
Optimizing Oscillators for Specific Tasks Predicts Preferred Biochemical
Implementations

Chaitra Agrahar1, Michael J Rust2
1Department of Physics, University of Illinois at Chicago, Chicago, IL 60607

2Department of Molecular Genetics and Cell Biology, Department of Physics,
Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637

(Dated: April 25, 2022) 

Oscillatory processes are used throughout cell biology to control time-varying physiology including 
the cell cycle, circadian rhythms, and developmental patterning. It has long been understood that 
free- running oscillations require feedback loops where the activity of one component depends on 
the concentration of another. Oscillator motifs have been classified b y t he p ositive o r negative 
net logic of these loops. However, each feedback loop can be implemented by regulation of either 
the production step or the removal step. These possibilities are not equivalent because of the 
underlying structure of biochemical kinetics. By computationally searching over these possibilities, 
we find that certain molecular implementations are much more l ikely to produce stable oscillations. 
These preferred molecular implementations are found in many natural systems, but not typically in 
artificial o scillators, s uggesting a  d esign p rinciple f or f uture s ynthetic b iology. F inally, we develop 
an approach to oscillator function across different reaction networks by evaluating the biosynthetic 
cost needed to achieve a given phase coherence. This analysis predicts that phase drift is most 
efficiently suppressed by  delayed negative feedback loop architectures that operate without positive 
feedback.

PACS numbers: 47.15.-x

I. INTRODUCTION

While thea literal description of any particular biolog-
ical system necessarily contains a wealth of molecular
detail, a major goal of systems biology is to explain
recurring patterns across similar systems in terms of
minimal mathematical models. This approach has the
advantage of guiding us towards unifying principles
between seemingly disparate biological systems. For ex-
ample, circadian oscillators, in plant [1–5], animals [6–9],
fungi [10, 11], and bacteria [12, 13] use quite different
molecular components, but share the property that they
produce biochemical outputs in a periodic fashion [14].
Basic results from dynamical systems theory indicate
that for these systems to produce free-running oscil-
lations they must contain either a multi-step negative
feedback loop or a positive feedback loop linked with
a negative feedback loop [15, 16]. One approach to
simplifying and classifying networks is therefore to
refer to them by the number and net logic of feedback
loops present. This follows the familiar language of
genetic pathway analysis where interactions are iden-
tified as positive or negative; these simplified networks
are sometimes called topological circuit diagrams [17–19].

However, each abstracted positive or negative interaction
in such a diagram represents an underlying biophysical
mechanism that impacts the rate of production or
removal of the regulated molecule. Concretely, one

molecule can negatively influence another by either
repressing its synthesis (e.g. acting as a transcrip-
tional repressor) or by stimulating its degradation (e.g.
post-translationally modifying a protein to promote its
proteolysis). While many possible molecular mechanisms
can be envisioned for biochemical oscillators, certain
interactions may be found more frequently in natural
systems. From the perspective of an evolving system
undergoing random mutation, certain mechanisms may
be preferred because they are more likely to produce a
desired outcome for randomly chosen parameters, and
perhaps more easily found by evolution. Here, we pursue
a strategy to compare all possible combinatorial regu-
latory implementations of a given topological diagram
(Fig. 1). We use a Monte Carlo approach to sample
the molecular constants over a biophysically plausible
range of to values to estimate the relative probability
of obtaining stable oscillations in the deterministic
limit. Later, we introduce an objective function, phase
coherence achieved per biosynthetic cost, that allows us
to compare the efficiency of suppressing stochastic phase
drift across different systems.

Although alternative regulatory mechanisms have a sim-
ilar qualitative effect on the steady state, they have dis-
tinct dynamical effects. Fig. 1 shows that there are pre-
ferred architectures which have a much higher likelihood
of supporting stable limit cycles compared to others, im-
plying that regulatory implementations are more predic-
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tive when the criterion of evaluation is the probability of
obtaining sustained oscillations.
The importance of considering the regulatory mechanism
that implements a feedback loop follows from the basic
structure of mass-action kinetics where the net rate of
change is a sum of production and removal. Consider a
differential equation describing production and removal
of a gene product X at constant rates, represented by two
opposing terms:

dX

dt
= α− βX
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FIG. 1: Alternative regulatory implementations of
positive and negative interactions are inequivalent in
genetic oscillator motifs. We start from the traditional ab-
stract topological description of a positive-negative oscillator
motif, and consider all possible regulatory implementations of
it. Biological oscillators like the cell cycle with Cyclin-Cdk1
and APC/C as the core components [20] use a different regula-
tory implementation than synthetic oscillators, like the Hasty
Oscillator, with AraC and LacI as core oscillator components
[21]. We then compare the relative probability of obtaining
stable oscillations using both numerical search and analytical
approaches. We compare across systems by evaluating the
biosynthetic cost needed to achieve a given phase coherence
in the presence of stochasticity.

