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The regulation of moment-to-moment neural variability may permit effective responses to 
changing cognitive demands. However, the mechanisms that support variability regulation are 
unknown. In the context of working memory, we leverage the largest available PET and fMRI 
dataset to jointly consider three lenses through which neural variability regulation could be 
understood: dopamine capacity, network-level functional integration, and flexible decision 
processes. We show that with greater working memory load, upregulation of variability was 
associated with elevated dopamine capacity and heightened functional integration, effects 
dominantly expressed in the striato-thalamic system rather than cortex. Strikingly, behavioral 
modeling revealed that working memory load evoked substantial decision biases during 
evidence accumulation, and those who jointly expressed a more optimal decision bias and 
higher dopamine capacity were most likely to upregulate striato-thalamic variability under load. 
We argue that the ability to align striato-thalamic variability to level of demand may be a hallmark 
of a well-functioning brain. 
 
Brain activity exhibits remarkable variability from 
moment to moment, exhibiting multiple dynamic 
signatures at every level of neural function1,2. 
Evidence is building in support of the notion that 
the ability to regulate neural variability provides a 
key signature of a well-functioning brain2–4. 
Several human studies using blood oxygen level-
dependent (BOLD) signals have shown that BOLD 
signal variability (e.g., standard deviation, or 
SDBOLD) can be modulated within-person. On 
average, increases in task difficulty can drive 
decreases in variability5–7, but considerable 
individual differences exist. Those who can 
continue to elevate variability levels often exhibit a 
higher processing limit, maintaining better 
performance under higher loads, while poorer 
performers may hit a variability-based “cliff,” 
exhibiting reduced variability as load continues to 
increase5,6 (Figure 1, top). At present however, the 
mechanisms by which higher performing 
individuals are able to upregulate neural variability 
under load are not known.  
 
One mechanism by which individuals may 
upregulate neural variability under cognitive load 

is via the dopaminergic (DA) system (Figure 1A). 
Although commonly associated with reward and 
motivation8,9, DA continues to gain traction as a 
candidate neurochemical basis for cognitively 
relevant aspects of brain signal variability2. Two 
human studies have shown that DA agonism can 
elevate the standard deviation of the BOLD signal 
in both younger (L-dopa10) and older adults (D-
amphetamine5), while simultaneously boosting 
speeded responding. However, it remains 
unknown whether upregulation of neural variability 
(within-person) under greater cognitive load 
requires higher DA system capacity. Although the 
D1 system is inextricably linked to brain function 
and cognition11–14, D2 may be especially important 
to consider in the context of neural variability 
regulation under cognitive load. The D2 system is 
dominantly present in striatum and is thought to 
enable adaptive changes to neural processing in 
the face of changing environmental 
demands8,13,15,16. Crucially, striatal cells 
expressing D2 receptors project to the thalamus 
through the so-called “indirect” pathway17,18, and 
in turn, the thalamus provides nearly half of all 
excitatory input onto the striatum19. Among other 
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functions, the indirect D2 striato-thalamic pathway 
allows for flexible shifting between ongoing 
response modes and the processing of new or 
salient cognitive demands17,18. Given that the 
striato-thalamic system also appears to be central 
for understanding how local (region level) 
variability reflects brain function overall20,21, the D2 
system may provide an essential window into the 
origin and functional importance of temporal 
variability in the striato-thalamic system, 
especially as cognitive demand varies. We 
presume that the ability to upregulate striato-
thalamic variability under load requires D2 
capacity to meet demand.   
 
Beyond DA, a second lens through which we can 
probe how individuals may upregulate brain signal 
variability under load is by examining “functional 
integration” (common temporal variation) amongst 
the neural populations expressing neural 
variability (Figure 1B). It has been proposed that 
dynamic neural activity at the regional level may 
largely reflect summed synaptic inputs22–25, 
potentially linking local dynamics to 
communication between regions. Indeed, more 
disconnected biological systems are less dynamic 
across moments26 and animal and computational 
work has shown that the majority of apparent 
“noise variation” is shared across neurons that are 
similarly functionally tuned24,27. Our recent resting-
state fMRI work in humans has shown that higher 
temporal variability within a region reflects greater 
(i.e., lower dimensional) functional integration 
between regions across moments20. Critically, 
higher temporal variability in thalamus and 
striatum were among the strongest markers of 
functional integration across the entire brain, both 
cross-sectionally and longitudinally across the 
adult lifespan20,21. In simple terms, as striato-
thalamic activity fluctuates during resting-state, 
the brain functionally integrates across moments. 
However, it is unknown whether local variability 
and functional integration are jointly regulated in 

the face of varying cognitive demands, and if so, 
whether the striato-thalamic system remains of 
central importance. We anticipate that individuals 
who can better upregulate striato-thalamic BOLD 
variability will also increase functional integration 
under load. 
 
Third, a comprehensive understanding of the 
capacity to upregulate signal variability under load 
requires in-depth assessment of the cognitive 
processes giving rise to task-relevant behavioral 
parameters. Despite substantial progress in 
understanding how brain signal variability reflects 
traditional estimates of cognition in humans2 (e.g., 
reaction time; accuracy), it is poorly understood 
how neural variability (especially in the striato-
thalamic system) reflects components of decision-
making under varying cognitive demands. 
Computational models of behavior such as the 
drift diffusion model (DDM) conceptualize decision 
making as the accumulation of noisy evidence 
over time into an internal decision variable until a 
decision boundary is reached28,29. Such models 
separate non-decision (e.g., motor) from decision-
related components (e.g., rate of evidence 
accumulation, or drift rate) and can also estimate 
the extent to which participants tend towards 
certain choice alternatives. Recent work suggests 
that those who can modulate evidence 
accumulation with increasing cognitive demand30 
and adjust their decision criteria when required 
also express greater EEG-based variability31. 
However, spatially specific (especially striato-
thalamic) signatures of how neural variability 
reflects evidence accumulation and decision 
criteria under cognitive load remain unknown. We 
expect that individuals who can better maintain 
their rate of evidence accumulation and who 
express optimal decision criteria in the face of 
rising task demands may be more likely to 
upregulate neural variability under load (Figure 
1C).     
 

A. Dopamine D2 C. Decision-making

B. Functional integration

Cognitive load
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Figure 1: Probing individual 
differences in neural variability 
modulation with increasing 
cognitive load from three 
complementary perspectives. 
Older adults who can 
upregulate neural variability 
under increasing load (green) 
are expected to exhibit (A) 
greater dopamine D2 binding 
potential, (B) higher functional 
integration between brain 
regions (here, between 
thalamus (node a) and striatum 
is depicted), and (C) more 
effective decision-making 
(lower right).   
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The current study 
 
In the present study, we test for unique 
associations between brain signal variability 
regulation and our three research targets (D2 
capacity, functional integration, and decision-
making; Figure 1), specifically within the domain of 
working memory. Neural variability has proven 
highly responsive to working memory 
demands5,7,10,32,33, dopamine levels5,10,12, and the 
striato-thalamic system in general5,20,21,32. 
However, it is not yet known whether one’s 
capacity to regulate neural variability in the face of 
varying working memory load is associated with 
any of our research targets. In particular, 
computational models of decision making have 
not yet been deployed to understand how working 
memory demand drives behavior in association 
with variability regulation. To these ends, we 
directly probed load-based variability regulation by 
taking a fresh look at perhaps the most commonly 
used parametric working memory task in cognitive 
neuroscience, the n-back task34.  
 
