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Abstract

Motivation: Circular RNAs (circRNAs) with varied biological activities are implicated in pathogenic pro-
cesses, according to new findings. They are regarded as promising biomarkers for the diagnosis and
prognosis due to their structural features. Computational approaches, as opposed to traditional experi-
ments, can identify the circRNA-disease connections at a lower cost. Multi-source pathogenesis data can
help to reduce data sparsity and infer probable connections at the system level. The majority of available
approaches create a homologous network using multi-source data, but they lose the data’s heterogeneity.
Effective solutions that make use of the peculiarities of multi-source data are urgently needed.
Results: In this paper, we propose a model (CDHGNN) based on edge-weighted graph attention and hete-
rogeneous graph neural networks for discovering probable circRNA-disease correlations prediction. The
circRNA network, miRNA network, disease network and heterogeneous network are constructed based
on the introduced multi-source data on circRNAs, miRNAs, and diseases. The features for each type of
node in the network are then extracted using a designed edge-weighted graph attention network model.
Using the revised node features, we learn meta-path contextual information and use heterogeneous neural
networks to assign attention weights to different types of edges. CDHGNN outperforms state-of-the-art
algorithms with comparable accuracy, according to the findings of the trial. Edge-weighted graph attention
networks and heterogeneous graph networks have both improved performance significantly. Furthermore,
case studies suggest that CDHGNN is capable of identifying particular molecular connections and can be
used to investigate pathogenic pathways.
Contact: jxwang@mail.csu.edu.cn

1 Introduction
Back-spliced from precursor mRNAs, circular RNA (circRNA) is a
single-stranded endogenous non-coding RNA with covalently closed loop
structures (Jeck et al., 2014). Emerging evidences show that circRNAs
play a variety of functions, such as transcriptional regulators, microRNA
sponges and protein templates (Huang et al., 2020). For example, exon 15
of SMARCA5 is stopped because that circSMARCA5 becomes an R-loop
after binding to its parent gene locus (Xu et al., 2020). As a conseque-
nce, abnormal expression or dysfunction of circRNA will rise a variety
of diseases. Compared with linear transcripts, circRNA is more stable

without free ends that are susceptible to exonuclease digestion. There-
fore, circRNA is expected to be a promising diagnostic biomarker due to
its unique structure and biological roles. Nonetheless, identifying experi-
mentally verified disease-related circRNAs takes a lot of manpower and
material resources.

Computational methods provide effective means for large-scale disco-
very of circRNA-disease associations. Existing approaches are categorized
into three types. The first type of methods are based on network propa-
gation algorithms. The KATZ measure is used to calculate the potential
association probabilities based on a heterogeneous network formed from
various biological data. (Fan et al., 2018; Zhao et al., 2019; Deng et al.,
2019). Lei et al. (2020) proposed a model to classify associations based on
a heterogeneous network with the random walk with start. Only topologi-
cal information is taken into account, limiting the model’s learning ability.
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The second type of methods are based on machine learning models. Yan
et al. (2018) presented a method based on the regularized least-squares
of Kronecker product kernel with disease semantic similarity and Gaus-
sian interaction profiles. Wei et al. (2020) applied matrix factorization
based on disease semantic information, circRNA-gene, gene-disease and
circRNA-disease. Xiao et al. (2019) employed a weighted low-rank appro-
ximation model with dual-manifold regularization on Gaussian interaction
profile kernel, disease network and circRNA network. Wei et al. (2021)
proposed a ranking model to obtain global ranking relationships between
query circRNAs and diseases. Based on low-dimensional node represen-
tation, Xiao et al. (2021) proposed a network embedding-based adaptive
subspace learning method to infer potential associations. The appropri-
ate features necessitate professional knowledge and have an impact on
classifier performance. The third type of methods are based on neural
networks. Lu et al. (2020) applied neural networks to replace linear appro-
ximation based on matrix factorization for possible associations. Wang
et al. (2020) extracted features of circRNAs and disease from multi-source
and classified associations with ELM classifier. Lu et al. (2020) emplo-
yed an unsupervised model to learn k-mer low-dimensional vectors and
disease ontology representation, as well as BiLSTM to obtain circRNA-
disease connections. Wang et al. (2020) gained features from biological
data with stacked autoencoder algorithm and predicted associations with
rotation forest classifier. After fusing features of circRNA sequence and
disease semantics, Wang et al. (2020) pre-trained the generative adver-
sarial networks with circRNA-disease pairs and inferred prediction with
the extreme learning machine classifier. Ignoring the close connection
between features of circRNAs (diseases) and their associations prevents
the models from learning intrinsic representation. Mudiyanselage et al.
(2021) applied graph convolutional networks on the constructed heteroge-
neous network. Lan et al. (2021) integrated multiple relationship among
circRNA, miRNA, lncRNA and disease based on graph attention netw-
ork. The methods mentioned above have improved accuracy of prediction.
However, the heterogeneity between different data is disregarded when
applying graph neural networks on multi-source data.

