1 Title

2	Incorporating	uniparental	markers and	demographic	information	in kinship	analysis
---	---------------	-------------	-------------	-------------	-------------	------------	----------

3 Authors

- 4 Jin-Xian Liu^{1,2,3*}, Meng-Yu Li^{1,2,3,4}
- 5
- 6

7 Affiliations

- ⁸ ¹ CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of
- 9 Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- ¹⁰ ²Laboratory for Marine Ecology and Environmental Science, Qingdao National
- 11 Laboratory for Marine Science and Technology, Qingdao 266237, China.
- ¹² ³Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071,

13 China.

- ⁴ University of Chinese Academy of Sciences, Beijing, China.
- 15 * Corresponding author. *E-mail* address: jinxianliu@gmail.com.

17 Abstract

18	Knowledge of kinship relations between members of wild populations is of great
19	importance in ecological and conservation genetic studies. The bi-parentally inherited
20	autosomal markers has been the Golden Standard in kinship analysis. However,
21	analysis of kin relationship can be challenging in wild populations. The uni-parentally
22	inherited markers and population demographic information can be helpful for
23	identifying false-positive in kinship analysis. Here we showed how incorporating
24	uniparental genetic and demographic information can improve the correct
25	classification rate of kinship analyses by reanalyzing data of a recent study published
26	in Science Advances. The application of next generation high-throughput sequencing
27	to address fundamental ecological questions is of immense benefit to the field of
28	molecular ecology, which could also generate uniparentally inherited organelle
29	genomes together with nuclear data. We strongly recommended that uniparental
30	genetic markers and demographic information be seriously considered in kinship
31	analyses of wild populations.

32 Keywords

Kinship analysis, uni-parentally inherited markers, demographic information, wildpopulations

36 MAIN TEXT

37	Knowledge of kinship relations between members of wild populations is of great
38	importance in ecological and conservation genetic studies with potentially far-
39	reaching implications (Weir, Anderson, & Hepler, 2006; Blouin, 2003; Flanagan &
40	Jones, 2019; Speed, & Balding, 2015). Kinship analyses can provide indispensable
41	information for the study of dispersal (Jasper et al., 2019; Schunter et al., 2014),
42	mating systems (Bentzen et al., 2001), variance of reproductive success among
43	individuals (Christie et al. 2010; Liu & Ely 2009), inbreeding avoidance (Hargrove et
44	al., 2021), kin recognition, and kin selection (O'Corry-Crowe et al., 2020) as well as
45	aiding the management of endangered populations (Escoda, Fernández-González &
46	Castresana, 2019; Kanno, Vokoun & Letcher, 2011). However, analysis of kin
47	relationship can be challenging in wild populations (Weir, Anderson & Hepler, 2006).
48	Kinship can be estimated on the basis of genetic similarity among individuals of a
49	population, reflecting the proportion of homologous alleles shared between 2
50	individuals due to identity-by-descent from a common ancestor (Blouin, 2003).
51	Estimates of genetic relatedness may be inaccurate because they require the
52	assumption that founders are outbred and unrelated. High levels of inbreeding may
53	affect relatedness and therefore kinship inference (Wang, 2014). Even for individuals
54	whose parents are not inbred, account needs to be taken of 'background relatedness'
55	that is due to evolutionary history in a population (Weir, Anderson & Hepler, 2006).
56	So the assessment of kinship among members of wild animal populations is difficult
57	in the absence of detailed multigenerational pedigrees and background relatedness

58	(Stadele & Vigilant, 2016). Parent-offspring relationships can be determined with
59	higher confidence than other relationships by comparing the genetic information of an
60	offspring and supposed parents under the simple Mendel's laws (Flanagan & Jones,
61	2019). However, it becomes markedly more challenging in situations where neither
62	parent is known by field observation. In species for which the offspring of unsampled
63	parents can be expected to contain groups of full and/or half siblings, sibship
64	reconstruction is a powerful tool for identifying related individuals (Jones et al. 2010).
65	However, sibship reconstruction for populations with complex kinship structures,
66	which present in species with promiscuous mating systems, long life spans, and
67	overlapping generations, can also lead to high error rates (Stadele & Vigilant, 2016).
68	In addition, genetic data could suffer from a high rate of genotyping errors such as
69	allelic dropouts and false alleles in situations such as data from low-coverage next-
70	generation sequencing, noninvasive samples, and highly degraded samples (Blouin
71	2003; Wang et al. 2019). Use of such data without accounting for mistyping properly
72	could also lead to inaccurate or incorrect inferences of kin relationships.
73	The bi-parentally inherited autosomal markers, e.g. SNPs or microsatellites, has
74	been the Golden Standard in kinship analysis because of their high discriminatory
75	power in kinship inference (Goudet et al., 2018; Weinman, Solomon & Rubenstein,
76	2015). The uni-parentally inherited (sex-specific inherited) markers are usually
77	applied to cases where autosomal genotypes cannot be obtained due to technical
78	constraints. The disadvantage of uniparental markers is that their profiles are usually
79	not individual specific, resulting in a much lower discrimination power (Kayser,

