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Abstract  
Estimation of genetic relatedness, or kinship, is used occasionally for recreational purposes and in forensic 

applications. While numerous methods were developed to estimate kinship, they suffer from high 

computational requirements and often make an untenable assumption of homogeneous population 

ancestry of the samples. Moreover, genetic privacy is generally overlooked in the usage of kinship 

estimation methods. There can be ethical concerns about finding unknown familial relationships in 3rd 

party databases. Similar ethical concerns may arise while estimating and reporting sensitive population-

level statistics such as inbreeding coefficients for the concerns around marginalization and stigmatization. 

Here, we make use of existing reference panels with a projection-based approach that simplifies kinship 

estimation in the admixed populations. We use simulated and real datasets to demonstrate the accuracy 

and efficiency of kinship estimation. We present a secure federated kinship estimation framework and 

implement a secure kinship estimator using homomorphic encryption-based primitives for computing 

relatedness between samples in 2 different sites while genotype data is kept confidential. 

Introduction 
Genetic relatedness or kinship between two individuals is the probability that two alleles at a random 

position in the genomes of the individuals are identical-by-descent (IBD), i.e., they are inherited from the 

same ancestor [1,2]. The kinship coefficient is closely related to other metrics such as the inbreeding 

coefficient [3] and IBD-sharing probabilities [4], which are essential for estimating population-level genetic 

information. Kinship estimates are central in behavioral science [5], human evolution [6], linkage mapping 

studies [7], and association studies [8–10] for the correction of biases caused by cryptic relatedness [9,11]. 

Numerous computational methods are developed to estimate kinship from marker genotypes but privacy 

and ethical concerns are sidelined. Kinship statistics are sensitive to individual privacy as they can be used 

to detect relatives in 3rd party databases without the consent of the owners, for example, by law 
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enforcement [12,13]. Similarly, population-level inbreeding estimates can cause marginalization and 

stigmatization risks [14–16]. In addition, it is well known that genetic data is very identifying due to its 

high dimensionality [17–20] and numerous “attacks” have demonstrated that databases can be linked 

[21–23] to reveal sensitive information. Similarly, genotypes can be recovered [24–26] and sensitive 

phenotypes can be inferred [27–31] using a small number of marker genotypes. Much of these attacks 

implicate and create discrimination and stigmatization risks to individuals and their families [32–35]. 

Therefore genetic kinship estimation presents numerous unaccounted challenges regarding individual and 

kin privacy [32,34,36]. 

Kinship estimation methods can be broadly divided into four categories [37]. Moment estimators such as 

KING [38], REAP [39], plink [40], GCTA [41], GRAF [42], and PC-Relate [43] use identical-by-state (IBS) 

markers and genotype distances to estimate expected kinship statistics. Maximum-likelihood methods 

(Such as RelateAdmix [44] and ERSA [45]) use expectation-maximization (EM) to jointly estimate the 

kinship statistics. Recent methods (such as RAFFI [46], IBDKin [47]) use fast algorithms to search for IBD 

matches from phased genotypes and estimate kinship from shared IBD estimates. There are also methods 

that estimate kinship from next-generation sequencing data, which are especially useful from low-

coverage sequencing approaches (NGSRemix [48], LASER [49], SEEKIN [50]). While most methods can 

accurately estimate kinship for individuals with homogeneous ancestry, this is not a tenable assumption 

in admixed populations[2,51]. Moreover, non-random mating, i.e., assortative mating, among similar 

ancestral groups [52,53] may bias estimates of kinship. Methods that assume random mating or simple 

homogeneous populations are not effective in appropriately estimating kinship and may impact 

downstream analysis and interpretations. Several methods have been proposed for privacy-aware 

analysis of ancestry and admixture. PREMIX [54] computes admixture rates in a privacy-preserving 

manner using SGX-based extensions, which are currently deprecated on consumer-side processors. He et 

al. combined a genome sketching technique with cryptographic evaluation to search for relatives [55]. 

Similar sketching techniques have been proposed for fingerprint and relative search analysis [56]. Dervishi 

et al. proposed privacy-aware kinship estimation by integrating local differential privacy and genotypic 

data hiding [57], which may hinder the utility of genetic data. While these methods are promising, the 

impact of admixture is not generally taken into account, and the methods are evaluated only for one 

kinship statistic that provides partial information about relatedness.  

