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Abstract 18 

Motivation: Genome-wide maps of epigenetic modifications are powerful resources for non-19 

coding genome annotation. Maps of multiple epigenetics marks have been integrated into cell or 20 

tissue type-specific chromatin state annotations for many cell or tissue types. With the increasing 21 

availability of multiple chromatin state maps for biologically similar samples, there is a need for 22 

methods that can effectively summarize the information about chromatin state annotations within 23 

groups of samples and identify differences across groups of samples at a high resolution. 24 

Results: We developed CSREP, which takes as input chromatin state annotations for a group of 25 

samples and then probabilistically estimates the state at each genomic position and derives a 26 

representative chromatin state map for the group. CSREP uses an ensemble of multi-class 27 

logistic regression classifiers to predict the chromatin state assignment of each sample given the 28 

state maps from all other samples. The difference of CSREP’s probability assignments for two 29 

groups can be used to identify genomic locations with differential chromatin state patterns.  30 

Using groups of chromatin state maps of a diverse set of cell and tissue types, we demonstrate 31 

the advantages of using CSREP to summarize chromatin state maps and identify biologically 32 

relevant differences between groups at a high resolution. 33 

Availability and implementation: The CSREP source code is openly available under 34 

http://github.com/ernstlab/csrep. 35 

Contact: jason.ernst@ucla.edu 36 

Introduction 37 

Genome-wide maps of chromatin marks such as histone modifications and variants 38 

provide valuable information for annotating non-coding genome features (Barski et al., 2007; 39 
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Ernst et al., 2011; Zhu et al., 2013; Xie et al., 2013). Efforts by large consortia and individual 40 

labs have produced chromatin state maps for many cell and tissue types (Roadmap Epigenomics 41 

Consortium et al., 2015; Consortium, 2012; Zhu et al., 2013; Barski et al., 2007). A popular 42 

representation of such data is chromatin states defined by the combinatorial and spatial patterns 43 

of multiple marks, which are generated by methods such as ChromHMM and Segway (Libbrecht 44 

et al., 2021)(Ernst and Kellis, 2010, 2012; Hoffman et al., 2012), and correspond to diverse 45 

classes of genomic elements including various types of enhancers and promoters. 46 

Chromatin state maps have been produced for hundreds of different biological samples. 47 

In many cases there are multiple samples representing similar cell and tissue types (Boix et al., 48 

2021; Roadmap Epigenomics Consortium et al., 2015). In such cases, to simplify analyses and 49 

visualizations, it may be desirable to have a single chromatin state annotation that summarizes 50 

the annotations for all samples from each group. A straightforward approach to this task is to 51 

take the most frequent chromatin state assigned at each position across samples. However, when 52 

the number of samples per group is small or the number of states is large, such an approach can 53 

be particularly vulnerable to noise. Furthermore, such an approach does not consider additional 54 

information available about the different chromatin states. For example, if a location was 55 

assigned to three different states in three samples, the summary annotation among these three 56 

states based on the frequency-based method would be arbitrary. However, by leveraging 57 

information about the co-occurrence of state assignments genome-wide, there is additional 58 

information to predict the most likely chromatin state annotation for a new sample from the 59 

group.  60 

A related challenge is to identify differences in chromatin state annotations between two 61 

groups at a high resolution and on a per-state basis. Methods such as ChromDiff, chromswitch, 62 
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and EpiAlign (Yen and Kellis, 2015; Jessa and Kleinman, 2018; Ge et al., 2019) can identify 63 

chromatin state differences between samples, but only calculate a measure of difference for a 64 

broad domain (e.g. a gene body), encompassing a large number of genomic bins for which the 65 

states are defined. Additionally, EpiAlign and Chromswitch are designed to measure the 66 

difference in annotations for one user-input query region in each run, and are not designed to 67 

generate genome-wide output, which is our focus. Another approach, EpiCompare (He and 68 

Wang, 2017) presented an approach for identifying differential enhancer chromatin states across 69 

cell or tissue tissue types, but did not consider other types of chromatin states. SCIDDO (Ebert 70 

and Schulz, 2020) can detect genome-wide significant differential chromatin domains between 71 

two groups of samples while incorporating a measure of similarity among states. However, 72 