Regulation can be treated in this model by making α

and β non-constant functions of the concentrations of
other molecules in the cell, perhaps including X itself.
The two terms in this equation are not equivalent for
two key reasons. The first is that the basic terms have

different kinetic orders in X (one is proportional to X
and one is not). The second is that, while a regulated
production rate can become arbitrarily small, reflecting
tight repression of gene expression, the removal rate
constant cannot become smaller than the doubling time
of the cell because molecules are diluted by growth.

The general topological description of the systems shown
in Fig. 1 is that of a positive-negative oscillator with
positive auto-regulation of X, and positive regulation of
Y by X, and negative regulation of X by Y. The Hasty
oscillator, designed using E. coli transcription factors
AraC, and LacI, is engineered to have the regulatory
implementation as shown in Fig. 1.

The cell-cycle, which is a naturally occurring oscillator
has a distinct regulatory implementation compared to
the synthetic oscillator, although they share a similar
topology. A simplified version of the cell-cycle oscil-
lator is shown in Fig. 1, with two main components:
the Cyclin-Cdk1 complex, which stimulates both its
own production, and the production of the Anaphase
Promoting Complex (APC/C) through Stimulation
of Production, hereafter SoP. Cyclin is a cell cycle
regulator protein, which binds the Cyclin dependent
kinases to activate them and drive the cell cycle forward.
The APC/C in turn ubiquitinates the previously active
Cyclin-Cdk1 complex leading to degradation of Cyclin
B. That is, the negative APC/C arm of the oscillator
acts negatively through Stimulation of Degradation, or
SoD.

Fig. 1 illustrates the approaches used to determine the
regulatory mechanism which maximizes the likelihood of
oscillations in the deterministic and the stochastic limit.
To statistically analyze the properties of reaction net-
works within this scheme, we randomly sample parame-
ters according to the following rules:

i) the unregulated production reactions are zeroth or-
der, and the unregulated degradation reactions are
first order in the gene product.

ii) positive and negative regulation are modeled so
that the unregulated rate constants for production
or degradation become functions of the concentra-
tion of other molecules. We assume that the regula-
tory interactions are monophasic, so the modifying
functions are monotonic.

iii) There are unregulated basal production (α0) and
degradation (β0) rates. Modifying functions act
on non-basal production (α) and degradation (β)

rates.
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iv) the modifying functions which act to enhance the
rate constants in the numerical simulations have a
Hill function form, given by f(X) = Xn

Kn+Xn . The
modifying function which suppresses the rate con-
stants have the form g(X) = Kn

Kn+Xn , where K is
the affinity parameter, and n is the Hill coefficient,
such that n > 0 indicates co-operativity between
molecules.

v) when two regulatory functions act on the same step,
they are treated additively, following the treatment
described in [22].

vi) the regulation of production can be tight, i.e. ex-
pression of a gene may be completely dependent
on a given transcription factor, meaning basal pro-
duction rates can go to zero. However, basal degra-
dation rates can never be zero due to the dilution
factor introduced by the growth of cells. So, basal
degradation rate β0 > kgrowth.

vii) both production and degradation rates have up-
per bounds reflecting the finite time taken for the
production or degradation of a macromolecule, i.e.
β < kdegmax and 0α < kprodmax .

System Parameter Ranges Used
α0, β0

[
10−3, 10−2

]
µM min−1, min−1

α, β
[
10−3, 102

]
µM min−1, min−1

K
[
10−3, 102

]
µM

n [1, 4]

TABLE I: Experimentally motivated distributions of param-
eter from which the function parameters are drawn [17], [23]-
[24].

The results are organized as follows: We consider all
possible combinatorial regulatory implementations of a
topological diagram in the deterministic limit. By Monte
Carlo sampling the molecular constants underlying a
given regulatory mechanism, we quantitatively evaluate
system function for a given objective function. We
mainly focus on two 2-node systems, and one 3-node
system (topological diagrams with 2 or 3 interacting
genes or gene products), though the approach can be
easily generalized to larger systems.

