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Abstract 18 

In the 1970s, water management in the Netherlands resulted in numerous isolated populations of three-spined 19 

sticklebacks, which can no longer migrate from freshwater to the sea. We tested whether ~50 years of isolation 20 

resulted in reduced migratory tendencies in these ‘resident’ sticklebacks. Lab-based individual testing showed 21 

behavioural divergence between residents and migrants, but also produced counter-intuitive results, especially 22 

with regards to movement tendencies. To detect differences in migration tendencies, we set up a semi-natural 23 

mesocosm, consisting of connected ponds, where movements of numerous individuals could continually be 24 

tracked at larger spatial scales. We found that wild-caught residents and migrants exhibited no differences in 25 

movement tendencies ‘within ponds’, but residents moved significantly less ‘between ponds’ than migrants. 26 

Between-pond movements were consistent and the observed differences were robust across contexts (changes 27 

in water flow and group size). Our study reveals that larger-scale movement tendencies can diverge over short 28 

time scales in response to human-induced isolation, and highlights the importance of observing behaviour in 29 

ecologically relevant setups that bridge the gap between lab and field studies.  30 

  31 

Keywords: animal personality, migration, population divergence, rapid evolution, RFID, semi-natural 32 

conditions.   33 
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Introduction 34 

Habitat fragmentation is one of the major threats for biodiversity, particularly for migratory species that 35 

depend on multiple habitats to complete their life cycle (1). In the north of the Netherlands, pumping stations 36 

have disrupted the connectivity between marine and riverine habitats, confining some fish populations to 37 

freshwater habitats without the possibility to migrate to the sea. Such forced isolation can cause rapid 38 

phenotypic responses and life-history changes (mammals and birds: (2); fish: (3–6)). Using individual lab-39 

based assays, we have previously shown that this is indeed true for three-spined sticklebacks (Gasterosteus 40 

aculeatus): ‘resident’ populations, isolated for ~50 years, were found to diverge in morphology and in 41 

behaviour from their ‘migrant’ ancestors (7), with part of the divergence having a genetic basis (8). Regarding 42 

movement-related behaviours, population differences uncovered in the lab were surprising at first because 43 

residents, that were expected to exhibit lower movement tendencies than migrants, were instead more active 44 

and more exploratory (7). We hypothesized at that time that this may be due to stress, induced by testing in 45 

social isolation, which might have affected wild-caught migrants disproportionately more than wild-caught 46 

residents, as migrants are thought to shoal extensively as an anti-predator strategy to higher predation risk in 47 

the open sea. Alternatively, small-scale experimental settings in the lab may not be suited to study larger-scale 48 

processes like migration. More generally, for wild-caught animals, lab conditions necessarily present a novel 49 

environment and fail to mimic natural complexity in biotic and abiotic factors, including the animals’ social 50 

environment (9–12). However, studying dispersal or migration behaviour in the field is often logistically 51 

challenging (especially in aquatic environments and for small fish) and frequently lacks data about the 52 

animals’ social groups (13).  53 

To bridge the gap between lab and field studies, we set up a semi-natural mesocosm consisting of 54 

connected ponds, in which groups of fish can be remotely tracked over extensive periods of time. We here 55 

report the first experiment that aimed to test for consistent differences in movement tendencies between wild-56 

caught ‘resident’ and ‘migrant’ sticklebacks and to disentangle the effects of spatial scale (within and between 57 

ponds), social environment (group size), and ecological conditions (water flow) on movement patterns. The 58 

results of the second experiment, aimed at disentangling genetic and non-genetic effects, are reported in (8). 59 

Under these experimental conditions, we tested (a) if residents and migrants exhibit differences in their 60 
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movement tendencies, (b) if the spatial scale of movement matters, and (c) how consistent these patterns are 61 

under varying conditions (group size and water flow).  62 

 63 

Methods 64 

Mesocosm system 65 

The mesocosm consists of two independent systems of five ponds (each Ø 1.6m, with water depth of 80cm), 66 

connected linearly with opaque corridors (each of length ~1.5m and Ø 11cm), spanning a linear distance of 67 