SCIDDO only provides a single differential score per position and does not directly answer the 73 

question of what chromatin state switch occurs at each genomic position. Another method, dPCA 74 

(Ji et al., 2013), works directly on chromatin mark signals and does not quantify state differences 75 

across groups of samples. 76 

To effectively summarize the chromatin state annotations for a group of samples and 77 

prioritize the chromatin state differences between two groups on a per-state basis, at high 78 

resolution, we introduce CSREP. CSREP leverages both the information about the input 79 

samples’ chromatin states at a position being summarized, as well as information of states’ co-80 

occurrences in different samples within the same group across the genome. CSREP does this by 81 

first generating probabilistic estimates of chromatin state annotations by using an ensemble of 82 

multi-class logistic regression classifiers that predict the state assignment in a sample at a 83 

position, given the annotations in other samples, at the corresponding genomic position. From 84 

those predictions, CSREP is then able to produce a single summary state assignment per 85 
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position. CSREP can also use the difference of summary probabilistic predictions for two groups 86 

of samples to quantify the difference in state assignments between the two groups on a per-state 87 

basis, e.g. one genome-wide score track per chromatin state. 88 

Using CSREP, we generated the summary chromatin state maps for 11 groups of 89 

tissue/cell types from Roadmap Epigenomic Project (Roadmap Epigenomics Consortium et al., 90 

2015), and for 75 groups from the Epimap Portal (Boix et al., 2021). We show that CSREP can 91 

better predict chromatin state assignments in held-out samples than a counting-based baseline 92 

method. We also verify that the resulting summary chromatin maps show correspondence with 93 

the group’s average gene expression profile. Additionally, we show that CSREP’s differential 94 

scores can recover differential epigenetic signals on chromosome X between male and female 95 

samples. We also show that CSREP differential scores between samples from two different 96 

tissue groups can predict regions of differential peaks for various chromatin marks. The CSREP 97 

implementation is designed to be user-friendly and includes a detailed tutorial, available at 98 

https://github.com/ernstlab/csrep. We expect CSREP will be a useful tool for summarizing 99 

chromatin state maps within groups and finding differences across groups. Additionally, the 100 

summary annotations for different tissue groups that we generated with CSREP are expected to 101 

be useful resource. 102 

Results 103 

CSREP method 104 

CSREP takes as input chromatin state maps for a group of samples learned based on a 105 

concatenation approach (Ernst and Kellis, 2010, 2012) to ensure that annotations for different 106 

samples share chromatin state definitions. CSREP then generates as output (1) a summary 107 

probabilistic chromatin state assignment matrix and (2) a summary state map track for the group. 108 
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The summary state assignment matrix represents the probabilities of each state being present at 109 

each genomic position in a new sample of that group. To generate these, CSREP takes a 110 

supervised learning approach, leveraging information about the co-occurrence of states from the 111 

different samples across the genome. Specifically, for each group of input samples, CSREP 112 

trains an ensemble of multi-class logistic regression classifiers (Hastie et al., 2009) to generate 113 

probabilistic predictions for each chromatin state at each position (Fig. 1A, Methods). We used 114 

multi-class logistic regression classifiers since they provide well calibrated probabilities, are 115 

robust, and relatively fast to train. Each classifier is trained with labels based on the chromatin 116 

state assignments from one sample and features based on the chromatin states in other samples 117 

for the same genomic positions. Each classifier then makes a probabilistic prediction of the 118 

chromatin state assigned at each genomic position in the target sample. The chromatin state input 119 

features to each logistic regression classifier are represented with a one-hot-encoding of the 120 

chromatin states. The classifiers are trained on randomly selected genomic positions that 121 

constitute 10% of the genome, while the predictions are calculated genome-wide. The resolution 122 

of predictions is the same as that of input samples’ chromatin state maps (200bp with default 123 

settings from ChromHMM). The prediction result for each sample’s chromatin state map are 124 