On this classic task, participants are asked to 
respond “yes” or “no” whether the current stimulus 
is the same as that seen n positions back in the 
set. When n>1, participants must not only store 
the immediately presented item, but also the 
sequence of stimuli seen35, creating a complex 
and demanding interplay between multiple 
cognitive processes, including attention, updating, 
maintenance, and inhibition35,36. If one can 
dynamically utilize these various processes 
across moments, temporal variation in the 
associated brain regions may be increased (top of 
Figure 1, green trace)5,7. However, if an individual 
cannot deploy such processes as capacity limits 
are reached (e.g., at 3-back), brain signal 
variability may instead compress (e.g., top of 
Figure 1, red), perhaps manifesting in greater 
behavioral losses (e.g., reduction in evidence 
accumulation).  
 
To date however, precisely how the n-back task 
invokes cognitive demand is not known. Beyond 
the general level of working memory “demand” 
that n-back parametrically invokes35, we argue 
that a considerable yet rarely appreciated 
asymmetry exists in the demands associated with 
"yes” and "no” decisions on the n-back task. 
Specifically, correct “no” decisions may rely on a 
simple determination of stimulus set membership 
(“Did I see this stimulus before?”), whereas correct 
“yes” decisions likely require the reinstatement of 
details of the remembered item (“I saw it, but was 
it n positions back?”)37–39. It is plausible that those 
who better remember the stimulus set may more 
efficiently reach these simpler ”No” decisions (i.e., 
that they are more efficient at “knowing not”37,38). 
However, as load increases, we presume that only 
top performers able to upregulate neural variability 

can maintain such an ability. We leverage the drift 
diffusion model to capture the effects of these 
various decision components on evidence 
accumulation in the n-back task40, in turn providing 
a new view of how working memory demand may 
drive neural variability regulation. 
 
Using the world’s largest dataset containing both 
dopamine positron emission tomography (PET) 
and task-based functional magnetic resonance 
imaging (fMRI; n = 152 adults), we examined how 
our three targets (dopamine D2 capacity, 
functional integration, and drift diffusion modelling 
of behavior) jointly account for one’s ability to 
modulate fMRI-based BOLD variability under 
increasing working memory load. We show that 
greater upregulation of striato-thalamic variability 
is characteristic of individuals who: (i) exhibit 
higher D2 binding potential, (ii) increase functional 
integration, and (iii) more effectively leverage 
evidence accumulation processes (drift rate and 
drift criterion) under heightened load. 
 

RESULTS 
 
Target 1: Higher upregulation of striato-
thalamic SDBOLD under load uniquely reflects 
higher D2 binding potential 
 
We first asked whether subjects who upregulate 
SDBOLD to rising cognitive demands (i.e., from 2- to 
3-back; see Methods for rationale) indeed have 
higher non-displaceable D2 binding potential 
(BPND; assayed with 11C-raclopride-PET at rest). A 
behavioral partial least squares (PLS) model 
linking SDBOLD modulation and D2 BPND revealed 
that individuals with higher D2 binding also 
expressed greater upregulation of SDBOLD from 2- 
to 3-back (r = .30 (bootstrap 95% CI = .17, .43), p 
= 1.46e-4; see Figure 2A). This effect was most 
evident in dorsal and ventral striatum as well as in 
thalamic nuclei known to project to prefrontal 
cortex (medial dorsal and “motor thalamic” nuclei), 
as well as the intralaminar nuclei41 (Figure 2B). 
See Figure S1 for a full axial view of all nuclei.  
 
We then probed whether this positive association 
between SDBOLD modulation and D2 BPND was 
unique to the striato-thalamic network. Although 
SDBOLD modulation was significantly bivariately 
correlated with striatal D2 BPND in every network 
examined (Figure 2C, left; see Methods for 
rationale for network choices), regression 
analyses revealed that this effect remained 
significant only in the striato-thalamic system 
when controlling for all other networks (Figure 2C, 
right), highlighting a distinct link between striatal 
D2 BPND  and striato-thalamic SDBOLD modulation 
over and above the rest of the brain. 
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Target 2: Upregulation of SDBOLD under load 
consistently reflects striato-thalamic 
functional integration  
 
We then examined whether joint upregulation of 
SDBOLD and functional integration (estimated via 
PCA dimensionality; see Methods) in the striato-
thalamic system occurred with increasing 
cognitive load. To do so, we first correlated the 
DA-driven striato-thalamic ΔSDBOLD brain score 
from the previous analysis (Figure 2) with the 
change in striato-thalamic PCA dimensionality 
from 2- to 3-back (ΔPCAdim). We found a strong 
negative correlation (r = -.71, p = 4.92*10-25; see 
Fig 3A), indicating that as working memory load 
increased, when regions within the striato-
thalamic system functionally integrated in time 
(i.e., became lower dimensional), the time series 
variability of those same regions also increased. 
We then tested the extent to which associations 
between ΔSDBOLD and ΔPCAdim were unique to 
the striato-thalamic system. First, we noted that 

negative associations between ΔSDBOLD and 
ΔPCAdim were always present within each 
network (Figure 3B, diagonal). Strikingly however, 
greater load-based functional integration in the 
striato-thalamic network uniquely predicted 
upregulation of SDBOLD in every other network 
(Figure 3, green box), but modulation of functional 
integration in non-striato-thalamic networks was 
not significantly associated with modulation of 
striato- thalamic SDBOLD (Figure 3B, red box). 
These results highlight the importance of striato-
thalamic functional integration for understanding 
working memory load-based modulation of brain 
signal variability across the entire brain.  
 
Target 3a: Drift diffusion modelling of behavior 
 
Before examining how behavior (in concert with 
DA and functional integration) may be associated 
with individual differences in SDBOLD modulation 
under working memory load (Target 3), we first 

Figure 3: Shifts in striato-thalamic network dimensionality are uniquely associated with shifts in SDBOLD in every network 
examined. ΔPCAdim = change in PCA dimensionality (lower values represent higher functional integration from 2- to 3-back). 
(A) Bivariate correlation between ΔPCAdim and ΔSDBOLD in the striato-thalamic system. (B) Regressions linking ΔPCAdim to 
ΔSDBOLD in each network. Green box: A unique effect of striato-thalamic ΔPCAdim on ΔSDBOLD exists in every single network. 
Red box: There are no unique effects of any non-striato-thalamic ΔPCAdim measure on striato-thalamic ΔSDBOLD.  
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Figure 2: Moment-to-moment brain signal variability in the striato-thalamic system under working memory load and its association 
with dopamine D2 binding potential (BPND). (A) PLS model result showing that those who upregulate SDBOLD under load also have 
higher D2 BPND. (B) Overlay of the Morel nucleic atlas showing key results for the intralaminar (IL), mediodorsal (MD), and “motor” 
(ventro-medial (VM), -lateral (VL), and -anterior (VA)) thalamic nuclei. MNI coordinates: left and middle panel = 8, -18, 4; right 
panel = -8, -18, 4. BSR = bootstrap ratio (higher values = more robust effects; see Methods). (C) Associations between SDBOLD 
modulation and dopamine D2 binding potential. Positive bivariate effects were present in every network (see also Figure S2 for 
all scatter plots), but a partial effect was unique to the striato-thalamic system using both standard linear regression and rank 
regression (i.e., all variables present in the standard regression were rank transformed prior to model run). 
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assessed the impact of rising demands on 
behavior using drift diffusion modelling.  
 
Canonical DDM parameters 
 
To investigate which components of the decision 
process were affected by the n-back manipulation, 
we fit the drift diffusion model (DDM) to the 
behavioral data29 using hierarchical drift diffusion 
modelling (HDDM)42. Most applications of the 
DDM (Figure 4A) model a binary decision (here, a 
”yes” or “no” decision) as the accumulation of 
evidence towards one of two choice boundaries. 
Three parameters are typically examined: the rate 
of sensory evidence accumulation over time (drift 
rate); response caution, defined as the distance 
between the two bounds (boundary separation), 
and; time spent encoding the evidence and 
executing the motor response (non-decision time). 
We found that when shifting from moderate (2-
back) to high (3-back) working memory load, drift 
rate and boundary significantly decreased, while 
there was no effect for non-decision time (Figure 
4B; see Table S1 for descriptives and RMANOVA 
results for each parameter). Also see Figure S3 
(distributions) and Table S1 (descriptives and 
RMANOVA results) for accuracy and RT effects.  
 
