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Abstract
Predictive models, based upon epidemiological principles and fitted to surveillance data, play an 
increasingly important role in shaping regulatory and operational policies for emerging outbreaks. 
Data for parameterising these strategically important models are often scarce when rapid actions are 
required to change the course of an epidemic invading a new region. We provide a flexible toolkit for 
landscape-scale disease management, which is applicable to a range of emerging pathogens including 
vector-borne pathogens for both endemic and invading epidemic vectors. We use the toolkit to 
analyse and predict the spread of Huanglongbing disease or citrus greening in the U.S. We estimate 
epidemiological parameters using survey data from one region (Texas) and show how to transfer and 
test parameters to construct predictive spatio-temporal models for another region (California). The 
models are used to screen effective coordinated and reactive management strategies for different 
regions.

INTRODUCTION
A rapid response to emerging epidemics of crop disease is essential for successful management of an 
epidemic (Gilligan, 2007; Gilligan & Bosch, 2008; Meentemeyer, et al., 2011) just as for the current 
pandemic of COVID-19 (Wu, et al., 2020; Zhuang, et al., 2020). Effective management, however, 
requires knowledge of critical epidemiological parameters for transmission and dispersal of the 
pathogen (Adrakey, et al., 2017; Neri, et al., 2014; Parry, et al., 2014).  The epidemiological parameters 
are required for models to predict the current extent of infection, the likely future spread (Cunniffe, 
et al., 2015; Filipe, et al., 2012; Neri, et al., 2014) and the effectiveness of potential intervention 
strategies (Cunniffe, et al., 2016; Neri, et al., 2014; Taylor, et al., 2016; Kissler, et al., 2020). The 
parameters are, however, seldom known when an epidemic invades a new region. There are two 
options to obtain parameters: wait until there are adequate surveillance data in the newly-invaded 
region from which to estimate parameters or transfer parameters derived for another region and 
incorporate them into models that allow for different host distributions and environmental variables 
in the newly-invaded region. Here we introduce and test a framework for an emerging epidemic of 
one of the most serious threats to citrus production world-wide. We adapt a model parameterised for 
one region and apply the model to test intervention strategies in a markedly different region. Our 
approach has wide application to a broad range of crop pests and pathogens that threaten food 
security and natural ecosystems. 

Huanglongbing (HLB) disease causes severe chlorosis of foliage, dieback, loss of yield, discolouration 
and ill-flavour of fruit, and death of citrus trees (Gottwald, 2010). The disease is associated with three 
bacterial strains of which Candidatus Liberibacter asiaticus (CLas) is the prevalent type in the Western 
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Hemisphere. The pathogen is transmitted by insect vectors and by movement of infected planting 
material. Options for control include quarantine, pesticide application to kill the vector, and removal 
of infected and surrounding trees. Quarantine involves restricting movement of planting material and 
citrus fruit around infected sites with radii of up to several kilometres. 

HLB has caused a 74% drop in citrus production in Florida since HLB first detection in 2005 (United 
States Department of Agriculture, National Agricultural Statistics Service [USDA/NASS], n.d.). It has 
spread rapidly in Texas and has been introduced and become established in Southern California. There 
is a consequent risk of invasion into the major citrus production area with the Central Valley in 
California (Warnert, 2012), where the insect vector, the Asian citrus psyllid (ACP), Diaphorina citri 
Kuwayama, is currently invading. The rapid spread of the disease in Florida, following the introduction 
of the ACP vector, poses a serious threat to citrus production in the Central Valley. The pathogen also 
continues to pose a major threat to citrus production in Brazil (Filho, et al., 2016). The invasion of 
another vector, the African citrus psyllid, Trioza erytreae (Del Guercio), in Portugal and Spain 
constitutes a threat of introduction of the disease into European countries (Cocuzza, et al., 2016). The 
disease is also widespread in South East Asia (Bové, 2006) and the Las bacterium has recently been 
reported in Kenya (Ajene, et al., 2020). 