In this paper, we offer a heterogeneous graph neural network model
(named CDHGNN) that can learn not only the hidden properties of each
type of biological molecule, but also the heterogeneity between diffe-
rent source data. We introduce multi-source data of circRNA, miRNA
and disease to alleviate data sparsity and explore molecular associati-
ons. After that, we construct circRNA network, miRNA network, disease
network and heterogeneous network. We devise an edge-weighted graph
attention network to get node representation, in contrast to prior graph
neural network methods that disregard edge weights. Furthermore, we
adopt heterogeneous transformer network to learn the contextual infor-
mation of the meta-path and get attention weights for different types of
edges. The experimental results reveal that CDHGNN outpaces state-of-
the-art computational methods. Edge-weighted graph attention network
and heterogeneous graph network improve accuracy. It is worth noting
that CDHGNN finds molecular connections and the relevant pathways in
pathogenesis.
The contributions of this work are summarised as follows:

• To view molecular associations in pathogenesis, we integrate multi-
source data of circRNA, miRNA and disease and construct correspon-
ding biological networks.

• We devise an edge-weighted graph attention neural network that
considers the value of associations when obtaining node intrinsic
properties.

• We first study the heterogeneity of multi-source data. CDHGNN learns
the meta-contextual path’s information and assigns attention weights
to various types of edges based on a heterogeneous neural network.

• The experimental results and case studies show that CDHGNN out-
performs state-of-the-art methods and is helpful to explore relevant
pathways in pathogenesis.

2 Materials and Methods
In this part, we present our model CDHGCN, which is applied to iden-
tify the potential circRNA-disease associations. As shown in Fig. 1,
we first construct circRNA network, miRNA network, disease network
and heterogeneous network. Then, we extract node features with a devi-
sed edge-weighted graph attention network. Finally, we learn contextual
information and assign attention weights on the meta-path based on a
heterogeneous neural network.

2.1 Benchmark Dataset

To alleviate data sparsity and understand potential associations systemati-
cally, we collect circRNA sequences, miRNA functional relationships, dis-
ease ontology, gene-disease network, circRNA-miRNA, miRNA-disease
and circRNA-disease associations from benchmark database. We retri-
eve circRNA sequences data from CircBase (Glazar et al., 2014) and get
140,732 circRNA sequences. We download miRNA functional relationsh-
ips from database MISIM v2.0 (Li et al., 2019), which includes functional
relationships among 664 miRNAs. We obtain disease ontology from Dis-
ease Ontology (Schriml et al., 2019), which contains 11,652 phenotype
ontology. The UMLS Metathesaurus Browser, a vast biomedical thesau-
rus, is used to get disease definitions. We get gene-disease associations
from (Pinero et al., 2020), which contains 262,989 associations between
13,705 genes and 1,977 diseases. We gather circRNA-miRNA associations
from starBase (Li et al., 2014), which contains 18,320 circRNA-miRNA
associations between 886 circRNAs and 638 miRNAs. We get miRNA-
disease associations from HMDD 3.0 (Huang et al., 2019), which includes
27,872 miRNA-disease associations between 1,054 miRNAs and 226 dis-
eases. We download circRNA-disease associations from MNDR 3.0 (Ning
et al., 2021), which includes 3,206 circRNA-disease associations between
2,396 circRNAs and 165 diseases. We have unified and standardized the
nomenclature of circRNA according to circBase. The unified and standar-
dized operation is executed for the nomenclature of disease according to
OMIM and UMLS. After that, we delete duplicate data of species other
than human species. Finally, we get 2,013 associations between 1,313
circRNAs and 144 diseases, 10,570 associations between 638 miRNAs
and 128 diseases, and 13,315 associations between 824 circRNAs and 612
miRNAs. The details of the data are depicted in Table 1.