represented in a matrix with rows corresponding to genomic positions and columns chromatin 125 

states. The values in each row sum to 1, representing the probabilities of state assignments at a 126 

genomic position. The probabilistic summary of a group is based on averaging the prediction 127 

output matrices for each sample in the group. These probabilistic predictions are then used to 128 

generate a summary chromatin state map for the group of samples by assigning the state with 129 

maximum assignment probability to each genomic position.  130 
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CSREP’s summary probabilistic predictions can be directly used to generate differential 131 

chromatin state maps for two groups with multiple samples. This is achieved by subtracting the 132 

summary chromatin state assignment matrices of one group (first group) from the other’s 133 

(second group) (Fig. 1B, Methods). At each genomic position, CSREP’s chromatin differential 134 

scores for individual chromatin states are bounded between -1 and 1, with a score of 1 in state S 135 

meaning state S was predicted to be the annotation for the first and second groups with 136 

probabilities 1 and 0 respectively, and vice versa for -1 (Fig. 1C). Overall, in addition to 137 

summarizing the state assignments for groups of samples, CSREP can calculate scores of 138 

differential chromatin state assignments for pairs of groups at the resolution of the input 139 

chromatin state maps.  140 

CSREP is predictive of chromatin states on held-out samples 141 

We applied CSREP to a compendium of 18-state chromatin state maps for 64 samples (reference 142 

epigenomes) from 11 tissue groups generated by the Roadmap Epigenomics Project (Roadmap 143 

Epigenomics Consortium et al., 2015). The tissue groups include embryonic stem cells (ESCs), 144 

induced pluripotent stem cells (iPSC), ESC-derived cells, blood & T-cells, HSC & B-cells, 145 

epithelial, brain, muscle, heart, smooth muscle and digestive. The numbers of input samples for 146 

each tissue group range from 3 to 12. We provide the CSREP’s genomewide summary 147 

probabilistic and hard state assignments for 11 tissue groups (Data availability). 148 

We first visualized CSREP’s summary chromatin state maps for a group of samples from 149 

digestive and heart tissue groups, which have 10 and 3 samples, respectively (Fig. 2A, Supp. 150 

Fig. 1-4). For each group, we arbitrarily selected four 500-kb regions and visualized the input 151 

chromatin state maps and CSREP’s output probabilistic estimates and summary state map at 152 
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such genomic windows. We observed expected correspondence between the groups’ input and 153 

output chromatin state assignment estimates (Fig. 2A, Supp. Fig. 1-4). 154 

To quantitatively evaluate CSREP’s summary output for a group of samples, we 155 

evaluated the accuracy of CSREP’s summary probabilistic chromatin state predictions in a leave-156 

one-out cross-validation analysis. In particular, for each chromatin state, we calculated Area 157 

Under the Receiver Operating Characteristic (AUROC) curve for predicting genomic locations 158 

assigned to the state in the left-out sample from the group (Supp. Methods). We compared the 159 

performance of CSREP against a baseline method, denoted base_count, which counts each 160 

state’s frequency across input samples at each genomic position (Supp. Methods). 161 

CSREP showed strong predictive performance for chromatin states in left-out samples 162 

with average AUROCs across 64 samples varying from 0.871 to 0.993 for the 18 states. Across 163 

the 18 states, CSREP consistently had better AUROC in recovering individual states compared 164 

to the baseline method base_count (Fig. 2B). The average AUROC improvements by CSREP 165 

compared to base_count ranged from 0.003 (for state 18_Quies) to 0.157 (for state 4_ 166 

TSSFlnkD). Larger performance improvements by CSREP relative to base_count are observed 167 

for all chromatin states when there are fewer input samples in the group (Supp. Fig. 5). 168 