Given the widespread distribution and continued spread of the pathogen and its vectors there is an 
urgent need for a flexible parameterised model that can be used to predict spread at landscape scales 
and, to inform surveillance and management options. Here we focus on the threat to citrus production 
in California for which there are emerging surveillance data for the pathogen and the vector. 
Specifically, we show how a flexible epidemic model parameterised and tested using surveillance data 
in one region (Texas) can be adapted to predict spread and assess options for management in a new 
region with different climatic conditions, where the vector is endemic (Southern California) or invading 
(Central Valley, California). The parameterisation allows for multiple sources for introduction of 
infection to a region, the integration of pathogen and vector dynamics, heterogeneous distribution of 
the citrus host, encompassing plantations and backyard trees. The approach also allows for 
incomplete surveys as well as the confounding effects on pathogen spread of pesticide application by 
some growers to manage the vector. We use the model to analyse the effectiveness of ACP control 
strategies retrospectively for the epidemic in Texas and prospectively to delay the emerging epidemic 
in California, as well as comparing different quarantine scenarios. The approach is readily adaptable 
for other crop pathosystems. 

RESULTS
Modelling landscape-scale HLB spread in Texas and Bayesian estimation of parameters from state-
wide survey data
Although intensive surveillance data are available in Florida, the speed of the epidemic was such that 
maps of disease spread reflect more closely the timing of surveys rather than the underlying dynamics 
of the epidemic. Accordingly, those data were not considered suitable for parameter estimation and 
we used instead data from more structured surveys in Texas. We developed a continuous-time, 
spatially-explicit, stochastic epidemiological model (Fig. 2A) of HLB at the landscape scale, and 
estimated model parameters from HLB survey data. The model operates on a 1-km2 resolution gridded 
citrus landscape of the Lower Rio Grande Valley, covering commercial orchards and residential trees 
in 19 cities of four counties in the southernmost tip of South Texas (Fig. 1A). We assume that the 
exposure of healthy citrus trees to HLB infection occurs via three sources:  secondary transmission 
effected by ACP vector movements within the Texas landscape, and two sources of primary 
transmission. One involves the introduction of infected trees by trade or other human-mediated 
movements. The other source of primary infection involves the arrival of infected ACP vectors from 
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outside the region, including across the border with Mexico. The rates of infection are assumed to be 
inversely proportional to the intensity of control measures deployed to a local area. Throughout the 
outbreak in Texas, commercial growers voluntarily participated in an annual coordinated insecticide 
spray program aiming to reduce ACP densities in citrus groves, while residential trees were left mainly 
untreated. Survey data between December 2011 and October 2018 were utilised and comprise the 
location and time of collection and qPCR diagnostic results of leaf sub-samples (Fig. 1D). Although the 
times at which cells get exposed and infectious were not observable, we developed a data-augmented 
Markov chain Monte Carlo (DA-MCMC) algorithm (Gibson & Renshaw, 1998; Pooley, et al., 2015) 
within a Bayesian inference framework to approximate the joint posterior distributions of parameters. 
We designated the data from December 2011 to August 2016 as the training data set and used 
samples collected between September 2016 and October 2018 as a testing data set for model 
validation. Since the testing data were not used for model fitting, they provide an independent source 
to verify the capability of the model to make inferences into the future.

Among the three sources of infection, the estimated rate of secondary transmission via local ACP 
vectors is three orders of magnitude greater than the rates of primary infection via cross-border 
infected vectors and four orders larger than human-mediated movement (Fig. 5A). The clear 
departure from zero of the posterior distribution for cross-border infection rate indicates the presence 
of surplus sources of infectious vectors over the Mexico border. Figure 5B presents the annual 
infection pressure caused by the three infection sources. We again observe the significant role of local 
vector movement in driving the epidemic, resulting in infection pressures an order of magnitude larger 
than primary forces in early years, rising to two orders in the later years. The posterior estimates for 
other parameters, including the dispersal scale, the average efficiency of the coordinated spraying 
program adopted by commercial growers and the waiting period from being infectious to detected 
for a citrus grid cell, are reported in Table 1 and Fig. S4A. We observed good agreement between the 
trained model’s simulations and the training and testing data for both temporal and spatial validation 
metrics (Figs. 4 and S4C). Besides, we also validated the model performance as a binary classifier (Fig. 
S4B) and evaluated the goodness-of-fit for various model variants (Figs. S2 and S3). Retrospective 
analyses of historical spread (Fig. 3) indicate a significant lag from the time that a cell became 
infectious until it is detected by the visual survey. Model simulations indicate that by October 2014, 
HLB had infected almost all of Hidalgo county (TX) whereas from the survey data it appeared as if the 
epidemic had just started to pick up. Having affirmed the model’s credibility and practicality for 
retrospective and future analyses for Texas, we adapt it to predict spread and management options 
for California.

