and European-American (n=20) ancestry 

between 18 and 54 years old. We then infected macrophages (cultured for 6 days) with IAV for 

24-hours and collected both non-infected and infected macrophages for multiple sequencing 

assays. The details were described here (Aracena et al., 2022). Briefly, we conducted the ATAC-

seq assay to study chromatin accessibility. Using chromatin immunoprecipitation sequencing 

(ChIP-seq) technology, we also investigated the genome-wide profiles of H3K27ac, H3K4me1, 

H3K4me3, and H3K27me3 histone modifications. H3K27ac and H3K4me1 have been widely 

used to mark enhancers; H3K4me3 mark has been associated with promoters or active 

transcription; H3K27me3 mark has been associated with chromatin repression. Whole-genome 

bisulfite sequencing (WGBS) was further used to profile genome-wide DNA methylation. RNA 

sequencing (RNA-seq) was used to profile the transcriptome. All sequencing assays were 

performed in both infected and non-infected macrophages of each donor. Samples and generated 

sequencing datasets were summarized in Table S1 (Aracena et al., 2022). Detailed 

methodologies to profile the genome-wide DNA methylation level and chromatin modifications 

were also described here (Aracena et al., 2022).  

 

RNA-seq read alignment 

Trimmomatic (v0.36) was first used to trim adapter sequences with the parameters PE -phred33 -

quiet -validatePairs ILLUMINACLIP:$EBROOTTRIMMOMATIC/adapters/TruSeq3-
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PE.fa:2:30:15:2:true LEADING:3 TRAILING:30 MINLEN:50 (Bolger et al., 2014). After 

trimming off the adapters and low-quality nucleotides, high-quality paired-end RNA-seq reads 

were aligned against the human reference genome (hg19) using TopHat2 v2.1.1 (Kim et al., 

2013). To optimize for the analysis of TE transcription, we kept multi-mapped reads with the 

recommended parameters -x 100 --no-mixed (Jin et al., 2015). Gene annotation file 

“hg19.ensGene.gtf” was obtained from 

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/.  

 

Viral load calculation 

To estimate the viral load, we re-aligned high-quality paired-end RNA-seq reads against the 

human reference genome (hg38) using TopHat2 with the default parameters. Paired-end 

unmapped reads were extracted from the unmapped BAM files and converted to FASTQ format 

using SAMtools (v1.10) fastq function (Li et al., 2009). Obtained FASTQ files were then 

reformatted using Fastq-pair (v0.3) tool with the parameter -t 1000000 (Edwards and Edwards, 

2019). Using TopHat2 with the same parameters, paired-end unmapped reads were aligned 

against the influenza A virus (H1N1) reference genome, which contains eight fragments 

including NC_002016.1, NC_002017.1, NC_002018.1, NC_002019.1, NC_002020.1, 

NC_002021.1, NC_002022.1, NC_002023.1. After that, we retrieved the number of reads 

mapped to influenza. Lastly, viral load was computed as the percentage of reads mapped to the 

influenza genome versus the total number of reads mapped to both human and influenza 

reference genomes. 
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Gene and TE family expression measurement   

TEcount implemented by TEtranscripts (v2.1.4) (Jin et al., 2015) was used to measure the gene 

and TE expression at the family level using RNA-seq data. Expression of each family represents 

the total number of reads mapped to all instances from the same family. We ran it with the use of 

sorted BAM file as the input and following parameters: --sortByPos --TE hg19_rmsk_TE.gtf --

GTF hg19.ensGene.gtf --stranded reverse --mode multi. The repeat annotation file 

“hg19_rmsk_TE.gtf” was downloaded from http://labshare.cshl.edu/shares/mhammelllab/www-

data/TEtranscripts/TE_GTF/. After running, we obtained the output file for each sample which 

contains two columns, one column specifying the names of genes and TE families, and another 

column specifying corresponding read counts. The output files of all samples were combined 

into a count matrix for the downstream analysis. 

 

Gene and TE family differential expression and PCA analysis 

To perform the differential expression analysis, the obtained count matrix was used as the input 

to DESeq2 v3.9 (Love et al., 2014). Non-infected samples were used as the control group and 

infected samples were used as the case group. After the removal of non-expressed TE families 

and genes (< 2 reads across samples), the count matrix was then standardized following QC steps 

of DESeqDataSetFromMatrix, estimateSizeFactors, estimateDispersions, and nbinomWaldTest 

included by DESeq2. Lastly, after we retrieved the output using the results function, we kept the 

significantly differentially expressed genes and TE families from DNA, LINE, SINE, LTR and 

SVA subclasses with the thresholds of |log2FC| ≥ 1 and adjusted p value ≤ 0.001. 

