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Abstract 
 

 Structural mass spectrometry offers several techniques for the characterization of protein 
structures. Covalent labeling (CL) in combination with mass spectrometry can be used as an 
analytical tool to study and determine structural properties of protein-protein complexes. Degrees 
of modification obtained from CL experiments for specific labeled residues can be compared 
between the unbound and bound states of complexes. This analysis can yield insights into 
structural features of these protein assemblies, specifically the proximity of specific residues to the 
protein-protein interface. However, this data is sparse and does not unambiguously elucidate 
protein structure. Thus, computational algorithms are needed to deduce structure from the CL data. 
In this work we present a novel hybrid method that combines models of protein complex subunits 
generated with AlphaFold with differential CL data via a CL-guided protein-protein docking in 
Rosetta. In a benchmark set, the RMSD (root-mean-square deviation) of the best-scoring models 
was below 3.6 Å for 5/5 complexes with inclusion of CL data, whereas the same quality was only 
achieved for 1/5 complexes without CL data. The average improvement in RMSD observed upon 
inclusion of CL data was 5.2 Å. This study suggests that our integrated approach can successfully 
use data obtained from CL experiments to distinguish between nativelike and non-nativelike 
models. 

Significance Statement 
Structural mass spectrometry can be a powerful and versatile approach to characterize the 

structure of protein complexes. Data obtained from covalent labeling mass spectrometry can 
provide insights into higher order protein structure (particularly with respect to residue interactions 
and solvent accessibility) but needs to be supplemented by computational techniques to elucidate 
accurate, atomic-detail structural information. Here, we present a method to combine bioanalytical 
data obtained from covalent labeling with models generated using AlphaFold to accurately predict 
protein-protein complexes in Rosetta. Differential covalent labeling data can be used to determine 
the proximity of residues to the binding interface of complexes which we utilized to analyze 
computational models and improve structure prediction algorithms.    
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Introduction 
Mass spectrometry (MS) is a versatile analytical approach which has become a vital tool 

in structural biology, capable of probing the structure and dynamics of protein assemblies.1, 2 
Protein-protein complexes are central in many crucial biological and cellular processes,3 which 
makes their structural elucidation important. Currently, over 182,000 protein structures have been 
determined and archived in the Protein Data Bank (PDB), with around 114,000 of these being 
protein-protein complexes.4 These high-resolution protein structures can be obtained using 
techniques such as nuclear magnetic resonance (NMR)5, cryo-electron microscopy (cryo-EM),6 
and most notably X-ray crystallography.7 However, structures at atomic resolution are not always 
obtainable due to limitations of the forementioned techniques in areas such as acceptable system 
size, required sample concentration, and excessive sample conformational heterogeneity.  

Structural mass spectrometry is an alternative method which generally requires less time 
for sample preparation, can handle smaller sample sizes, is usable for a large range of protein sizes, 
and provides sparse biophysical data that can be used to gain insight into a variety of protein 
structural characteristics. Although MS experiments cannot comprehensively determine a high-
resolution protein structure, insights into conformational states can be obtained, validation of 
existing models can be achieved, or the data can be supplemented with computational techniques 
for atomic-detail structure elucidation. A few common approaches in structural MS are chemical 
cross-linking,8 hydrogen-deuterium exchange (HDX),9, 10 surface-induced dissociation (SID),11, 12 
ion mobility (IM),13 and covalent labeling of macromolecules (CL).14, 15 Chemical cross-linking 
involves using chemical reagents that form covalent bonds to link specific functional groups within 
or across protein molecules, providing distance restraints. HDX methods can be used to study 
protein structure and dynamics using exchange between protein backbone amide protons and 
deuterium atoms from solution, which is sensitive to local solvent accessibility and flexibility. SID 
methods involve the soft ionization of native protein complexes into the gas phase which are then 
collided with a rigid surface where they can break apart into monomers or other intact 
subcomplexes. This method can provide information regarding the stoichiometry, connectivity, 
and interface strength of complexes. IM can offer structural information regarding the shape and 
size of a protein complex by analyzing the travel of a protein through a bath gas, providing an 
averaged cross-sectional area of the system. Finally, covalent labeling probes protein structure by 
exposing solvent-accessible amino acid side chains with either specific or nonspecific reagents 
that covalently bind. Differences in reactivity to labeling agents can distinguish between exposed 
and buried residues, as well as residues located at the surface of interacting domains in the case of 
protein complexes. 

Covalent labeling offers several advantages over other MS techniques. For example, the 
challenging low abundance of specific interpeptide cross-links and complicated tandem MS 
fragmentation of chemically cross-linked peptides are not an issue for covalent labeling 
techniques.16 Furthermore, due to the formation of stable, covalent bonds, the labeling of amino 
acids with labeling reagents are usually irreversible, unlike HDX where back-exchange frequently 
occurs, adding additional layers of complexity. Sparse structural data can be obtained from 
covalent labeling experiments with reagents such as hydroxyl radicals, carbenes, 
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trifluoromethylations (CF3), diethylpyrocarbonate (DEPC), and sulfo-N-hydroxysuccinimide 
acetate (NHSA).17 These experiments provide metrics of modification that depend on the 
reactivity, solvent accessibility and potentially other structural features of the specific residues in 
solution. Structures of protein complexes can be further probed by comparing the degree of 
modification in the unbound and bound states, when possible. Interface residues are generally 
identified by examining large changes in modification rates between the unbound/bound state of a 
complex as solvent accessibility is likely to most dramatically change at the protein-protein 
interfaces. For example, a residue that gets labeled readily in the monomer, but not in the complex 
is likely part of the interface; although protein-protein binding could cause tertiary conformational 
changes, which might also result in changes in modification. The data obtained through a covalent 
labeling MS experiment can thus be used to probe higher orders structure of protein complexes. 