Prediction of emerging HLB spread in southern California
The HLB epidemic in southern California is at an earlier stage compared with the outbreak in Texas, 
with clusters of infected trees found in the Orange and Riverside Counties (Figs. 1B, 1E). Exploratory 
analysis showed that the data for Southern California are insufficient to provide a full set of parameter 
estimates for the landscape-scale model for California. The data are sufficient, however, to test the 
credibility of transferring Texas parameters to this new region. We accounted for the difference in 
weather conditions that affect ACP distributions in California and Texas by incorporating a weather, 
suitability score for ACP growth, particularly for temperature, (Liu & Tsai, 2000) to the model. We also 
introduced HLB quarantines and the removal of HLB-confirmed trees as discrete stochastic events into 
the spread model. We inferred the locations of unobserved infected cells up to 30th June 2017 in 
southern California using the survey data collected before that date and simulated the epidemic 
forward. For the two years in the testing data (June 2017 - June 2019), the predicted detections 
successfully reproduced the spatiotemporal patterns observed in the survey data (Fig. 6). The 
predictions also showed good quantitative agreement with the testing data for both the temporal 
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progression (Fig. 7A) and spatial autocorrelation metrics (Fig. S5A). Inspection of the model predictions 
for unobservable infectious categories (exposed and infectious cells) indicates that the extent of HLB 
spread is far greater than was detected by survey data. HLB is likely to be present in most counties in 
southern California and even with imposition of quarantines and tree removals upon detection, the 
disease is steadily increasing in severity. Predictions into the future suggest that by December 2021, 
HLB will have invaded the whole region of southern California. Our results indicate that surveys by 
visual inspection will reveal more HLB positive samples from all over Los Angeles and Orange Counties, 
and infected trees in San Bernardino, Riverside and San Diego Counties will become detectable.

Bayesian inference of ACP invasion rate in the Central Valley using Texas survey data
The epidemic of HLB in the Central Valley, the major citrus growing area in California, is at an earlier 
stage than for southern California, with the vector, ACP, invading rather than being established (Figs. 
1C, 1F).  Modelling the spread for ACP at the landscape scale requires an estimate of the vector 
invasion rate. Exploratory analyses showed this was not possible using the small amount of ACP 
trapping data for the Central Valley: instead we calculated the ACP invasion rate using a more 
extensive ACP diagnostic dataset for Texas. Although ACP had fully invaded Texas by the start of data 
collection in 2011, the region was not fully infested with HLB-infected ACP. By introducing a new 
epidemic category ‘ACP + HLB infected’ that connects the dynamics of ACP infestation to HLB infection 
in a grid cell (Fig. 2B), it was possible to estimate an invasion rate parameter for ACP from the ACP 
diagnostic data collected as part of the Texas HLB survey (Fig. S1). In particular, the ‘ACP + HLB 
infected’ category marks cells containing HLB-infected ACPs. By modelling the transition of cells from 
‘ACP infested’ to ‘ACP + HLB infected’, we estimated the rate at which vectors move from one cell to 
another. 