CSREP summary chromatin state maps’ association with gene expression 169 

Transcription start sites (TSS) are marked by different histone modifications and variants 170 

that can correlate gene transcription (Kimura, 2013; Soboleva et al., 2014). Here, we evaluated 171 

how CSREP’s summary state map for a tissue group is predictive of the group’s gene expression 172 

profiles at transcription start sites (TSS) of genes. First, we obtained gene expression data for 173 

available samples for the 11 tissue groups as above, and calculated the average protein-coding 174 

gene expression for each group (Supp. Methods). We then calculated the Pearson correlation 175 
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between (1) the group’s average expression for protein coding genes and (2) CSREP’s summary 176 

state assignment probabilities for state 1_TssA (active TSS state) at the corresponding genes’ 177 

TSSs. We did the same evaluation for base_count. CSREP had significantly higher correlations 178 

than base_count (paired t-test p-value: 0.009, average 0.550 vs. 0.534, Supp. Methods). We next 179 

extended this analysis for a larger dataset for 552 samples in 75 groups from EpiMap repository 180 

based on state 1_TssA from the same 18-state annotations (Boix et al., 2021) (Supp. Methods). 181 

The 75 groups were previously formed based on tissue types and developmental stages with the 182 

number of samples per group ranging from 3 to 38 (Supp. Methods, Data Availability). Of the 183 

75 groups, 65 also had gene expression data available for at least one sample. Across these 65 184 

groups, again CSREP’s had significantly higher correlations than base_count (paired t-test p-val: 185 

5.5e-08, average 0.545 vs. 0.538, Supp. Methods). Overall, CSREP’s summary chromatin state 186 

maps at TSS for the TssA state show significantly higher correspondence with gene expression 187 

levels compared to the base_count method. 188 

CSREP detects differential chromatin regions associated with different sexes 189 

We next investigated the performance of CSREP at identifying biologically meaningful 190 

chromatin state changes between groups of male and female samples based on its ability to 191 

prioritize chromatin state differences on chromosome X (chrX) relative to autosomal 192 

chromosomes. Specifically, we applied CSREP to calculate differential chromatin state 193 

scores between 25 female and 44 male samples from Roadmap Epigenomics (Supp. Methods) 194 

(Yen and Kellis, 2015; Ge et al., 2019) by subtracting CSREP’s summary state probability 195 

matrix for the female samples from the corresponding matrix for the male samples.  196 

We analyzed CSREP’s differential scores for all chromatin states across autosomal 197 

chromosomes and chrX (Fig. 3A, Supp. Fig 6-7). Three states with the largest magnitude of 198 
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difference in mean scores between the sex chrX and autosomes were states 13_Het 199 

(heterochromatin, marked by H3K9me3), 17_ReprPCWk (weak polycomb repressed complex) 200 

and 18_Quies (quiescent). In chrX, compared to autosomal chromosomes, the distribution of 201 

differential scores for states 13_Het and 17_ReprPCWk showed a larger tail of negative. ChrX’s 202 

average score minus the autosomes’ average score values for states 13_Het and 17_ReprPCWk 203 

were -0.039 and -0.054, respectively (Supp. Fig. 7), implying that on chromosome X, female 204 

samples are more often assigned to these states compared to male samples. State 18_Quies 205 

showed the opposite trend with a difference of 0.11(Fig. 3A, Supp. Fig. 7). These results are 206 

consistent with sex-specific chrX inactivation, which is used in female mammals to achieve 207 

dosage compensation between the two sexes (Wutz, 2011; Yen and Kellis, 2015).  208 

We next compared the performance of CSREP and other methods in recovering 209 

annotated transcription start sites (TSSs) on chrX, using the above-mentioned states, given 210 

varying numbers of input samples (Supp. methods) (Fig. 3B). To do this, we randomly selected 211 

30 subsets of size � male and � female samples from the set of available 44 male and 25 female 212 

samples, where � is varied within the set of 3, 5, 9, 12 or 15 samples. Given each set of input 213 

male and female samples, we calculated the receiver operating characteristic (ROC) curve when 214 

using differential chromatin scores between male and female groups to predict locations 215 

overlapping annotated TSSs on chrX, against the background of those overlapping all annotated 216 

TSSs in the genome (Supp. Methods). We observed that CSREP showed the largest advantage 217 

over base_count, as measured by AUROCs, when the number of input samples from Male and 218 