 As an alternative to experimental methods, modern computational methods have seen great 
success in accurately predicting and modeling protein tertiary structure.18, 19 The recent release of 
AlphaFold220 (AF2, from DeepMind) has resulted in a revolution in the accuracy of computational 
protein modeling . AlphaFold21 is a neural network-based model that takes advantage of sequence 
coevolution data which has shown remarkable success and has outperformed other prediction 
methods during the 13th and 14th (with AF2) Critical Assessment of Techniques for Protein 
Structure Prediction (CASP),22, 23 a series of blind tests to gauge the current state of protein 
structure prediction. AlphaFold-Multimer24 was released in 2021 and uses the AF2 model but was 
trained to predict multimeric complexes from sequences of multiple chains. Similarly, traditional 
protein-protein docking algorithms are useful for analyzing and predicting models of complexes. 
In protein-protein docking, monomeric structures (which can be obtained in a variety of ways) are 
used as input and structures of the complex are predicted, with favorable orientations of the 
different subunits. Existing protein-protein docking algorithms which have been successful 
include ClusPro,25 HDOCK,26 ZDOCK,27 SwarmDock,28 HADDOCK,29 PIPER,30 and 
RosettaDock.31 RosettaDock is a part of the Rosetta32 molecular modeling software suite which 
contains a large variety of algorithms for computational modeling and analysis of protein 
structures.  

 Incorporation of sparse experimental data into algorithms predicting protein structure can 
further improve computational predictions.33-35 Information obtained from hydroxyl radical 
footprinting (HRF), HDX, and DEPC labeling experiments have been shown to improve tertiary 
structure prediction with Rosetta36-43 by using calculated solvent exposure metrics for models to 
select for experimentally accurate predictions. Similarly, protein shape and size information 
obtained through collisional cross-section data from IM experiments has also improved Rosetta 
structure prediction.44 A method iSPOT,45 which uses a combination of multiple biophysical 
methods (integration of shape information from small-angle X-ray scattering and protection factors 
probed by hydroxyl radicals), has been shown as a powerful approach for integrated modeling of 
multiprotein complexes. Isotope exchange using HDX-MS has been used to improve protein 
complex prediction by simulating complex isotope patterns and comparing to those obtained 
experimentally.46 Similarly, differential HDX data has been incorporated into protein-protein 
docking to study the human uracil-DNA-gycosylase (hUNG) and its protein inhibitor (UGI).47 The 
use of differential covalent labeling has yet to be implemented within the RosettaDock framework. 
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Although AF2 has proven to be an excellent and revolutionary method of protein structure 
prediction, there remain limitations, particularly for protein complexes.48 Covalent labeling has 
the potential to help overcome some of these limitations and Rosetta is uniquely suited for the 
development of hybrid methods incorporating labeling data. Here, we use RosettaDock to 
assemble protein complex subunits that were generated using AF2 and employ covalent labeling 
data to improve protein complex structure prediction.  

 In this study, we developed the computational framework for using covalent labeling data 
in protein complex modeling in cases when state-of-the-art methods (both AlphaFold-Multimer 
and Rosetta) underperform. We propose a score term dependent on differential covalent labeling 
data obtained from HRF, DEPC, or NHSA experiments which when combined with the Rosetta 
score function readily selects computational models which agree with experimentally determined 
structures. We first observed a correlation between differential modification rates and inter-subunit 
residue distances within a protein complex based on our structural hypotheses. Next, we developed 
a protocol where AF2 was used to generate structures of the protein subunits which were used as 
input for docking simulations. In a benchmark of 5 complexes, inclusion of our score term 
predicted 5/5 structures with root-mean-square deviation (RMSD) less than 3.6 Å when compared 
to the native crystal structure, as opposed to 1/5 without CL data.  

Methods 
Protein Complex Benchmark Set 

 The three protein complexes used in the benchmark dataset were actin bound to gelsolin 
segment 1 (actin/gs1, heterodimer, PDB ID: 1YAG),49 β-2-microglobulin (homodimer, PDB ID: 
2F8O),50 and insulin (hexamer of heterodimers, PDB ID: 4INS).51 Crystal structures were available 
for each for the purpose of benchmarking predicted models. Residue-resolved differential covalent 
labeling data were also obtained for each system in both the unbound and bound states.49-51 The 
labeling reagent used for the actin/gs1 and insulin complexes was hydroxyl radicals and for β-2-
microglobulin, the labeling reagents were diethyl pyrocarbonate (DEPC) and sulfo-N-
hydroxysuccinimide (NHSA). There were 41 labeled residues for both the unbound and bound 
states for actin/gs1, 20 for β-2-microglobulin, and 17 for insulin. For benchmarking purposes, 
interface residues were defined as any residue with a heavy atom within 10 Å of a heavy atom in 
another protein subunit. Although each labeled residue had a measure for the frequency of 
modification in both the unbound and bound states separately, we wanted to directly quantify the 
change in modification between these states, hypothesizing that residues with large changes would 
likely be part of the protein-protein interface. For each complex in the data set, the modification 
change between different states of the complex was computed from the data, as shown in Equation 
1, using the degree of labeling for each complex where 𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 are the degree of 
modification (modification rates for actin/gs1 and insulin, extent of modification for β-2-
microglobulin) of the unbound and bound states of the complex, respectively. 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶ℎ𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 =
𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
∗ 100% (1) 

  
Protein-Protein Docking 

 Docking simulations require input subunit structures which are used to predict the structure 
of complexes. In this work, we obtained input structures using two different methods. First, we 
used the bound crystal structures to perform a preliminary redocking study. Next, structures for 
each docking partner of actin/gs1 and β-2-microglobulin were generated using AlphaFold2 (AF2) 
for a more realistic prediction protocol.20 For insulin, the base subunit is a heterodimer, so 
AlphaFold-Multimer24 was used. The default settings for both AlphaFold methods were used along 
with the addition of all genetic databases (--db_preset=full_dbs flag). Since traditional docking 
consists of two docking partners, the insulin complex was broken up into three separate structures 
to model all unique interfaces, where AB_CD, ABCD_EFGH, ABCDEFGH_IJKL define what 
chains make up each docking partner, separated by an underscore (Figure S1). The docking 
protocol using RosettaDock was the same for each type of input structure. For each system, after 
prepacking, we generated sets of 10,000 docked models. The position and orientation of the second 
docking partner was randomized using the -randomize2 flag in the RosettaDock protocol to perturb 
each system. 

