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Abstract

Recovering metagenome-assembled genomes (MAGs) from shotgun sequencing data is an
increasingly common task in microbiome studies, as MAGs provide deeper insight into the func-
tional potential of both culturable and non-culturable microorganisms. However, metagenome-
assembled genomes vary in quality, and may contain omissions and contamination. These errors
present challenges for detecting genes and comparing gene enrichment across sample types. To
address this, we propose happi, an approach to testing hypotheses about gene enrichment that
accounts for genome quality. We illustrate the advantages of happi over existing approaches
using published Saccharibacteria MAGs and via simulation.

Keywords: shotgun metagenomics, metagenome-assembled genomes, microbiome, statistical
models, hypothesis testing

1 Background

Members of the same bacterial species can display a wide variety of different phenotypes, and
intra-species variation in pathogenicity, virulence, drug resistance, environmental range, and stress
response has been observed across the tree of life [16, 19, 23, 30, 34]. Variation in phenotypes can in
part be explained by genotypic variation, which is also considerable because mechanisms of genetic
recombination in bacteria facilitate large genetic variation even within narrow organismal groups.
For example, of 7,385 gene clusters observed in a study of 31 genomes in the genus Prochlorococcus,
only 766 gene clusters were detected in all genomes [8]. We refer to the set of genes shared by all
members of a clade as the core genome and we refer to the set of genes not shared by all members as
the accessory genome [33]. Together, these sets of genes comprise a clade’s pangenome: the entire
collection of genes present in one or more organisms within the clade. In this paper, we describe a
novel tool for pangenome analysis. Our tool is a statistical method to model the association between
gene presence and covariates (predictors). Our method offers interpretable parameter estimates, a
fast algorithm for estimation, and a flexible hypothesis testing procedure.

While cultivation-based studies have historically been used to study the gene content of bacteria,
it has become increasingly common to employ shotgun metagenomics to study bacterial genomes
and communities. Shotgun metagenomic sequencing involves untargeted sequencing of all DNA in
an environment, enabling the study of genomes in their environmental context. Short reads from
shotgun sequencing can be assembled into contigs and binned into metagenome-assembled genomes
(MAGs), which represent a partial reconstruction of an individual bacterial genome. Despite major
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advances in methods for binning MAGs, MAGs can contain two types of errors. First, there can
be genes that are truly present in the genome the MAG represents, but are unobserved in a
MAG. Common reasons for this error include inadequate sequencing depth, high diversity in the
metagenomes under study, and the inherent limitations of short read sequencing for reconstructing
repetitive regions [10, 22, 24, 29, 37]. A second type of error in MAGs is erroneously observed
genes: genes that are included in a MAG that are not truly present in the originating genome.
This phenomenon is often referred to as contamination. The use of automated binning tools in
the absence of manual inspection and refinement can lead to elevated rates of contamination. For
example, the identification of contaminating contigs from manual refinement of MAGs produced by
a massive unsupervised genome reconstruction effort removed 30 putative functions from a single
contaminated genome [5, 20].

To address the challenges that contaminating and unobserved genes create for detecting en-
riched genes, our proposed method incorporates information about each genome’s quality. Under
our proposed model, a gene may be unobserved in a genome either because the gene is not present
in the source genome, or because it could not be recovered from the obtained sequencing data. If,
for example, the coverage of short reads across the genome was high and most of the expected core
genes were observed, then the lack of detection of a given gene is more likely attributable to its true
absence. The user can select which variables they believe to be the most informative for genome
quality in their dataset. We develop estimators of the parameters of our model, discuss interpre-
tation of model parameters, propose a hypothesis testing approach, and illustrate the performance
of our model on shotgun sequencing and simulated data.

2 Results

2.1 A Hierarchical Model for Gene Presence

We present a hierarchical model for the association between bacterial gene presence and covariates
of interest (e.g., host treatment status, environment of origin, relevant confounders, etc.). We
consider observations on n genomes, which could be either metagenome-assembled genomes, isolate
genomes, reference genomes, or any combination. Let Yi be an indicator variable for the gene of
interest being observed in genome i, Yi = 1 if the gene is observed in genome i and Yi = 0 otherwise.
However, we are not interested in whether the gene is observed in each genome – we are interested
in whether it is present in each genome. To this end, we define λi to be a latent (unobserved)
random variable that indicates if the gene is truly present in genome i (λi = 1 if present).