80	2007). The uniparental markers yields limited information compared with autosomal
81	markers and does not allow one to obtain a complete reconstruction of possible kin
82	relationships (Vai et al., 2020). However, the inheritance patterns of the uniparentally
83	inherited markers make them powerful additions to kinship analyses using bi-
84	parentally inherited autosomal data by clearly identifying false-positive assignments
85	of kinship with Mendelian incompatibilities (Kopps et al., 2015). For example,
86	individuals not sharing their maternally inherited haplotypes could not be assigned to
87	the category full sibs even if they had high likelihood. In addition to genetic data,
88	demographic information can also be helpful for identifying false-positive. For
89	example, individuals of different age class could not be assigned to the category full
90	sibs.
91	High-throughput next-generation sequencing platforms can generate high-density
92	genome-wide data in a relatively short time and at an affordable price. With rapidly
93	increasing applications of genome-wide SNPs in model and non-model species, dense
94	
	markers has been used in kinship analyses of wild populations by taking advantage of
95	markers has been used in kinship analyses of wild populations by taking advantage of the high informative power (Escoda, Fernández-González & Castresana, 2019; Jasper
95 96	
	the high informative power (Escoda, Fernández-González & Castresana, 2019; Jasper

99 2017). Although the use of high-density, genome-wide molecular markers can enable

100 reasonably accurate assignment of individuals to high-order groupings (Goudet et al.,

101 2018; Phillips, García-Magariños, Salas, Carracedo & Lareu, 2012), the organelle

102	DNA sequences generated together by next-generation sequencing platforms could be
103	expected to provide a nice chance to excluded some false-positive results. To
104	illustrate how incorporating demographic and uniparental genetic information can
105	improve the correct classification rate of kinship analyses, here we reanalyzed the
106	data of a recent study (Vendramli et al. 2021) published in Science Advances by
107	incorporating the maternally inherited mitochondrial DNA and age information.
108	Based on sibship reconstruction and simulation analyses, Vendramli et al. (2021)
109	reported an extreme reproductive sweepstake event together with collective larval
110	dispersal in the highly abundant shallow water Antarctic limpet, Nacella concinna,
111	with which they explained the chaotic genetic patchiness observed in the Rose Garden
112	1999. Vendramli et al. (2021) draw their conclusions under a complete open
113	population frame, which implies that the recruitment of local populations of N .
114	concinna were exclusively from other sources. Based on the results of sibship
115	reconstruction, their forward genetic simulations implicated the Rose Garden 1999
116	age class most likely originated from an extreme sweepstake reproductive success of a
117	single female residing within one stack in an unknown source population. Then at
118	least 95% of the offspring from the extreme reproductive sweepstake in the source
119	population dispersed collectively to Rose Garden. The findings were quite intriguing,
120	however, both the extreme sweepstake reproductive success and strong collective
121	dispersal are only theoretically sound from their forward simulations. For organisms
122	with great fecundity and high mortality in early life stages, the need to match
123	reproductive activity with environmental conditions conducive to spawning,
124	fertilization, larval development and recruitment may result in extreme variance in
125	reproductive success among individuals (Hedgecock & Pudovkin, 2011). Inherent to