Here, we present SIGFRIED, a projection-based approach to utilize existing reference genotype datasets 

for estimating admixture rates for each individual and use these estimates for kinship and related statistics 

[49] in admixed populations. The modular formulation of SIGFRIED enables an efficient secure 

implementation. Usage of component analysis and reference populations with a “distance-based” 

estimation of admixture has shown promise in previous studies [58,59]. We capitalize on these and 

propose an efficient approach to estimate kinship, inbreeding, and IBD sharing probabilities. In 

comparison to previous methods, SIGFRIED imposes less computational burden without the requirement 

of compute-intensive admixture estimates, which are prohibitively challenging in secure 

implementations. We implemented a secure federated kinship estimation among 2-sites wherein genetic 

data is kept confidential while kinship statistics are estimated. Our implementation relies on 

homomorphic encryption [60], which enables processing encrypted genotype data directly without ever 

being decrypted and therefore provides provable security guarantees on the genetic data. 
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Results 
We first describe an overview of SIGFRIED’s estimation approach present accuracy results. After the new 

kinship estimation results, we formulate the secure implementation and present the secure collaborative 

kinship analysis scenario. 

Kinship Estimation using Projection-based Admixture Estimates 
Figure 1 summarizes the kinship estimation approach by SIGFRIED. Kinship estimation takes a query 

genotype matrix that contains 𝑆 individuals for which 𝑆 × 𝑆 kinship related statistics are computed. 

SIGFRIED utilizes principal components and representatives computed from a reference population panel 

that contains 𝑆𝑡𝑜𝑡 individuals and 𝑛𝑟𝑒𝑓 populations. The reference panel genotype is first decomposed 

into components and for each population, we compute a representative sample. Given the query 

genotype matrix for 𝑆 individuals, we project the genotypes to the top components of the reference panel 

computed in the previous step. We next compare each sample to the representatives and assign 

admixture rates using a non-linear function of genotypes. We finally assign the allele frequencies, 𝜇,  using 

the admixture rates. These operations have efficient secure implementations in homomorphic encryption 

[60] and can be justifiably used in this scenario [61]. 

Kinship Coefficients. We implement two kinship coefficients. First is the correlation metric, 𝜙
(Corr.)

=

𝜌(𝐺|𝜇), between the individuals. The second kinship metric we use is a novel genotype distance-based 

metric, 𝜙
(Dist.)

= Δ(𝐺|𝜇), which integrates individual-specific allele frequencies. For a privacy-aware 

implementation, the distance and correlation-based can be computed using different strategies. Sites 

must share the genotypes and allele frequencies. Allele frequencies do not immediately reveal genetic 

information but they correlate significantly with actual genotypes and may need to be encrypted. These 

statistics can also be computed in parallel and the final kinship statistic can be aggregated at each site 

locally.  

Zero-IBD Sharing Probability. We also report the moment estimator for zero IBD-sharing probability 

among individuals, which is derived from the expected number of zero identical-by-state (IBS) values: 

 
𝛿𝑖,𝑗

0 =
Number of IBS = 0 between 𝑖 and 𝑗

Expected Number of IBS = 0 between 𝑖 and 𝑗
  

where 𝛿𝑖,𝑗
0  denotes the probability of zero-IBD sharing among individuals 𝑖 and 𝑗.  

Inbreeding Coefficient. The inbreeding coefficient for each individual can be estimated from the 

correlation-based kinship estimator using the established relationship between kinship and inbreeding 

coefficients: 

 ℎ𝑖 = (2 × 𝜙𝑖𝑖
(Corr.)

− 1)  

where 𝜙𝑖𝑖
(Corr.) denotes the self-kinship coefficient and ℎ𝑖 denotes the inbreeding coefficient for 𝑖𝑡ℎ 

individual.  

Parameter Selection 
We evaluated the impact of the number of variants in the estimation of kinship statistics. For this, we 

simulated 50 homogeneous pedigrees and computed kinship statistics using SIGFRIED within each 

pedigree using an increasing number of variants from 500 variants up to 150,000 variants. As the number 
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of variants is increasing, the variance of kinship estimates decreases for each respective degree of 

relatedness. Figure 2c shows that adding more than 50,000 variants does not provide much change in the 

variance of the estimated kinship. Qualitatively, as small as 20,000 variants are sufficient for distinguishing 

1st and 2nd-degree relatives. 