We then present a study of the loop oscillator and the
positive-negative oscillator motifs in the stochastic limit.
We show that the phase coherence in the stochastic limit
can be estimated through the deterministic arclength
in the phase-space of the oscillating components. We
outline the role of symmetry in determining the upper
bound for phase-coherence of oscillations at a given
deterministic orbit arclength. We develop a metric for

comparing oscillatory circuits of different architecture
by determining the protein synthesis cost required to
achieve a given phase coherence.

Finally, we discuss relevant examples from biological sys-
tems and demonstrate the application of our predictions.
We also consider the differences in the design of biological
oscillators and synthetic oscillators to understand how to
design synthetic oscillators with higher phase coherence
of oscillations. We extend our analysis of loop oscilla-
tors to networks of post-transcriptional loop oscillators
in Appendix B3.

II. RESULTS

Positive-Negative Feedback Oscillators

Many oscillators contain interlocking positive and
negative feedback loops. That is, components of the
oscillator act in two ways: they promote their own
activity through one pathway while ultimately leading
to inhibition of their activity through another path-
way. Many oscillators contain interlocking positive
and negative feedback loops. That is, a component
of the oscillator act in two ways: it promotes its own
activity through one pathway while ultimately leading
to its inhibition through another pathway. A minimal
version of this system consists of two components: a
self-activating positive element, and a negative element
which participates in a negative feedback loop (Fig. 1).
We implement the positive regulation in two distinct
ways: i) Stimulation of the Production reaction (SoP),
Repression of the Degradation reaction (RoD). The
negative regulation is implemented in two distinct
ways: through the Stimulation of Degradation (SoD), or
through the Repression of Production (RoP).

Applying the principles listed in the Introduction, we
show that this result can be understood intuitively in
terms of a phase plane analysis. When the positive
element acts much faster than the negative element,
conditions for oscillation can be seen graphically using
phase plane analysis. Below we work in this separation
of timescales limit—we will conclude that regions of
the phase plane become comparatively inaccessible for
certain regulatory schemes.

We first analyze the self-regulation of X and the posi-
tive regulation of Y by X. To predict the implementa-
tions which maximize the probability of obtaining stable
limit cycles, we ultimately combine the constraints on
the each individual regulatory step. For the positive el-
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FIG. 2: Stimulation of Production (SoP) is the preferred implementation for the positive self-loop. α0, and β0

are the basal unregulated production and degradation rates. A) Illustrates the X and Y nullclines. To obtain stable limit
cycles, the X and Y nullclines must cross in the switchback region of the X nullcline (thick teal part of the X Nullcline). The
grey curve indicates the limit cycle, and the arrows denote the vector field flow. B) The highlighted positive autoregulatory
interaction of X (dashed box) is implemented through SoP. C) The positive autoregulation of X is implemented through SoP.
D) The positive autoregulation of X is implemented through RoD. E) Region of bistability supported when positive
autoregulation of X is implemented through SoP is large. When α0 is negligible, a stable fixed point near zero exists for any
value of α. Similarly,The fixed point at zero is always stable, as is the fixed point at high values of X is stable (filled circles).
However, the intermediate fixed point is unstable (open circles). The bistability of SoP is robust to changes in production
(teal line) and degradation rates (yellow line). F) The region of bistability supported when positive autoregulation of X is
implemented through RoD is comparitively small.

ement (X), a necessary condition for oscillation is that
this nullcline has local extrema, and the nullcline for the
negative element (Y) must cross in the switchback re-
gion between them (Fig. 2A). This nullcline structure
implies that there is a range of Y values where, if Y were
held constant, the self-activation of X must give bistable
dynamics.

Positive self-regulation by X: As bistable dynamics
of X, for fixed Y are required to obtain stable limit
cycles, we start by asking which implementation of
self-activation is more likely to give a large region of
bistability, for X (Fig. 2B). The SoP implementation
where a monotonically increasing function f(X) reg-
ulates the production rate α (Fig. 2C), is logically
compared to the RoD implementation where a monoton-
ically decreasing function g(X) regulates the production
rate β (Fig. 2D). The stimulatory function f(X) can
go to zero, meaning regulation is tight. However, there
is a maximum production rate kprodmax , which bounds

f(X) above. The repressive function g(X) cannot be
lower than the minimum degradation rate β0, which
is the dilution factor due to cell growth kgrowth. The
maximum degradation rate β, bounds g(X) above.