Table 1. The details of the data

Dataset Num

Disease ontolgy 11,652
Disease definition 152

CircRNA sequences 140,732
MiRNA-disease 10,570 (638 miRNAs, 128 diseases)

CircRNA-miRNA 13,315 (824 circRNAs, 612 miRNAs)
CircRNA-disease 2,013 (1313 circRNAs, 144 diseases)

2.2 Network construction

After importing multi-source data on the pathogenesis of circRNAs, hete-
rogeneous biological network is an effective method to find the promising
associations between circRNAs and diseases. There are three types of
nodes like circRNA, miRNA and disease. To obtain features of each type of
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Fig. 1. The overflow of CDHGNN. Step 1: construct circRNA-circRNA network, miRNA-miRNA network, disease-disease network and heterogeneous network; Step2 : extract each type
of node features with edge-weighted graph attention network; Step3: Learn contextual information and assign attention weights on the meta-path in the heterogeneous network.

node in the respective biological network, CDHGNN establishes circRNA
network, miRNA network and disease network, respectively.

The Gaussian interaction profiles (GIPs) embody association patterns
of circRNA or disease (Lu et al., 2018). We get the association matrix
between circRNAs and diseasesAcd ∈ Rnc×nd, where nc is the number
of circRNAs while nd is the number of diseases, respectively. We calculate
the Gaussian interaction profile kernel similarity as the similarity between
two circRNAs:

Sim(ci, cj) = exp(−ϕc‖GIPs(ci)−GIPs(cj)‖2),

ϕc =
1

nc

nc∑
i=1

‖GIPs(ci)‖2,
(1)

where ϕc controls the kernel bandwidth.
To build a miRNA functional similarity network, we download functi-

onal relationships of miRNA from MISIM v2.0. To make the values have
the same scale, we normalized the data with Z-score normalization and
use it as the functional similarity among miRNAs.

To construct disease network, we download gene-disease data from
DisGeNET. We get the association probability between genes and diseases.
Then, we calculate disease similarity between disease i and disease j as
follows:

Sim(di, dj) =

∑
v∈(Gdi

∩Gdj
)

(P (v, di) + P (v, dj))∑
v∈Gdi

P (v, di) +
∑

u∈Gdj

P (u, dj)
(2)

whereGdi is the set of genes related with disease i,Gdj is the set of genes
related with disease j, where P (·, ·) is the association probability matrix
between genes and diseases.

There are three type of edges among circRNAs, miRNAs and disease,
such as circRNA-miRNA, circRNA-disease and miRNA-disease. A hete-
rogeneous network is defined asG = (V,E), where V andE signify the
sets of nodes and edges, respectively. The heterogenous network is accom-
panied by a node type mapping function ψv : V → T v and an edge type

mapping function ψe : E → T e. A node type mapping ψv(vi) uniqu-
ely corresponds to a node vi, i.e., ψv(vi) ∈ T v , vi ∈ V . Analogously,
an edge type mapping ψe(ei) uniquely corresponds to an edge ei, i.e.,
ψe(ei) ∈ T e, ei ∈ E. The situation is |Te| > 1 in the heterogeneous
network. We define the heterogeneous network with a set of adjacency
matrices {Ai}

|Te|
i=1 , where Ai ∈ RN×N , N = nc + nm + nd. A

node feature matrix X ∈ RN×F is the input vector to the heteroge-
neous network, where F denotes the learned features for N nodes from
GAT. A meta-path P is a path through the heterogeneous network, i.e.,

v1
t1→ v2

t2→ . . .
ti→ vi+1, where ti ∈ T e. Then the the adjacency matrix

AP of the meta-path P is defined as AP = Ati · · ·At2At1 , where Ati
is an adjacency matrix for the i-th type of edges on the meta-path.