 To perform the principal component analysis (PCA), we applied a variance stabilizing 

transformation (vst) to the achieved normalized count matrix. We then used the PCAtools pca 

function with the parameter removeVar = 0.1 for the PCA analysis and biplot function for the 
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visualization (https://github.com/kevinblighe/PCAtools). Genes and TE families were analyzed 

separately.  

 

Gene and TE family expression levels normalization 

Transcripts per kilobase million (TPM) values were calculated using the raw count matrix for 

genes and TE families. Specifically, we first computed the reads per kilobase (RPK) for each 

gene and family. For genes, we divided the read counts by the aggregated total lengths of exons 

per gene in kilobases; for TE families, we divided the read counts by the aggregated lengths 

across all instances per family. We next counted up the RPK values of both genes and TE 

families and divided them by 1,000,000 to obtain the TPM values. 

 

Correlation analysis between genes and viral load post-infection  

We then examined which differentially expressed genes (DEGs) are correlated with viral load. 

Here, we only considered highly-expressed genes with an average of TPM values ≥ 1 in either 

infected or non-infected samples. The expression fold change (log2FC) of each gene was 

computed using the formula: log2(TPMFlu+0.01) - log2(TPMNI+0.01). FCs were correlated with 

viral load post-infection using R lm function. DEGs correlated with viral load (R2 ≥ 0.3 and p 

value ≤ 0.05) were then submitted to the g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) with the 

default parameters for the pathway enrichment analysis (Raudvere et al., 2019). G:SCS threshold 

with a minimum p value of 0.05 was used to determine the enriched pathways. Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database was used to determine the enriched 

pathways and the top 30 terms were visualized. Key immune regulators involved in the RNA 

viral signaling pathway were obtained here (Xu et al., 2020). Similarly we also correlated the 

basal gene expression (TPM) with viral load.  
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Correlation analysis between TE family and viral load post-infection 

To measure the variability of TE transcription, we correlated expression fold changes of each 

family with viral load post-infection. Expression FC of each family per sample was computed 

with the same formula: log2(TPMFlu+0.01) - log2(TPMNI+0.01). Similarly, R lm function was 

used for the correlation analyses. Positive and negative correlated (R2 ≥ 0.3 and p value ≤ 0.05) 

families were reported.  

To study the enrichment of positively or negatively associated families among each TE 

subclass, we performed the permutation test by comparing the actual proportion of 

positively/negatively correlated families among each TE subclass or superfamily relative to 

10,000 randomized proportions. P value was calculated using the formula in R: 2 × mean 

(randomized_counts ≥ actual_count). 

 Using the same approach, we correlated the expression of TE families in infected and 

non-infected samples with viral load post-infection. Computed TPM values were used for the 

correlation analysis.  

 

Detection of peaks-associated TEs 

After profiling the epigenetic state, we obtained ATAC-seq and Chip-seq narrow peaks in BED 

format. Peak regions were then converted to peak summits (median positions). To identify 

ATAC-seq peaks-associated instances, peak summits were intersected with the obtained repeat 

annotation file “hg19_rmsk_TE.gtf” using BEDtools v2.29.2 intersect function (Quinlan and 

Hall, 2010) with the parameters -wa -u. The same analysis was performed for other histone 

marks.  
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Evaluation of the epigenetic variability in TEs 

Unique ATAC-seq consensus peaks were obtained as we previously described (Aracena et al., 

2022). To identify consensus peaks in TEs, we first converted peak regions to summits (median 

positions) and then intersected with the repeat annotation file aforementioned using BEDtools 

intersect function with the parameters -wa -wb. After that, read counts were normalized to RPM 

value for the downstream comparative analysis across samples. Specifically, the read count was 

first divided by the total number of reads and then multiplied 1,000,000. The coefficient of 

variation (cv) of each peak region was computed using the formula: cv = absolute(sd/mean). 

Infected and non-infected samples were analyzed separately. Consensus peak regions with a 

minimum RPM value of “1” were kept. Variable regions were defined as the peak regions with 

cv values ≥ 0.5, referring to regions with the standard deviation that is half of the mean. 

Proportions of variable regions in TEs and non-TEs were analyzed separately. Same analysis was 

performed for other histone marks. 