By varying the production and degradation rates, and
the parameters of the regulatory functions through ran-
dom sampling, we conclude that SoP implementation of
the positive self-regulation by X leads to a larger region
of bistability on average (Figs. 2E and F). In figs. 2E and
2F, the fixed point at small values of X is always stable,
as is the fixed point at high values of X (filled circles).
However, the intermediate fixed point is unstable (open
circles). The bistable dynamics of SoP exists though a
larger range of variations in the production (teal line)
and degradation rates (yellow line), and the parameters
of the regulatory functions. The bistability of RoD is
conditional on the value of the Hill co-efficient such that
n
4 > β0

β + 1
2 , and tolerates a much smaller range of vari-
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FIG. 3: SoP is the optimal implementation of the positive regulation if Y by X. A) Limit cycles are obtained
when the Y nullcline crosses the X nullcline in the switchback region (between points A and B). The probability of obtaining
limit cycles can be estimated through geometrical parametrization of the nullclines. To maximize the likelihood of obtaining
limit cycles, the switchback region of the X nullcline, x2, and the slope of the linearized region of the Y nullcline, θ both
should be maximized, along with other geometrical constraints are described in the Supplement (SI.9). B) shows the
distribution of the x2 and θ values for 10,000 random parameter sets, each implemented in the two different ways described in
C) and E). C) and E) show the analytical expressions for the Y nullclines, as implemented through SoP and RoD,
respectively. Shaded regions of the graphs indicate the possible Y nullclines, which can produce stable limit cycles in D) and
F). Stimulation of Production (SoP) is the preferred implementation for the positive regulation of Y, compared to the
Repression of Degradation (RoD) implementation, as illustrated by the shaded regions in D) and F).
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ations in production and degradation rates, and other
system parameters.
Analysis of X Nullclines: A Mote Carlo search
through the parameter space described in Table 1, for
all possible regulatory implementations of a topological
diagram reveals that numerically one implementation
vastly outperforms every other implementation in terms
of maximizing the probability of supporting stable limit
cycles (Fig. 1, and see below). There is one preferred
implementation which maximizes the probability of ob-
taining stable limit cycles. A mechanistic understanding
of this result can be obtained through a geometrical
analysis of how nullclines interact in the phase space.

In the limit where the X dynamics are faster than the
Y dynamics, i.e. |dXdt | ≫ |dYdt |, a necessary condition for
oscillation is that the X nullcline has local extrema, and
the Y nullcline crosses only in the switchback region,
described in Fig. 3A. To predict which regulatory
implementation maximizes the probability of a nullcline
crossing only in the switchback region, we study the
geometry of both the X and Y nullclines.

The optimal geometry for X nullclines can be determined
through four parameters. The most predictive of the
four parameters, is the width of the switchback region
of the X nullcline, x2, shown in Fig. 3A. Maximizing
x2 increases the region available for the crossing of
the Y nullcline within the switchback region, thereby
increasing the probability of obtaining stable limit cycles.

Analysis of Y Nullclines: The geometry of the Y
nullcline can also be characterized by four geometrical
parameters. The most predictive of these is the slope of
the linearized region of the Y nullcline θ, shown in Fig.
3A. To obtain stable limit cycles, θ should not be too
small, or the Y nullcline will be below the X Nullcline,
and cross it outside the switchback region, after the
second local extremum. On the other hand, θ cannot be
too large, as it will lead the Y nullcline to be too steep,
and cross the X-nullcline to the left of the switchback
region, before the first local extremum.

Thus, the regulatory implementation which maximizes
the likelihood of the Y nullcline crossing the X Nullcline
within the switchback region is one which puts θ in the
range described in Equation Box 1.

Crossing of X and Y Nullclines: In addition to hav-
ing in the right range of values, it is necessary to have
constraints on the geometry of the Y nullclines such that
the crossing with the X nullcline occurs in the switchback
region, and not outside of it. This includes constraints

on the minimum and maximum points at which the Y
nullcline can begin to rise, and where it plateaus. θ, and
three other parameters characterize the geometry of the
Y nullcline. The geometrical constraints on these pa-
rameters, and their combined effects on the geometry of
the Y nullcline, and the crossing between the X and Y
nullclines are discussed in Appendices B-E, and in SI 2.
We show numerically, and through analytical means that
the SoP implementation of the positive regulation of Y
by X increases the probability of a stable limit cycles.
Numerically, as can be seen in Fig. 3B, median x2 values
in the SoP scheme can be 3 orders of magnitude higher
than the median x2 values for the RoD implementation
of the interaction.