Complexes Generated using AlphaFold-Multimer 

 As a comparison to the docked models produced by RosettaDock, we also used AlphaFold-
Multimer to predict full structures of each complex. To generate a more fair, blind prediction using 
AlphaFold-Multimer, restrictions were placed on which templates were used during model 
construction, as recommended by AlphaFold developers.20 We only included templates of 
structures with published dates prior to the date of the first published structure of each complex. 

Scoring Strategy 

 In this study, we proposed that differential covalent labeling data (comparing the unbound 
and bound states of a complex) could be used to indicate the proximity of a labeled residue to the 
binding interface of protein complexes and subsequently be used to assess model quality based on 
agreement with the experimental data. This was accomplished by comparing the modification 
change (Equation 1) of labeled residues and the distance from the interface in the crystal structures. 
The interface distance (Figure 1a) was defined as the shortest distance between a heavy atom of 
the target residue and a heavy atom from the binding partner. This comparison yielded an expected, 
inverse linear correlation between modification change and interface distance with the slope and 
intercept of the trendline being -2.07 and 46.27, respectively. This trendline was used for 
subsequent scoring. 

Therefore, to integrate the information regarding the modification change and interface 
distance into Rosetta to improve model scoring, a covalent labeling score term (𝐶𝐶𝐿𝐿𝑆𝑆𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆_𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇) was 
developed to assess the models generated with RosettaDock based on their agreement or 
disagreement with covalent labeling data. The covalent labeling score (𝐶𝐶𝐿𝐿𝑆𝑆𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆), as defined in 
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Equation 2, was the sum between the weighted 𝐶𝐶𝐿𝐿𝑆𝑆𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆_𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇 (described in the following 
paragraph) and the Rosetta Interface score (Isc).  

𝐶𝐶𝐿𝐿𝑆𝑆𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆 = 𝐼𝐼𝐼𝐼𝑀𝑀 + 65𝐶𝐶𝐿𝐿𝑆𝑆𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆_𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇 (2) 
  
  

 Isc was the energy of the binding interface of the docked complex calculated using the 
Rosetta REF2015 score function.31 𝐶𝐶𝐿𝐿𝑆𝑆𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆_𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇, defined in Equation 3, was a sum of per-residue 
penalties (𝑃𝑃𝑖𝑖) calculated using a sigmoidal penalty function. The penalty function scores labeled 
residues of a model based off deviations from the observed trendline of the native dataset (with 
large deviations from experimental results penalized). 

For each labeled residue of a given model, interface distance is calculated and used to predict 
modification change using the slope and intercept defined above. The difference (𝑀𝑀𝑖𝑖) between the 
experimental and predicted modification change was input into the penalty function. The A and B 
parameters defined the steepness and midpoint of the curve respectively, where A = 1.88 and B = 
38.0. The summed penalties for all models are then normalized by dividing each score by the 
maximum score obtained for that particular system. Thus, the resulting 𝐶𝐶𝐿𝐿𝑠𝑠𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆_𝑡𝑡𝑆𝑆𝑆𝑆𝑇𝑇 ranges from 
0 to 1 where greater deviation from the trendline (indicating worse agreement with the 
experimental data) results in a larger penalty score from the score term. 

Analysis Metrics 

 The quality of models was assessed quantitively using alpha-carbon root-mean-squared 
deviation (RMSD), template modeling score (TM-score),52 and DockQ53 score with respect to the 
native crystal structure. For each model, the global RMSD values were calculated using PyMol.54 
TM-score was used to analyze the topological similarity to the native structures. The TM-score 
ranges from 0.0 to 1.0 where a perfect match corresponds to a TM-score of 1.0. DockQ is a protein-
protein docking quality measure which ranges between 0.0 and 1.0 with a perfect match being 
equal to 1.0.  

Results and Discussion 
Correlation of Differential Covalent Labeling and Residue Proximity to Binding Interface 

 We hypothesized that differential covalent labeling data could be used to determine which 
residues are likely to be located at the binding interface within a protein complex. Surface residues 
can participate in molecular interactions with nearby solvent molecules. If these residues are 
located at the binding interface when part of a complex, upon binding, the side chains of these 
residues become buried and only interact with the neighboring residues of an adjacent bound 
subunit, decreasing the number of solvent interactions and the probability of that residue being 
labeled. In this case, one would expect to observe large changes in the frequency of modification 

𝐶𝐶𝐿𝐿𝑆𝑆𝑆𝑆𝑢𝑢𝑆𝑆𝑆𝑆_𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇 = �𝑃𝑃𝑖𝑖
𝑖𝑖

= �1 −
1

1 + 𝑎𝑎𝐴𝐴(𝑢𝑢𝑖𝑖−𝐵𝐵)
𝑖𝑖

 (3) 
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for interface residues between the unbound and bound states of complexes due to large changes in 
solvent accessibilities in these regions. Based on this hypothesis, large decreases in modification 
of residues from the unbound to bound state of a complex have a higher probability of participating 
in the interface. 