2.3 Node embeddings with edge-weighted graph attention
networks

We extract features of various types of nodes from the three constructed
similarity networks. As each molecule functions differently in biological
systems, we apply graph attention network (GATs) to specify diffe-
rent weights to different nodes in a neighborhood (Velickovic et al.,
2018). To account for the effect of edge weights on aggregation, we
devise a novel edge-weighted GATs. Input a set of initial node features,
x = {~x1, ~x2, . . . , ~xn} , ~xi ∈ Rf , where n means the number of nodes,
and f is the feature dimension of each node. Transform the initial features
into high-level features with a linear operation h(l)i = W (l)x

(l)
i , where

W is a shared weight matrix andW ∈ Rf ′×f . The generated features of
l-layer ish(l)i =

{
~x′1, ~x

′
2, . . . , ~x

′
n

}
, ~x′i ∈ Rf ′ . The edge weight between

node i and node j reflects the importance on each connection. Concatenate
h
(l)
i , h(l)j and edge weight ωij between node i and node j in l l-th layer

and calculate a un-normalized pair-wise attention score as:

e
(l)
ij = LeakyReLU

(
~a(l)

T
(
h
(l)
i ‖h

(l)
j ‖Weωij

))
, (3)

where ~a(l) is a learnable weight vector, a : Rf ′ × Rf ′ → R. Masked
attention is applied to insert graph structure into the model architecture.
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Normalizing coefficients across all choices of j with the softmax function:

α
(l)
ij =

exp
(
e
(l)
ij

)
∑
k∈N (i) exp

(
e
(l)
ik

) . (4)

Multi-head attention aggregation is adopted to aggregate the embeddings
of neighbors together simultaneously

z
(l+1)
i = ‖Mm=1σ

 ∑
j∈N (i)

αmijW
mh

(l)
j

 (5)

For the initial node features in circRNA network, CDHGNN utilizes
Doc2Vec algorithm (Le et al., 2014) to get sequence motif embedding on
the seuqnce. For the initial node features in miRNA network, miRNAs’
GIPs, fmi = {0, 1, . . . , 1}, fmi ∈ Rnd, are employed as association
vectors. For disease, we concatenate disease semantic similarity based on
disease ontology and disease semantic embedding from disease definitions
with Doc2Vec.

2.4 Heterogeneous graph transformer networks

Heterogeneous networks composed of multiple types of data are models
successfully applied in various applications. However, most GNN models
treat this type of complex network including multiple types of data as a
homogeneous network, or need to manually specify meta-paths in advance.
These methods may cause loss of information. In this part, we applied
graph transformer networks (GTN) to learn soft selections of edge types
and get hidden relationships among circRNAs, miRNAs and diseases (Yun
et al., 2019). The input to GTN is multiple networks with diverse types of
nodes and edges. The1×1 convolution layers assigns a weight to each type
of edge in{Ai}

|Te|
i=1 , and then softmax(Wφ)utilizes attention mechanism

to determine the influence on the final meta-path. A soft adjacency matrix
is generated from the weighted sum defined as:

Q = F (A;Wφ) = φ(A; softmax(Wφ)), (6)

where φ is the convolution layer and Wφ ∈ R1×1×|Te|. Then, a compo-
sition meta-path is established by multiplying the adjacency matrices. To
consider the characteristics of the original edges, we introduce the identity
matrix I . Applying GCN for each type of edge on the meta-path, node
representations are shaped as:

Z =
C

‖
i=1

σ
(
D̃−1
i Ã

(l)
i XWgt

)
(7)

where ‖ denotes the concatenate operator, C is the number of channels,
Ã

(l)
i = A

(l)
i + I , D̃i is the degree matrix of Ãli, and Wgt ∈ RF×F is a

shared trainable weight matrix. We utilize the cross-entropy loss function
to measure the performance and the Adam algorithm to optimize the model.