We propose a logistic model to connect gene presence to covariate vector Xi ∈ Rp:

log

(
Pr(λi = 1|Xi)

Pr(λi = 0|Xi)

)
= XT

i β, (1)

where the λi’s are conditionally independent givenXi and follow a Bernoulli distribution. Therefore,
when comparing groups of genomes that differ by one unit in X·k but are alike with respect to
X·1, X·2, . . . , X·,k−1, X·,k+1, . . . , X·p, βk gives the difference in the log-odds that the gene will be
present between these two groups of genomes. To connect λi to Yi we propose the following model

Pr(Yi = 1|λi = `,Mi) =

{
f(Mi) ` = 1

ε ` = 0,
(2)

where Yi are conditionally independent Bernoulli distribution random variables; ε is the probability
that a gene is observed in a genome in which it is absent (e.g., due to contamination or crosstalk);
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Mi ∈ Rq is a vector of genome quality covariates; and f(·) : Rq → R is a flexible function to
connect quality variables to the probability of detecting a present gene. Relevant quality variables
are context-dependent and could include coverage of the gene from metagenomic read recruitment,
completion (percentage of single copy core genes observed in the genome), redundancy (percentage
of single copy core genes observed more than once in the genome), and an indicator for the genome
originating from an isolated bacterial population.

2.2 Parameter Estimation

The latent variable structure of our model makes the Expectation-Maximization Algorithm [9] an
appealing choice for estimating unknown parameters θ = (β, f). Because we do not observe {λi}ni=1,
ε and f are not, in general, jointly identifiable. Therefore, we treat ε as a hyperparameter that
can be fixed by the user or leveraged for sensitivity analyses. To improve stability of parameter
estimates, we impose a Firth-type penalty on β. The complete data penalized log-likelihood is
linear in λi, which allows us to simplify the expected complete data penalized log-likelihood at step
t of an EM iteration as

Eλ|Y,θ(t−1)

[
l(β, f̃ , ε̃|Y,λ)

]
=

n∑
i=1

(
p
(t)
i

[
Yif̃(Mi)− log(1 + exp(f̃(Mi))

]
+ (1− p(t)i )[Yiε̃− log(1 + exp(ε̃))]

+
[
p
(t)
i X

T
i β − log(1 + exp(XT

i β))
])

+
1

2
log

∣∣∣∣∣
n∑
i=1

XiX
T
i expit(XT

i β)(1− expit(XT
i β)

∣∣∣∣∣ ,
(3)

where ε̃ = logit(ε), f̃(x) = logit(f(x)) for all x, and p
(t)
i = E[λi|Yi, θ(t−1)] can be simplified as

p
(t)
i =

Pr
(
Yi|λi = 1, θ(t−1)

)
Pr
(
λi = 1|θ(t−1)

)
Pr
(
Yi|θ(t−1)

) , (4)

where the terms in the numerator are given in (1) and (2), and the denominator is given by

Pr
(
Yi|θ(t−1)

)
= Pr(Yi|λi = 1, θ(t−1))Pr(λi = 1|θ(t−1)) (5)

+ Pr(Yi|λi = 0, θ(t−1))Pr(λi = 0|θ(t−1)).

We maximize the expected complete data penalized log-likelihood separately for β and f . Owing
to the form of the expected complete data penalized log-likelihood, efficient algorithms exist to
perform each of these maximizations. Optimizing (3) with respect to β is equivalent to fitting

a binomial generalized linear model with logit link function for outcomes p
(t)
i via Firth-penalized

maximum likelihood, and we find Newton’s method to be stable and fast for this purpose.
Optimizing for f depends on the class of functions in which f falls. We investigated two flexible

non-parametric options for f : f ∈ F , where F is the class of bounded non-decreasing functions
that map from R to R, and f ∈ I where I is the class of linear combinations of k I-spline basis
functions and a constant function where all basis functions have nonnegative coefficients. Both
f ∈ F and f ∈ I result in a monotone estimate for f . To obtain the EM update for f ∈ F , we use
the primal active set algorithm of isotone [7] with custom loss function given by the first term
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in (3) plus a penalty term −cosh
((

m
a

)2)
to prevent

∣∣∣f̃ ∣∣∣ from growing without bound. We found

that setting a = 50 gives a sensible tradeoff between algorithm convergence and numerical stability.