~14m (Fig.1). The system is supplied with freshwater from a natural ditch, with the possibility of creating 68 

water flow (~0.7cm/s), mimicking the wild conditions, which also acts a cue for migration (14). This system 69 

allowed to measure the movement of individual sticklebacks within and between ponds. The first pond 70 

(labelled 1 in Fig.1), enriched with plastic plants, was used to quantify within-pond movements, while the 71 

whole system of five connected ponds was used to record between-pond movement tendencies (see details in 72 

Supp. info.1). 73 

We used a Radio-Frequency-Identification (RFID) system consisting of circular RFID antennas (Ø 74 

10cm), data loggers and Passive Integrative Transponders (PIT tags) (Trovan, Ltd., Santa Barbara, California) 75 

to record movements of tagged sticklebacks (details in Supp. info.2). Nine circular antennas were placed in 76 

the first pond to record within-pond movements and two antennas were placed at both ends of each of the four 77 

connecting corridors to measure between-pond movement tendencies (Fig.1). Each antenna records the unique 78 

PIT-tag ID of the fish along with a time stamp, stored on a USB drive in the central data logger. The sensitivity 79 

of the system was set to three reads per second per unique tag. In a pilot study, we validated the reads using 80 

video recordings and found that it corresponded well with the entry and exit times of fish.   81 

Experiment-1 82 

We created five groups of migrants and six groups of residents, each consisting of 10 randomly selected 83 

individuals (total: Nmig=49 and Nres=60). While we always tried to maintain the group size to 10 fish, tag-84 

loss and other technical difficulties led to one group of migrants having nine fish and another with 11 fish. 85 

Groups were housed in separate small holding ponds for 24 hours before the start of the experiment. On the 86 

experimental day, one resident and one migrant group were released simultaneously (to avoid temperature or 87 
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seasonal biases) into separate mesocosms.  The individuals in each group were first monitored for within-pond 88 

movement by confining the fish to the starting pond for the first five hours (Fig.1) and then for between-pond 89 

movement for ~16.5 hours, after opening the connection to the other ponds (Fig.1; Supp. info.2).  90 

Experiment-2 91 

In a next step (after ~one month), we combined all migrants and, separately, all residents (after excluding 12 92 

fish which either had died or lost tags) into two large groups (Nmig=45, Nres=52) and quantified between-93 

pond movements in these two groups in the same separate mesocosm setups over four days. In addition, we 94 

alternated flow and no-flow conditions on consecutive days (see Supp. info.1). 95 

Analyses 96 

For each individual, we quantified within-pond movement as the number of times a fish crossed different 97 

bottom and surface antennas separately (Fig.1). We deemed the number of separate visits to a particular 98 

antenna unreliable for measuring movement patterns because fish that stayed longer near an antenna were 99 

recorded as multiple disconnected set of reads, as if they visited the antenna multiple times. Between-pond 100 

movement was quantified as the number of crosses a fish made through the corridors connecting two ponds 101 

(Fig.1). Fish that did not get detected by any antenna were given a score of zero crosses.  102 

We then analysed if residents and migrants differed in the number of crosses for within- and between-103 

pond movements (Experiment-1) and whether they were consistent across contexts (group size and flow) 104 

(Experiment-2). Briefly, we considered the number of crosses within or between ponds as response variable 105 

separately in univariate generalized linear mixed models with Poisson errors. In all models, we included origin 106 

(resident vs. migrant) as a fixed factor and group-ID and an observation-level ‘Obs’ (Observation-level 107 

random effects to control for overdispersion, (15)) as random effects. For Experiment-2, treatment (flow vs. 108 

no flow) and its interaction effect with origin were added as fixed effects and individual-ID as a random effect 109 

to account for individual repeats. Additionally, we analysed whether the fraction of fish that did not exit the 110 

first pond differed between migrants and residents using Fisher’s exact test. Repeatability and correlation of 111 

number of crosses across contexts were also calculated (Supp. info.3). All analyses were carried out in R v. 112 