 To test the proposed hypotheses, we used a benchmark set of differential labeling data from 
three different protein complexes consisting of actin bound to gelsolin segment 1 (actin/gs1, 
heterodimer, PDB ID: 1YAG),49 β-2-microglobulin (homodimer, PDB ID: 2F8O),50 and insulin 
(hexamer of heterodimers, PDB ID: 4INS).51 To establish the validity of the hypothesized 
relationship with experimental data, the native crystal structures of these complexes were used to 
analyze the proximity of residues to the interface as a function of modification rate in the monomer 
compared to the complex. We assumed large-scale conformational changes do not occur upon 
complex formation after examining all subunits of each complex which contained labeled residues 
and finding that the average RMSD of the unbound to the bound subunits was 2.1 Å. To quantify 
the amount of change in modification occurring between the unbound/bound state, a modification 
change was calculated (see methods for full detail) with a larger value indicating a larger decrease 
in modification from the unbound to bound state. To isolate residues with large modification 
changes, only residues that saw at least a 40% change in modification between unbound/bound 
states were considered. Residues that were within 10 Å of the other chain were considered a part 
of the binding interface. We first used this criterion to compare the native structures to 
experimental data. The table in Figure 1b lists the number of labeled residues at and outside the 
interface and those residues are visualized for β-2-microglobulin in Figure 1a. For all three 
complexes, the majority of labeled residues with modification changes greater than or equal to 
40% were found to be located at the binding interface of the complex, with all the designated 
residues being at the interface for two of the complexes. Overall, 91% of labeled residues with 
modification changes greater than or equal to 40% were close to protein-protein interfaces. This 
small preliminary analysis supported our hypotheses and indicated covalent labeling can be used 
to distinguish interface residues. 
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Figure 1: a) Visualization of the labeled residues with a modification change of at least 40% for 
β-2-microglobulin homodimer crystal structure. The labeled residues are colored in blue, their 
respective closest residue on a different subunit of the complex is colored in green, and the 
interface distance between them is shown above the dotted yellow line. b) Table indicating the 
number of residues with a modification change of at least 40%, within and outside the binding 
interfaces of a specified complex. c) Linear correlation between modification changes of labeled 
residues and the interface distances.  

 

 Furthermore, we hypothesized that a larger distance to the binding interface for a particular 
residue would result in less solvent accessibility change when comparing unbound and bound 
states. For this reason, we would expect a smaller change in modification between the 
unbound/bound states of a complex. Combining labeling data from all three complexes along with 
the interface distances of these labeled residues resulted in a more comprehensive analysis as 
shown in Figure 1c. A linear trend with R2 = 0.34 and a normalized root-mean-square error 
(NRMSE) of 1.5 was observed between modification change (experimental data, y-axis) and the 
interface distances (native structures, x-axis) for labeled residues. A larger distance between a 
labeled residue and the other subunits in the bound form correlated with generally smaller changes 
in modification. This linear correlation was used to predict an expected modification change from 
any structural model (by calculating the distances to the interface and using the fit line). The linear 
parameters of slope and intercept from Figure 1c were incorporated within our covalent labeling 
score term, as described in Methods.  

Structure prediction with covalent labeling data 

RosettaDock has had many successes in modeling quaternary protein structure.55 And its 
docking predictive capabilities can be further enhanced with the inclusion of sparse experimental 
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data.56-58 The RosettaDock Interface score (Isc) accounts for interactions at the binding interface 
and can be supplemented with additional score terms to predict more nativelike poses. Here we 
aimed to explore whether covalent labeling MS data can meaningfully improve model quality. Due 
do the accuracy of AlphaFold2 (AF2) for monomer prediction, models generated by AF2 were 
used to provide the input to RosettaDock and a covalent labeling-based score term was used to 
rescore the oligomeric structures of modeled protein complexes and predict the native structure. 

 The parameters obtained from the correlation shown in Figure 1c were used to simulate 
predicted modification changes of labeled residues. For each labeled residue in a modeled 
complex, the difference between experimental and predicted modification change was calculated 
and input into a sigmoidal penalty term which penalizes residues with larger disagreement with 
experimental data (see Equation 3 in Methods). The scores were then summed up for each labeled 
residue in a model and normalized across all models of a set. The covalent labeling score term was 
then combined with the Isc to form the covalent labeling score. Since traditional docking consists 
of two docking partners, the insulin complex was broken up into three separate sub-complexes to 
model the assembly of all unique interfaces, where AB_CD, ABCD_EFGH, ABCDEFGH_IJKL 
define what chains made up each docking partner, separated by an underscore. In a first study, we 
redocked the native crystal structures and Rosetta yielded accurate predictions for 4/5 complexes 
(Figure S2a). The only exception was β-2-microglobulin, for which a top scoring model with an 
RMSD of 9.2 Å was identified. When including covalent labeling data in the score function, 5/5 
complexes had accurate predictions and the top scoring model for β-2-microglobulin had an 
RMSD of 3.0 Å (Figure S2b). While these data were promising, the preliminary docking study 
required crystallographic information of subunit structure in the complex state. 