Comparison of Methods 
We compared the correlation and distance-based kinship estimators under homogeneous and 

heterogeneous pedigree scenarios. We mainly focused on comparing the approaches of SIGFRIED with 

REAP (with ADMIXTURE tool) and KING-Robust. For SIGFRIED, we use the correlation-based estimator and 

the projection-based admixture rate estimation to compute individual-specific allele frequencies. We also 

compare correlation-based and distance-based estimators using allele frequencies estimated by assuming 

uniform admixture rates over the reference populations, and by using the pooled reference as a single 

panel to estimate the variant allele frequencies.  

Kinship Estimates in Pedigrees from Same Ancestry  
We simulated 500 independent pedigrees where the founding members are randomly selected from a 

single European population among The 1000 Genomes Project samples. Within each pedigree, we 

computed the kinship and zero-IBD sharing probabilities between all pairs of members using KING-

Robust[38], REAP, and the distance and correlation-based kinship and zero-IBD sharing probability 

statistics. For SIGFRIED’s projection-based admixture estimates, we used 3 populations from the 1000 

Genomes Project as the reference populations to ensure that the admixture estimation step is not trivially 

applied to a single reference. Overall, we observed that all correlation-based and distance-based methods 

performed similarly to assign the expected kinship and zero-IBD sharing probability estimates for different 

levels of kinship (Fig. 3). One observation is that distance-based estimators provide tighter estimates of 

kinship (Fig. 3c, d), compared to the correlation-based estimators (Fig. 3a, b). Considering that distance-

based estimators also have lower computational requirements, these results suggest that they may be 

more suitable than correlation-based estimators for samples with homogeneous ancestries.  

Kinship Estimates in Pedigrees from Admixed Ancestry  
We next tested the estimation of kinship in admixed ancestries. In the simulation, the founders were 

selected randomly from populations of European, East Asian, and African descent in The 1000 Genomes 

Project. For admixed ancestries, we compared the correlation-based estimator using the admixture rates 

estimated by ADMIXTURE and also with a uniform assignment of admixtures that is equally distributed 

among 3 reference populations as a control method. We also compared the distance-based estimator 

with projection-based admixture rates and KING-Robust. In comparison, projection-based estimators and 

ADMIXTURE-based estimators provide the most accurate results for relatives up to 4th degree (Fig. 4a). 

KING-Robust underestimates the kinship coefficient, especially for unrelated individuals. Our distance-

based estimator largely corrects the negative and heterogeneous trend of KING-Robust. The distribution 

of kinship coefficients (Fig. 4) indicates that the correlation-based estimators provide single exact peaks 

around the expected kinship values (Fig. 4b, c). Our novel distance-based estimator exhibits single peaks 

except for unrelated individuals, for which there is a second peak in negative values. On the other hand, 

KING-Robust exhibits a fairly high deviation from the expected values with no clear peaks (Fig. 4d, e), 

which demonstrates the advantage of using a modified distance metric. A similar heterogeneous 

distribution of kinship is observed for correlation-based estimators that use the pooled reference sample 

or uniformly assigned admixture rates (Fig. 4f, g). 
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Time and Memory Requirements 
We next compared the time and memory requirements of the estimators. To compare the resource 

requirements of the methods, we estimated the memory and time requirements of SIGFRIED, REAP-

ADMIXTURE, and KING-Robust. For all methods, we measured the total time required for admixture 

estimation, and kinship statistic computations and also the peak memory required for these steps. Overall, 

KING-Robust runs the fastest and uses the smallest amount of memory (Fig. 5a, b). REAP-ADMIXTURE runs 

the slowest wherein the majority of time is spent on the estimation of the admixture rates by ADMIXTURE. 

SIGFRIED runs at least 3 times faster than REAP-ADMIXTURE’s workflow. To test the way that methods 

scale with the number of reference populations, we compared the resource usage by increasing the 

number of reference populations (Fig. 5a, b). REAP-ADMIXTURE’s runtime exhibits approximately linear 

increase in the number of reference populations. On the other hand, SIGFRIED shows a sublinear increase. 