To obtain the EM update for f ∈ I, we fit a logistic regression on p
(t)
i with predictors consisting

of an I-spline basis with all non-intercept coefficients constrained to be nonnegative. We use the
I-spline basis functions implemented in splines2 [35]. In an analysis where we used short-read
subsampling to approximate an empirical f , we found that f ∈ I outperformed f ∈ F (see Section
4.2.2), and for that reason we consider f ∈ I throughout the remainder of this manuscript. We run
the estimation algorithm for tmax steps or until the relative increase in the log-likelihood is below
threshold ∆ for 5 consecutive steps.

2.3 Hypothesis Testing

To enable inference on the odds that a gene will be present in groups of genomes that differ in
their covariate attributes, we construct a hypothesis test for null hypotheses of the form Aβ = c
for A ∈ Rh×p and c ∈ Rh where rank(A) = h. This allows testing of null hypotheses including
βk = 0 (the odds that the gene will be present are equal when comparing groups of genomes that
differ in X·k but are alike with respect to X·1, X·2, . . . , X·,k−1, X·,k+1, . . . , X·,p). We propose to use a

likelihood ratio test for Aβ = c, rejecting H0 at level α if QLRT = 2[L(θ̂)−L(θ̂0)] exceeds the upper
100α% quantile of a χ2

h distribution, where θ̂ is the maximum likelihood estimate of θ; θ̂0 is the
maximum likelihood estimate of θ under the null hypothesis; and L is the log-likelihood function.

2.4 Data Analysis: Saccharibacteria MAGs

We consider a publicly-available dataset of n = 43 non-redundant Saccharibacteria (TM7) MAGs
recovered from supragingival plaque (n = 27) and tongue dorsum (n = 16) samples of seven
individuals from [28] (see Section 4 for more information). The wide variation in mean coverage
across the MAGs (1.07 – 26.35×) makes this an appealing dataset on which to illustrate our quality
variable-adjusting pangenomics method.

We consider methods that allow us to test the null hypothesis that the probability (equivalently,
odds) that a gene is present in Saccharibacteria genomes are equal for tongue and plaque-associated
genomes. The alternative hypothesis is that the probabilities differ. We compare our proposed
method (happi: a Hierarchical Approach to Pangenomics Inference) with three competitors: a
logistic regression model for Yi with a likelihood ratio test (GLM-LRT); a logistic regression model
for Yi with a Rao test (GLM-Rao); and Fisher’s exact test (Fisher). Note that these latter three
methods test hypotheses about the odds that a gene is observed, while our proposed approach tests
hypotheses about the odds that a gene is present, but we believe that results can be reasonably
compared between these methods. We consider a single quality variable Mi for our analysis with
happi: mean coverage across genome i. Our primary comparison is with GLM-Rao, which is the
method currently implemented for pangenomics hypothesis testing in anvi’o [28]. We also note that
the results from GLM-Rao and GLM-LRT are highly correlated, especially for larger p-values.

Different methods identified different differentially present genes. Out of 713 COG functions
tested, happi identified 171 differentially present genes when controlling false discovery rate at the
5% level; GLM-LRT identified 219 genes; GLM-Rao identified 175 genes; and Fisher identified 146
genes. Our proposed method calculated lower p-values for 20%, 35% and 85% of genera compared to
GLM-LRT, GLM-Rao, and Fisher’s test. We show results from 6 specific model estimates in Figure
1: 3 genes for which happi produced greater p-values than GLM-Rao (upper panels), and 3 genes
for which it produced smaller p-values than GLM-Rao (lower panels). In all instances where happi

produced greater p-values than GLM-Rao, non-detections generally occurred in genomes with low
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mean coverage. GLM-Rao does not account for coverage information, and so unlike happi, it
can conflate gene absence with non-detections due to quality. We believe that statements about
significance should be moderated when detection patterns can be attributable to quality variables,
and therefore that it is reasonable that p-values are larger in these three cases. In contrast, happi
produced smaller p-values than GLM-Rao in instances when non-detections occurred for greater
coverage MAGs, or broadly across the range of MAG coverage (lower panels). In these instances,
differences in detection are less likely to be attributable to quality factors, and it is reasonable that
the significance of findings can be strengthened by including data on quality variables.