Female groups is relatively small, e.g. 3 samples in each group (Fig. 3B). As the number of input 219 

samples from each group increases sufficiently, the overall gap of performance between CSREP 220 

and base_count goes away. In all cases, CSREP and base_count show better performance 221 
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compared to SCIDDO (Ebert and Schulz, 2020) (Fig. 3B). Overall, CSREP showed the greatest 222 

advantage over other approaches when the number of samples is relatively small, which occurs 223 

frequently in practice. 224 

CSREP differential scores recover differential chromatin mark peaks  225 

We next analyzed how well CSREP’s, base-count’s and SCIDDO’s differential 226 

chromatin state scores can predict genomic regions overlapping differential signals of DNase I 227 

hypersensitivity (DNase), H3K9ac and H3K27ac between samples from embryonic stem cell 228 

(ESC) and brain. DNase and H3K9ac signals were not used for learning the 18-state model used 229 

to annotate the two groups’ input samples, providing an independent validation. While H3K27ac 230 

was used in learning the input chromatin state maps, since all the methods being compared 231 

(CSREP, base_count, SCIDDO) had access to the same maps as input, and H3K27ac is a well-232 

established mark of cell-type specific activity (Creyghton et al., 2010), we still considered 233 

H3K27ac in the evaluations of methods’ performance. 234 

For each of the three chromatin marks, we first obtained a set of bases that are present in 235 

peaks in all samples from ESC but not in any from the Brain group and vice versa (Supp. 236 

Methods). We then calculated CSREP and base_count differential chromatin scores by 237 

subtracting the summary chromatin state map of Brain from that of the ESC. Additionally, we 238 

applied SCIDDO to the same set of input data (Supp. Methods). We evaluated, in terms of 239 

AUROC, how well the methods prioritize regions overlapping bases in the ESC-/brain-specific 240 

sets of peaks (Supp. Methods). For CSREP and base_count, we conducted separate evaluations 241 

for each chromatin state, but did not for SCIDDO since it outputs one score track that measures 242 

the overall difference across the chromatin state landscape between the two groups.  243 
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Across the different marks being evaluated, the highest AUROCs were consistently from 244 

CSREP based on its scores for either from promoter or enhancer associated states (Fig. 4). For 245 

example, for identifying brain specific H3K9ac peaks, CSREP had an AUROC of 0.717 based 246 

on the evaluation with state 9_EnhA1, an active enhancer state, while the maximum AUROC 247 

achieved for base_count was 0.617 and SCIDDO’s AUROC was 0.564.  These analyses suggest 248 

that CSREP differential scores better correspond to locations of individual mark differences 249 

between two groups of samples genomewide, compared to other approaches that also aim to 250 

identify chromatin state differences between two groups. The advantage of CSREP over 251 

SCIDDO may in part be due to CSREP producing scores with respect to specific chromatin 252 

states and including the direction of change (with positive/negative scores implying one group’s 253 

higher state assignment probabilities compared to the other’s).  254 

Discussion 255 

Here, we proposed CSREP, a method for probabilistically summarizing the chromatin 256 

state maps from a group of samples. CSREP achieves this by training multi-class logistic 257 

regression models to predict the chromatin state annotations of one sample using data from 258 

others, and then averaging the prediction probabilities across all samples in the group. CSREP 259 

outputs the probabilities of each chromatin state being assigned to each genomic position, at the 260 

same resolution that chromatin states are annotated. We applied CSREP to generate summary 261 

18-state chromatin state assignment probability matrices for 11 groups of cell and tissue types 262 

from Roadmap Epigenomics Project (Roadmap Epigenomics Consortium et al., 2015), and 75 263 

groups of samples stratified by cell and tissue types and developmental phases from EpiMap 264 

(Boix et al., 2021), and have made them publicly available (Data Availability).  265 
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Our analyses reveal that CSREP’s probabilistic summary of state assignments better 266 

predicts the chromatin states of held out samples compared to the counting-based baseline 267 

approach. We also showed that CSREP’s summary assignment probabilities of state 1_TssA at 268 