A case for asymmetrical decision-making on the 
n-back task 
 
Close consideration of the demands associated 
with n-back decisions reveal an asymmetry in 
what is required to make ‘yes’ and ‘no’ responses. 
Specifically, we propose that this task could be 
considered to have (at least) two different decision 
stages39. At stage 1, a simple determination of set 
membership is required (i.e., “have I seen this digit 
or not?”), while at stage 2, a more specific digit 
order retrieval process is required to compare the 
stimulus to that seen n-back (see Figure 5A). If the 
digit is new (e.g., a “6”), a “no” response can 
immediately be selected, whereas if the digit is 

recognized as part of the set already seen (e.g., a 
“4”), then stage 2 is invoked, requiring extra 
processing resources.  
 
There are (at least) two possible ways in which 
such asymmetrical n-back decisions may be 
captured by the DDM when the two decision 
boundaries are set to represent the actual choices 
(“yes” and “no”). First, by recognizing that “yes” 
responses require more deliberation and thus 
have slower evidence accumulation, participants 
could strategically shift their starting point of 
evidence accumulation towards the “yes” 
boundary to offset heightened memory demands. 
In the DDM framework, this can be estimated as a 
“starting point bias” that is implemented before the 
decision process begins (Figure 5B, dark grey 
trace). Second, via an alternative mechanism, 
higher performing participants who keep closer 
track of the set of within-block stimuli should be 
better able to recognize incoming stimuli as not 
being part of the set. The DDM could capture this 
phenomenon by estimating whether the rate of 
evidence accumulation is equal between “yes” 
and "no” responses (i.e., whether a so-called “drift 
criterion” exists29). If a stimulus is detected as new 
within the block, this drift criterion should lead to a 
more efficient decision termination at the “No" 
boundary (Figure 5C, blue trace). On the other 
hand, if the item is detected as a target (match), 
Stage 2 of the decision process should emerge 
(see Figure 5A), leading to a relatively less 
efficient termination at the “Yes” boundary (Figure 
5B, blue trace). Crucially, unlike a starting point 
bias, which may be considered a general strategy 
(or pre-decisional bias) to offset resource 
demands during n-back, drift bias can only 
emerge when a stimulus has been presented, thus 
representing an intra-decisional form of bias 
directly reflecting differential evidence 
accumulation. 
 

Figure 4: Drift diffusion model of n-back. (A) Depiction of DDM of the n-back task. a = boundary separation; v = drift rate; t = non-
decision time (the sum of sensory encoding (θ) and post-decision motor components (𝛾)); z = starting point. (B) Canonical DDM 
parameter estimates by load level. Error bars represent ± 1 SD (within-subjects), calculated with the Rmisc package, using the 
method from Morey (2008). 
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Our results indicated that a DDM including both 
bias terms provided a better fit to the n-back 
behavioral data than a standard DDM including 
only boundary, drift rate, and non-decision time 
(Deviance Information Criterion (DIC); basic 
model = 25809; bias model = 23641; see Figure 
S4 model fits for each subject for the two n-back 
conditions). Results indicated a robust starting 
point bias towards “yes” responses (Figure 5C) at 
2-back (One sample t-test against zero bias (i.e., 
starting point bias = .50), t = 22.33, p = 1.05e-49) 
that tapered at 3-back (Figure 5C; t = 15.17, p = 
3.72e-32). The average within-subject reduction in 
bias with load was also robust (F = 61.11, p = 
8.58e-13, eta2 = .29). Next, we found a substantial 
drift criterion towards “no” responses in every 
single subject (Figure 5D) at 2-back (one sample 
t-test against zero bias (i.e., drift criterion = 0), t = 
40.94, p = 1.21e-83) and at 3-back (t = 36.62, p = 
5.36e-77). This suggests that subjects indeed 
leveraged the relative ease of “no” decisions on 
this task. The average within-subject effect was 
also robust (F = 27.97, p = 4.25e-7, eta2 = .16). 
Finally, in line with the idea that these two bias 

terms should capture distinct (pre- vs intra-
decisional) aspects of n-back behavior, we noted 
only modest correlations between starting point 
bias and drift criterion at both 2-back (r = -.16, p = 
.06) and 3-back (r = .12, p = .16).  
 
Associations between DDM parameters and 
offline measures 
 
To better understand the behavioral relevance of 
our estimated DDM parameters, we correlated 
each estimated 2- and 3-back parameter with two 
composite measures of offline (outside of the 
scanner) cognitive performance, a Working 
Memory factor and a general Speed factor (see 
Methods). The two most striking sets of effects 
were for drift rate and drift bias (see Table S2 for 
all correlations). At both 2- and 3-back, higher drift 
rate was associated with higher offline Working 
Memory and faster offline Speed factor scores (2-
back, r = .37, p = 2.59e-6; 3-back, r = .30, p = 
1.34e-4). More negative drift bias (i.e., stronger 
bias towards “no” responses) was also associated 
with higher offline Working Memory and faster 
offline Speed factor scores (2-back, r = -.40, p = 

Figure 5: The emergence of decision bias during the n-back working memory task. The n-back task could be considered to have 
(at least) two different decision stages. At stage 1, one is required to determine whether an item was previously seen or not, 
while at stage 2, a more specific digit order retrieval process is required to compare the stimulus to that seen n-back. (A) Example 
in which the current stimulus is either new or previously seen relative to the set of digits already processed. If the digit is new 
(e.g., a “6”), a “no” response can immediately be selected. If the digit is recognized as part of the set already seen (e.g., a “4”), 
then stage 2 is invoked, requiring extra decision time. Decision bias in this context could present in two plausible forms. (B) 
Starting point bias: Knowing that “yes” responses are more resource-demanding, participants could shift their starting point 
towards the yes boundary to offset heightened resource demands (blue trace). Drift bias: Alternatively, a quicker/more accurate 
response to novel/non-target items could be captured by a quicker drift to the “no” decision boundary (blue trace). (C) Starting 
point bias towards “yes” responses and (D) drift bias towards “no” responses were both reduced under higher working memory 
load. Error bars represent ± 1 SD (within-subjects), calculated with the Rmisc package, using the method from Morey (2008). 
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2.57e-7; 3-back, r = -.29, p = 3.22e-4). Although 
more modest correlations between starting point 
bias and Working Memory (r = .23, p = 4.62e-3) 
and Speed (r = .18, p = .03) at 2-back were also 
present, such associations were not significant at 
3-back. Further, both higher drift rate and more 
negative drift bias were associated with higher 
digit symbol task performance (from the Wechsler 
Adult Intelligence Scale) at both 2- and 3-back 
(abs r range = .18-.32). Finally, more negative drift 
bias was the only parameter significantly 
associated with more years of education (2-back, 
r = -.22, p = .006; 3-back, r = -.29, p = 2.83e-4). 
Thus, we found that decision processes reflecting 
evidence accumulation (drift rate and drift bias) 
were most convincingly associated with offline 
performance and educational attainment. 
 
Target 3b: SDBOLD modulation under load as a 
function of DDM-based behavior (and its 
interactions with D2 BPND and functional 
integration) 
 
As a final step to understanding the various bases 
on which neural variability modulation can occur, 
we ran a series of linear models linking modulation 
in DDM behavioral parameters, DA binding 
potential, and modulation of functional integration 
to SDBOLD modulation under working memory load 
(see Methods). To help understand the joint role 
of these covariates of SDBOLD modulation, 
interactions were of particular interest. We ran 
models with and without Cook’s distance outlier 
removal and results were highly comparable (see 
Table S3 for full model results). 
 