3 Results and Discussion

3.1 Evaluation metrics

We implement 5-fold cross-validation to verify the effectiveness of the
model and compare it with state-of-the-art methods. All the verified asso-
ciations among circRNA, miRNA, and disease are treated as positive
samples, while candidate samples are potential relationships that have
not been validated. To alleviate the imbalance, we stochastically generate
negative samples with the same number of positive samples. Then all the
samples are randomly divided into 5 parts. One of them is treated as a sepa-
rate test set that does not participate in the model’s training. The remaining
4 parts take part in the training. We repeat the whole process five times

Table 2. The impact of learning rate on model performance

Learning rate AUC AUPR Acc Pre Recall F1-Score

0.001 0.851 0.792 0.817 0.799 0.786 0.792
0.003 0.878 0.801 0.822 0.782 0.792 0.803
0. 005 0.886 0.817 0.824 0.808 0.817 0.804
0.007 0.865 0.795 0.811 0.801 0.807 0.796
0.01 0.821 0.792 0.798 0.800 0.803 0.768
0.03 0.791 0.724 0.771 0.657 0.694 0.674

Table 3. The impact of node dimensions on model performance

Node dim AUC AUPR Acc Pre Recall F1-Score

32 0.873 0.775 0.787 0.761 0.784 0.759
64 0.879 0.798 0.813 0.795 0.802 0.792

128 0.886 0.817 0.824 0.808 0.817 0.804
160 0.882 0.796 0.814 0.797 0.808 0.788
192 0.865 0.761 0.776 0.758 0.765 0.762

until each part is tested once. THe general evaluation criteria are utilized,
including Accuracy (ACC), Precision (Pre), Recall and F1-score defined
as follows:

Pre. =
TP

TP + FP

Recall =
TP

TP + FN

Acc. =
TP + TN

TP + FP + FN + TN

F1−score =
2 ∗ Precision ∗ Recall

Precision + Recall

(8)

where TP and TN are the numbers of correctly identified positive and
negative samples, FP and FN are the number of incorrectly identified
positive and negative samples, respectively.

3.2 Effects of Parameters

In this part, we evaluate the impact of several key parameters on the model,
including learning rate and node dimension. The learning rate is a critical
parameter for the minimum of the loss function. We execute the grid search
to obtain the optimal value from 0.001 to 0.3. From Table 2, it shows that
CDHGNN performs the best with a value of 0.005. As the parameter
increases from 0.001 to 0.005, the accuracy of the model is improving.
But as the parameter continues to increase from 0.005, the performance
of the model has declined. A large learning rate will cause the model to
converge to a sub-optimal solution. The default value of the learning rate
is set to 0.005.

The dimension of concatenated node features is a key factor for model
performance. We conduct the cross-validation to assess the impact of node
dimensions (Table 3). It indicates that the performance of the model beco-
mes better when the dimensionality of the node increases from 32 to 128.
The model achieves best performance when the node dimension is 128.
However, as the node dimension continues to increase, the performance
of the model decreases. The default value of node dimension is set to 128.

3.3 Changes of attention scores

We use attention mechanism to determine the influence of each type of
edge. During the training, changes in the weights of each type of edge
reflect the importance of the pathogenic process (Fig. 2). CM stands for
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circRNA-miRNA matrix. CD stands for circRNA-disease Matrix. MD
stands for miRNA-disease Matrix. I is an abbreviation for identity matrix.
The CD matrix has the highest allocated weight, implying that it has the
greatest influence on the final prediction accuracy. CM and MD are also
important for accuracy. I has minimal impact on accuracy. The conclusion
is consistent with the actual biological situation.