 

Detection of TE families with chromatin state changes 

We next aimed to identify families with enhanced accessibility upon infection. Firstly, we 

normalized the number of peaks-associated instances per family. Briefly, we divided the number 

of peaks-associated instances by the total number of peaks per sample, and then multiplied the 

average number of peaks across samples. Infected and non-infected samples were normalized, 

separately. Secondly, to identify families with enhanced accessibility during infection, we kept 

families with significantly more peaks-associated instances (≥ 1.5-fold, adjusted p value ≤ 0.05) 

in infected than non-infected samples. Two-tailed paired student’s t-test was used for the 
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comparison and the resulting p value was adjusted for multiple testing with the Benjamini-

Hochberg using the R p.adjust function. Lastly, we kept family candidates from DNA, LINE, 

SINE, LTR, and SVA subclasses with a minimum of 20 peaks-associated instances on average 

among either infected or non-infected samples.  

Similarly, to identify families with reduced accessibility, we kept families with 

significantly more peaks-associated instances (≥ 1.5-fold, adjusted p value ≤ 0.05) in non-

infected than infected samples. Same analysis was applied to each histone mark to identify 

families with dynamic regulatory (e.g., enhancer or promoter) potentials upon infection. 

We also computed the enrichment level of each family by comparing the actual number 

of peaks-associated instances with its expected distribution (Bogdan et al., 2020). Specifically, 

we first annotated peaks-associated instances using BEDtools intersect function with the 

parameters -wa -u based on the annotation files (i.e., desert, distal, proximal, 5′ untranslated 

region (5’UTR), promoter, transcription start site (TSS), exon, and intron regions) obtained from 

https://github.com/lubogdan/ImmuneTE. We then shuffled the true peaks while keeping the 

distribution relative to each region using BEDtools shuffle function with the parameters -incl or -

excl, for 1000 times. The randomized peaks were intersected with the repeat annotation file to 

achieve the number of expected peaks-associated instances per family. Lastly, we computed the 

enrichment level of each family as the actual number of peaks-associated instances relative to the 

average number of the expected values.  

 

TE clustering analysis 

To identify families with high variability, we performed the semi-supervised clustering analysis 

of enhanced families in 35 infected samples. Here, to rule out the impacts of different genomic 
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distribution between TE families, we used the enrichment level relative to the expected 

distribution rather than the actual number of instances for the clustering analysis. Briefly, the 

enrichment levels of enhanced families were gathered into a data matrix followed by the log2 

conversion. R heatmap.2 function was used to perform the unsupervised clustering analysis with 

the default parameters. Based on the obtained enrichment pattern among samples, we re-ordered 

the families. Families with higher enrichment levels in Group 3 individuals than Group 1 

individuals were distinguished. Non-infected samples were analyzed separately. 

 We then want to understand whether individual instances from high var. families display 

a high variability in infected samples. Peaks-associated instances from high var. families were 

collected. Instances with open chromatin were recorded as “1”; instances with closed chromatin 

were recorded as “0”. We then performed the clustering analysis using R hclust function with the 

default parameters. 

 

Detection of TE instances from enhanced families with variable accessibility 

For each accessible instance, we first computed the percentage of samples from each group that 

were accessible post-infection. Next, we defined commonly accessible instances as the instances 

that were accessible in 25% or more samples from one individual group; we also defined rarely 

accessible instances as the instances that were accessible in less than 25% samples from any 

groups. An instance that was accessible in more than 25% samples for commonly accessible 

instances and one or more samples for rarely accessible instances was considered as enriched in 

one individual group. Lastly, we computed the proportion of instances that were prone to be 

accessible in each group. 
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TE age estimation 

The evolutionary age of each instance was estimated using our previous approach (Bogdan et al., 

2020; Bourque et al., 2008). In brief, the sequence divergence of each instance relative to the 

corresponding consensus sequence was obtained from the “.align” file generated by 

RepeatMasker (https://www.repeatmasker.org/). Hg19 “.align” file was obtained from the UCSC 

database (https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/). The divergence rate of 

each instance was divided by the substitution rate for the human genome (2.2×10-9) to compute 

the age per instance (Lander et al., 2001). The average ages across all instances was referred to 

the age of each TE family. 

 

Detection of peak centroids on accessible instances 

We next want to fine-map the peak centroid on each accessible instance. Read depths were 

extracted from the aligned BAM file using BEDtools genomecov function with the parameter -d 

and then divided by 1,000,000 to compute the RPM values. We then aggregated (summed) RPM 

values of each nucleotide across accessible instances. Infected and non-infected samples were 

analyzed separately. The nucleotide with the highest RPM value was recorded as the peak 

centroid of each instance. Peak centroids in infected samples were used for families with 

enhanced accessibility; peak centroids in non-infected samples were used for families with 

reduced accessibility.  