4.1.0, R Core Team (2019). For complete description of the analyses see Supp. info.3. 113 

 114 
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Results 115 

In Experiment-1, residents and migrants showed a broad distribution of number of crosses at both bottom and 116 

top antennas (Fig.2a, b) and the differences between the groups were in both cases not statistically significant 117 

(Table 1; Median bottom-antenna crosses: Residents=23, Migrants=14; Median top-antenna crosses: 118 

Residents=3.5, Migrants=8). In contrast, residents exhibited much lower numbers of crosses between ponds 119 

than migrants (Fig. 2c; significant effect of Origin in Table 1; Median pond crosses: Residents=0, 120 

Migrants=16). Furthermore, the proportion of ‘non-leavers’, i.e., individuals that did not exit the first pond, 121 

was significantly higher in residents than in migrants (55% in residents vs. 28.6% in migrants, odds ratio=3.02, 122 

p=0.007). 123 

In Experiment-2, as in Experiment-1, residents moved consistently less between ponds than migrants 124 

(Fig.2d). Furthermore, fish moved more between ponds in the presence of flow and the trend was slightly 125 

stronger for residents than migrants (Fig.2d; significant Origin×Treatment effect in Table 1). Individual 126 

movement tendency between ponds was moderately repeatable across ecological contexts but very weakly 127 

correlated over social contexts (Supp. info. 3.). However, we clearly see from Figure 2 and Table 1 that the 128 

difference between residents and migrants was maintained across different contexts. 129 

  130 
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Discussion 131 

We have previously shown that ~50 years of isolation potentially led to rapid behavioural and morphological 132 

divergence of residents from migrants (7), which mimics the divergence observed in another long-isolated 133 

population of sticklebacks (16). Both studies assayed individual movement tendencies under artificial housing 134 

conditions in the lab and showed counter-intuitive patterns: residents showed either higher (7) or inconsistent 135 

patterns (16) in activity/exploration levels compared to migrants. Here, we show that the same populations as 136 

in (7) exhibited movement tendencies as predicted previously, when they were tested in a semi-natural setting 137 

(relevant social/ecological context and spatial scale): Resident populations exhibited lower movement 138 

tendencies than their migrant counterparts. These differences, detected only at large spatial scale, remained 139 

consistent across ecological and social contexts. Together with the previous results on F1 lab-born juveniles 140 

(8), this study suggests that our mesocosm setup, by allowing water flow, testing in groups and larger spatial 141 

scale (~15m length), is much better suited to characterize individual movement patterns related to migratory 142 

behaviour than lab-based assays in social isolation in small tanks.  143 

Our study reveals that the detection of population differences in stickleback behaviour was scale-144 

dependent (only detectable between, but not within ponds). This is probably because in the wild, sticklebacks 145 

exhibit considerable foraging movements over days (median of 40m upstream, (17)) and hence their within-146 

pond movements, representing foraging movements, may not differ between populations. However, wild 147 

migrants in our field system travel 10s of kilometres inland within a few days (Pers. comm. from water 148 

authorities) and thus require sufficient space and navigation cues (e.g. flow velocity (14)) to express their 149 

natural behaviour.  150 

Tests in the lab, though invaluable for studies on animal behaviour owing to controlled settings, are 151 

not without drawbacks. Firstly, they cannot offer the more natural conditions mentioned above (e.g. spatial 152 

scale, appropriate social or ecological contexts), which may be particularly important for wild-caught animals. 153 

They may constrain the level of behavioural expression to some extent, such as the ‘freezing’ behaviour of 154 

wild-caught migrants in our previous studies (7). Reassuringly, we observed that this was much less of an 155 

issue for lab-bred animals: lab-born F1 juveniles did not freeze in lab tests and their movement-related 156 

behaviours measured in the lab and in the mesocosms positively correlated (Fig.S1). Secondly, lab-tests are 157 
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performed in highly-controlled or novel setups. This can lead to homogenization of behavioural expression 158 