 Striato-thalamic system  
 
In a single model, we first examined how 
dopamine binding, functional integration, and 

behavior may account for striato-thalamic SDBOLD 
modulation. We found that higher D2 BPND and 
heightened functional integration were uniquely 
associated with upregulation of striato-thalamic 
SDBOLD under load (see Table S3). We also noted 
a negative effect of drift bias, indicating that 
maintaining a drift bias towards “no” responses 
was associated with upregulation of SDBOLD. 
Notably however, we found no main effect of 
starting point bias in this model. Several key 
interactions were also present (Figure 6). First, 
participants with higher D2 BPND and greater ability 
to maintain a drift bias towards “no” responses 
were best able to upregulate SDBOLD from 2- to 3-
back. We also noted three interactions with 
modulation of functional integration, revealing that 
those who can jointly increase functional 
integration and (1) shrink their decision boundary, 
(2) maintain drift rate, and (3) avoid increased 
non-decision time under increasing working 
memory load were also better able to upregulate 
striato-thalamic SDBOLD. Individual differences in 
striato-thalamic SDBOLD modulation can thus be 
understood as a joint reflection of D2 BPND, 
network-level dimensionality, and a variety of 
decision processes invoked during working 
memory.   
 

Beyond the striato-thalamic system 
 
We then ran similar models (including interaction 
terms) for all other networks of interest (see Table 
S3). Most strikingly, unique main effects for all 
DDM parameters were present in a model 
examining the canonical working-memory-
relevant fronto-parietal network (FPN; see Figure 
S4 for scatter plots). Those who collapsed their 
decision boundary, maintained drift rate, and 
maintained non-decision time also upregulated 
SDBOLD under load. The FPN model was also the 
only one to show main effects for both bias terms; 
those with a starting point bias (z) closer to the 
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Figure 6: Striato-thalamic (S-T) SDBOLD modulation as a function of interactions between D2 binding, functional integration (PCA 
dimensionality), and drift diffusion model parameters. Participants expressing greater upregulation of SDBOLD from 2 to 3-back 
also (A) have higher DA and better maintain a drift bias towards “no” responses. Moreover, SDBOLD upregulators also heightened 
functional integration while (B) collapsing their decision bounds, (C) maintaining drift rate, and (D) maintaining non-decision time 
under working memory load. Plots depict the visual form of two-way interactions between continuous variables, using point 
estimates for each variable (see Methods for details). Because point estimate error bars are not estimable from continuous 
variable interactions, we report the unique effect size (pr = partial correlation) of the interaction term estimated within each 
regression model; see Table S3 for all model results.  
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“no” boundary and with a stronger drift bias toward 
“no” responses exhibited greater upregulation of 
SDBOLD under load. However, only a single 
interaction was present in this model (Figure 7A); 
those who better upregulated functional 
integration and maintained drift rate also 
upregulated SDBOLD from 2- to 3-back, just as we 
noted for the striato-thalamic system (Figure 6C).  
 

For the dorsal attention network (DAN), behavioral 
main effects of boundary, drift rate, and drift 
criterion were also present (and of the same sign 
as for the FPN). However, only one interaction 
was present here too, revealing that those with 
higher D2 BP who were more likely to collapse 
their decision bound also upregulated SDBOLD 
under load (Figure 7B). The visual and default 
mode networks showed no significant main effects 
of behavior or any interaction between behavior, 
DA and/or functional integration.  
 

DISCUSSION 
 
We sought to elucidate dopaminergic, network-
level, and behavioral mechanisms under which an 
individual can upregulate (rather than lose) brain 
signal variability in the face of heightened working 
memory demands. In many ways, the striato-
thalamic system was crucial for understanding this 
triad of influences on signal variability modulation.  
 
Dopamine D2 binding potential is uniquely 
associated with modulation of striato-thalamic 
variability under working memory load 
 
The positive association between D2 BPND and 
ΔSDBOLD modulation was dominated by the striato-
thalamic system, highlighting the centrality of this 
system for understanding how D2 is associated 
with moment-to-moment neural variability under 
heightened working-memory load. Spatially, this 
striato-thalamic effect was evident within a host of 

key thalamic regions. First, a series of thalamic 
regions known to project to frontal cortex were 
involved, including the medial dorsal (MD) and 
“motor thalamic” nuclei. The MD thalamus has 
been proposed as a key node within the 
generalized fronto-striato-thalamic circuitry, and 
as a recipient of striatal input via the pallidum, it 
may be critical for integrating broad-scale 
information within PFC during learning and 
memory43–45. Notably, MD is a key enabler of 
adaptive flexibility of PFC-related cognitive 
functions46,47, and is broadly involved in nearly all 
aspects of working memory48–52. The “motor 
thalamic nuclei” (ventral medial, ventral anterior, 
and ventral lateral nuclei) connect directly to 
premotor, motor, and supplementary motor 
cortices in the frontal lobe53,54, but also to 
prefrontal cortex (in concert with MD nuclei) to 
jointly mediate associative learning, action 
selection, and decision-making54. Second, load-
based modulation of SDBOLD in the intralaminar 
(IL) nuclei was also key in our results. Previous 
work suggests that calbindin-positive matrix cells 
are prominent in the IL and other medial thalamic 
nuclei (e.g., ventral medial nuclei, as in the 
present results; see Figure 2), a cell type that 
projects diffusely to superficial layers across the 
neocortex and may constitute a thalamic 
“activating system” that drives effective 
interactions among multiple cortical areas55,56. 
The IL may also be crucial for the flexible shifting 
between ongoing response modes and the 
processing of salient cognitive demands17,18, here, 
within the context of working memory.  
 
The notion of “flexibility” common to the actions of 
many of these nuclei in past work is particularly 
noteworthy. We found that working memory load-
based modulations of brain signal variability in 
these thalamic nuclei were particularly sensitive to 
D2 capacity, where D2 is thought is also thought to 
enable flexible, adaptive changes to neural 
processing in the face of varying environmental 
demands13. Multiple forms of neural “flexibility” are 
theoretically required for the n-back task. Distinct 
(yet likely parallel) processes are required on a 
trial-by-trial basis that ensure: (1) maintenance of 
different memory representations over varying 
length delays, and (2) continuous updating of 
memory representations from an ongoing stream 
of stimulus input. Such varying demands may 
require “attractor plasticity,” the continual need to 
flexibly adjust the specific memory/representation 
that currently resides in attention, while still 
allowing established representations to exist 
outside of immediate attention for later recall57,58. 
Given previous conceptualizations of BOLD signal 
variability modulation as a general marker of 
system flexibility2,3 and the sensitivity of load-
based modulation of striato-thalamic SDBOLD to D2 
capacity in the current study, future work could 
consider alternative working memory paradigms 
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that allow better isolation of competing 
maintenance and updating stages of working 
memory, permitting such a “flexibility” account to 
be more precisely probed in relation to thalamic 
function. 
 
Beyond the thalamus, dorsal and ventral striatum 
(bilateral putamen, caudate, and nucleus 
accumbens) also featured prominently in how D2 
binding was reflected in ΔSDBOLD. The 
striatum5,9,54–57 has been linked to goal-directed 
action and motor program execution, to control of 
motivation, response to reward59 and to a variety 
of working memory operations5,11,59–63. 
Importantly, both dorsal and ventral striatum 
communicate with frontal cortex primarily via 
many of the same thalamic nuclei that correlate 
with D2 BPND in our results (i.e., MD, ventral 
lateral, and ventral anterior nuclei)53,59 noted 
above. Further, striatal D2 cells specifically project 
to thalamus through the so-called “indirect” 
pathway17,18, and in turn, the IL provides amongst 
the densest excitatory input onto the striatum17,19. 
Overall, our findings place the striato-thalamic 
system (and its frontal targets) at the core of 
neural substrates of how the D2 system may 
promote modulation of brain signal variability 
under increasing working memory load. 
 