the sweepstake reproductive success hypothesis is the idea that variance in 126 reproductive success among breeders is extremely high. However, spawning of N. 127 concinna is highly synchronous among all breeding adults in a given population and 128 occurs in a very narrow timeframe no longer than 24 hours (Picken & Allan, 1983; 129 Stanwell-Smith & Clarke, 1998). The larvae produced by the breeding group of a 130 specific population during such a short period of time may form a single cohort and 131 132 meet similar environmental conditions, which apparently does not facilitate the occurrence of extreme variance in reproductive success among individuals. 133 134 Furthermore, larvae transported far from natal populations by ocean currents usually suffer high mortality along the way (Becker, Levin, Fodrie, & McMillan, 2007; 135 Thorson, 1950). So successful recruitment of most larvae to Rose Garden from the 136 extreme reproductive sweepstake in an unknown source population via collective 137 dispersal with low mortality could be logistically challenging. 138 If the Rose Garden 1999 sample were originated from an extreme sweepstake 139 reproductive success of a single female as suggested, the haplotype diversity of 140 maternally inherited mitochondrial sequences for the Rose Garden 1999 sample 141 142 should be extremely lower than those in other populations. More specifically, only one mitochondrial haplotype shared by the offspring of the single super female should 143

be expected in Rose Garden 1999. The Restriction site-associated DNA sequencing

145 (RAD-seq) conducted in the original study (Vendrami et al., 2021) was performed on

both nuclear and mitochondrial genome simultaneously. There are two Eco RI

recognition sites in the complete, 16761 base pairs long, mitochondrial genome of N.

concinna (GenBank accession: KT990126.1), at nucleotide positions from 10645 to

149 10650 and from 14984 to 14989 respectively. However, authors of the original study

150 ignored the mitochondrial sequences in their data, which could validate their

151 conclusion of the extreme sweepstake reproductive success directly.

Here we tested a specific prediction of the extreme sweepstake reproductive 152 success proposed in Vendramli et al. (2021), sharing of a single mitochondrial 153 haplotype by the offspring of the single reproductive sucessful female. The clean 154 paired-end reads of each individual were mapped to the reference mitochondrial 155 genome. After removing contaminated and low-quality individual dataset, consensus 156 haploid mitochondrial sequence was called for 132 individuals from 14 samples. We 157 got two fragments of mitochondrial sequences with a total length of 1645 base pairs 158 corresponding to the two Eco RI recognition sites. One fragment corresponds to 159 10235-11066 in the reference mitochondrial genome including partial ND1, tRNA-160 161 Leu and partial16S ribosomal RNA. The other fragment corresponds to 14568-15380 of the reference mitochondrial genome including partial COX3, tRNA-Arg, tRNA-162 Asn, and partial ND3. In addition, a third Eco RI recognition site originating from a C 163 to T transition at 6384 of the mitochondrial genome changing GAACTC to GAATTC 164 was also detected in six individuals. The average depth of coverage per nucleotide 165 166 position of the 1645 bp per individual ranged from 42 X to 443 X and were lager than 100 X for most (121/91%) individuals, consistent with the high copy number of 167 168 mitochondrial genome per cell (Table S1). Comparison of the 132 mitochondrial 169 sequences revealed 20 distinct haplotypes defined by 22 polymorphic sites with 19 transitions, and 3 single-base deletions (Table S2). Most of the haplotypes (12/60%) 170 171 were singletons represented by only a single individual. The remaining eight 172 haplotypes were shared by multiple populations (Table S3). The median-joining 173 network of the 20 haplotypes observed revealed a shallow star-like topology with a dominant haplotype H1 (68 individuals, \sim 53%) in the center (Fig. 1), suggesting a 174

shallow phylogeographic history, which was consistent with previous study with a
partial fragment of the COI gene in the western Antarctic Peninsula (GonzálezWevar, David, & Poulin, 2011). The number of haplotypes observed per population
ranged from 3 in four samples (EB15, RG99, Do 99, and SI99) to 7 in RG15. The
haplotype diversity (*h*) per population ranged from 0.38 in EB15 to 0.93 in RG15
(Table 1). Low levels of nucleotide diversity were detected in all localities.

