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Abstract 20 

 Transcriptome analysis via RNA sequencing (RNA-seq) has become a standard technique 21 

employed across various biological fields of study. This rapid adoption of the RNA-seq approach has been 22 

mediated, in part, by the development of different commercial RNA-seq library preparation kits 23 

compatible with standard next-generation sequencing (NGS) platforms. Generally, the essential steps of 24 

library preparation such as ribosomal RNA (rRNA) depletion and first-strand cDNA synthesis are tailored 25 

to a specific group of organisms (e.g. eukaryotes vs. prokaryotes) or genomic GC content. Therefore, the 26 

selection of appropriate commercial products is of crucial importance to capture the transcriptome of 27 

interest as closely to the native state as possible without introduction of technical bias. However, 28 

researchers rarely have the resources and time to test various commercial RNA-seq kits for their samples. 29 

This work reports a side-by-side comparison of RNA-seq data from Clostridium autoethanogenum 30 

obtained using three commercial rRNA removal and strand-specific library construction products by 31 

NuGEN Technologies, Qiagen, and Zymo Research and assesses their performance relative to published 32 

data. While all three vendors advertise their products as suitable for prokaryotes, we found significant 33 

differences in their performance regarding rRNA removal, strand-specificity, and, most importantly, 34 

transcript abundance distribution profiles. Notably, RNA-seq data obtained with Qiagen products were 35 

most similar to published data and delivered the best results in terms of library strandedness and 36 

transcript abundance distribution range. Our results highlight the importance of finding appropriate 37 

organism-specific workflows and library preparation products for RNA-seq studies.  38 
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Importance 39 

 RNA-seq is a powerful technique for transcriptome profiling while involving elaborate sample 40 

processing before library sequencing. Our work is important as we show that RNA-seq library preparation 41 

kits can strongly affect the outcome of the RNA-seq experiment. Although library preparation benefits 42 

from the availability of various commercial kits, choosing appropriate products for the specific samples 43 

can be challenging for new users or for users working with unconventional organisms. Evaluating the 44 

performance of different commercial products requires significant financial and time investment 45 

infeasible to most researchers. Therefore, users are often guided in their choice of kits by published data 46 

involving similar input samples. We conclude that important consideration should be given to selecting of 47 

sample processing workflows for any given organism.  48 
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Introduction 49 

 Gene transcription is a fundamental process mediating vast number of intracellular and 50 

environmental responses in every cell. Therefore, understanding transcriptional states of any organism of 51 

choice can shed light on basic biological processes as well as ways to direct and control cellular behavior. 52 

Insights into cellular transcriptional profiles or transcriptomes (i.e. complete set of transcripts in a cell 53 

with their quantities) have vastly expanded in the last decade due to rapid development and high 54 

accessibility of next generation sequencing (NGS) platforms (1). Meanwhile, constant improvement of 55 

commercial library construction products has greatly contributed to the rapid adaptation and evolution 56 

of RNA sequencing applications: for example, RNA-seq (2), nascent RNA sequencing (3), Ribo-seq (4), and 57 

differential RNA-seq (5). RNA-seq is the most common application as it allows both mapping and 58 

quantification of transcriptomes. 59 

 While RNA-seq has become widely used across all fields of biological sciences, obtaining high-60 

quality data of the transcriptome under investigation nevertheless requires careful planning, extensive 61 

sample processing, and considerable resources. The availability of commercial RNA-seq library 62 

preparation kits tailored to a variety of organisms, experimental approaches, and sequencing platforms 63 

has made RNA-seq accessible even to non-expert users. When planning to do an RNA-seq experiment for 64 

the first time, researchers often consult existing literature to see which sample preparation protocols and 65 

products have been previously used with their organism of interest. However, working with 66 

unconventional microorganisms that have not yet been extensively studied via RNA-seq can make it 67 

difficult to decide which commercial kits might be most suitable.  68 

We have previously achieved high-quality transcriptome profiling using RNA-seq for the gas-69 

fermenting bacterium Clostridium autoethanogenum (6–8), an unconventional microbe that is also used 70 

as a cell factory in commercial-scale gas fermentation for the production of low carbon fuels and chemicals 71 