As the brain to fluctuates under load, the striato-
thalamic system integrates 
 
We also found that working memory load-based 
upregulation of “local” signal variability was tightly 
coupled with increased functional integration 
within every network examined. This provides first 
human evidence that local dynamics and 
functional integration are closely aligned outside 
of the resting-state20,21. Crucially, striato-thalamic 
functional integration uniquely accounted for a 
sizable proportion of ΔSDBOLD in every network, 
but functional integration in non-striato-thalamic 
networks was not independently associated with 
modulation of striato-thalamic SDBOLD. In 
particular, although the fronto-parietal network is 
broadly considered a canonical working memory 
network64–67, we found that functional integration 
within the striato-thalamic network was the 
strongest unique correlate of how moment-to-
moment variation in the FPN was modulated 
under load. The clear presence of frontally-
projecting thalamic nuclei in our results may 
provide a useful future basis for understanding 
how such an effect could be achieved in the brain. 
Our findings also provide a neural systems-level, 
working memory-based specificity to previous 
propositions that more disconnected, fractionated 
biological systems should generally be less 
dynamic across moments26. Overall, these results 
highlight the centrality of striato-thalamic 
functional integration for understanding working 
memory load-based modulation of neural 

variability across the entire brain. In short, for the 
brain to fluctuate under working memory load, the 
striato-thalamic system must be integrated (or 
“unified”) across moments. 
 
Drift diffusion modeling provides a new view of 
how the n-back task can be solved  
 
Though the n-back task is among the most 
commonly deployed working memory tasks in 
cognitive neuroscience (including previous 
studies linking n-back to BOLD variability5,7), the 
drift diffusion model has only rarely been used to 
analyze n-back behavior68,69. In many ways, the n-
back task is well suited to decouple multiple 
behavioral processes that may occur on this task. 
Our results indicated that the DDM is broadly 
sensitive to n-back load-based modulations at 
nearly all parameterized levels, offering novel 
insights into working memory-based decision-
making. Increasing load strongly reduced the rate 
of evidence accumulation (drift rate), likely 
indexing the heightened difficulty of evidence 
accumulation during working memory search as 
demands increase and capacity limits are 
reached. Boundary separation also shrunk under 
load, suggesting a general reduction in response 
caution. This effect may indicate that participants 
recognize that 3-back is appreciably more difficult, 
in turn reducing their internal criterion for how 
much evidence is required prior to making a 
decision; in this way, decisions can still be made 
within the available response window despite 
increased task difficulty.  
 
Perhaps most strikingly, the estimation of bias 
parameters served to capture previously 
unappreciated individual differences in n-back 
performance. Drift criterion was the most robust 
form of response bias in the present data; every 
single subject expressed a drift criterion towards 
“no” responses (i.e., where “no” means that the 
current stimulus does not match that seen n-
back). Why might subjects drift more quickly 
toward “no” on this task? Like many previous 
studies on the n-back task, the lure rate in the 
current task is negligible, to prevent confusion 
between target and non-target items (see 
Methods). In this light, our drift criterion effect then 
becomes clear once a clear decision asymmetry 
inherent in the construction of the n-back task is 
acknowledged (see Figure 4). We have framed 
the n-back task as requiring two key decision 
stages. At Stage 1, simple set membership of the 
stimulus is judged. Given a low lure rate, if the 
subject doesn’t recognize the stimulus at any 
level, then “no” can be immediately selected as 
the item is almost certainly new. However, if the 
stimulus is recognized, then Stage 2 is required to 
specify whether the recognized stimulus was seen 
n positions back, requiring a more specific and 
resource intensive form of memory reinstatement. 
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We postulated that better performers in general 
may more efficiently reach these simpler ”No” 
decisions (i.e., that they are more efficient at 
“knowing not”37,38). In accord with this prediction, 
we showed that those exhibiting a greater drift 
criterion towards “no” responses were more 
successful on a series of offline working memory 
and speed tasks, had higher general intelligence, 
and greater years of education. The ability to 
leverage such a drift criterion under load may thus 
characterize a well-performing system in general, 
and our findings open a new window into how 
cognitive “demand” on the classic n-back task may 
manifest. 
 
The regulation of neural variability is jointly 
accounted for by behavior, dopamine capacity, 
and functional integration 
 
Beyond average DDM-based behavioral effects 
on the n-back task, our core interest here was 
examining how load-based modulations in SDBOLD 
may be accounted for jointly by performance, D2 
binding, and functional integration. We noted that 
the striato-thalamic system was again uniquely 
sensitive, revealing a series of notable 
interactions. First, under increasing working 
memory load, those who increased functional 
integration and: (a) collapsed their decision 
bound, (b) maintained (rather than lost) drift rate, 
and (c) maintained (rather than increased) non-
decision time were best able to upregulate striato-
thalamic SDBOLD under load. These results 
suggest that the ability to avoid falling off a 
variability-based “cliff” under load may require that 
better performers also maintain a low dimensional, 
temporally “unified” striato-thalamic system.  
 
Strikingly, the striato-thalamic system was the only 
network to reveal that higher D2 binding and better 
maintenance of a negative drift criterion under 
load combined to account for upregulation of 
SDBOLD. How might this interaction between D2 
capacity and drift bias work? As noted above, the 
better that subjects keep track of the stimuli they 
have seen, the effectively they should recognize 
that a stimulus has not yet been seen. As such, 
previously unseen stimuli could represent a 
particularly salient (“pop-out”) signal for a well-
functioning working memory system, creating the 
context for a more efficient drift to “no” responses 
to exist. Dedicated circuitry in the striato-thalamic 
system may permit this to occur (see Figure 8). In 
general, the indirect (D2 -based) striato-thalamic 
pathway allows the thalamus to interrupt ongoing 
cortical response modes to flexibly re-orient the 
brain toward particularly salient stimuli17,18. As 
summarized by Gerfen et al.17 and Ding et al.18,  
the intralaminar nuclei of the thalamus in particular 
can rapidly respond to salient stimuli, creating an 
immediate burst/pause function in cholinergic 
interneurons that suppresses the ongoing cortical 

drive of striatal circuits, in turn strongly biasing the 
striatal network towards a more flexible D2 regime. 
Higher D2 binding potential could then be 
suggestive of a higher-capacity indirect pathway 
system, such that the intralaminar nuclei have 
more options available to them when the time 
comes to shift from the ongoing processing of 
already seen items toward the processing of new 
(salient) stimuli. Animal work suggests that this 
primary thalamo-striatal pathway is also crucial for 
reducing interference between new and existing 
learning70 and becomes degraded in aging71. 
Such interference reduction may also be critically 
important for simultaneously performing the 
maintenance and updating components of the n-
back task. Further, D2 striatal neurons are also 
remarkably excitable over a range of inputs17,72, 
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n-back could permit a negative drift criterion by engaging a D2-
specific thalamo-striatal circuit. For example, at 3-back, upon 
onset of an unseen stimulus (e.g., a 6, after previously seeing 
4-7-9-4), drift criterion towards a “no” decision (i.e., the item 
does not match that seen n-back) emerges. This novel 
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adapted from 17,18.  
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producing relatively higher moment-to-moment 
dynamics (than D1) as a result. We may have 
captured some aspects of those dynamics via 
working memory load-related shifts in SDBOLD in 
the current study. 
 