181 In contrast to the extreme sweepstake reproductive success claimed in the original study (Vendrami et al., 2021) in the Rose Garden 1999, three mitochondrial 182 183 haplotypes were detected in only nine individuals of the Rose Garden 1999 sample by using the 1646 base pairs of mitochondrial sequences. Six of the nine individuals were 184 found with the most dominant haplotype H1 that shared by 68 individuals among all 185 the populations. Two individuals were found with a subdominant haplotype H19 186 shared by three individuals from Ryder Bay. The last individual was detected with 187 another subdominant haplotype H8 shared by seven individuals from five individuals. 188 If each of the three mitochondrial haplotypes detected corresponded to one spawning 189 female, then at least three females had contributed to the recruitment of the Rose 190 191 Garden 1999 cohort. However, considering that all the three haplotypes were dominant or subdominant ones, it is highly possible that the individuals shared the 192 193 same mitochondrial haplotype in the Rose Garden 1999 sample could be offspring of 194 different spawning females with the same dominant or subdominant haplotype, as evidenced in other samples with unrelated individuals but shared haplotypes. 195 Furthermore, the three haplotypes were detected with only nine individuals of the 196 197 highly abundant N. concinna and with partial mitochondrial sequences of 1646 base pairs, which is only about one tenth of the whole mitochondrial genome. If more 198 individuals and more sequences of the mitochondrial genome (e.g. whole 199

200 mitochondrial genome) were analyzed, it could be of high probability that more mitochondrial haplotypes could be found in the Rose Garden 1999 cohort. Indeed, 201 previous research with a partial fragment (663 bp) of the mitochondrial COI gene, 202 which was not targeted by the RAD-Seq in Vendramli et al. (Vendrami et al., 2021), 203 for populations of N. concinna in the western Antarctic Peninsula revealed 16 204 haplotypes among 160 individuals, indicating informative polymorphisms in other 205 206 parts of the mitochondrial genome and possibly higher haplotype diversity considering more mitochondrial sequences (González-Wevar et al., 2011). 207 208 Clearly, by analyzing the maternally inherited mitochondrial sequences in the original RAD-Seq data of Vendramli et al. (2021), the number and distribution of 209 mitochondrial haplotypes in the Rose Garden 1999 cohort indicated that multiple 210 211 spawning females, at least three and highly possible many more, had contributed to the recruitment the Rose Garden 1999 age class. Clearly, the extreme sweepstake 212 reproductive success claimed by Vendramli et al. (2021) for the Rose Garden 1999 213 cohort was not supported by the maternally inherited mitochondrial sequences in their 214 215 own dataset, let alone the collective dispersal of larvae from the extreme sweepstake 216 reproductive success in a source population.

217 The important evidence supporting an extreme sweepstake event in Vendramli et al. (2021) is that Rose Garden in 1999 was exclusively represented by full- and half-218 219 siblings, which was assessed based on the relatedness coefficients. Any relatedness between individuals occurs against a background level of relatedness in the 220 population, either as a consequence of inbreeding or by belonging to the same 221 222 population (Weir, Anderson, & Hepler, 2006). However, some relatedness measures for use with molecular data assume that the individuals themselves are not inbred, as 223 the approach (Manichaikul et al., 2010) that adopted by Vendramli et al. (2021). 224

Given that the mitochondrial data did not support the sweepstake hypothesis, the close 225 kinships assessed among individuals in the Rose Garden 1999 cohort could possibly 226 reflect a background relatedness resulting from high degree of inbreeding, the mating 227 of individuals closely related by ancestry. Vendramli et al. (2021) explained the 228 chaotic genetic patchiness in the Rose Garden 1999 cohort with an extreme 229 sweepstake reproductive success that supported by a suite of correlated genomic 230 231 signatures including locally reduced genetic diversity, substantially elevated genomic relatedness, and locally elevated linkage disequilibrium. However, inbreeding can 232 also be expected to lead to low polymorphism, extensive linkage disequilibrium, low 233 effective population size, and high population subdivision (Charlesworth, 2003). 234 Indeed, the number of mitochondrial haplotypes, haplotype diversity, and nucleotide 235 diversity were lower in the Rose Garden 1999 sample than in the Rose Garden 2015 236 sample, suggesting signals of possible inbreeding. 237

Furthermore, a critical prerequisite for the extreme sweepstake reproductive 238 success that proposed by Vendramli et al. (2021) is that all the limpets analyzed in 239 Rose Garden 1999 were from the same age cohort. To ensure that, Vendramli et al. 240 241 restricted their sampling to limpets with shells between 20 and 30 mm, which they thought corresponded to animals approximately 10 years of age. However, typical of 242 243 polar marine invertebrates, growth rate for *N. concinna* is slow, which makes it difficult to follow the growth of individual cohorts or year classes (Clarke, Prothero-244 Thomas, Beaumont, Chapman, & Brey, 2004; Picken, 1980). A previous study found 245 246 that the most abundant size group of Nacella concinna comprised individuals with 247 sizes from 20 to 30 mm, and the von Bertalanffy growth curve demonstrated that individuals with shell size from 20 to 30 mm included multiple age classes (Brêthes, 248 Ferreyra, & de la Vega, 1994). Furthermore, the annual shell growth derived from 249