 

Sequence alignment of instances against consensus sequences 

We next wanted to map accessible instances to corresponding consensus sequences. The 

aforementioned RepeatMasker “.align” file was used to retrieve the consensus positions at 

single-nucleotide resolution. Instances with consistent start and end positions with the “.out” file 
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were kept for downstream analyses. The inconsistency was potentially due to the defective 

annotation methodologies for the nested instances, extremely short instances, etc. It was a fact 

that instances of one TE family may be aligned to different consensus sequences. Thus, we 

wanted to focus on instances aligned to the most representative consensus sequence for each 

family. In the end, we pinpointed the peak centroid to the consensus sequence.  

We plotted the aggregated RPM values relative to the consensus sequence using R. We 

also clustered accessible instances using the RPM values relative to the consensus sequence. 

Specifically, after z-transformation, scaled RPM values ≤ 0 and consensus regions with deletions 

were recoded as “0”. R function heatmap.2 with the default parameter was used for the 

unsupervised clustering analysis. Heatmap was plotted using ggplot2 in R. 

 

Detection of TE peak regions 

We next wanted to identify “TE peak regions”, which referred to the consensus regions that 

become accessible on multiple instances. We first excluded instances that were only accessible in 

the outlier sample and then used the sliding window approach to identify TE peak regions. To 

iterate over the entire consensus sequence, the window size was set at 100 bp with a step size of 

one base pair. In each step, we counted the total number of peak centroids within each 100 bp 

window. The 100 bp-window containing the most peak centroids was identified as a TE peak 

region (≥ 5 peak centroids). After the exclusion of previously counted peak centroids, the 

analysis was repeated till all candidate TE peak regions were identified. The proportion of 

instances in each TE peak region was computed. TE peak regions were identified using peak 

centroids in infected samples for enhanced families and non-infected samples for reduced 

families. 
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Transcription factor binding motifs analysis within TE peak regions 

Firstly, we extracted 100 bp sequence centered at the centroid of each TE instance using 

BEDtools getfasta function with the -s parameter and then used the MEME fimo function to 

search the extracted sequences for known motifs from the latest 8th release of JASPAR motif 

database (http://jaspar.genereg.net/download/CORE/JASPAR2020_CORE_vertebrates_non-

redundant_pfms_meme.txt) (Bailey et al., 2009; Fornes et al., 2020). Instances uniquely 

accessible in the outlier sample were excluded. Secondly, instances were categorized into each 

TE peak region, e.g., TE peak region with the most instances was named as “Region 1” and so 

on. TE peak regions with less than five instances were excluded. Instances not in TE peak 

regions were grouped as “No regions”. Thirdly, we computed the proportion of instances (100 bp 

centered at the centroid) containing each motif for each TE peak region. The top 5 most 

abundant motifs in each TE peak region were kept as candidates. To obtain enriched motifs per 

family, we kept motif candidates appearing in more than 20% instances in each TE peak region 

and more than 50% instances per family. Lastly, the same motifs detected in multiple TE peak 

regions were aggregated (summed) to recalculate the proportion; motifs enriched in a total of ≥ 

50 instances across families were kept as top candidates. After the analysis, enriched motifs were 

compared between different TE peak regions and families. 

 

Protein-protein interaction 

To identify the protein association networks of ZNF TFs (ZNF460 and ZKSCAN5) that were 

associated with high var. families, we submitted them to the STRING database (https://version-

11-0.string-db.org) with the default parameters. 
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TE regulation of neighboring genes 

To explore whether TEs regulate neighboring genes, we examined differentially expressed genes 

(DEGs) nearby flu-specific instances from enhanced families and nearby NI-specific instances 

from reduced families. After the differential expression analysis, we retrieved corresponding 

gene names and coordinates through the command line and parameters: mysql --user=genome -N 

--host=genome-mysql.cse.ucsc.edu -A -D hg19 -e "select ensGene.name, name2, chrom, strand, 

txStart, txEnd, value from ensGene, ensemblToGeneName where ensGene.name = 

ensemblToGeneName.name". To compute the distance between genes and TEs, the first 

nucleotide (5’ end) (TSS) was used to represent each gene and the median position was used to 

represent each TE instance. Highly expressed genes (average TPM values ≥ 1 in either infected 

or non-infected samples) were used for the analysis. BEDtools window function was used to 

obtain human genes centered at each accessible instance within an 1-Mb window. We then 

computed the proportion of significantly upregulated and downregulated genes among inspected 

genes, respectively, within each interval of 0-50 kb, 50-100 kb, 100-200 kb, 200-300 kb and so 

on. Each gene was counted once within each interval.  