Interestingly, although the striato-thalamic system 
revealed the only robust D2 by drift bias interaction 
on SDBOLD, drift bias modulation was the single 
most consistent main effect across all networks 
showing brain-behavior associations (i.e., striato-
thalamic, DAN, and FPN). It is notable that SDBOLD 
modulation in frontally-projecting thalamus and 
the FPN and DAN networks (both with strong 
lateral frontal regional representation) were all 
sensitive to drift bias on n-back. Indeed, the FPN 
is perhaps the most common a priori target in the 
working memory literature and is thought 
generally responsible for top-down control of 
working memory representations73,74. The DAN 
(often termed the “task positive network”) typically 
becomes more active during a host of different 
tasks requiring externally-oriented attention. 
Combined, the broader fronto-striato-thalamic 
system overall may be a primary target for 
understanding how working memory-based drift 
bias can be implemented by the human brain. 
Further, SDBOLD modulation in the FPN was 
remarkably sensitive to main effects of all 
estimated DDM parameters, supporting its 
general role in how working memory load-based 
modulation of behavior is associated with BOLD 
variability. Further, SDBOLD modulation in the FPN 
was sensitive to starting point bias and drift 
criterion modulation, with the effect of each 
pointing in the same direction – those who start 
closer and drift quicker to “no” expressed greater 
upregulation of SDBOLD under higher working 
memory load. We argue that such biases should 
serve as a key future target for undertstanding the 
neural dynamics of working memory. 
 
Future directions 
 
There are several future directions that could 
further clarify how dopamine, functional 
integration, and behavior are associated with 
moment-to-moment neural variability. First, to fully 
interrogate how decision bias manifests in n-
back/working memory, future task designs could 
directly manipulate the capacity for bias to emerge 
by manipulating the lure rate at each load level. 
Second, our measure of striatal D2 is an estimate 
of binding potential, gauging the capacity of the 
system to utilize a D2 regime. An estimate of real-
time DA dynamics would be ideal for testing 
whether the indirect (D2) striato-thalamic pathway 
is preferentially engaged (e.g., over the direct (D1) 
pathway) as drift criterion is implemented under 
increasing working memory load. Although sub-
second estimates of DA fluctuations have been 

achieved in Parkinson’s patients undergoing deep 
brain stimulation75, this has not yet proven 
possible in healthy adults. Third, alternative 
neuroimaging modalities, data processing 
routines, and variability estimation methods can 
sometimes reveal spatially and statistically 
differential results (see2,12,33,76,77). In particular, 
choice of artifact removal and normalization 
technique prior to estimating variability can 
dramatically shift results. As such, future studies 
should be careful to document precisely how 
variability is computed and interpret their results in 
that light. Finally, the present multi-modal results 
were obtained with an unusually large sample of 
older adults. It remains to be seen whether our 
effects are equally strong during earlier periods of 
the human lifespan. To achieve success in typical 
young adult samples, higher n-back load levels 
may be required to invoke individual differences in 
modulation on the level of those seen in the 
present study.     
 
Conclusions 
 
Our work suggests that an individual’s ability to 
upregulate moment-to-moment variability in brain 
activity under working memory load is jointly 
associated with higher D2, higher functional 
integration, and more optimal decision-making. In 
particular, the striato-thalamic system appears to 
represent a rich nexus for understanding how 
these three signatures interact to determine neural 
variability regulation. We argue that the ability to 
upregulate brain signal variability under working 
memory load may be a crucial hallmark of an 
effective adult brain. 
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METHODS 
 
A comprehensive description of the recruitment 
procedure, imaging protocols, and cognitive and 
life-style assessments in the large-scale 
Cognition, Brain, and Aging (COBRA) study have 
been published elsewhere62,63,78,79. Here, we 
describe the methods directly relevant to the 
present study. 
 
Participants 
 
The current sample consisted of 152 older adults 
(64-68 years; mean = 66.2, SD = 1.2; 81 women) 
randomly selected from the population register of 
Umeå, in northern Sweden.  As noted in previous 
work on this sample78, exclusion criteria included 
suspected brain pathology, diabetes, treatment 
for cancer, neurological and psychiatric disorders, 
impaired cognitive functioning (Mini Mental State 
Examination < 27), and conditions that could bias 
the brain measurements (e.g., severe trauma, 
tumors), cognitive performance (e.g., severely 
reduced vision), or preclude imaging (e.g., metal 
implants). 28% of the sample was working, 18% 
used nicotine, and 33% took blood-pressure 
medications. Mean education was 13.3 years (SD 
= 3.5), body-mass index (BMI) was 26.1 (SD = 
3.5), systolic blood pressure was 142 (SD = 17), 
and diastolic blood pressure was 85 (SD = 10). 
The sample is representative of the healthy target 
population in Umeå, Sweden.  
 
Image Acquisition 
 
Magnetic resonance (MR) imaging was performed 
with a 3 Tesla Discovery MR 750 scanner 
(General Electric, WI, US), equipped with a 32-
channel phased-array head coil.  A 3D fast-spoiled 
echo sequence was used for acquiring anatomical 
T1-weighted images, collected as 176 slices with 
a thickness of 1 mm. TR = 8.2 ms, flip angle = 12 
degrees, and field of view = 25 x 25 cm. BOLD-
contrast sensitive scans were acquired using a 
T2*-weighted single-shot gradient echoplanar-
imaging sequence. Parameters were: 37 
transaxial slices, 3.4 mm thickness, 0.5 mm 
spacing, TE/TR = 30/2000 ms, 80 degrees flip 
angle, 25 x 25 cm field of view, and a 96 x 96 
acquisition matrix (Y direction phase encoding). At 
the start, 10 dummy scans were collected. 
Functional data were acquired during a resting-
state condition (6 min) followed by the numerical 
n-back WM task described above.  
 
Positron Emission Tomography (PET) was 
performed with a Discovery 690 PET/CT scanner 
(General Electric, WI, US) during resting-state 
conditions, following an intravenous bolus 
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injection of 250 MBq [11C] raclopride. Preceding 
the injection, a 5 min low-dose helical CT scan (20 
mA, 120 kV, 0.8 s/revolution) was acquired, for 
attenuation correction. Following the bolus 
injection, a 55-min 18-frame dynamic scan was 
acquired (9x120s, 3x180s, 3x260s, 3x300s). 
Attenuation, scatter, and decay-corrected images 
(47 slices, field of view = 25 cm, 256 × 256-pixel 
transaxial images, voxel size = 0.977 × 0.977 × 
3.27 mm) were reconstructed with the iterative 
resolution-recovery VUE Point HD-SharpIR 
algorithm, using 6 iterations, 24 subsets, and 3.0 
mm post filtering, yielding full width at half 
maximum (FWHM) of 3.2 mm80. Head movements 
during the imaging session were minimized with 
an individually fitted thermoplastic mask attached 
to the bed surface. For 82% of the individuals, PET 
was carried out 2 days after the MR scan (average 
time difference between MRI and PET: 3 ± 6 
days).  
 
In-scanner task 
 
During fMRI scanning, participants performed a 
numerical n-back task. In this task, a sequence of 
single digits appeared on the screen. Each digit 
was shown for 1.5 s (within which a response must 
have been made), with an ISI of 0.5 s. During 
every item presentation, participants reported if 
the number currently seen on the screen was the 
same as that shown 1, 2, or 3 digits back. A 
heading that preceded each blocked condition 
indicated the load level. Participants responded by 
pressing one of two adjacent buttons with the 
index or middle finger to reply ‘yes, it is the same 
number’ or ‘no, it is not the same number’, 
respectively. A single fMRI run with 9 blocks for 
each condition (1-, 2-, and 3-back) was performed 
in random order (inter-block interval: 22 s). Each 
block consisted of 10 trials that included 4 
matches (requiring a “yes” response) and 6 non-
matches (requiring a “no” response). Within each 
block of 10 trials, the number of valid trials 
depended on n-back level (1-back: first trial 
dropped, 9 valid trials, 4 yes/5 no trials; 2-back: 
first two trials dropped, 8 valid trials, 4 yes/4 no 
trials; 3-back: first three trials dropped, 7 valid 
trials, 4 yes/3 no trials), yielding a total of 81, 72, 
and 63 valid trials per subject for 1-, 2-, and 3-back 
respectively. The specific stimulus/trial sequence 
was the same for all participants, with only two 
lures total (a single 2-back lure within two of the 3-
back blocks). The n-back condition blocks were 
counterbalanced. 
 