from waste feedstocks (9). In addition to preparation of cDNA libraries before sequencing, removal of 72 
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ribosomal RNA (rRNA) from the extracted total RNA is needed to ensure efficient transcriptome-wide 73 

messenger RNA (mRNA) detection and quantification as >80‒90% of total cellular RNA is rRNA (10, 11). In 74 

our previous studies (6–8), we used Illumina kits for rRNA removal and library preparation but when we 75 

set out to start a large-scale RNA-seq survey of the same organism in late 2019, the Illumina Ribo-Zero 76 

rRNA removal kit was discontinued, and we had to look for alternatives. However, selecting an efficient 77 

rRNA removal method for bacterial samples is non-trivial as enrichment of non-rRNA transcripts based on 78 

polyadenylated RNA (polyA) selection used in most commercial kits (developed for eukaryotes) is not 79 

applicable for bacterial RNA due to the lack of polyA tails. One also has to ensure the compatibility of the 80 

rRNA removal and cDNA library preparation methods. 81 

To make an informed decision on the following best commercial products for RNA-seq library 82 

preparation for C. autoethanogenum, we aimed to test kits from three vendors that are advertised to 83 

ensure efficient rRNA removal and to be compatible with a variety of bacterial species and Illumina 84 

sequencing platforms. This work reports a side-by-side comparison of RNA-seq data obtained from the 85 

same C. autoethanogenum input samples using rRNA removal and strand-specific library construction kits 86 

from NuGEN Technologies, Qiagen, and Zymo Research, and assesses their performance relative to 87 

published data. Transcriptome profiles revealed significant differences between the kits regarding rRNA 88 

removal efficiency, sequencing reads strand-specificity, and, strikingly, in transcript abundance 89 

distribution profiles. Our work shows that Qiagen kits yield the most reliable data out of the three we 90 

tested and highlights the importance of appropriate sample preparation for RNA-seq analysis in bacteria.  91 
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Results and Discussion 92 

Experimental design. We evaluated the performance of three commercial rRNA removal and 93 

strand-specific library construction kits by NuGEN, Qiagen, and Zymo (see Materials and Methods for 94 

details) for RNA-seq analysis of C. autoethanogenum autotrophic cultures (Fig. 1A). To assess the ability 95 

of the selected commercial kits to capture the transcriptomic profile of C. autoethanogenum under 96 

varying culture conditions, we used four samples, each obtained from one of the four bioreactor 97 

continuous culture experiments grown on two different feed gas mixes (CO or CO+CO2+H2 [syngas]) and 98 

dilution rates (i.e. specific growth rates; 1 or 2 day-1). Both feed gas composition (12) and specific growth 99 

rate (13) of the culture have profound effects on the culture phenotype (e.g. gas uptake, product 100 

distribution, metabolic fluxes). We extracted and prepared total RNA from the four samples using a 101 

previously established workflow optimised for C. autoethanogenum (6). Next, total RNA for each sample 102 

was split between the NuGEN, Qiagen, and Zymo kits for rRNA removal and strand-specific RNA-seq library 103 

construction according to vendors’ instructions. Finally, the 12 samples (four cultures times three kits) 104 

were examined by paired-end 75 bp sequencing on an Illumina MiSeq platform, followed by RNA-seq data 105 

analysis using established pipelines (6, 13). 106 

 General statistics of RNA-seq data. An average of 4.5 million raw reads per sample were obtained 107 

from the sequencing runs that were mapped to the reference genome of C. autoethanogenum 108 

NC_022592.1 (14) after trimming with an overall high success rate (Table 1). Namely, 98, 93, and 99% of 109 

reads were mapped on average for NuGEN, Qiagen, and Zymo, respectively, which resulted in a minimum 110 

of 50-fold coverage of the C. autoethanogenum genome across samples (Table 1). We detected very low 111 

read duplication levels (<0.5%) suggesting a low chance of technical bias introduced during sample 112 

preparation. Surprisingly, a significant difference in the percentage of mapped reads that were assigned 113 

to genomic features (i.e. FeatureCounts) was observed between NuGEN and the other two kits: an 114 

average of only 55% for NuGEN with 84 and 79% for Qiagen and Zymo, respectively (Table 1; 115 
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FeatureCounts/Mapped). Notably, this can be explained by the difference between NuGEN and the other 116 