We validated the ACP spread model by running simulations to reproduce the historic spread in the 
Central Valley in 2015 and 2016 and compared model predictions with the ACP trapping data, which 
were collected independently from the HLB survey and not used for parameter estimation. We 
incorporated the dynamics of the reactive ACP treatment program by the California Department of 
Food and Agriculture (CDFA) into the model and observed good agreement in both temporal 
progression (Fig. 9A) and spatial autocorrelation metrics (Fig. S5B), indicating that the ACP spread 
model successfully captures the ACP invasion dynamics. 

Prediction of potential HLB spread in the Central Valley as ACP is still invading
By conditioning the HLB spread model on the ACP spread model (Fig. 2B), we simulated joint spatio-
temporal predictions of ACP and HLB potential spread in the Central Valley for the next ten years (Fig. 
8).  We hypothesise that regulators may consider dropping the reactive pesticide treatment by January 
2025 as ACP will have invaded most residential areas in Fresno, Tulare, and Kern Counties and spread 
into the main commercial orchards in central Tulare County. The ACP and HLB epidemic will 
accordingly continue to expand even more rapidly (Fig. 9B). Our results indicate that by the end of 
2030, ACP will have fully established over the whole Central Valley region, and a considerable number 
of HLB infected citrus trees will have presented in the main citrus growing areas (Fig. 8).

Evaluation of the impact of putative control scenarios in Texas and California
Besides providing predictions of vector and pathogen spread, the models can be used to evaluate the 
impact of putative control strategies for containing or slowing down the HLB epidemic. We ran 
retrospective and prospective simulations of the ACP and HLB spread models to assess the epidemic 
impact of the control scenarios most relevant to each region: the coordinated ACP spraying program 
in Texas (Figs. 5C-F), the HLB quarantines program in southern California (Fig. 7B), and the reactive 
ACP treatment in Central Valley (Figs. 9C, D). 
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The area-wide coordinated vector spraying program in Texas was carried out annually since the start 
of the HLB epidemic in 2011. Growers joined the program by applying pesticide sprays within a short, 
designated period to target the overwintering vector populations. Using historic HLB survey data, we 
estimated that the program helped to reduce about 80% (designated as the control efficiency) of the 
vector population in commercial orchards. To understand the importance of having an area-wide 
collaborative effort amongst growers in place, we ran retrospective simulations for hypothetical 
scenarios in which less intensive ACP control had been carried out (Figs. 5C-F). We observed a 
nonlinear relationship between control efficiency and HLB exposed area. While increasing control 
efficiency from 20% to 50% cannot guarantee the reduction of epidemic size, bringing control 
efficiency up to 80% was effective (we observed both a significant reduction of the infected area in 
2020 and a clear separation of the 95% credible intervals associated with 20% and 80% control 
efficiency). Having established the importance of maintaining a coordinated spraying program, we 
considered the impact of increasing the size of HLB quarantine areas surrounding confirmed positive 
sites in southern California (Fig. 7B). Current regulation imposes a 5-mile (8 km) quarantine radius 
around each HLB positive site and restricts the movement of citrus tree products from the quarantined 
area to other places. Simulation results demonstrated consistent reduction of the infectious regions 
as the quarantine radius is increased, with the currently prescribed 8 km radius helping to reduce a 
third of the epidemic size at the end of 2021. 

As the current focus for the Central Valley is on ACP invasion, we considered two parameters that 
drive a reactive ACP eradication program: the eradication efficiency (Fig. 9C), and the radius of the 
treated circle around an ACP positive site (Fig. 9D). Our simulations allowed for pesticide treatment, 
applied by CDFA, on all citrus trees within a 400 m radius of an ACP positive site. Where treatment 
circles overlap a commercial grove, the whole grove is treated. Reactive treatment occurs in addition 
to a coordinated spray implemented annually by commercial growers. Simulation results show that 
having both high efficiency and sufficient radius are essential to slow down the spread of ACP in the 
Central Valley (Figs. 9C, D). There is a consistent reduction in the median infested area and also the 
95% credible interval as the eradication efficiency increases. An eradication efficiency of 80% reduces 
the median infested area by half. It also reduces the upper boundary of the credible interval by 75% 
compared with no treatment. Increasing the eradication radius from 100 m to 500 m decrease the 
expected infested area by 50% and the credible interval by 75%. The results suggest that although 
80% eradication efficiency is reasonable, it might be worthwhile to increase the treatment radius to 
500 m.