We also compared the proportions of significantly up/down regulated genes with the 

expected distribution to compute the statistical significance. Accessible instances were randomly 

shuffled for high var., low var. families, and reduced families for 1000 times separately. After 

the detection of genes near accessible instances, the proportions of significantly up/down 

regulated genes were computed as the expected values. The binomial distribution of the 

proportions of up/down regulated genes within each genomic interval was plotted with the 95% 

confidence interval, suggesting a statistical significance of p < 0.05 for any observed values 
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outside the distribution. We then compared the proportions of significantly up/down regulated 

genes near accessible instances from high var. families, low var. families, and families with 

reduced accessibility.  

We also compared the proportion of up/down regulated genes between flu-specific, NI-

specific instances and instances overlapped with shared peaks (instances that were accessible in 

both infected and non-infected samples).    

 

Profile of DNA methylation and various histone marks of accessible instances 

Focusing on enhanced families, we calculated the number and proportion of accessible instances 

overlapped with each mark post-infection. Specifically, we used BEDtools intersect function to 

identify accessible instances overlapped with each histone mark in infected samples. The median 

position of each peak was used for the analysis. We further identified instances overlapped with 

both H3K27ac and H3K4me1 marks in infected samples, suggesting the active or strong 

enhancer potential. We also computed the number and proportion of nearby DEGs within 100 kb 

(log2FC ≥ 0.5, adjusted p value ≤ 0.05). Additionally, we computed the average DNA 

methylation level of each instance and then we used the mean value across instances to represent 

the DNA methylation level of the family. DNA methylation level was calculated as the number 

of methylated cytosines divided by the sum of methylated and unmethylated cytosines at each 

locus. 

 

Pathway enrichment analysis of genes potentially regulated by TEs 

The list of significantly up/down regulated genes near each accessible instance was obtained 

using BEDtools2 window function with the parameters -l 100000 -r 100000. The transcription 
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start site was used to represent each gene. We focused on the significantly upregulated genes 

near accessible instances for high var. and low var. families, and significantly downregulated 

genes near accessible instances for reduced families. The obtained gene lists were submitted to 

the g:profiler tool with the same settings for the pathway enrichment analysis. We visualized the 

enriched pathways using ggplot2 in R. 

 

Calculation of the amount of global TE transcripts 

The amount of global TE transcripts was computed as the proportion of aggregated (summed) 

read counts normalized by DEseq2 in TEs among the total RNA-seq read counts in both TEs and 

genes. The linear regression model was used to evaluate the correlation between the basal TE 

transcripts and viral load post-infection. R lm function was used for the analysis and the 

corresponding p value and R2 were reported. Using the same approach, we further analyzed each 

of the four main TE subclasses, i.e., DNA, LINE, SINE and LTR.  

 

Calculation of the average DNA methylation levels in TEs 

We computed the average DNA methylation levels among examined CpG sites across all 

annotated TE regions (TE methylation) in non-infected samples. TE families from the four main 

subclasses were considered.   

 

Construction of predictive models for viral load post-infection 

Multiple regression analysis was used to build the predictive models. Viral load post-infection 

was used as the outcome of the models. The baseline of IFN signature (score) was computed as 

the median TPM value amongst 39 expressed genes from type I IFN signaling pathways (Table 
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S6). We first included the baseline of IFN signature and age as predictive variables. We then 

chose the top six correlated immune TFs of which basal expression levels are also associated 

with TEs as variables, including STAT2, IRF1, IRF7, IRF9, STAT5A, and REL. We also picked 

non-immune factors that were associated with TEs as predictive variables, including age, the 

basal amount of TE transcripts, the average DNA methylation levels in TEs (TE methylation), 

and the basal expression levels (TPM) of TRIM28, SETDB1, PLAGL1, and ZNF460. R glm 

function with the parameter family = gaussian() was first used to include all variables in the 

generalized linear model. R stepAIC function was then used to choose a subset of main features 

for the final model. R summary function was used to report the R2, adjusted R2 and p value. 

Lastly, we used the R predict function with the parameter type = “response” for the expected 

viral load with each predictive model. 
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