To simulate a more realistic situation, we then used AF2 to generate components (subunits 
or sub-complexes) of the complexes, which were then input into docking simulations. The top-
ranked AF2 models were all accurate with respect to the native structure with RMSD values of 1.4 
Å and 0.6 Å for actin and gs1 A and G chains respectively, 1.6 Å for β-2-microglobulin chains, 
and 1.5 Å for insulin heterodimer. Scoring of the docked sets using covalent labeling data was 
performed by combining the covalent labeling score term produced by our method with Isc, as 
previously described. The score versus RMSD plots without using covalent labeling data are 
shown in Figure 2a, where the top scoring model RMSD with respect to the native structure was 
11.2 Å for actin/gs1, 10.1 Å for β-2-microglobulin, 1.7 Å for insulin AB_CD, 9.6 Å for insulin 
ABCD_EFGH, and 6.8 Å for insulin ABCDEFGH_IJKL. Only 1/5 of the sets of docked structures 
had a top scoring model with RMSD less than 5 Å. Figure 2b shows the results of docked sets 
from Figure 2a using our covalent labeling score instead of Isc. Using our score, 5/5 of the sets 
had top scoring models with an RMSD below 3.6 Å. The top scoring model RMSD with respect 
to the native structure was 1.6 Å for actin/gs1, 3.17 Å for β-2-microglobulin, 1.73 Å for insulin 
AB_CD, 3.53 Å for insulin ABCD_EFGH, and 3.54 Å for insulin ABCDEFGH_IJKL. Figure 2c 
shows the top scoring models for each docked set with the inclusion of our covalent labeling score 
term aligned to the native crystal structure.  
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Figure 2: Score vs. RMSD to the crystal structure (a and b) for 10,000 docked models generated 
for each complex in the benchmark set. The top scoring models are marked by a black star and 
aligned to crystal structure. Actin/gs1 is shown in green, β-2-microglobulin in blue, and insulin 
structures in pink. The RMSD of the top scoring model is indicated next to the marked point. a) 
RosettaDock Isc versus RMSD (without CL data). b) Covalent labeling score versus RMSD (with 
CL data). c) Top scoring complex model predictions using covalent labeling score aligned to the 
native crystal structures (dark gray). d) Top ranked models generated by AlphaFold-Multimer 
aligned to native crystal structure. RMSDs are listed for each complex. 
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The assessment of additional metrics further demonstrated the benefits of including 
covalent labeling in scoring. As shown in Table 1, improvements were observed in TM-score and 
DockQ score upon addition of CL data. TM-score analyzes the topological similarity between 
structures and DockQ is a quality measure used for evaluation of protein-protein docking data. The 
average TM-score improved from 0.70 to 0.84 and the average DockQ score improved from 0.21 
to 0.50 when including covalent labeling data in scoring. The TM-score and DockQ score for all 
top scoring models either stayed the same or improved with the addition of experimental data 
(Table S1). These results demonstrated that the information contained in the covalent labeling 
modification of residues can indeed facilitate the discrimination of nativelike and non-nativelike 
poses.  

Table 1: Average metric analysis for the top scoring models with and without covalent labeling 
data 

 Avg RMSD (Å) Avg TM-Score Avg DockQ Score 
w/o CL data 7.89 0.70 0.21 
w/ CL data 2.70 0.84 0.50 

 

As a comparison to state-of-the-art methodology, we also used AlphaFold-Multimer to 
predict the full structure of the complexes from our benchmark set without including the native 
structure as a homolog. Figure 2d shows the generated AlphaFold-Multimer models aligned to the 
native structures for the complexes. The root mean-squared deviation (RMSD) of the top ranked 
models for each of the complexes were 1.1 Å, 13.8 Å, 1.5 Å, 7.8 Å, and 16.0 Å for actin/gs1, β-2-
microglobulin, insulin AB_CD, insulin ABCD_EFGH, and insulin ABCDEFGH_IJKL, 
respectively. Only 2/5 complexes in the benchmark set were accurately predicted with an RMSD 
below 7 Å. Interestingly, for the β-2-microglobulin homodimer, AlphaFold-Multimer predicted 
accurate individual chains in its top ranked model (with an RMSD of 1.6 Å for both chains) but 
failed to accurately predict the full complex. It can be seen in Figure 2d that the interface and 
orientations of the separate chains did not match that of the native structure.  

Conclusion 
Sparse experimental data can booster the effectiveness of existing computational 

techniques. In this current study, we have proposed a hybrid technique utilizing the combination 
of state-of-the-art computational methods (AlphaFold and RosettaDock) with covalent labeling 
mass spectrometry data to address cases when the computational tools fail to model accurate 
complexes. Covalent labeling reagents modify residues based on features such as solvent 
accessibility, and we have demonstrated that changes in modification of residues in covalent 
labeling experiments can be used to determine the likely proximity of these residues to the binding 
interface within protein complexes (Figure 1). As the modification change of a labeled residue 
between the unbound/bound states of a complex increases, it is more likely to be located at the 
binding interface. The relationship between experimental modification change and inter-subunit 
distance was used to predict modification changes of modeled residues. We demonstrated that 
RosettaDock with the inclusion of our covalent labeling score term can predict accurate models 
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for all the complexes in our benchmark set using AF unbound structures as input. Large 
improvements in model quality were observed when our score term was included. For example, 
the RMSD of the top scoring model improved from 11.2 Å to 1.6 Å for actin/gs1 and 10.1 Å to 
3.2 Å for β-2-microglobulin (Figure 2a and 2b). This demonstrated that the information contained 
in the experimental covalent labeling values can improve scoring and model selection within 
RosettaDock. This score term can be used through the newly developed cl_complex_rescore 
application within Rosetta. A tutorial for using this application can be found within the Supporting 
Information. Future work will include increasing the number, valency, and structural types of 
labeled proteins, along with the types of covalent labeling reagents used, to more comprehensively 
test the ability of covalent labeling data to elucidate protein complex structure. In this study, we 
exclusively used differential covalent labeling data since it provides the most accurate structural 
information. However, many labeling experiments only yield non-differential datasets. In future 
work, we will focus on developing computational tools that utilize these datasets for complex 
prediction.  In addition, we plan to explore combining other types of complementary experimental 
MS data with covalent labeling data.  