happi p = 0.255
GLM−Rao p = 0.101

happi p = 0.000796
GLM−Rao p = 0.015

happi p = 0.025
GLM−Rao p = 0.006

happi p = 0.029
GLM−Rao p = 0.109

happi p = 0.511
GLM−Rao p = 0.265

happi p = 2e−05
GLM−Rao p = 9.4e−05

3−phosphoglycerate kinase Preprotein translocase subunit SecE Surface antigen

Ribosomal protein L27 Membrane protein insertase Oxa1/YidC/SpoIIIJ DNA topoisomerase IA

0 10 20 0 10 20 0 10 20

Not detected

Detected

Not detected

Detected

Mean coverage

site

plaque

tongue

Figure 1: We test the null hypothesis that the probability that a gene is present are equal for tongue and
plaque-associated Saccharibacteria genomes. The top 3 panels show genes for which our proposed method
resulted in greater p-values than existing methods, and the lower 3 panels shows genes for which our
proposed method resulted in smaller p-values than existing methods. Our method reduced p-values when
differences in detection cannot be attributed to genome quality factors (here, coverage), and increased
p-values in situations when non-detection may be conflated with lower quality genomes. Points have been
jittered vertically to separate observations.

2.5 Simulation Study

Finally, we investigate the performance of our approach by evaluating its Type 1 error rate and
power. To generate data that most realistically reflects the relationship between coverage and
gene detection in shotgun metagenomics studies, we construct f(·) for use in this simulation by
subsampling short-reads from host-associated E. coli genomes ([1]; see Section 4.2 and Figure 3).
We consider q = 1 and q = 2, and let Mi = 10 + 30 i−1

n−1 , Xi1 = 1, Xi2 = N ( i−1n−1 , σ = σx) and ε = 0.
σx is a parameter that controls the degree of correlation between Mi and Xi2, with larger values
resulting in less correlation between quality variables and the predictor of interest. We simulate
data according to the model described in (1) and (2), with β = (0, 0)T for Type 1 error simulations
and β = (0, β1)

T with β1 6= 0 for power simulations. Note that because Xi1 is continuous, a Fisher’s
exact test cannot be applied in this setting.

The results of Type 1 error rate simulations are shown in Figure 2 (left panels). We only
show results for GLM-Rao because GLM-LRT and GLM-Rao produced highly similar p-values
(mean squared difference 1.3 × 10−5, correlation = 0.99996, nsim = 3000). Notably, the logistic
regression methods are anti-conservative, and do not control Type 1 error rates at nominal levels.
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Figure 2: Simulations can be useful for evaluating the Type 1 and Type 2 error rates of methods for
testing statistical hypotheses. (left) We find that logistic regression methods do not control Type 1 error,
while happi behaves control Type 1 error at nominal levels. (right) We evaluate the power of happi to
reject a false null hypothesis, finding that larger samples have greater power. In situations with greater
correlation between quality variables and the covariate if interest, happi exhibits comparatively lower
power.

For example, for a 5%-level test, Type 1 error rates for GLM-LRT range from 8.6% (n = 30 and
σx = 0.5; 95% CI: 6.1–11.1%) to 31.6% (n = 100 and σx = 0.25; 95% CI: 27.5–35.7%). Stated
differently, under H0, GLM-LRT will return p-values that are usually too small, leading to more
frequent incorrect conclusions of an association. In contrast, happi does control the Type 1 error
rate, behaving near-exactly. We estimate that happi’s Type 1 error rates for a 5% test when n = 30
and σx = 0.5 is 5.2% (95% CI: 3.3–7.2%), and when n = 100 and σx = 0.25, happi’s empirical Type
1 error rate is 6.0% (95% CI: 3.9–8.1%). Greater correlation between the quality variable (coverage)
and the covariate of interest leads to greater anti-conservativeness for logistic regression methods,
which incorrectly attribute differences in gene presence to the covariate of interest. However, happi
appears to control Type 1 error across the range of σx investigated here.

We show the power of happi to correctly reject a null hypothesis at the 5% level in Figure
2 (right panels). We do not evaluate power for GLM-Rao and GLM-LRT because they have
uncontrolled Type 1 error rates, making them invalid tests. We observe that the power of happi

to reject a false null hypothesis increases with the effect size and sample size, but decreases with
greater correlation between Mi and Xi1. Stated differently, happi has low power to detect true
associations between gene presence and covariates of interest when covariates are correlated with
genome quality, though this can be remedied with larger sample sizes.