1-fold 2-fold 3-fold 4-fold 5-fold

CM 20.3%

CD 45.8%

MD 28.1%

I 5.8%

CM 14.2%

CD 42.0%

MD 28.0%

I 15.7%

CM 16.7%

CD 42.6%

MD 34.1%

I 6.6%

CM 20.2%

CD 43.8%

MD 28.4%

I 7.5%

CM 20.2%

CD 43.8%

MD 28.4%

I 7.5%

Fig. 2. Changes of attention values during 5-fold cross-validation

3.4 Comparison with other methods

We contrast CDHGNN with five state-of-the-art methods, including KGA-
NCDA (Lan et al., 2021), MGRCDA (Wang et al., 2021), CDASOR (Lu
et al., 2020), GCNCDA (Wang et al., 2020) and NSL2CD (Xiao et al.,
2021). We also evaluate the effects of edge-weighted graph attention netw-
ork and heterogeneous graph transformer network separately. The first
model composed of un-weighted GAT and heterogeneous GTN is mar-
ked as CDHGNNu. The second model composed of edge-weighted GAT
and homogeneous neural network is marked as CDHGNNh. The detai-
led comparison results are shown in Table 4. We can see that CDHGNN
achieves the best performance(AUC:0.886, AUPR:0.817, Accuracy:0.824,
Precision:0.808, Recall:0.814, F1-score:0.804). The edge-weighted GAT
improves the performance (AUC:1%, AUPR:2%, Acc:2%, Pre:1%,
Recall:1%, F1-score:0.7%). The heterogeneous neural networks impro-
ves even more (AUC:1.9%, AUPR:4%, Acc:4%, Pre:3.3%, Recall:1.6%,
F1-score:0.9%). The detailed AUC results are shown in Fig. 3. The auc
value of CDHGNN is much higher than that of other methods, indica-
ting that the accuracy of CDHGNN is higher. In addition, we compare
the percentage of correctly retrieved associations from top 10 to top 40
predictions (Fig. 4). All the results show that not only edge-weighted GAT
effectively improve the model, but also heterogeneous graph neural netw-
orks make the model more accurate. Compared with edge-weighted GAT,
the utilization of a heterogeneous graph neural network improves the accu-
racy more significantly. It indicates that the introduction of multi-source
biological information can enhance prediction.

3.5 Case studies

Case studies are conducted to assess the prediction capacity with existing
literature and public databases. Sort predicted relationships in descen-
ding order after training the model with all the empirically verified
circRNA-disease associations. Table 5 shows 14 of the top 20 predi-
cted connections were verified. Originated from vacuolar ATPse assem-
bly factor, hsa_circ_0091702 mitigates sepsis-correlated acute kidney
injury by regulating miR-9-3p/SMG1/inflammation and oxidative stress
(Shi et al., 2020). Circ-AKT3 (hsa_circ_0000199) is related to acute
kidney injury via miR-144-5p/Wnt/β-catenin pathway (Xu et al., 2020).

Table 4. The performance comparison with state-of-the-art methods.

Methods AUC AUPR Acc Pre Recall F1-Score

CDHGNN 0.886 0.817 0.824 0.808 0.814 0.804
CDHGNNu 0.875 0.797 0.804 0.798 0.802 0.797
CDHGNNh 0.856 0.757 0.764 0.765 0.786 0.788
KGANCDA 0.841 0.615 0.646 0.674 0.693 0.709
MGRCDA 0.845 0.714 0.751 0.767 0.785 0.789
CDASOR 0.814 0.725 0.756 0.742 0.703 0.728
GCNCDA 0.788 0.737 0.713 0.714 0.726 0.786
NSL2CD 0.803 0.704 0.735 0.657 0.696 0.713

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 3. The performance comparison with state-of-the-art methods in terms of AUC values.