two kits in the percentage of reads mapping to the expected strand, as Qiagen and Zymo showed high 117 

correct strandedness at ~91 (sense) and ~84% (antisense), respectively, compared to NuGEN’s very poor 118 

strand-specificity at ~58% (sense) (Table 1). Significant false strandedness for NuGEN could arise from 119 

either a substantial flaw in the respective workflow or, according to NuGEN, from faulty reagents in their 120 

kits (personal communication). 121 

 122 

TABLE 1 General statistics of RNA-seq results of the three tested kits for rRNA removal and library 123 

construction 124 

Kits Sample name Number of 
raw reads 

Reads 
mapped 
(Mapped) 

Coverage 
(fold) 

FeatureCounts
/Mapped 

Strandedness rRNA RPKM/ 
Total RPKM 

Sense Antisense 

NuGEN NuGEN_S1 4,268,524 98% 72 59% 64% 36% 7% 
NuGEN_S2 6,004,018 99% 103 47% 50% 50% 2% 

NuGEN_S3 3,615,864 99% 62 52% 56% 44% 4% 

NuGEN_S4 4,248,288 98% 72 63% 61% 39% 15% 

Qiagen Qiagen_S1 4,911,456 98% 81 87% 95% 5% 15% 

Qiagen_S2 3,559,522 95% 57 79% 84% 16% 9% 

Qiagen_S3 3,289,702 93% 50 82% 88% 12% 6% 

Qiagen_S4 4,954,218 88% 74 88% 96% 4% 17% 

Zymo Zymo_S1 4,355,956 99% 71 82% 13% 87% 0.8% 

Zymo_S2 4,840,762 99% 79 70% 26% 74% 0.6% 

Zymo_S3 5,691,744 99% 93 78% 18% 82% 0.6% 

Zymo_S4 4,651,118 99% 76 87% 7% 93% 0.8% 
rRNA, ribosomal RNA; RPKM, reads per kilobase of transcript per million mapped reads. 125 

 126 

Variable efficiency of rRNA removal. We next quantified rRNA removal efficiencies from the RNA-127 

seq data using the percentage of rRNA transcript abundances from total transcript abundances, expressed 128 

as reads per kilobase of transcript per million mapped reads (RPKM) (Table S1). Again, stark differences 129 

between the kits were observed, confirming that rRNA depletion from bacterial samples is non-trivial 130 

(Table 1, rRNA RPKM/Total RPKM). Zymo demonstrated superior efficiency for rRNA removal during 131 

library preparation with an abundance of <1% of rRNA transcripts. NuGEN’s higher variability in rRNA 132 
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removal efficiency across the samples (2‒15%; average 7%) suggests their approach of non-rRNA 133 

enrichment or AnyDepleteTM technology may be sensitive to sample-specific factors. Removal of rRNA for 134 

Qiagen was slightly less efficient (~11%) than for NuGEN but still acceptable to ensure high coverage of 135 

transcriptome-wide mRNA detection and quantification (Table 1). 136 

Kit-specific grouping of transcriptome profiles. Upon observing the differences in general RNA-137 

seq metrics outlined in Table 1, we were curious if different kits could also lead to variable transcriptome 138 

profiles. Indeed, principal component analysis (PCA) of transcript abundances revealed clear sample 139 

grouping by the kit and not by the origin of the input RNA (Fig. 1B). To assess which of the three tested 140 

kits produced the most reliable transcriptome profiles, we also included published data in the PCA that 141 

we previously obtained using the same workflows but with Illumina kits for similar C. autoethanogenum 142 

culture conditions (6), termed here as the reference dataset (high biomass concentration samples in GEO 143 

accession number GSE90792). Notably, Qiagen data was grouped the closest to this reference dataset 144 

with NuGEN transcriptome profiles separating most distinctively (Fig. 1B). These observations were 145 

confirmed by hierarchical clustering of individual transcript abundances showing grouping of samples 146 

based on the kits and not based on the origin of the input RNA (Fig. 1C). NuGEN and Zymo had a 147 

distinctively different clustering pattern compared to Qiagen and the reference dataset.  148 