mark and recapture techniques was slow, with annual increment less than 3 mm for
most individuals with shell size from 20 to 30 mm (Clarke et al., 2004). Based on all
these evidences, it was highly possible that multiple age cohorts might exist among
individuals of *N. concinna* with shell size between 20 and 30 mm. So the so-called
full- and half-siblings observed in Rose Garden 1999 by Vendramli et al. (2021)
might only reflect close relatedness among individuals, but not real full- and halfsiblings as suggested.

By incorporating demographic and uniparental genetic information, our results 257 did not support sweepstake reproductive success and collective dispersal in the Rose 258 Garden 1999 sample of N. concinna. Similarly, cohesive dispersal over extensive 259 periods (4-6 month) was also suggested in the splitnose rockfish (Sebastes diploproa) 260 by genetic relatedness analysis with nuclear microsatellites, which indicated that 261 11.6% of the recruits were siblings in a single recruitment pulse (Ottmann et al., 262 2016). However, further sequencing of the mitochondrial control region demonstrated 263 that the juvenile samples consisted two different rockfish species, which inflated 264 estimates of relatedness within dyads containing individuals from the same species 265 266 (Ottmann et al., 2017). Thus, the original analysis with microsatellite data did not have evidence to support the long-term cohesive dispersal as claimed. 267

In summary, although bi-parental genetic markers play the major role in kinship analysis, incorporating demographic and uniparental genetic information can improve the correct classification rate of kinship analyses by reducing false positives. The application of next generation high-throughput sequencing to address fundamental ecological questions is of immense benefit to the field of molecular ecology. Although theoretically, even distant kin relationships can be accurately classified

274	when a large number of markers, linkage information, or whole-genome sequence
275	data can be attained (Kling et al., 2012; Li et al., 2014), our results suggested that
276	misclassification can still happen due to complex background of wild populations.
277	Since the sequences of uniparental organelle DNA could be routinely generated
278	together with nuclear DNA by the next generation high-throughput sequencing, we
279	strongly recommended that these uniparental genetic information be seriously
280	considered in kinship analyses of wild populations. In particular, because of its high
281	abundance in cells, the assembly of organelle genomes can be obtained even with
282	only low-coverage next generation sequencing data (Rasheed et al., 2017), which
283	could be of particular importance for kinship studies with low-coverage NGS data,
284	where genotyping error and misclassification rate could be high (Wang et al. 2019). In
285	addition, knowledge of population demographic information such as age and sex are
286	also very important in kinship analyses, even in the genomic era.
207	
287 288	Acknowledgements
289	Funding: This work was supported by the National Natural Science Foundation of
290	China (NSFC) (No. 31970488).
291	Competing interests: The authors declare that they have no competing interests.
292	
293	
294	References
295	Al-Nakeeb, K., Petersen, T., & Sicheritz-Pontén, T. (2017). Norgal: extraction and de
296	novo assembly of mitochondrial DNA from whole-genome sequencing data.
297	BMC Bioinformatics 18, 510.
298	Becker, B. J., Levin, L. A., Fodrie, F. J., & McMillan, P. A. (2007). Complex larval
299	connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci
300	USA, 104(9), 3267-3272. doi:10.1073/pnas.0611651104

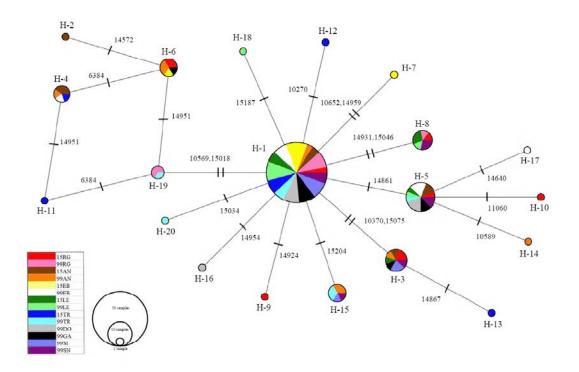
301 Bentzen, P., Olsen, J.B., McLean, J.E., Seamons, T.R., & Quinn, T.P. (2001). Kinship