Taken together, these results show that happi is robust to potential correlation between covari-
ates of interest and genome quality. This is not the case for logistic regression-based methods, which
cannot distinguish between differential gene presence due to genome quality and differential gene
presence due to associations with covariates. No method will perform well under the alternative
with small sample sizes and high correlation (see Figure 2, third panel), but happi has some power
for large sample sizes and large effect sizes in this setting, and controls Type 1 error at nominal
levels regardless of the sample size.

3 Discussion

Many tools exist to study associations between microbial genome variation and microbial or host
phenotypes [4, 6, 11, 18, 27]. Studies investigating the association between microbial genomes and
phenotypes are often referred to as microbial genome-wide association studies (mGWAS) [21, 25].
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Most mGWAS tools have been developed for the analysis of pure microbial isolates, and do not
account for differential genome quality in genomes analyzed collectively. mGWAS tools may be
better-suited when the hypothesized causal direction is that the presence of genetic features gives
rise to a phenotypic characteristic, and not the reverse. In this paper, we propose and validate a
novel method (happi) to understand how non-microbial variation (e.g., environmental variation) is
associated with microbial genome variation. The implied direction of modeling is reversed in our
model compared to mGWAS models: our response variable is gene presence rather than phenotype.
This allows interrogation of questions about factors influencing selection pressures on genomes,
rather than questions about the impact of the microbiome on phenotypic outcomes.

We view the main advantage of happi as its use of data about genome quality factors. To
support the increasing use of shotgun metagenomic data to recover fragmented microbial genomes,
researchers need methods that are capable of analyzing incomplete and imperfect genomes. While
we are not aware of methods for modeling gene enrichment in MAGs, we offer comparisons to
commonly used methods for analyzing near-complete genomes, such as Fisher’s exact test (used
by PanPhlAn3 [2, 26] and Scoary [4]) and logistic regression (used by anvi’o [12, 28]; see also
[3]). In situations where differences in gene detection can be attributed to differences in genome
quality, happi correctly infers that gene enrichment is ambiguous, and correspondingly identifies
associations as less significant compared to competitor methods. However, in situations where
genome quality cannot explain gene detection patterns, happi has greater precision than other
methods and produces smaller p-values. We show via simulation that the advantages of happi are
most pronounced when there is correlation between covariates and quality variables.

Results generated from happi are easily interpretable with reasonable run times on a modern
laptop without parallelization, averaging 1.04 seconds per gene over 713 genes in n = 43 samples
with tmax = 1000 and ∆ = 0.01 on a 2.6 GHz i7 processor with 16 GB RAM. Since genes are treated
independently, this analysis can be trivially parallelized, and furthermore, accuracy in estimation
can be traded off for reduced runtime by reducing tmax or increasing ∆.

We suggest several avenues for further research. The first is to study the impact of experimental
design on the statistical power of our proposed hypothesis testing procedure. Researchers often have
to decide how to allocate budget across number of samples (including replicates and control data)
and sequencing depth per sample. While existing guidelines for sequencing depth have focused on
taxonomy estimation, MAG reconstruction, and gene detection [13, 14, 22, 24, 31, 37], our proposed
modeling approach enables the principled study of the design of shotgun sequencing experiments
to maximize power to detect differences in gene presence across sample groups.

Our latent variable model has possible utility for modeling the presence of amplicon sequence
variants, and could offer a method for studying patterns of sequence variant presence when shotgun
sequencing is infeasible or not preferred. For example, if a sequence variant is observed Wi times
in sample i, then it would be reasonable to model Yi = 1{Wi>0}. This would permit inference
on the equality of the probability that the sequence variant is absent in a sample across sample
groups. Notably, by choosing an ε > 0 (e.g., via the use of negative control samples), happi can
adjust for the impact of index switching in studies that leverage multiplexing [15, 17]. We leave the
application of happi to modeling the presence of amplicon sequence variants to future research.

Collectively, we have shown that happi is accurate and robust, even when genome quality is
correlated with gene presence predictors. As the recovery of metagenome-assembled genomes be-
comes increasingly common, statistical tools that account for errors in recovered genomes become
increasingly necessary. By leveraging genome quality metrics, happi provides sensible and inter-
pretable results in an analysis of metagenome-assembled genome data, improves statistical inference
under simulation, and can run efficiently on a local machine. Finally, by distributing open-source
software in R implementing our proposed estimation and inference methods, we hope that happi
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can be used widely in a variety of genomics research settings. happi is available as an open-source
R package via https://github.com/statdivlab/happi under a BSD-3-Clause license.