(e.g. decreased variance over time (18)) or uncovering ‘cryptic’ behavioural variation (with novel behaviours 159 

and increased variance in behavioural expression (19)). We thus advocate using mesocosms or other semi-160 

natural setups (e.g. 20–27), to bridge lab and field studies. They circumvent the mentioned drawbacks and 161 

provide valuable insights undetectable in classical behavioural setups, especially for wild populations.  162 

Our results further support the idea that forced isolation in freshwater is followed by phenotypic 163 

changes as reported for sticklebacks isolated after the last glacial retreat (e.g. reduction in lateral plates and 164 

reduced swimming abilities (28–30)). Many of these morphological and behavioural changes are underlined 165 

by genetic differentiation and are true adaptations to a resident lifestyle (31,32). Additionally, we show that 166 

freshwater-induced phenotypic changes in sticklebacks can occur even on contemporary timescales (see also 167 

(33–35)) and can have a genetic component (8). Residents in our study populations are thus likely on a 168 

trajectory to losing their migration tendencies and already (partially) adapted to complete residency. Current 169 

conservation management includes building fishways to reconnect land-locked and migratory populations. In 170 

this context, it is important to consider that residents may be less likely to use fishways due to lowered 171 

migration tendencies. This may require a revision in the evaluation criteria for the success of these 172 

conservation efforts. An exciting future avenue will be to study to what extent and how quickly individual 173 

migration tendencies will be affected when the two populations reconnect.  174 

 175 

Ethics 176 

Wild animals were sampled using a fishing permit from Rijksdienst voor Ondernemend Nederland (the 177 
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Figures and tables 205 

 206 

Figure 1: Experimental setup. The mesocosm consisted of two sets of five linearly connected ponds (1 to 5) 207 

equipped with circular RFID antennas that automatically detect crosses of PIT tagged individuals. Fish were 208 

released into pond 1. This pond was equipped with nine RFID antennas (five on the bottom and four on top 209 

of the water column), allowing us to quantify within-pond movements. The connections between adjacent 210 

ponds were equipped with two RFID antennas, allowing us to quantify the number and direction of movements 211 

between ponds. 212 

b 213 
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 214 

Figure 2: Within-pond and between-pond movement of resident and migrant sticklebacks. a-b) within-215 

ponds crosses at the bottom and top antennas respectively (Experiment-1); c) between-pond crosses  in 216 

Experiment-1; d) between-pond crosses in relation to the daily flow treatment in Experiment-2. In all graphs, 217 

individual crosses (dots), boxplots and density kernels are shown for migrant (dark blue) and resident (light 218 

blue) sticklebacks. 219 
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Table 1. Results of the statistical analysis of movement within and between ponds 220 

using generalised linear mixed models.  Estimates of fixed effects (β) in log-scale are 221 

given with their 95% confidence intervals (CI) and variance components are given with 222 

their standard deviation. Fixed effects that significantly differ from zero are denoted in 223 

bold. Sample sizes experiment-1: Nmig=5 groups (49 individuals), Nres=6 groups (60 224 

individuals); experiment-2: Nmig=1 group (45 individuals), Nres=1 group (52 225 

individuals). 226 

 Experiment-1 Experiment-2 

 Bottom crosses Top crosses Pond crosses Pond crosses 

Fixed effects β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Intercept 2.61 (2.13, 3.08) 1.98 (0.30, 3.63) 1.90 (0.63, 3.13) 2.53 (1.87, 3.17) 

Origin1 0.51 (-0.12, 1.15) -0.68 (-3.03, 1.53) -2.26 (-4.04, -0.58) -1.77 (-2.68, -0.87) 

Treatment2  - - - -0.14(-0.44, 0.16) 

Origin1 × Treatment2  - - - -0.72 (-1.18, -0.27) 

Random effects Var (sd) Var (sd) Var (sd) Var (sd) 

Group-ID 0.11 (0.33) 2.94 (1.72) 0.95 (0.98) - 

Obs 1.21 (1.10) 1.14 (1.07) 5.02 (2.24) 0.81 (0.90) 

Individual-ID - - - 4.11 (2.02) 

1’migrant’ is used as reference category; 2‘flow’ is used as reference category 227 

 228 
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