302	analysis of Pacific salmon: insights into mating, homing, and timing of
302	reproduction. J. Hered. 92(2), 127–136.
304	Blouin, M. S. (2003). DNA-based methods for pedigree reconstruction and kinship
305	analysis in natural populations. <i>Trends Ecol. Evol.</i> 18, 503–511.
306	Brêthes, J. C., Ferreyra, G., & de la Vega, S. (1994). Distribution, growth and
307	reproduction of the limpet Nacella (Patinigera) concinna (Strebel 1908) in
308	relation to potential food availability, in Esperanza Bay (Antarctic Peninsula).
309	<i>Polar Biology</i> , 14(3), 161-170. doi:10.1007/bf00240521
310	Charlesworth, D. (2003). Effects of inbreeding on the genetic diversity of populations.
311	Philos Trans R Soc Lond B Biol Sci, 358(1434), 1051-1070.
312	doi:10.1098/rstb.2003.1296
313	Christie, M. R., Johnson, D. W., Stallings, C. D., & Hixon, M. A. (2010). Self-
314	recruitment and sweepstakes reproduction amid extensive gene flow in a coral-
315	reef fish. <i>Mol Ecol, 19</i> (5), 1042-1057. doi:10.1111/j.1365-294X.2010.04524.x
316	Clarke, A., Prothero-Thomas, E., Beaumont, J., Chapman, A., & Brey, T. (2004).
317	Growth in the limpet Nacella concinna from contrasting sites in Antarctica. <i>Polar</i>
318	<i>Biology</i> . doi:10.1007/s00300-004-0647-8
319	Escoda, L., Fernández-González, Á., & Castresana, J. (2019). Quantitative analysis of
320	connectivity in populations of a semi-aquatic mammal using kinship categories
321	and network assortativity. <i>Molecular Ecology Resources</i> , 19(2), 310–326.
322	https://doi.org/10.1111/1755-0998.12967
323	Flanagan, S. P., & Jones, A. G. (2019). The future of parentage analysis: From
324	microsatellites to SNPs and beyond. <i>Molecular Ecology</i> , 28(3), 544–567.
325	https://doi.org/10.1111/mec.14988
326	González-Wevar, C. A., David, B., & Poulin, E. (2011). Phylogeography and
327	demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the
328	western Antarctic Peninsula. Deep Sea Research Part II: Topical Studies in
329	Oceanography, 58(1-2), 220-229. doi:10.1016/j.dsr2.2010.05.026
330	Goudet, J., Kay, T., & Weir, B.S. (2018) How to estimate kinship. <i>Molecular Ecology</i>
331	27, 4121-4135.
332	Hargrove, J. S., McCane, J., Roth, C. J., High, B., & Campbell, M. R. (2021). Mating
333	systems and predictors of relative reproductive success in a Cutthroat Trout
334	subspecies of conservation concern. Ecology and evolution, 11(16), 11295–
335	11309. https://doi.org/10.1002/ece3.7914
336	Hedgecock, D., & Pudovkin, A. I. (2011). Sweepstakes Reproductive Success in
337	Highly Fecund Marine Fish and Shellfish: A Review and Commentary. Bulletin
338	of marine science, 87(4), 971-1002. doi:10.5343/bms.2010.1051
339	Jasper, M., Schmidt, T. L., Ahmad, N. W., Sinkins, S. P., & Hoffmann, A. A. (2019). A
340	genomic approach to inferring kinship reveals limited intergenerational dispersal
341	in the yellow fever mosquito. Molecular Ecology Resources, 19(5), 1254–1264.
342	https://doi.org/10.1111/1755-0998.13043
343	Jones, A. G., Small, C. M., Paczolt, K. A., & Ratterman, N. L. (2010). A practical
344	guide to methods of parentage analysis. Molecular Ecology Resources, 10(1), 6-
345	30. https://doi.org/10.1111/j.1755-0998.2009.02778.x