4 Methods

4.1 Methods: Saccharibacteria MAGs

The Saccharibacteria MAGs used in Data Analysis: Saccharibacteria MAGs, were taken from
publicly available data [28]. Specifically, data on genome quality metrics (i.e. mean coverage) of
these Saccharibacteria MAGs were retrieved from supplementary materials https://doi.org/10.
6084/m9.figshare.11634321 and information on the presence or absence of COG functions in each
MAG was extracted from the Saccharibacteria pangenome contigs databases and profiles located
at https://doi.org/10.6084/m9.figshare.12217811. Functional annotation of the genes was
performed using NCBI’s Clusters of Orthologous Groups (COG) database [32]. Further details on
sampling, assembly, binning, and refinement can be found in [28]. In our data analysis, we specified
tmax = 1000, ∆ = 0.01 and ε = 0. We set ε = 0 because these MAGs had undergone careful manual
refinement to remove contamination from other genomes. We suggest the use of ε > 0 when binning
is performed automatically and without additional manual refinement.

4.2 Methods: simulation studies

4.2.1 Subsampling study of E. coli isolate DRR102664

To investigate the probability of detecting a gene that it is truly present (Pr(Yi = 1|λi = 1,Mi =
m)), we conducted a subsampling simulation study of an E. coli isolate genome taken from [1].
We selected E. coli isolate DRR102664 to perform our subsampling simulation and the eaeA gene
(K12790) as our target gene of interest. In enteropathogenic Escherichia coli, the eaeA gene pro-
duces a 94-kDa outer membrane protein called intimin which has been shown to be necessary to pro-
duce the attaching-and-effacing lesion. For our subsampling study, we subsampled paired sequences
50 times from the DRR102664 genome at approximate coverages m = (2×, 3×, ..., 24×, 25×). Cov-
erages were estimated using the calculation read count×read length

genome length . We annotated and identified the
eaeA gene in each set of subsampled sequences and calculated the empirical probability of detec-
tion as the fraction of samples of coverage m that detected eaeA. The results of our subsampling
investigation of the impact of coverage on the probability of detection given presence are shown in
Figure 3.

4.2.2 Evaluating estimators for f

Many different choices of functions f could be used to connect the probability of detecting a present
gene to quality variables Mi. We evaluated two options under simulation: f(Mi) ∈ F for F the
class of bounded non-decreasing functions and f(Mi) ∈ I for I the class of bounded non-decreasing
functions. As in Simulation Study, we set Mi = 10 + 30 i−1

n−1 , Xi1 = 1, Xi2 = N ( i−1n−1 , σ = σx),
β0 = 0 and ε = 0. The true f(·) in this simulation is a generalized additive model with binomial
link function [36] fit to the observations shown in Figure 3. This was done to select a true detection
curve that well-reflects empirical probabilities of detecting a gene at a given coverage, such as gene
eaeA in E. coli isolate genome DRR102664. We evaluated all estimators via mean squared error
and median squared error for estimating β1. We investigated all combinations of n ∈ {30, 50, 100},
β1 ∈ {0.5, 1, 2} and σx ∈ {0.25, 0.5}, and performed 250 draws for each combination. For 17 out
of 18 combinations of n, β1 and σx, we found that f ∈ I outperformed f ∈ F with respect to
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Figure 3: We subsampled reads from a publicly available E. coli isolate genome to understand the impact
of coverage on the probability of detecting a gene, finding that the probability of detection increases with
coverage. We use a nonparametric smoother to interpolate this curve and use it as the true function f in
our simulations.

median squared error, with an average reduction in median squared error of 54%. For 18 out of
18 combinations, f ∈ I outperformed f ∈ F with respect to mean squared error, with an average
reduction of 51%. For this reason, we chose to set f ∈ I as the default option happi, and used this
class of functions for both our data analyses and error rate simulations.

4.2.3 Type 1 error and power simulations

For the Type 1 error rate and power simulations shown in Section 2.5, we performed 500 simulations
for each combination of σx, β1 and n. We set a minimum of 16 EM iterations, tmax = 50 and ∆ = 0.1
for both the null and alternative models.
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