Acknowledgments 

We thank the members of the Lindert lab for many useful discussions and the Ohio Supercomputer 
Center for valuable computational resources.59 Integrative protein modeling work was supported 
by NIH (P41 GM128577) and a Sloan Research Fellowship to S.L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.30.490108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.30.490108


References 
1. Heck, A. J. Native mass spectrometry: a bridge between interactomics and structural 
biology. Nat Methods 2008, 5 (11), 927-933. DOI: 10.1038/nmeth.1265  From NLM. 
2. Boeri Erba, E.; Signor, L.; Petosa, C. Exploring the structure and dynamics of 
macromolecular complexes by native mass spectrometry. Journal of Proteomics 2020, 222, 
103799. DOI: https://doi.org/10.1016/j.jprot.2020.103799. 
3. Sali, A.; Glaeser, R.; Earnest, T.; Baumeister, W. From words to literature in structural 
proteomics. Nature 2003, 422 (6928), 216-225. DOI: 10.1038/nature01513. 
4. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; 
Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res 2000, 28 (1), 235-
242. DOI: 10.1093/nar/28.1.235  From NLM. 
5. Kay, L. E. NMR studies of protein structure and dynamics. J Magn Reson 2005, 173 (2), 
193-207. DOI: 10.1016/j.jmr.2004.11.021  From NLM. 
6. Yip, K. M.; Fischer, N.; Paknia, E.; Chari, A.; Stark, H. Atomic-resolution protein 
structure determination by cryo-EM. Nature 2020, 587 (7832), 157-161. DOI: 10.1038/s41586-
020-2833-4  From NLM. 
7. Smyth, M. S.; Martin, J. H. x ray crystallography. Mol Pathol 2000, 53 (1), 8-14. DOI: 
10.1136/mp.53.1.8  From NLM. 
8. Sinz, A. Chemical cross-linking and mass spectrometry to map three-dimensional protein 
structures and protein-protein interactions. Mass Spectrom Rev 2006, 25 (4), 663-682. DOI: 
10.1002/mas.20082  From NLM. 
9. Chalmers, M. J.; Busby, S. A.; Pascal, B. D.; He, Y.; Hendrickson, C. L.; Marshall, A. 
G.; Griffin, P. R. Probing Protein Ligand Interactions by Automated Hydrogen/Deuterium 
Exchange Mass Spectrometry. Analytical Chemistry 2006, 78 (4), 1005-1014. DOI: 
10.1021/ac051294f. 
10. Wei, H.; Mo, J.; Tao, L.; Russell, R. J.; Tymiak, A. A.; Chen, G.; Iacob, R. E.; Engen, J. 
R. Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of 
protein therapeutics: methodology and applications. Drug Discovery Today 2014, 19 (1), 95-102. 
DOI: https://doi.org/10.1016/j.drudis.2013.07.019. 
11. Wysocki, V. H.; Joyce, K. E.; Jones, C. M.; Beardsley, R. L. Surface-induced 
dissociation of small molecules, peptides, and non-covalent protein complexes. Journal of the 
American Society for Mass Spectrometry 2008, 19 (2), 190-208. DOI: 
10.1016/j.jasms.2007.11.005. 
12. Blackwell, A. E.; Dodds, E. D.; Bandarian, V.; Wysocki, V. H. Revealing the quaternary 
structure of a heterogeneous noncovalent protein complex through surface-induced dissociation. 
Anal Chem 2011, 83 (8), 2862-2865. DOI: 10.1021/ac200452b  From NLM. 
13. Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The power of ion mobility-mass 
spectrometry for structural characterization and the study of conformational dynamics. Nature 
Chemistry 2014, 6 (4), 281-294. DOI: 10.1038/nchem.1889. 
14. Downard, K. M. Ions of the interactome: the role of MS in the study of protein 
interactions in proteomics and structural biology. Proteomics 2006, 6 (20), 5374-5384. DOI: 
10.1002/pmic.200600247  From NLM. 
15. Schmidt, C.; Macpherson, J. A.; Lau, A. M.; Tan, K. W.; Fraternali, F.; Politis, A. 
Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.30.490108doi: bioRxiv preprint 

https://doi.org/10.1016/j.jprot.2020.103799
https://doi.org/10.1016/j.drudis.2013.07.019
https://doi.org/10.1101/2022.04.30.490108


Labeling Mass Spectrometry and Integrative Modeling. Anal Chem 2017, 89 (3), 1459-1468. 
DOI: 10.1021/acs.analchem.6b02875  From NLM. 
16. Kiselar, J. G.; Chance, M. R. Future directions of structural mass spectrometry using 
hydroxyl radical footprinting. J Mass Spectrom 2010, 45 (12), 1373-1382. DOI: 
10.1002/jms.1808  From NLM. 
17. Limpikirati, P.; Liu, T.; Vachet, R. W. Covalent labeling-mass spectrometry with non-
specific reagents for studying protein structure and interactions. Methods 2018, 144, 79-93. DOI: 
10.1016/j.ymeth.2018.04.002  From NLM. 
18. Dorn, M.; MB, E. S.; Buriol, L. S.; Lamb, L. C. Three-dimensional protein structure 
prediction: Methods and computational strategies. Comput Biol Chem 2014, 53pb, 251-276. 
DOI: 10.1016/j.compbiolchem.2014.10.001  From NLM. 
19. Kuhlman, B.; Bradley, P. Advances in protein structure prediction and design. Nature 
Reviews Molecular Cell Biology 2019, 20 (11), 681-697. DOI: 10.1038/s41580-019-0163-x. 
20. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; 
Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein 
structure prediction with AlphaFold. Nature 2021, 596 (7873), 583-589. DOI: 10.1038/s41586-
021-03819-2. 
21. Senior, A. W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, 
A.; Nelson, A. W. R.; Bridgland, A.; et al. Improved protein structure prediction using potentials 
from deep learning. Nature 2020, 577 (7792), 706-710. DOI: 10.1038/s41586-019-1923-7. 
22. Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J. Critical assessment of 
methods of protein structure prediction (CASP)—Round XIII. Proteins: Structure, Function, and 
Bioinformatics 2019, 87 (12), 1011-1020, https://doi.org/10.1002/prot.25823. DOI: 
https://doi.org/10.1002/prot.25823 (acccessed 2022/02/07). 
23. Pereira, J.; Simpkin, A. J.; Hartmann, M. D.; Rigden, D. J.; Keegan, R. M.; Lupas, A. N. 
High-accuracy protein structure prediction in CASP14. Proteins 2021, 89 (12), 1687-1699. DOI: 
10.1002/prot.26171  From NLM. 
24. Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; 
Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. 
bioRxiv 2021, 2021.2010.2004.463034. DOI: 10.1101/2021.10.04.463034. 
25. Comeau, S. R.; Gatchell, D. W.; Vajda, S.; Camacho, C. J. ClusPro: a fully automated 
algorithm for protein-protein docking. Nucleic acids research 2004, 32 (Web Server issue), 
W96-W99. DOI: 10.1093/nar/gkh354 PubMed. 
26. Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S. Y. HDOCK: a web server for protein-
protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 2017, 45 
(W1), W365-w373. DOI: 10.1093/nar/gkx407  From NLM. 
27. Pierce, B. G.; Wiehe, K.; Hwang, H.; Kim, B. H.; Vreven, T.; Weng, Z. ZDOCK server: 
interactive docking prediction of protein-protein complexes and symmetric multimers. 
Bioinformatics 2014, 30 (12), 1771-1773. DOI: 10.1093/bioinformatics/btu097  From NLM. 
28. Moal, I. H.; Chaleil, R. A. G.; Bates, P. A. Flexible Protein-Protein Docking with 
SwarmDock. Methods Mol Biol 2018, 1764, 413-428. DOI: 10.1007/978-1-4939-7759-8_27  
From NLM. 
29. de Vries, S. J.; van Dijk, M.; Bonvin, A. M. J. J. The HADDOCK web server for data-
driven biomolecular docking. Nature Protocols 2010, 5 (5), 883-897. DOI: 
10.1038/nprot.2010.32. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.30.490108doi: bioRxiv preprint 