346	Kanno, Y., Vokoun, J. C., & Letcher, B. H. (2011). Sibship reconstruction for
347	inferring mating systems, dispersal and effective population size in headwater
348	brook trout (Salvelinus fontinalis) populations. Conservation Genetics, 12(3),
349	619–628. 10.1007/s10592-010-0166-9
350	Kayser, M. (2007). Uni-parental markers in human identity testing including forensic
351	DNA analysis. <i>BioTechniques</i> , 43(6), p. Sxv-Sxxi. doi: 10.2144/000112580.
352	Kling, D., J. Welander, A. Tillmar, Ø. Skare, T. Egeland, & G. Holmlund. (2012).
353	DNA microarray as a tool in establishing genetic relatedness – current status and
354	future prospects. Forensic Sci. Int. Genet. 6:322–329.
355	Kopps, A. M., Kang, J., Sherwin, W. B., & Palsboll P. J. (2015). How well do
356	molecular and pedigree relatedness correspond, in populations with diverse
357	mating systems, and various types and quantities of molecular and demographic
358	data? G3 5:1815–1826.
359	Li, H., Glusman, G., Huff, C., Caballero, J., &Roach, J. C. (2014). Accurate and
360	robust prediction of genetic relationship from whole-genome sequences. PLoS
361	<i>One</i> , 9,1–6.
362	Liu, J., & Ely, B. (2009). Sibship reconstruction demonstrates the extremely low
363	effective population size of striped bass Morone saxatilis in the Santee-Cooper
364	system, South Carolina, USA. Molecular Ecology, 18, 4112-4120.
365	Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W. M.
366	(2010). Robust relationship inference in genome-wide association studies.
367	Bioinformatics, 26(22), 2867-2873. doi:10.1093/bioinformatics/btq559
368	Martin, S. A., Lipps, G. J. Jr, & Gibbs, H. L. (2021). Pedigree-based assessment of
369	recent population connectivity in a threatened rattlesnake. Molecular Ecology
370	Resources, 21, 1820-1832. https://doi.org/10.1111/1755-0998.13383
371	O'Corry-Crowe, G., Suydam, R., Quakenbush, L. et al. (2020). Group structure and
372	kinship in beluga whale societies. Scientific Reports, 10, 11462
373	https://doi.org/10.1038/s41598-020-67314-w
374	Ottmann, D., Grorud-Colvert, K., Sard, N. M., Huntington, B. E., Banks, M. A., &
375	Sponaugle, S. (2016). Long-term aggregation of larval fish siblings during
376	dispersal along an open coast. Proc Natl Acad Sci., 113, 14067-14072.
377	Ottmann, D., Grorud-Colvert, K., Sard, N. M., Huntington, B. E., Banks, M. A., &
378	Sponaugle, S. (2017). Retraction for Ottmann et al., Long-term aggregation of
379	larval fish siblings during dispersal along an open coast. Proc Natl Acad Sci., 114
380	(52) https://doi.org/10.1073/pnas.1720656115
381	Phillips, C., García-Magariños, M., Salas, A., Carracedo, A., & Lareu, M. V. (2012).
382	SNPs as supplements in simple kinship analysis or as core markers in distant
383	pairwise relationship tests: when do SNPS add value or replace well-established
384	and powerful STR tests? Transfusion Medicine and Hemotherapy, 39(3), 202-
385	210. https://doi.org/10.1159/000338857
386	Picken, G. B. (1980). The distribution, growth, and reproduction of the Antarctic
387	limpet Nacella (Patinigera) concinna (Strebel, 1908). Journal of Experimental
388	Marine Biology and Ecology, 42(1), 71-85. doi:10.1016/0022-0981(80)90167-7
389	Picken, G. B., & Allan, D. (1983). Unique spawning behaviour by the Antarctic