For the purposes of the current study, we focus 
primarily on the 2- and 3-back conditions. 
Although typically examined when the n-back task 
is reported in the literature, 1-back demands can 
easily be considered qualitatively different from 2 
or 3-back. For 1-back, all that is required is for a 
single digit to be maintained in memory for 0.5 sec; 

each digit seen is simply compared to the one that 
comes immediately afterward. From the 
perspective of component processes of working 
memory36, this simple process of maintaining a 
single stimulus in mind has even been framed as 
a “focus of attention”35,81. For 2- and 3-back 
however, one must maintain a given stimulus and 
its temporal order in memory for multiple seconds 
in the face of ongoing updates to the string/list of 
numbers to be remembered. Further, performance 
is typically extremely high at 1-back5,7,35,66 and 
shows minimal associations with D2 BPND in past 
work63. With all these issues combined, we thus 
focused on the 2- and 3-back conditions 
throughout the current study.   
 
Behavior 

 
Drift diffusion modeling of choice behavior 
 

We fitted a drift diffusion model (DDM) to the 
accuracy and RT data of the 2- and 3-back 
conditions to quantify the dynamics of the 
cognitive processes underlying working memory-
based decisions29. The DDM is a sequential 
sampling model that provides an algorithmic 
account of how the accumulation of evidence over 
time contributes to a binary decision process. To 
this end, the DDM decomposes the decision 
process into three basic parameters: drift rate, 
capturing the degree of evidence accumulation; 
separation of the decision boundaries 
representing each alternative, and; non-decision 
time spent on sensory encoding and motor 
response. The DDM has successfully been 
applied to the n-back task in previous work82. In 
addition to these standard parameters, we 
estimated two parameters related to decision bias 
to account for systematic preferences for either 
‘yes’ or ‘no’ choices83, one invoked prior to the 
onset of the evidence accumulation process 
(starting point bias), and another representing a 
bias in the evidence accumulation process itself 
(drift bias). See Results for our detailed rationale 
for including these bias parameters in the context 
of n-back. 
 
We used hierarchical drift diffusion modeling as 
implemented in the HDDM toolbox42 to estimate 
model parameters. To enable estimation of the 
response bias parameters, we fit the model using 
separate correct and error RT distributions for 
target-present and target-absent trials. This 
procedure is termed ‘stimulus coding’ in the 
HDDM toolbox, as opposed to the more common 
‘accuracy coding’, where RT distributions are fit 
separately for correct and error trials, independent 
of the stimulus. The hierarchical Bayesian 
parameter estimation of the DDM in the HDDM-
toolbox constrains single-participant parameters 
estimates by the group and therefore results in 
stable estimates also when within-subject data are 
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limited but the number of subjects is relatively 
large, as in our dataset.  
 
We ran 5 separate Markov chains for the Bayesian 
estimation with 5000 samples each. The first 2500 
samples were discarded as burn-in, i.e., to let the 
sampler identify the region of best fitting values in 
the parameter space. The remaining 2500 
samples per chain were concatenated across 
chains. Individual parameter estimates were then 
estimated from the posterior distributions. All 
group-level chains were visually inspected to 
ensure convergence. Additionally, we computed 
the Gelman-Rubin R-hat statistic (which compares 
within-chain and between-chain variance) and 
checked that all group-level parameters were 
below 1.184. We also performed posterior 
predictive checks to assess whether the model 
was able to capture choice and reaction-time 
patterns (Fig. S4). 
  

Offline measures 
 
To better characterize the relevance of DDM 
parameters, we also utilized several offline 
measures of interest. We examined unit weighted 
composite scores of Working Memory (average 
score across letter updating, columnized  
numerical 3-back, and spatial updating tasks) and 
Speed (average across letter, number, and figure 
comparison) used in previous work (see 78,85). We 
also used the digit symbol subtest from the 
Wechsler Adult Intelligence Scale, a task 
capturing broad-scale aspects of processing 
speed, attention, associative learning, and 
executive function86.   
 
Image Processing 
 

PET 
The following preprocessing steps were 
performed for each subject in SPM8. The 18 frame 
PET scans were coregistered to the T1-image 
using the time-frame-mean of the PET images as 
source. They were then normalized to MNI-space 
with the subject-specific flow fields (obtained with 
DARTEL) and then affine transformed and 
smoothed via a Gaussian filter of 8mm. 
Normalization parameters were selected so that 
concentrations in the images were preserved. For 
determination of D2 BP, time-activity curves for 
each voxel were entered into a Logan analysis 
(Time frames 10-18 (18-55 minutes))87,88, using 
time-activity curves in the grey-matter parts of 
cerebellum as reference. Regions of interest were 
delineated with the FreeSurfer 5.3 segmentation 
software 89–91. Median BP to non-displaceable 
tissue uptake (BPND) data were extracted for all 
regions of interest based on the subcortical 
parcellations in Freesurfer and the Desikan-
Killiany atlas 92 for extrastriatal regions.  

 
Our specific estimate of striatal D2 BPND was taken 
from previous work on the COBRA dataset using 
structural equation modeling (SEM) to model 
between-person differences in D2 availability in a 
variety of striatal and extrastriatal regions93. 
Briefly, [11C]raclopride BPND of the left and right 
caudate and putamen was estimated as a single 
latent striatal factor. Single subject values on this 
factor were calculated using regression-based 
estimation of factor scores; see Papenberg et al.93 
for further details.  

 
Functional MRI 

fMRI data were preprocessed with FSL 5 
(RRID:SCR_002823)94,95. Pre-processing 
included motion-correction with spatial smoothing 
(7 mm full-width at half maximum, Gaussian 
kernel) and bandpass filtering (.01-.10 Hz). We 
registered functional images to participant-specific 
T1 images, and from T1 to 2mm standard space 
(MNI 152_T1) using FLIRT. We then masked the 
functional data with the GM tissue prior provided 
in FSL (thresholded at probability > 0.37). We 
detrended the data (up to a cubic trend) using the 
SPM_detrend function in SPM8. We also utilized 
extended pre-processing steps to further reduce 
data artifacts5,96,97. Specifically, we subsequently 
examined all functional volumes for artifacts via 
independent component analysis (ICA) within-run, 
within-person, as implemented in 
FSL/MELODIC98. Noise components were 
identified according to several key criteria: a) 
Spiking (components dominated by abrupt time 
series spikes); b) Motion (prominent edge or 
“ringing” effects, sometimes [but not always] 
accompanied by large time series spikes); c) 
Susceptibility and flow artifacts (prominent air-
tissue boundary or sinus activation; typically 
represents cardio/respiratory effects); d) White 
matter (WM) and ventricle activation99; e) Low-
frequency signal drift100; f) High power in high-
frequency ranges unlikely to represent neural 
activity (≥ 75% of total spectral power present 
above .10 Hz;); and g) Spatial distribution (“spotty” 
or “speckled” spatial pattern that appears 
scattered randomly across ≥ 25% of the brain, with 
few if any clusters with ≥ 80 contiguous voxels [at 
2x2x2 mm voxel size]). Examples of these various 
components we typically deem to be noise can be 
found in the supplementary material of Garrett et 
al6. By default, we utilized a conservative set of 
rejection criteria; if manual classification decisions 
were challenging due to mixing of “signal” and 
“noise” in a single component, we generally 
elected to keep such components. Three 
independent raters of noise components were 
utilized; > 90% inter-rater reliability was required 
on separate data before denoising decisions were 
made on the current data. To enable semi-
automated data denoising using FSL FIX101,102, we 
manually classified 30% of participant data to 
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provide a noise component training set. Features 
from the noise component training set were then 
extracted and used to detect noise components 
from the remaining 70% of participant data via 
FIX. Upon evaluating the automated labelling for 
several subjects against our manual decisions, we 
used a FIX threshold of 60, which permitted a best 
match to manual decisions of two independent 
raters. Components identified as artifacts were 
then regressed from corresponding fMRI runs 
using the regfilt command in FSL. We found 
previously that these additional preprocessing 
steps had dramatic effects on the predictive power 
of SDBOLD in past research, effectively removing 
50% of the variance still present after traditional 
preprocessing steps, while simultaneously 
doubling the predictive power of SDBOL96.  
Critically, our recent work also suggests that when 
such denoising approaches are applied, age 
differences in SDBOLD remain robust to multiple 
vascular controls measured via dual-echo ASL-
BOLD using carbogen-based hypercapni103. The 
present sample only contains a narrow age range 
of older adults (64-68 years), further minimizing 
the potential impact of aging-based differences in 
vasculature that may be more present in samples 
with wider age ranges.  
 