TSS was well correlated with the average gene expression of the group, and significantly higher 269 

than those achieved by the counting-based baseline. 270 

CSREP can also be used to directly quantify the difference in chromatin state maps 271 

between two groups with multiple samples, at the resolution of the input annotations. CSREP 272 

produces differential scores for each chromatin state at each genomic position, which represent 273 

the difference in probabilities that samples from two input groups are assigned to each specific 274 

state. Therefore, CSREP differential scores are bounded (-1 to 1), interpretable with respect to 275 

specific chromatin state changes, and indicative of the direction of change, which contrasts it 276 

with other approaches that provide a single score showing magnitude of difference per genomic 277 

position. We used CSREP to compare the chromatin state annotations between male and female 278 

samples from Roadmap Epigenomics (Roadmap Epigenomics Consortium et al., 2015), and 279 

showed that CSREP can better predict regions overlapping genes’ TSS on chrX, particularly 280 

when there are few samples in each group. CSREP’s differential scores for states associated with 281 

active enhancers and promoters better recovered tissue-group-specific peaks of 282 

DNase/H3K27ac/H3K9ac signals compared to alternative approaches, suggesting that CSREP 283 

provides useful additional information for analyzing epigenomic changes across tissue types. 284 

Future work could apply CSREP to compare additional biological conditions or disease state 285 

(e.g. cancer vs non-cancer).  286 

CSREP works directly off of chromatin state annotations, which makes CSREP agnostic 287 

to the specific methods used to produce those annotations. Some methods for learning chromatin 288 
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state annotations have the option to expose posterior probability estimates of annotations, which 289 

could potentially be used in an extended version of CSREP. However, assuming accurately 290 

determined posterior probability estimates are available as input would also make CSREP less 291 

generally applicable. 292 

To facilitate the use of CSREP, we provide an implementation of CSREP as a snakemake 293 

pipeline (Mölder et al., 2021) with a detailed tutorial that only requires users to modify 294 

parameters in a yaml file. The program can be run either on local computers or on computing 295 

clusters, in which case snakemake will optimize the workflow for execution.  296 

We expect CSREP to be a useful tool and the output we have provided from it a valuable 297 

resource for summarizing summarize chromatin state maps from groups of samples and 298 

prioritizing regions with differential chromatin state changes across pairs of groups of samples.  299 

Methods 300 

CSREP’s summarization of a group of samples 301 

Let � denote the number of genomic bins across the genome, � the number of chromatin 302 

states, and � the number of samples in the target group of samples. Let ��,� denote the chromatin 303 

state assigned to sample � at genomic position �, which can take one value of 1, 2, . . . , �. Let 304 

�� denote the set of samples not including �, i.e. �� � 
1, … , �� � 
��. In general, CSREP is an 305 

ensemble of � multi-class logistic regression classifiers such that for each sample �, CSREP 306 

trains a classifier to predict the chromatin state map of this sample based on features in the 307 

remaining samples (��). The predictor variables for such a model include one-hot encoding 308 

chromatin state maps of the � � 1 samples (all samples in the group except �) and an intercept 309 

term, resulting in �� � 1� � � � 1 predictor variables. The response variable is the chromatin 310 

state of the target sample �, which can take one value of 1, 2, . . . , �.  311 
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In the multi-class logistic regression model, let ��  denote the vector of predictor variables 312 

at position �, which has length (N-1)� � � 1 and takes values {0,1}. The last entry of ��  is 1, 313 

corresponding to the intercept term. Let ��  denote the value of the response variable at position �, 314 

which takes values 
1,2, . . . , ��. Since the input chromatin state maps segment the genome into 315 

200-bp bins, we refer to each genomic position as one 200-bp window in the genome. We 316 

randomly selected genomic positions for the training data set, such that these positions constitute 317 

10% of the genome. Given the training data set, for each state � � 
1, … , � � 1�, the multi-class 318 

logistic regression model learns a coefficient vector �� with length �� � 1� � � � 1, 319 

corresponding to the number of predictor variables. The probability of sample �’s chromatin 320 

state � being assigned at position � is calculated as:  321 

���� � �� �  
���� ��

1 � ∑ ���� ��	
�
�
�

 

for � � 
1, . . , � � 1�, and as the following when � � �:  322 

���� � �� �  
1

1 � ∑ ���� ��	
�
�
�

 