DISCUSSION
We have developed, parameterised and tested a unified and flexible epidemiological modelling 
framework to predict the spread of the Huanglongbing (HLB) disease on citrus at landscape scales. 
Our stochastic framework takes account of the intrinsic uncertainty in disease spread. The framework 
allowed us to construct predictive models using comparatively sparse data from early surveys as the 
disease spreads into a new region. We used it to screen effective management strategies at landscape 
scales, advancing previous models that focused on individual trees (Lee, et al., 2015) and plantations 
(Parry, et al., 2014).

We use conventional compartmental models to account for unobserved latent and cryptic infection 
as well as symptomatic infection.  The framework allows us to accommodate the impact of disease 
control measures on the surveillance data used when estimating transmission and dispersal 
parameters for the pathogen. The framework also accommodates two scenarios, one in which the 
insect vector (the Asian citrus psyllid: ACP) is endemic, the other when the vector is also invading a 
new region. The main practical outcome of the work is to predict the spread and potential for control 
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of HLB in southern California, where the pathogen has been reported and the insect vector is endemic, 
and in the major citrus production region in the Central Valley in California, where the vector is 
spreading but the pathogen has not yet been reported. 

Building early predictive models is critical to disease management for outbreaks of infectious diseases. 
For example, thanks to the early availability of case data for the 2001 foot-and-mouth disease (FMD) 
outbreak in the United Kingdom, researchers were able to develop mathematical models quickly and 
used them to formulate control policies (Keeling, et al., 2001; Ferguson, et al., 2001). Similar extensive 
control strategies had been examined for the severe acute respiratory syndrome (SARS) epidemic in 
Hong Kong (Riley, et al., 2003). The level of reporting for human and animal diseases is generally higher 
than for plant epidemics. The situations in California exemplify a common problem in plant 
epidemiology, where data are scarce (McRoberts, et al., 2019) and there are too few observations on 
disease and vector spread to infer parameters from which to predict spread within the locations at 
risk. Here, we use well-documented surveillance data from Texas for parameter estimation, model 
selection and validation. The data were collected from the onset of the epidemic for commercial and 
residential areas in south Texas until HLB had widely invaded. The distribution of infected vectors was 
also monitored. The Texas data were preferred to surveillance data from Florida, where the disease is 
now widespread, because the data reflect times at which locations were sampled rather than the 
intrinsic spread of HLB in that state (T. R. Gottwald, pers. comm.). We incorporate differences in daily 
temperatures and the effect of ongoing control strategies in transferring the model from Texas to the 
Californian situations in model simulations.

It is challenging to estimate epidemiological parameters from surveillance data on populations that 
are exposed to disease control. In the case of Texas, coordinated spraying was applied amongst 
commercial orchards to kill the insect vector. We used a Markov chain Monte Carlo method with data 
augmentation (DA-MCMC). The DA-MCMC method is considered a robust approach for inferring 
parameters for stochastic, individual-based epidemiological models (Gibson & Renshaw, 1998; Jewell, 
et al., 2009; Parry, et al., 2014; Keeling, et al., 2021). The method has been used to estimate 
epidemiological parameters for heterogeneous large-scale epidemic systems with cryptic infections. 
Applications include foot-and-mouth outbreaks on cattle (Jewell, et al., 2009), avian influenza 
epidemics on poultry (Jewell, et al., 2009), and MRSA outbreaks in hospital wards (Kypraios, et al., 
2010). Convergence of the DA-MCMC method, however, is known to be difficult when applied to 
domains (landscapes) with heterogeneously distributed target populations. Accordingly, we improved 
the mixing and convergence of MCMC samplers for unobserved epidemic transitions by utilising the 
randomised construction of Markov trajectories (Gross & Miller, 1984) and exact inference algorithms 
for hidden Markov models (Rabiner & Juang, 1986). The improved algorithms allowed us to 
successfully reproduce the HLB epidemiological dynamics and control interventions observed in Texas, 
and retrospectively to analyse the impact of varying efficiency of the coordinated ACP spraying 
program on HLB epidemics.