Clustering results agreed with Spearman’s correlation analysis of transcript abundances between 149 

samples, which showed Qiagen data being most similar to the reference dataset (ρ ~ 0.86) (Fig. 1D). 150 

Within the three kits tested here, Qiagen and Zymo data showed higher similarity (ρ ~ 0.77 across the 151 

same samples) compared to the lower correlations between NuGEN and Qiagen (ρ ~ 0.33) and NuGEN 152 

and Zymo (ρ ~ 0.47) data. 153 
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 154 

FIG 1 RNA-seq results are strongly affected by rRNA removal and library construction kits. (A) Experimental design 155 

of this work. (B) Principal component analysis (PCA) of transcript abundances. (C) Hierarchical clustering of individual 156 

transcript abundances. (D) Spearman’s correlation analysis of transcript abundances. (E) Probability density plots of 157 

transcript abundances. The reference dataset refers to high BC samples in GEO accession number GSE90792. REF, 158 

reference dataset. rRNA transcript abundances were removed prior to data analysis to avoid bias from variable 159 

efficiency of rRNA removal between kits. 160 

 161 
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Differences in transcript abundance distribution profiles. The quality of the kits can also be 162 

assessed by their sensitivity to detect transcripts across a range of abundances (i.e. transcriptome 163 

coverage or depth). Transcript levels in bacteria generally span over 4 orders of magnitude (15–17), 164 

including in C. autoethanogenum (6) and other gas-fermenting bacteria (18, 19). Again, Qiagen data 165 

resembled the reference dataset the most by both the transcript abundance distribution profiles and good 166 

sensitivity with transcript levels spanning over 4 orders of magnitude (from ~2 to ~39,000 RPKM; ~1 to 167 

15 log2 RPKM) (Fig. 1E). Strikingly, NuGEN kit showed very narrow transcript abundance distributions 168 

covering only ~2 orders of magnitude (from ~22 to ~1,800 RPKM; ~4 to ~11 log2 RPKM), while Zymo data 169 

were positioned between Qiagen and NuGEN. According to Zymo (personal communication), such 170 

condensed distribution profiles could be caused by higher sensitivity of the workflow towards the 171 

presence of genomic DNA in the input sample that can artificially inflate mRNA reads with a more 172 

prominent effect on low-abundance transcripts, thereby pushing the left tail of the distribution to the 173 

right. This would also be consistent with the poorer strandedness of Zymo and NuGEN data (Table 1) 174 

arising from genomic DNA-originating reads. Our sample preparation workflow previously optimised for 175 

C. autoethanogenum (6) efficiently removed DNA from total RNA samples down to ~13 ± 2 ng/μL (average 176 

± standard deviation), making up ~4% of the RNA concentration. Thus, additional steps to deplete DNA to 177 

extremely low levels are potentially required for Zymo and NuGEN workflows. NuGEN data could be 178 

additionally explained by biased synthesis and amplification of cDNA using selective primers compared to 179 

the general use of random primers in RNA-seq workflows. 180 

 Our work is important as researchers rarely have the resources and time to test various 181 

commercial RNA-seq kits, advertised as suitable for multiple organisms with different genomic GC 182 

content, for their samples. The ability to capture the spectrum of transcript abundances as closely to the 183 

true cellular state as possible is crucial to accurately address research questions investigated via RNA-seq. 184 

Our work shows that rRNA removal and library construction kits can strongly affect RNA-seq outcomes. 185 
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This is highly relevant for anyone establishing an RNA-seq pipeline for an organism or for researchers 186 

puzzled by unexpected RNA-seq results. We conclude that, at least for C. autoethanogenum RNA-seq 187 

studies, Illumina and Qiagen kits are most suitable by providing high sensitivity across a wide range of 188 

transcript levels, superior strand-specificity, and sufficient rRNA removal, ensuring high coverage of 189 

transcriptome-wide mRNA detection and quantification. 190 

 191 

Materials and Methods  192 

Bacterial strain and cultivation conditions. A derivate of Clostridium autoethanogenum DSM 193 

10061 strain – DSM 23693 – deposited in the German Collection of Microorganisms and Cell Cultures 194 