After CSREP trains the multi-class logistic regression model on training data that constitute 10% 323 

of the genome, and �2-norm penalty. The model is implemented using Python’s sklearn, 324 

pybedtools package and snakemake (Dale et al., 2011; Quinlan and Hall, 2010; Mölder et al., 325 

2021). CSREP applies the model to generate predictions of genome-wide probabilistic chromatin 326 

state map for sample �, which is presented in a matrix of size � �  �. The output matrices from 327 

� predictions for � samples are then averaged, so at each genomic bin, the sum of state 328 

assignment probabilities across � states is 1. In addition, the chromatin state with the maximum 329 

probability in each row is recorded to produce a single representative chromatin state map for the 330 

entire group of samples.  331 
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CSREP’s application to prioritizing differential chromatin state changes between two 332 

groups of samples 333 

To calculate differential chromatin state maps between two groups of samples, group1 and 334 

group2, CSREP first calculates the probabilistic chromatin state map matrices for each group as 335 

described above, denoted as �� and ��, respectively. After this, CSREP subtracts the two 336 

matrices to represent the differential chromatin state map between group1 and group2 (denoted 337 

���),  i.e. ���  �  ��  � ��. We note that we used signed and not absolute difference here and 338 

thus the score range from �1 to 1. A score on row � and column � of ���, denoted ���,�,�, being 339 

�1 means group2 is estimated to have probability 1 of being assigned to state � at position � 340 

while group1 has probability of 0. Additionally, since CSREP assigns � scores of differential 341 

chromatin maps to each genomic position �, corresponding to � states, CSREP can uncover 342 

specific chromatin states switch. For example, if ���,�,� � 0.8 when � � 1 while ���,�,� �343 

 �0.8 when � � 2, we can say it is likely that at position �, group1 is more likely to be in state 1 344 

while group2 is likely to be in state 2.  345 

Data availability 346 

The summary chromatin state maps (the chromatin state assignment matrices and the 347 

corresponding state annotation) for 11 tissue groups in Roadmap Project and 75 groups in 348 

Epimap Portal are available for download at https://github.com/ernstlab/csrep. The summary 349 

state maps for samples in Roadmap Epigenomics and EpiMap are provided both in hg38 and in 350 

hg19. 351 
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A

B

C

Procedure to calculate the differential chromatin state scores

ESC and Brain samples’ input chromatin state maps and CSREP’s output for regions chr5:156012600-156022400
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Fig. 1: Overview of CSREP. (A) CSREP uses an ensemble of multi-class logistic regression models. In 411 

each model, the chromatin state map at the target sample is predicted based on the one-hot encoding of 412 

chromatin state assignments at the corresponding genomic positions in other samples. Multi-class logistic 413 

regression outputs the probabilities that each genomic position (row) in the target sample will be assigned 414 

to each state (column). CSREP averages the prediction matrices for target samples, to output the summary 415 

state assignment probability matrix. (B) The operations to obtain differential chromatin state assignment 416 

scores between two groups with multiple samples. CSREP calculates the summary chromatin state 417 

assignment matrices for two groups, and subtracts one group’s summary matrix from the other’s to obtain 418 

differential chromatin scores. Different chromatin scores are bounded between -1 (brown) and 1 (blue). 419 

(C) Visualization of CSREP’s output in a genomic region (hg19, chr5:156,012,600-156,022,400). The top 420 

of the subpanel shows the CSREP’s summary chromatin state probabilities for 18 states across seven 421 

Brain reference epigenomes. Each track shows the probabilities of assignment for one state, as named and 422 

colored on the left. The middle subpanel shows the 18-state chromatin state maps for 7 Brain samples and 423 

5 ESC samples from Roadmap Epigenomics (Roadmap Epigenomics Consortium et al., 2015), and the 424 

CSREP’s output summary chromatin state maps for each group, outlined in black. States are colored as in 425 

legend as at the top of this subpanel. The last subpanel shows the differential chromatin scores when 426 