https://doi.org/10.1002/prot.25823
https://doi.org/10.1002/prot.25823
https://doi.org/10.1101/2022.04.30.490108


30. Kozakov, D.; Brenke, R.; Comeau, S. R.; Vajda, S. PIPER: an FFT-based protein 
docking program with pairwise potentials. Proteins 2006, 65 (2), 392-406. DOI: 
10.1002/prot.21117  From NLM. 
31. Alford, R. F.; Leaver-Fay, A.; Jeliazkov, J. R.; O’Meara, M. J.; DiMaio, F. P.; Park, H.; 
Shapovalov, M. V.; Renfrew, P. D.; Mulligan, V. K.; Kappel, K.; et al. The Rosetta All-Atom 
Energy Function for Macromolecular Modeling and Design. Journal of Chemical Theory and 
Computation 2017, 13 (6), 3031-3048. DOI: 10.1021/acs.jctc.7b00125. 
32. Leman, J. K.; Weitzner, B. D.; Lewis, S. M.; Adolf-Bryfogle, J.; Alam, N.; Alford, R. F.; 
Aprahamian, M.; Baker, D.; Barlow, K. A.; Barth, P.; et al. Macromolecular modeling and 
design in Rosetta: recent methods and frameworks. Nat Methods 2020, 17 (7), 665-680. DOI: 
10.1038/s41592-020-0848-2  From NLM. 
33. Seffernick, J. T.; Lindert, S. Hybrid methods for combined experimental and 
computational determination of protein structure. J Chem Phys 2020, 153 (24), 240901. DOI: 
10.1063/5.0026025  From NLM. 
34. Biehn, S. E.; Lindert, S. Protein Structure Prediction with Mass Spectrometry Data. Annu 
Rev Phys Chem 2021. DOI: 10.1146/annurev-physchem-082720-123928  From NLM. 
35. Soni, N.; Madhusudhan, M. S. Computational modeling of protein assemblies. Current 
Opinion in Structural Biology 2017, 44, 179-189. DOI: https://doi.org/10.1016/j.sbi.2017.04.006. 
36. Aprahamian, M. L.; Chea, E. E.; Jones, L. M.; Lindert, S. Rosetta Protein Structure 
Prediction from Hydroxyl Radical Protein Footprinting Mass Spectrometry Data. Anal Chem 
2018, 90 (12), 7721-7729. DOI: 10.1021/acs.analchem.8b01624  From NLM. 
37. Aprahamian, M. L.; Lindert, S. Utility of Covalent Labeling Mass Spectrometry Data in 
Protein Structure Prediction with Rosetta. J Chem Theory Comput 2019, 15 (5), 3410-3424. 
DOI: 10.1021/acs.jctc.9b00101  From NLM. 
38. Biehn, S. E.; Lindert, S. Accurate protein structure prediction with hydroxyl radical 
protein footprinting data. Nat Commun 2021, 12 (1), 341. DOI: 10.1038/s41467-020-20549-7  
From NLM. 
39. Biehn, S. E.; Limpikirati, P.; Vachet, R. W.; Lindert, S. Utilization of Hydrophobic 
Microenvironment Sensitivity in Diethylpyrocarbonate Labeling for Protein Structure Prediction. 
Anal Chem 2021, 93 (23), 8188-8195. DOI: 10.1021/acs.analchem.1c00395  From NLM. 
40. Biehn, S. E.; Picarello, D. M.; Pan, X.; Vachet, R. W.; Lindert, S. Accounting for 
Neighboring Residue Hydrophobicity in Diethylpyrocarbonate Labeling Mass Spectrometry 
Improves Rosetta Protein Structure Prediction. J Am Soc Mass Spectrom 2022, 33 (3), 584-591. 
DOI: 10.1021/jasms.1c00373  From NLM. 
41. Marzolf, D. R.; Seffernick, J. T.; Lindert, S. Protein Structure Prediction from NMR 
Hydrogen-Deuterium Exchange Data. J Chem Theory Comput 2021, 17 (4), 2619-2629. DOI: 
10.1021/acs.jctc.1c00077  From NLM. 
42. Nguyen, T. T.; Marzolf, D. R.; Seffernick, J. T.; Heinze, S.; Lindert, S. Protein structure 
prediction using residue-resolved protection factors from hydrogen-deuterium exchange NMR. 
Structure 2022, 30 (2), 313-320.e313. DOI: 10.1016/j.str.2021.10.006  From NLM. 
43. Niloofar Abolhasani Khaje, A. E., Sarah E. Biehn, Charles K. Mobley, Monique J. 
Rogals, Yoonkyoo Kim, Sushil K. Mishra, Robert J. Doerksen, Steffen Lindert, James 
Prestegard, Joshua S. Sharp. Validated Determination of NRG1 Ig-like Domain Structure by 
Mass Spectrometry Coupled with Computational Modeling. Commun. Biol. 2022, In Print. 
44. Turzo, S. M. B. A.; Seffernick, J. T.; Rolland, A. D.; Donor, M. T.; Heinze, S.; Prell, J. 
S.; Wysocki, V.; Lindert, S. Protein shape sampled by ion mobility mass spectrometry 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.30.490108doi: bioRxiv preprint 