(DSMZ) was used in all experiments and stored as a glycerol stock at -80°C. Full details of the cultivation 195 

conditions are reported in previous work (13). Shortly, cells were grown autotrophically in bioreactor 196 

chemostat continuous cultures under strictly anaerobic conditions at 37°C and pH 5 in chemically defined 197 

medium (without yeast extract) either on CO (60% CO and 40% Ar; AS Eesti AGA) or syngas (50% CO, 20% 198 

H2, 20% CO2, and 10% Ar; AS Eesti AGA). Namely, four independent experiments were conducted with 199 

cultures grown at dilution rates (D) ~1.0 and ~2.0 day-1 on both feed gas mixes. Cultures were sampled 200 

for RNA extraction and subsequent transcriptome analysis using RNA-seq after optical density (OD), gas 201 

uptake, and production rates had been stable for at least one working volume. 202 

Preparation of total RNA extracts. Full details of culture sampling, RNA extraction, and 203 

purification are reported in previous work (13). Briefly, culture samples were pelleted by centrifugation 204 

and treated with RNAlater (76106; Qiagen) before disrupting cells with glass beads using the Precellys® 205 

24 instrument and extracting total RNA using the RNeasy Mini Kit (74104; Qiagen). Next, RNA extracts 206 

were depleted of DNA using off-column TURBOTM DNase (AM2239; Invitrogen) followed by purification 207 

using the RNA Clean & ConcentratorTM kit (R1018; Zymo). We used the NanoDropTM 1000 instrument 208 

(Thermo Fisher Scientific) for verifying efficiency of RNA purification. The high quality and integrity of the 209 
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total RNA extracts was confirmed by RNA integrity numbers (RIN) above 8.2 using the TapeStation 2200 210 

equipment (Agilent Technologies). Total RNA and residual DNA concentrations were determined using the 211 

Qubit 2.0 instrument (Invitrogen). 212 

Removal of rRNA and RNA-seq library construction. Total RNA extracts for each sample were 213 

split between the NuGEN, Qiagen, and Zymo kits for rRNA removal and strand-specific RNA-seq library 214 

construction according to vendor instructions. In this work, samples referred to as “NuGEN” were 215 

processed with Universal Prokaryotic RNA-Seq, Prokaryotic AnyDeplete™ (0363; NuGEN); “Qiagen” with 216 

QIAseq® FastSelect™ –5S/16S/23S Kit (335925; Qiagen) (for rRNA removal) and QIAseq® Stranded RNA 217 

Lib Kit (180743; Qiagen) (for library construction); and “Zymo” with Zymo-Seq RiboFree™ Total RNA 218 

Library Kit (R3000; Zymo Research). 219 

RNA sequencing and data analysis. RNA sequencing of the 12 mRNA libraries (four cultures times 220 

three kits) was performed on a MiSeq instrument (Illumina) using the MiSeq v3 150 cycles sequencing kit 221 

(MS-102-3001; Illumina) with paired-end 2 x 75 bp reads. Raw RNA-seq data of the reference dataset (high 222 

biomass concentration samples in GEO accession number GSE90792) (6) was analysed together with the 223 

data generated in this work to ensure comparability. Full details of RNA-seq data analysis, including R-224 

scripts, are reported in previous work (13). Shortly, quality of sequencing reads was verified using MultiQC 225 

(20) and presence of read duplicates was examined using PicardTools (21). High-quality reads were then 226 

mapped to the NCBI reference genome of C. autoethanogenum NC_022592.1 (14) and genomic features 227 

were assigned using Rsubread (22). Strandedness of reads for the strand-specific data of NuGEN, Qiagen, 228 

and Zymo was calculated using RSeQC v3.0.1 (23). Lastly, raw library sizes were normalised and transcript 229 

abundances were estimated as reads per kilobase of transcript per million reads mapped (RPKM) using 230 

edgeR (24) (see Table S1 for RPKM data). rRNA transcript abundances were removed prior to data analysis 231 

on Fig. 1 to avoid bias from variable efficiency of rRNA removal between kits. Hierarchical clustering of 232 

individual transcript abundances on Fig. 1C was performed using the ComplexHeatmap package in R 233 
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(version 2.10.0) (25). RNA-seq data has been deposited in the NCBI Gene Expression Omnibus repository 234 

under accession number GSE200959. 235 
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