This indicates that for large admixed populations SIGFRIED’s projection-based approach can provide good 

accuracy with less computational resource requirements. 

Secure Federated Estimation of Kinship Statistics in Two-Site Setting 
One of the main advantages of SIGFRIED over previous approaches is enabling privacy-aware kinship 

estimation in different scenarios due to its modular formulation. We focus on a 2-site collaborative 

scenario (such as genealogy companies or two institutions working under different regulations) where the 

sites aim at computing the pairwise kinship statistics among the collective set of individuals in two sites 

but they cannot share genotype data in plaintext format because of local privacy requirements. We also 

assume that the sites behave honestly without collusions or malicious data manipulations [62]. This 

scenario is illustrated in Figure 6a. The two sites have the genotypes matrices 𝐺
(1)

 and 𝐺
(2)

 for 𝑆1 and 𝑆2 

individuals. The main task is to compute the kinship coefficients between all pairwise comparisons of 𝑆1 

and 𝑆2 individuals among the sites. We assume the sites utilize the same reference panels to perform 

projection-based estimation of admixtures and the individual specific AFs for each individual locally.  

Secure Computation of Correlation-based Kinship Coefficient. We first compute a normalized genotype 

matrix for each site, Γ
(𝑎)

, which denotes the normalized genotype matrix for site 𝑎 by correcting with 

respect to allele frequencies. 𝜙𝑖,𝑗 is computed from the normalized genotype matrices. An important 

observation is that normalized genotype matrices in each site can be computed locally and do not depend 

on the other site’s private information. However, this still requires the sites to share the normalized 

genotype matrices in plaintext format with each other. It is therefore necessary to protect at least one of 

the matrices by encryption (Fig. 6a). We make use of homomorphic encryption to secure the data [61], 

which enables the processing of the encrypted data without decrypting it. In this setup, both sites 

compute the normalized matrices and Site-2 homomorphically encrypts and sends its encrypted genotype 

matrix to Site-1 (or vice versa). We denote the encrypted normalized genotype matrix of Site-2 with Γ̆
(2)

. 

After Site-1 receives encrypted genotypes, it computes the kinship coefficient securely using Γ
(1)

 and Γ̆
(2)

. 

Finally, the computed kinship estimates are sent back to Site-2, which decrypts and shares the kinship 

coefficient matrix with Site-1.  

Other Kinship Statistics. Other kinship statistics such as zero-IBD sharing probabilities and distance-based 

kinship estimator can be securely calculated using an approach similar to as described above under 

different scenarios. 
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Time and Memory requirements. We implemented a 2-Site kinship estimation using the SEAL library [63]. 

We used the CKKS encryption scheme with default security settings that satisfy 128-bit security 

requirements [64]. We used 100 simulated individuals and used 15,000 variants whereby each individual’s 

genotypes fit into multiple ciphertexts. This proof-of-concept implementation finished the computation 

kinship coefficients in under 1 minute using less than 4 gigabytes of main memory, which includes 

encryption, encoding, evaluation, decoding, and decryption time. Overall, we observed that the maximum 

absolute difference between plaintext and encrypted kinship coefficients is 10−9, which practically does 

not cause differences in analysis of relatedness. The secure computations can be extended to an 

optimized version of secure federated kinship statistics in multi-site with and without an untrusted 

outsourcing entity such as a cloud-based server (Fig. 6b). As the data encryption is implemented in our 

protocol, even untrusted entities can be used in federated kinship estimation for making use of large 

cloud-based scaling for improved performance [65,66]. 

Discussion 
Kinship and related statistics are essential in many genetic studies and they are sensitive for individual 

and group-level privacy. Here, we presented SIGFRIED, an efficient, accurate, and secure method that 

utilizes projection on existing reference panels. SIGFRIED balances accuracy and efficiency to ensure that 

the final algorithm is efficiently implemented with secure primitives. While projection on existing 

population panels has been utilized previously by other methods, SIGFRIED utilizes projection to 

circumvent computations that are otherwise hard to implement in the secure domain. From this 

perspective, we view SIGFRIED as a private-by-design methodology wherein the privacy considerations 

are balanced against efficiency and accuracy. Projection does not explicitly require reference panel 

genotypes. Since the reference genotypes are not explicitly shared, this creates minimal risk for reference 

panels under restricted access (i.e. TOPMed [67]). 