Using the improved MCMC samplers, it is possible to infer locations that are cryptically (i.e. 
asymptomatically) infected from the survey data available at the time of prediction. Initialising spatio-
temporal epidemic models with asymptomatic as well as symptomatic infected sites is essential to 
capture the current extent and the future potential for disease spread. We used the Texas HLB survey 
data up to 2016 as a training dataset for parameter estimation and the remaining data up to 2018 for 
model validation. When tested on data not used in parameter estimation, the HLB spread model 
showed remarkable agreement for both spatiotemporal visualisation and temporal and spatial 
evaluation metrics (Fig. 3). Retrospective inference of HLB infection times for Texas showed that the 
epidemic progressed at a much faster pace than had been captured by the survey data. Knowledge of 
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the locations of cryptically infected sites gives government and industry decision-makers a two-year 
advantage in knowledge of the extent of the epidemic when compared with survey data alone. We 
were able to infer the average efficiency of the annual coordinated spraying from the Texas survey 
data and to run retrospective simulations to assess the impact of having such measures in place in 
comparison with less effective executions of the program. Our results showed the benefit of having a 
high level of participation from commercial growers in slowing epidemic progression, especially during 
the first few years after the invasion (Fig. 5C).

Allowing for cryptically infected sites (estimated from the training data) as well as survey reports of 
symptomatic sites when initialising the HLB spread model in southern California gave very good 
agreement in predicting the spread patterns observed in the two years of test data (Fig. 6). The models 
were used to investigate the impact of different control strategies on epidemic outcomes for HLB in 
California. Increasing the radius of the quarantine area to prevent movement of citrus products 
around newly-detected HLB sites has the potential to reduce the total Infectious area for southern 
California (Fig. 7B). Within the Central Valley, our results indicate that changing the radius and the 
efficiency for the reactive ACP treatment programme each reduce the infested area (Fig. 9C, D). There 
was also a marked reduction in the uncertainty of the outcomes of the programmes with enhanced 
control effort (Fig. 9C, D). 

The modelling and inference framework described in this paper can easily be adapted and extended 
to tackle various epidemiological problems. An obvious next step is to incorporate the operating costs 
and potential economic gain for the putative control strategies considered for southern California and 
the Central Valley. Predictive analysis using model simulations similar to those used in the paper can 
provide recommendations for optimal control strategies by decision-makers. An important aspect of 
the voluntary coordinated ACP spraying program is to evaluate the impact of grower behaviours in 
terms of compliance and responsiveness to the efficiency of reducing the spreading power of ACP 
populations. Adapting the epidemiological models for a retrospective analysis of past HLB epidemics, 
e.g., in Florida, should allow for valuable insights about what could have been done to slow down the 
epidemic course. As the African citrus psyllid, Trioza erytreae (Del Guercio), in Portugal and Spain 
constitutes a threat of introduction of the disease into European countries, the framework can be 
used to transfer U.S. parameters to these countries pending enough data for local estimation, by 
accounting for differences in psyllid behaviours, weather suitability, as well as regional operations.

METHODS
Here we provide a summary of the data sources, epidemiological models, parameter estimation 
methods, and prediction procedures used in the paper. Please consult the supplementary information 
for more detailed descriptions.

Data sources
We obtained data from surveys for early HLB detection in Texas and California and detection of ACP 
presence in California. The data were collected and analysed by the U.S Department of Agriculture 
(USDA) and the California Department of Food and Agriculture (CDFA). Data collection surveys were 
part of an intensive area-wide management research program for citrus greening over multiple U.S. 
states and localized management of ACP in California. We used the HLB survey data in Texas (Fig. 1A, 
D) to estimate parameters and validate the HLB epidemiological model (Fig. 2A) We also used an 
additional survey of trapping data for HLB-infected ACP in Texas to estimate parameters for vector 
spread (Fig. S1B in Supplementary Information). HLB survey and ACP trapping data for southern 
California (Fig. 1E) and Central Valley (Fig. 1F) were used to initiate simulated epidemics for model 
inference on spread and control strategies and further validation. All data were geo-mapped and 
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aggregated by visiting dates to obtain spatiotemporal datasets of HLB positivity for plant and vector 
samples in Texas (Figs. 1D and S1B), plant samples in southern California (Fig. 1E) and ACP presence 
in the Central Valley (Fig. 1F).