ESC’s summary state probabilities are subtracted from Brain’s. Each track shows one state’s differential 427 

scores. Scores between 0 and 1 are colored black, while those between -1 and 0 are colored grey. 428 

  429 
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 430 

Fig. 2: Performance of CSREP in summarizing a group with multiple samples’ chromatin state 431 

maps.  (A) Visualization of one arbitrarily selected 500-kb region (chr5: 42,821,109-43,321,109, hg19). 432 

The first 10 tracks show chromatin state maps of 10 input samples from the Roadmap Epigenomics 433 

Consortium of the Digestive group, which were input to CSREP. The following track shows the summary 434 

chromatin state map from CSREP, which shows strong agreement with the input. States are colored based 435 

on the legend on the lower left. In the following 18 tracks, each track shows CSREP’s probabilities of 436 

assignment for each of 18 states, with state annotations in legend on left. 437 
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(B) Boxplots showing the CSREP and base_count methods’ average, range and 25, 75% quantiles of the 438 

AUROCs across 64 samples, for each of the 18 chromatin states. The AUROCs were calculated in leave-439 

one-out cross validation analysis where we used a group’s summary probabilistic chromatin state map to 440 

predict genomic locations of individual chromatin states in a left-out sample from the same cell/tissue 441 

group (Supp. Methods). States 1-18 (x-axis) are annotated as in (A). 442 

(C) Boxplots showing the Pearson correlations between a group of samples’ (1) summary probabilities of 443 

state 1_TssA (active TSS) at annotated TSSs, and (2) the corresponding groups’ average gene expression 444 

(Supp. Methods). We obtained the correlations for 11 groups of cell types from the Roadmap 445 

Epigenomics Project, and 65 groups from EpiMap. Each dot shows the Pearson correlation for data from 446 

a group of samples.  447 
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449 

Fig. 3: CSREP show signals of differential chromatin state scores in chromosome X when 450 

comparing male and female samples. (A) Each subpanel shows the histogram of CSREP’s differential 451 

scores in autosomes and chromosome X, for states associated with heterochromatin (13_Het), weak 452 

polycomb repressed domains (17_ReprPCWk), and quiescent regions (18_Quies). The x-axis shows 453 

differential scores, with positive values implying male samples have higher probabilities of being in the 454 

state compared to female samples, and vice versa for negative values. Histograms of scores for all states 455 

are in Supp. Fig 6. (B) AUROCs of recovering regions overlapping annotated TSSs on chromosome X, 456 

using differential chromatin scores of three states as in (A), outputted by CSREP and base_count for Male 457 

and Female groups (Supp. Methods). We calculated the AUROCs using different sets of input male and 458 

female samples, with varying number of samples in each group (x-axis). For each number of samples (x-459 

axis), we conducted the analysis for 30 sets of male and female input samples (Supp. Methods). The 460 

plots show the average (dots) and standard deviation (error bars) of the AUROCs across the 30 sets of 461 

B

A Histogram of CSREP’s differential chromatin scores between Male and Female 

AUROC of CSREP and base_count differential scores recovering regions at annotated TSSs in chrX

csrep Base_count

autosomes chrX

Sciddo
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input samples. SCIDDO did not successfully generate output for the case of 15 input samples so no 462 

results are reported for that.   463 

464 

Fig. 4: CSREP better recovers differential chromatin marks signals between ESC and Brain. The 465 

table shows AUROCs for differential scores’ predictions of genomic regions associated with differential 466 

peak signals for one chromatin mark, from left to right: DNase, H3K27ac and H3K9ac. For each 467 

chromatin mark, it shows the AUROCs of predicting signal peaks observed in Brain and ESC exclusively 468 

(Brain-spec and ESC-spec). Differential scores outputted by CSREP or baseline are shown for each 469 

chromatin state (rows). In each category of comparisons, the top three scores that show highest AUROCs 470 

are highlighted in green. Along the bottom is the AUROC for SCIDDO. 471 
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