Top10 Top20 Top30 Top40
0.0

0.2

0.4

0.6

0.8

Pe
rc
en
ta
ge
 o
f c
or
re
ct
ly
 re

tri
ev
ed
 a
ss
oc
ia
tio

ns

CDHGNN
CDHGNNu
CDHGNNh
KGANCDA
MGRCDA
CDASOR
GCNCDA
NSL2CD

Fig. 4. Percentage of correctly retrieved associations

CircFUT8 (hsa_circ_0003028) sponges miR-570-3p and regulate the miR-
570-3p/KLF10 axis as a tumor suppressor in bladder cancer (He et al.,
2020). Binding with miR-296-5p, hsa_circ_0000515 activates the cell
growth of bladder cancer (Cai et al., 2020). Fastening miR-200a-3p,
exosomes-mediated transfer of circ_UBE2D2 (hsa_circ_0005728) enha-
nces tamoxifen resistance in breast cancer (Hu et al., 2020). Sponging miR-
532-3p, circRNA_103809 (hsa_circ_0072088) represses cell proliferation
and metastasis of breast cancer (Liu et al., 2020). Participating in the miR-
135a-5p/EMT axis, circRNA_0001946 (hsa_circ_0001946) functions as
a tumor promoter (Zeng et al., 2020). Inhibiting colorectal cancer cell
proliferation by its knockdown and regulating miR-296-5p/RUNX1 axis,
circ_0000512 (hsa_circ_0000512) is a promising therapeutic target for
colorectal cancer (Wang et al., 2020). Circ-RanGAP1 (hsa_circ_0063526)
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promote gastric cell progression by mediating miR-877-3p/VEGFA axis
(Lu et al., 2020). In gastric cancer, hsa_circ_0004872 related to a negative
regulatory loop hsa_circ_0004872/miR-224/Smad44/ADAR1 functions
as a tumor suppressor (Ma et al., 2020). Acting as endogenous RNA
for miR-654-3p, circRHOBTB3 (hsa_circ_0006404) inhibits cell gro-
wth of gastric cancer by promoting p21 signaling pathway (Ma et al.,
2020). Insulating miR-17, circ-ITCH (hsa_circ_0001141) functions as a
tumor-suppressor factor by the Wnt/β-catenin signaling pathway in gastric
cancer (Peng et al., 2020). Sponging miR-134-5p which activates BTG-
2 expression, circZNF609 (hsa_circ_0000615) represses proliferation
and migration of glioma cell (Tong et al., 2020). Targeting the miR-
520a-5p/CDK4 regulatory axis, exosome-transmitted hsa_circ_0014235
activates malignant development of non-small cell lung cancer (Xu et al.,
2020). The details of validated pathways for the top-20 predicted circRNA-
disease associations is shown in Fig. 5. MiRNAs linked to circRNAs and
involved in diseases have been discovered, which could aid in the discovery
of new pathways.

Table 5. Validation of top-20 rank predicted associations.

Diseases
Top-ranked circRNAs

CircRNAs miRNAs Rank Evidences

Acute kidney injury
hsa_circ_0091702 miR-9-3p 9 PMID: 32827242
hsa_circ_0000199 miR-144-5p 17 PMID: 33200535

Bladder cancer hsa_circ_0003028 miR-570-3p 19 PMID: 32072011

Breast cancer
hsa_circ_0000515 miR-296-5p 2 PMID: 32446265
hsa_circ_0005728 miR-200a-3p 5 PMID: 32756532
hsa_circ_0072088 miR-532-3p 11 PMID: 32499818

Colorectal cancer
hsa_circ_0001946 miR-135a-5p 4 PMID: 32508871
hsa_circ_0000512 miR-296-5p 14 PMID: 32821119

Gastric cancer
hsa_circ_0063526 miR-877-3p 1 PMID: 31811909
hsa_circ_0004872 miR-224 3 PMID: 33172486
hsa_circ_0006404 miR-654-3p 7 PMID: 31928527
hsa_circ_0001141 miR-17 16 PMID: 33060778

Glioma hsa_circ_0000615 miR-134-5p 12 PMID: 31721211
Non-small lung

cancer
hsa_circ_0014235 miR-520a-5p 15 PMID: 33292236

4 Conclusion
CircRNAs and illnesses are linked by their range of biological roles.
Meanwhile, the special structure makes it a promising biomarker for the
treatment of diseases. However, existing methods lack consideration of
multi-source data heterogeneity. In this work, we devise a model to predict
possible circRNA-disease associations based on a heterogeneous graph
neural network. We created a unique edge-weighted graph attention netw-
ork to grasp node features since edge weights convey the relevance of
associations between nodes. We adopt an attention mechanism to learn
contextual information and assign attention scores on the meta-path to
infer potential associations. The experimental results reveal that CDH-
GNN outperforms state-of-the-art methods with comparable accuracy. It
is worth noting that CDHGNN can find molecular connections and the
relevant pathways in pathogenesis.

Although CDHGNN performs admirably in terms of predicting proba-
ble associations, it still has several flaws that need be investigated further.
For example, the pathogenic process of disease is a very complex molecular
activity process. CDHGNN uses biological information among circRNA,
miRNA and disease. It would be preferable if additional relevant biomole-
cular data were integrated to train the model. Furthermore, the molecular
structure, which provides unique information about biomolecules, may be
enhanced by adding more accurate features to the prediction model.

Fig. 5. The validated pathways for the top-20 predicted circRNA-disease associations.
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