Epidemiological models
We developed a spatially explicit, continuous-time, stochastic compartment model for the HLB spread 
in Texas and southern California under the assumption that the vector had already become endemic. 
The landscapes were rasterised into 1 km x 1 km grid cells. Each grid cell occupied by citrus trees  
belongs at any one time to one of the four infection categories: HLB susceptible, exposed, infectious, 
and detected (Fig. 2A). We extended the model to account for the fact that the underlying ACP 
population in the Central Valley is still spreading and has not fully invaded the region (Fig. 2B). In 
addition to the above four HLB infection compartments, we consider three compartments for ACP 
infestation status in grid cells: ACP susceptible, exposed and infested. We also introduce a new 
epidemic category to associate the dynamics of ACP infestation to that of HLB infection: ACP + HLB 
infected. This category marks cells that observe the presence of HLB-infected vectors.

A susceptible cell is exposed to HLB infection when the first tree in the cell is infected via three 
transmission sources. Primary transmission can arise from the introduction of infected trees and tree 
products by trade and human-mediated movements (represented as parameter 𝜖) or from HLB-
carrying vectors arriving from external environments (represented by two parameters away from,  𝜀𝑊, 
and across the US-Mexican border, 𝜀𝐵). Using two different parameters to represent the second 
primary transmission source reflects our assumption that citrus trees along the Mexico border were 
under extra epidemic pressure from a higher incidence of infected insects on the Mexican side of the 
border compared with those further from the border. Secondary transmission from an HLB infectious 
to a susceptible cell happens by the flux of vectors moving between the two cells. We denoted 𝛽𝑃 as 
the rate for secondary infection and used an isotropic exponential kernel, 𝐾𝛼(𝑟) ∝  𝑒―𝑟/𝛼 where 𝛼 
represents the dispersal scale, to depict the dependence of movement rate on the spatial distance 𝑟 
between the cells. We derived the HLB exposure rate, given in equation (1) in the SI, using a 
mechanistic model for vector movement and feeding. Besides the variation in citrus density over the 
landscape, the model also accounts for the variation in vector density that is affected by the annual 
coordinated spraying program to commercial citruses and daily weather. We used a parameter 𝜂 to 
represent the efficiency of vector control and the weather-driven model for vector development rate 
by (Liu & Tsai, 2000). The parameters 𝜖,𝜀𝐵, 𝜀𝑊, 𝛼, 𝛽𝑃,  𝜂 were estimated using the Texas HLB survey 
plant diagnostic data.

In the Central Valley, a susceptible cell is exposed to ACP infestation when the first few vectors arrive 
in the cell from nearby sites (represented as secondary infestation rate, 𝛽𝑉) or transported from 
external environments (represented as primary infestation rate 𝜀𝑉). The force of ACP exposure was 
derived using the same vector flux model as in the case of HLB exposure rate and is given in equation 
(2) in the SI. The challenge, however, lies in estimating the secondary infestation rate 𝛽𝑉 as we cannot 
infer it directly from California ACP trapping data. We observed that the rate at which infected vectors 
migrate from an ‘ACP + HLB Infected’ cell to an ‘ACP Infested’ site in the extended model (Fig. 2B) is 
equivalent to the secondary infestation rate 𝛽𝑉 under the assumption that Las-carrying vectors behave 
similarly to uninfected vectors. Therefore, we can derive the transition force (equation (3) in the SI) 
and estimate the parameter of interest using the vector diagnostic data from the Texas HLB survey. 
Since we carried out parameter estimation under a Bayesian inference framework, we can use the 
previously acquired posterior estimates for 𝛼,𝜇,𝜂 to complement the sparsity of vector diagnostic 
data. 