390	limpet Nacella (Patinigera) concinna (Strebel, 1908). Journal of Experimental
390 391	Marine Biology and Ecology, 71(3), 283-287. doi:10.1016/0022-0981(83)90121-
391 392	1
	-
393	Rasheed, A., Hao, Y., Xia, X., Khan, A., Xu, Y., Varshney, R. K., & He, Z. J. M.
394	(2017). Crop breeding chips and genotyping platforms: progress, challenges, and
395	perspectives. <i>Mol Plant</i> , 10, 1047-1064.
396	Schunter, C., Pascual, M., Garza, J. C., Raventos, N., & Macpherson, E. (2014).
397	Kinship analyses identify fish dispersal events on a temperate coastline.
398	Proceedings. Biological sciences, 281(1785), 20140556.
399	https://doi.org/10.1098/rspb.2014.0556
400	Speed, D., & Balding, D. J. (2015). Relatedness in the post-genomic era: Is it still
401	useful? <i>Nature Reviews Genetics</i> , 16 , 33–44.
402	Stadele, V., & Vigilant, L. (2016). Strategies for determining kinship in wild
403	populations using genetic data. <i>Ecol Evol</i> , 6(17), 6107-6120.
404	doi:10.1002/ece3.2346
405	Stanwell-Smith, D., & Clarke, A. (1998). The Timing of reproduction in the Antarctic
406	limpet Nacella concinna (srebel, 1908) (Patellidae) at Signy Island, in relation to
407	environmental variables. Journal of Molluscan Studies, 64(1), 123-127.
408	doi:10.1093/mollus/64.1.123
409	Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates.
410	<i>Biol Rev Camb Philos Soc</i> , 25(1), 1-45. doi:10.1111/j.1469-185x.1950.tb00585.x
411	Vai, S., Amorim, C. E. G., Lari, M., & Caramelli, D. (2020). Kinship determination in
412	archeological contexts through DNA analysis. Frontiers in Ecology, 8, 83,
413	https://doi.org/10.3389/fevo.2020.00083
414	Vendrami, D. L. J., Peck, L. S., Clark, M. S., Eldon, B., Meredith, M., & Hoffman, J.
415	I. (2021). Sweepstake reproductive success and collective dispersal produce
416	chaotic genetic patchiness in a broadcast spawner. Sci Adv, 7(37), eabj4713.
417	doi:10.1126/sciadv.abj4713
418	Wang, J. (2014). Marker-based estimates of relatedness and inbreeding coefficients:
419	An assessment of current methods. Journal of Evolutionary Biology, 27(3), 518–
420	530.
421	Wang, J. (2019). Pedigree reconstruction from poor quality genotype data. Heredity,
422	122, 719–728. https://doi.org/10.1038/s41437-018-0178-7
423	Weinman, L. R., Solomon, J. W., & Rubenstein, D. R. (2015). A comparison of single
424	nucleotide polymorphism and microsatellite markers for analysis of parentage
425	and kinship in a cooperatively breeding bird. Molecular Ecology Resources, 15,
426	502-511.
427	Weir, B. S., Anderson, A. D., & Hepler, A. B. (2006). Genetic relatedness analysis:
428	modern data and new challenges. Nature Reviews Genetics, 7(10), 771-780.
429	doi:10.1038/nrg1960
430	
431	Data availability: Data are available in the original paper (3), The BAM files used
432	for consensus sequences extraction and the aligned FASTA file of the sequences
433	analyzed in this study are available at figshare: <u>https://10.6084/m9.figshare.16937386</u> .

434


- 435 **Author contributions:** J-X.L. supervised the study. M-Y.L. and J-X.L.analyzed the
- 436 data, J-X.L. wrote the manuscript with contribution of M-Y.L..

- 438 **Supplementary materials**: This manuscript has supplementary materials with details
- 439 of Materials and Methods and supplementary tables.

440 Figures and Tables

441 Fig. 1. Median-joining network for 20 mt haplotypes of *Nacella concinna*.

- 442 Haplotypes are represented by circles, the sizes of which are proportional to the
- 443 number of individuals. Different colors represent geographic distribution. Mutational
- steps between haplotypes are indicated by hatch marks

445

Locality	N	k	Н	Л	S	Ι	
RG15	10	7	0.93	0.00157	9	1	
RG99	9	3	0.56	0.00074	4	0	
AN15	9	5	0.86	0.00149	7	1	
AN99	9	6	0.92	0.00152	8	1	
EB15	10	3	0.38	0.00024	2	3	
EB99	10	4	0.71	0.00081	5	1	
LE15	8	4	0.75	0.00098	5	0	
LE99	10	4	0.53	0.00049	4	0	
TR15	9	5	0.72	0.00125	7	1	
TR99	9	5	0.81	0.00078	5	0	
DO99	10	3	0.60	0.00041	2	0	
GA99	10	4	0.64	0.00070	5	1	
SI99	9	3	0.56	0.00061	3	0	
SN99	10	5	0.82	0.00101	6	0	

447

448 **Table 1.** Summary of genetic diversity indices for samples of *Nacella concinna*. *N*:

449 number of sampled specimens; k: number of haplotypes detected; H: haplotype

450 diversity; *π*: nucleotide diversity; *S*: polymorphic sites; I: number of indels.