Network parcellations 
 
To provide full coverage over striatal and thalamic 
regions, we first created a joint MNI152 registered 
mask of bilateral striatal (from the Basal Ganglia 
Human Area Template (BGHAT) atlas104) and 
thalamic regions (from the thalamic nucleus-
specific Morel atlas41). To examine the relative 
importance of the striato-thalamic system vs. 
cortical networks, we also utilized the Yeo 7105 
parcellation to estimate visual, fronto-parietal 
(FPN), dorsal attention (DAN), and default-mode 
networks (DMN). In particular, the FPN is 
classically assumed to be crucial for parametric 
working-memory tasks64–67, providing perhaps the 
most flexible hub in the brain specifically for 
cognitive control and working memory 
storage66,106.    
 
Brain measures 

 
Voxel-wise estimates of SDBOLD 

To calculate SDBOLD, we first performed a block 
normalization procedure to account for residual 
low frequency artifacts. We normalized all blocks 
for each condition such that the overall 4D mean 
across brain and block was 100. For each voxel, 
we then subtracted the block mean and 
concatenated across all blocks. Finally, we 
calculated voxel standard deviations across this 
concatenated time series (Garrett et al. 2010). All 
models described below were run on grey matter 
(GM) only, after a standard GM mask derived from 

the MNI152 average brain was applied to each 4D 
image set. 

 
“Temporal” PCA dimensionality as an 
estimate of functional integration 

Building on our previous use of PCA 
dimensionality to identify spatially coherent 
networks 20, in the current paper, we utilized 
“temporal” principal components analysis (PCA) 
as our primary within-subject network 
dimensionality estimation. Here, separately for 
each n-back condition and network (i.e., striato-
thalamic, visual, FPN, DAN, and DMN), a 
correlation matrix was estimated for all timepoint 
pairs (across voxels) from each within-subject 
data matrix. This correlation matrix was then 
decomposed using PCA, 
 

PCA(Rtime point pairs) = USV´              (1) 
 
where U and V are the left and right eigenvectors, 
and S is a diagonal matrix of eigenvalues. We then 
counted the number of dimensions it took to 
capture 90% of the within-subject data. Because 
the S matrix represents the eigenvalues of the 
solution, and each eigenvalue is proportional to 
the variance accounted for in the entire 
decomposition, we summed eigenvalues until 
90% of the total variance was reached. In effect, 
the fewer dimensions it takes to capture 90% of a 
given subject’s data, the fewer distinct 
(orthogonal) temporal periods (or temporal 
“modes”) there are in their time series, suggesting 
a unification/integration of temporal processing 
during a given n-back condition. For a 
comprehensive and direct comparison of 
information captured by spatial and temporal 
approaches to component estimation in fMRI, see 
Smith et al.107.      
 
Statistical modeling 
 
 Handling of outliers 
Prior to model runs, we ran each variable of 
interest through a modified Winsorization108 
procedure; all values beyond +- 2.5SDs from the 
mean were flagged as outliers and “Winsorized” 
by assigning each outlier the closest non-outlying 
value. All variables were then Z-transformed to 
minimize collinearity issues that could arise when 
simultaneously estimating main effects and 
interactions within the regression models reported 
for Target 3. All regressions in Target 3 were also 
run with and without removal of multivariate 
outliers (see Table S6). We estimated outliers 
using Cook’s distance; values > 4/n (i.e., 4/152 = 
.026) were initially flagged as outliers, but only a 
maximum of 5% of the total sample (= 7 cases) 
was dropped from any model run.  
 
 Plotting of interactions 
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All estimated two-way interactions were between 
continuous variables (see Table S3). To depict the 
visual form of such interactions (see Figures 6 and 
7), we used a typical point estimate 
approach109,110. Because of the continuous nature 
of the variables forming these interaction terms, 
point estimate error bars are, by definition, not 
estimable. Instead, the unique effect size (pr = 
partial correlation) of the interaction term 
estimated within each regression model serves as 
the relevant marker of “error.”        
 

Partial Least Squares 
To examine multivariate relations between 
working memory-based SDBOLD modulation and 
DA, we utilized behavioral PLS analysis (Mcintosh 
et al. 1996; Krishnan et al. 2011). This modelling 
form begins by calculating a between-subject 
correlation matrix (CORR) between (1) each 
voxel’s SDBOLD modulation value (i.e., 3-back 
SDBOLD minus 2-back SDBOLD) and (2) D2 binding 
potential (see Results). CORR is then 
decomposed using singular value decomposition 
(SVD).  
 

SVDCORR  = USV´                     (2) 
 
This decomposition produces a left singular vector 
of offline task weights (U), a right singular vector 
of brain voxel weights (V), and a diagonal matrix 
of singular values (S). A single estimable latent 
variable (LV) results that represents the relations 
between SDBOLD modulation and DA. This LV 
contains a spatial activity pattern depicting the 
brain regions that show the strongest relation to 
DA identified by the LV. Each voxel weight (in V) 

is proportional to the voxel-wise correlation 
between DA and SDBOLD modulation.  
 
Significance of detected relations was assessed 
using 1000 permutation tests of the singular value 
corresponding to the LV. A subsequent 
bootstrapping procedure revealed the robustness 
of within-LV voxel saliences across 1000 
bootstrapped resamples of the data (Efron and 
Tibshirani 1993). By dividing each voxel’s weight 
(from V) by its bootstrapped standard error, we 
obtained “bootstrap ratios” (BSRs) as non-
parametric, normalized estimates of robustness. 
For the whole brain analysis, we thresholded 
BSRs at values of ±3.00 (which exceeds a 99% 
confidence interval).  
 
We also obtained a summary measure of each 
participant’s robust expression of a particular LV’s 
spatial pattern (a within-person “brain score”) by 
multiplying the model-based vector of voxel 
weights (V) by each subject’s vector of voxel 
SDBOLD upregulation values (Q), producing a 
single within-subject value,  
 

Brain score = VQ´                     (3)  
 
Code sharing 
 
All code, masks/parcellations, and 
(un)thresholded brain maps will be available on 
Github upon final publication at: 
https://github.com/LNDG/Garrett_etal_2022_CO
BRA.  

 

 