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.04.490566doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.04.490566


We prescribed a latent period for a cell to transition from exposed to infectious to HLB and from 
exposure to infested to ACP. We used a seasonally-forced model for the rate of 
infectiousness/infestation onset (Parry, et al., 2014). Parameters for the latent periods were obtained 
from in-orchard and in-nursery observations.

Parameter estimation
We adopt a Bayesian approach to estimate parameter values from noisy survey data.  We treated the 
unknown timing of epidemiological transitions as random variables and used a data-augmented 
MCMC algorithm to infer about them. An MCMC algorithm approximates the joint distribution of 
parameters by constructing a Markov chain that converges to the desired distribution in equilibrium. 
After a burn-in period, the samples generated from the chain form an unbiased representation of the 
parameter posterior distribution. We used the Metropolis-Hasting method (Chib & Greenberg, 1995) 
to construct samplers for both parameters and unobserved epidemic transitions. We used the 
randomized construction of Markov trajectory (Gross & Miller, 1984) and exact inference algorithms 
for hidden Markov models (Rabiner & Juang, 1986) to improve samplers of epidemic transitions. For 
more details of the algorithms, please consult the SI.

The overall likelihood of a set of parameter values comprises the model likelihood and the data 
likelihood. The model likelihoods (equations (5) and (8) in the SI) can be naturally derived from the 
stochastic construction of the HLB and ACP epidemiological models described above. We developed 
data likelihoods (equations (6, 7, 9) in the SI) using two parameters of the data collection process: 𝜋 
represents the probability that a positive sample is collected from an infectious cell, and 𝜎 indicates 
the expected duration from becoming infectious to getting detected. Both parameters, together with 
parameters of epidemiological models, were estimated from Texas HLB survey data.

Model validation and prospective prediction
We estimated parameters using Texas HLB survey data collected between December 2011 and August 
2016. We then validated region-specific epidemiological models using either a different survey time 
range or an independent source from the training data. In particular, we used data collected between 
September 2016 and October 2018 as the testing data for Texas and data collected in southern 
California from June 2015 to June 2019 to test the region HLB model. ACP trapping data in 2015 and 
2016 were used to verify that the ACP spread model for the Central Valley agrees with reality. We 
compared model simulations to testing data in terms of both temporal progression and spatial 
autocorrelation metrics. Please consult the SI for more details of validation construction.

To analyse the sensitivity of different model components to prediction performance, we considered 
four variants to the full model described above. Each model variant differs from the full model by one 
component of the secondary transmission model: (1) no normalisation, in which the normalisation 
term for vector fluxes is assumed to be the same for all cells and absorbed to the secondary infection 
rate; (2) no control effect, in which we ignored the occurrence of the annual coordinated spraying 
program; (3) no border effect, in which we did not distinguish between sites near to and far from the 
Mexico border and used the same primary infection rate for infected vector from external 
environments; (4) power-law kernel, in which the exponential dispersal function is replaced with a 
power-law function. Model variants were fitted using Texas HLB survey data up to August 2016 and 
validated with data up to August 2017 (Figs. S2 and S3).

We made prospective predictions more than two years past the final observation time for each region. 
Not all sites already infected with HLB are observable at the time of forecast. We used observed survey 
data to infer the locations of cells that have been exposed to and infectious with HLB at that time. We 
used an MCMC-based simulator analogous to the data-augmented MCMC algorithms used for 
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parameter estimation to sample epidemic transition times that agree well with observed data. The 
effect of known control measurements carried out in each region was incorporated using various 
mechanisms (details in the SI). These include the annual coordinated spraying program in Texas, 
reactive removal of infected trees and HLB quarantine in southern California, and reactive vector 
spraying upon ACP detection in sticky traps in the Central Valley. Besides forecasting into the future, 
the prediction models can also be used to evaluate the impact of putative control strategies by varying 
parameter values that drive control measurements.
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