https://doi.org/10.1016/j.sbi.2017.04.006
https://doi.org/10.1101/2022.04.30.490108


consistently improves protein structure prediction. bioRxiv 2021, 2021.2005.2027.445812. DOI: 
10.1101/2021.05.27.445812. 
45. Huang, W.; Ravikumar, K. M.; Parisien, M.; Yang, S. Theoretical modeling of 
multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical 
footprinting, and computational docking. J Struct Biol 2016, 196 (3), 340-349. DOI: 
10.1016/j.jsb.2016.08.001  From NLM. 
46. Borysik, A. J. Simulated Isotope Exchange Patterns Enable Protein Structure 
Determination. Angewandte Chemie International Edition 2017, 56 (32), 9396-9399, 
https://doi.org/10.1002/anie.201704604. DOI: https://doi.org/10.1002/anie.201704604 
(acccessed 2022/04/18). 
47. Roberts, V. A.; Pique, M. E.; Hsu, S.; Li, S. Combining H/D Exchange Mass 
Spectrometry and Computational Docking To Derive the Structure of Protein–Protein 
Complexes. Biochemistry 2017, 56 (48), 6329-6342. DOI: 10.1021/acs.biochem.7b00643. 
48. Perrakis, A.; Sixma, T. K. AI revolutions in biology. EMBO reports 2021, 22 (11), 
e54046, https://doi.org/10.15252/embr.202154046. DOI: 
https://doi.org/10.15252/embr.202154046 (acccessed 2022/02/22). 
49. Guan, J.-Q.; Almo, S. C.; Reisler, E.; Chance, M. R. Structural Reorganization of 
Proteins Revealed by Radiolysis and Mass Spectrometry:  G-Actin Solution Structure Is Divalent 
Cation Dependent. Biochemistry 2003, 42 (41), 11992-12000. DOI: 10.1021/bi034914k. 
50. Mendoza, V. L.; Antwi, K.; Barón-Rodríguez, M. A.; Blanco, C.; Vachet, R. W. 
Structure of the Preamyloid Dimer of β-2-Microglobulin from Covalent Labeling and Mass 
Spectrometry. Biochemistry 2010, 49 (7), 1522-1532. DOI: 10.1021/bi901748h. 
51. Kiselar, J. G.; Datt, M.; Chance, M. R.; Weiss, M. A. Structural Analysis of Proinsulin 
Hexamer Assembly by Hydroxyl Radical Footprinting and Computational Modeling*. Journal of 
Biological Chemistry 2011, 286 (51), 43710-43716. DOI: 
https://doi.org/10.1074/jbc.M111.297853. 
52. Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure 
template quality. Proteins 2004, 57 (4), 702-710. DOI: 10.1002/prot.20264  From NLM. 
53. Basu, S.; Wallner, B. DockQ: A Quality Measure for Protein-Protein Docking Models. 
PLOS ONE 2016, 11 (8), e0161879. DOI: 10.1371/journal.pone.0161879. 
54. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015. 
55. Chaudhury, S.; Berrondo, M.; Weitzner, B. D.; Muthu, P.; Bergman, H.; Gray, J. J. 
Benchmarking and analysis of protein docking performance in Rosetta v3.2. PLoS One 2011, 6 
(8), e22477. DOI: 10.1371/journal.pone.0022477  From NLM. 
56. Sønderby, P.; Rinnan, Å.; Madsen, J. J.; Harris, P.; Bukrinski, J. T.; Peters, G. H. J. 
Small-Angle X-ray Scattering Data in Combination with RosettaDock Improves the Docking 
Energy Landscape. Journal of Chemical Information and Modeling 2017, 57 (10), 2463-2475. 
DOI: 10.1021/acs.jcim.6b00789. 
57. Seffernick, J. T.; Harvey, S. R.; Wysocki, V. H.; Lindert, S. Predicting Protein Complex 
Structure from Surface-Induced Dissociation Mass Spectrometry Data. ACS Central Science 
2019, 5 (8), 1330-1341. DOI: 10.1021/acscentsci.8b00912. 
58. Seffernick, J. T.; Canfield, S. M.; Harvey, S. R.; Wysocki, V. H.; Lindert, S. Prediction 
of Protein Complex Structure Using Surface-Induced Dissociation and Cryo-Electron 
Microscopy. Anal Chem 2021, 93 (21), 7596-7605. DOI: 10.1021/acs.analchem.0c05468  From 
NLM. 
59. Ohio Supercomputer Center. 1987. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.30.490108doi: bioRxiv preprint 

https://doi.org/10.1002/anie.201704604
https://doi.org/10.1002/anie.201704604
https://doi.org/10.15252/embr.202154046
https://doi.org/10.15252/embr.202154046
https://doi.org/10.1074/jbc.M111.297853
https://doi.org/10.1101/2022.04.30.490108


 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2022. ; https://doi.org/10.1101/2022.04.30.490108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.30.490108