While we presented a specific privacy-preserving scenario for a 2-site federated estimation of kinship, the 

implementation and the scenarios can be differently set up to expand to more than 2 sites and also for 

utilizing an outsourcing service for kinship estimation. The outsourcing can be performed by an untrusted 

entity because sensitive data is encrypted and cannot be used to infer any information by an unauthorized 

party. When deployed on a highly scalable but untrusted environment such as AWS or Google Cloud, the 

performance can be tuned as desired. Also, SIGFRIED implements kinship estimation using modular steps 

and decomposable functions. This is beneficial for optimizing privacy-vs-performance in different 

scenarios. The modularity is important because new protocols can choose to encrypt only certain parts of 

the intermediate statistics to ensure that performance is optimized and security requirements are met 

according to local regulations and patient or participant consent. For instance, the individual-specific allele 

are highly aggregated functions of genotypes and can be deemed safe to share in plaintext form.  

Methods 

Variant Selection and Simulations 
For simulations, we filtered the variants in The 1000 Genomes Project by first selecting the variants with 

minor allele frequencies greater than 5% on the autosomal chromosomes 1 through 22. Next, we divided 

the samples with respect to their assigned populations and used these as population specific reference 

panels. Simulations are performed by sampling variants for each individual with respect to allele 

frequencies and the relatedness. 
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Projection-based Estimation of Kinship Statistics 
Figure 1 summarizes the kinship estimation approach by SIGFRIED. Kinship estimation takes a query 

genotype matrix, 𝐺𝑁×𝑆, that contains the genotypes of 𝑁 variants for 𝑆 individuals. The output is 𝑆 × 𝑆 

matrix of kinship related statistics. The kinship statistics are calculated and implemented by the 

formulations that are presented in the Results Section using correlation and distance-based statistics. 

Source Code and Data Availability 
Source code and Datasets will be made available upon publication of this manuscript. 

Figure Legends 
Figure 1. (a) Block diagram illustrates the steps for computation of kinship coefficients. 

Figure 2. The distribution of assigned admixture rates by ADMIXTURE (a) and by projection-based 

admixture estimation (b). (c) The kinship coefficient (x-axis) distribution with different number of variants. 

Each plot shows a kinship distribution generated using number of variants indicated at the label.  

Figure 3. Scatter plots of kinship coefficients in 500 pedigrees from homozygous ancestries. (a) kinship 

coefficient (y-axis) versus Zero-IBD sharing probabilities (x-axis) by SIGFRIED. (b) REAP estimates. (c) 

Distance-based estimates. (d) KING-Robust estimates. 

Figure 4. (a) Average kinship coefficient estimated by each method for heterogeneous populations. (b) 

Distribution of SIGFRIED kinship estimates. (c) Distribution of REAP estimates. (d) Distribution of distance-

based kinship estimates. (e) Distribution of kinship estimates from KING-Robust. (f,g) Distribution of 

correlation-based kinship estimates using uniform and all-population admixture assignments for every 

sample. 

Figure 5. Time and memory requirements of kinship estimation. (a) Time requirements (y-axis) by 

different methods. (b) Memory usage (y-axis) by kinship estimation methods. 

Figure 6. Illustration of secure kinship and IBD-Sharing probability estimation for 2-Site collaboration. (a) 

Site-2 computes the normalized genotypes Γ𝑖,𝑗
(2)

 and sends them to Site-1 after encrypting them with the 

public key. Site-1 also compute the normalized genotype matrix, Γ𝑖,𝑗
(1)

. After receiving the encrypted 

genotype matrix from Site-2, Site-1 securely estimates the encrypted kinship (𝜙̆𝑖,𝑗) and other statistics. 

Site-1 sends the encrypted matrices to Site-2, which decrypts the kinship statistics and shares them with 

Site-2. (b) Illustration of a secure kinship estimation with an outsourcing server. The two sites compute 

normalized genotype matrices. The sites encrypt genotype matrices and send them to the kinship 

estimation server. The server pools all encrypted data and securely estimates kinship statistics among all 

samples. The encrypted kinship statistics are then sent to each site, each of which decrypt the kinship 

statistics. 
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Fig 1: Overview of Kinship Estimation
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Fig. 5: Time and Memory Usage
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