Analytically, as shown in Fig. 3C, we see that the Y
nullcline is proportional to the regulatory function de-
scribing X stimulating production of Y. By the principle
that regulation can be tight, this structure implies that
the Y nullcline can access the biochemical zero, which
implies a tight regulation of the production rate. Fig.
3D illustrates cases where the Y nullcline can access
the biochemical zero. This feature of the regulatory
implementation enables enables the nullclines to enter
a wider region of the phase-space, and increases the
likelihood of obtaining stable limit cycles.

In contrast, we can see in Fig. 3E, that the repressive
regulatory function acting on the degradation rate is
in the denominator of the Y nullcline. For a growing
cell, this establishes a lower bound of α0

kgrowth
for the

region of phase-space accessible to the Y nullclines in
the RoD implementation. Fig. 3F illustrates the region
of phase-space that is inaccessible due to the lower
bound established by the growth rate of cells. As the Y
nullclines are constrained to a value above α0

kgrowth
, for

the X and Y nullclines to cross in the switchback region,
the slope of the linearized region must be smaller on
average, compared to the SoP implementation. However,
this also implies that the region of crossing becomes
smaller, as shown in Fig. 3F, and leading to a smaller
probability of obtaining stable limit cycles.

In addition to increasing the width of the switchback re-
gion of the X nullcline, it is also necessary to have con-
straints on the geometry of the nullclines such that the
crossing of the X and Y nullclines occurs only in the
switchback region. The geometrical constraints on these
parameters, and their combined effects on the geometry
of the X Nullcline, and the crossing between the X and
Y nullclines are discussed in Supplementary Figure SI. 2.
The principles laid out in the Introduction help us pre-
dict the optimal implementation for two node systems
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Equation Box 1: Ranges of slopes of linearized Y nullclines that allow for stable limit cycles

The range of slopes for the Y nullclines using Table 1. SoP:

SlopeSoP =
α

β0

n

4K

Range of possible slopes:[10−1, 105]
n

4K

RoD: If n = 4,

SlopeRoD =
α0β

(β0 + 1.5β)

n

4K

Range of possible slopes:[10−4, 400]
n

4K

For details of the calculations of slope, see Meth-
ods M6 .

Stable limit cycles occur when the Y nullclines cross the X nullcline in the switchback region, denoted by x2.
However, merely increasing the switchback region does not necessarily increase the probability of obtaining
stable limit cycles if the geometry of the nullclines are incommensurate with a crossing in the switchback
region. This is because the geometrical constraints on both the shape of the nullclines, and the geometrical
constraints on the crossing which determine the probabilities rather than just one of the two factors. To obtain
stable limit cycles, the Y nullclines must cross within the rectangle determined by x2 and ∆y. This implies
that the linearized slope of the Y nullclines must fall in the range of values between θmin and θmax.

analytically (Appendix Supplementary Methods).

Dual Regulation is the optimal implementation of a
single-input negative interaction

The negative loop of the positive-negative oscillator mo-
tif can be structured in two different ways: one where the
node X receives two inputs with contradictory logic (In-
coherent Input system, inset Fig. 4A), and one where the
node X receives two inputs with similar logic (Coherent
Input system, inset Fig. 4B) [17].
Up to this point we have considered mechanisms where
a molecule only regulates one of the reactions. We now
consider the possibility that both reaction steps may be
regulated, which we term “dual regulation”. We treat
each arm of the dual regulation independently, meaning,
the affinity parameters for each step of the regulation are
chosen independently from the distribution in Table 1.
Combinatorically, each interaction of the topological di-
agram can be implemented molecularly in three different
ways, leading to 27 distinct regulatory implementations.
Numerically simulating all possible implementations
of the positive-negative oscillator motif, we find that
one implementation has a much higher probability of
supporting stable limit cycles compared to all others
(Figs. 4A-B).

For incoherent input systems described in Fig. 4A, the
preferred implementation is through stimulation reac-
tions. Namely, the positive interactions are implemented
as the stimulation of production, and the negative inter-
action is implemented as the stimulation of degradation.
For coherent input systems to have a similar likelihood
of obtaining stable limit cycles, the positive interactions
are implemented through stimulation of production.
However, the negative interaction implemented as a dual
regulation, acting on both production and degradation
steps maximizes the probability of sustained oscillations.

Previous work has shown that incoherent input systems
enhance the likelihood of obtaining stable oscillations,
compared to coherent input systems [17]. However, these
analyses all made the apriori choice to implement all in-
teractions through stimulation mechanisms. We see here
that allowing repression mechanisms in the negative feed-
back arm drastically increases the probability of oscil-
lation for the coherent topology. In particular, if the
negative interaction in the coherent input system is im-
plemented through dual regulation (Fig. 4B), the prob-
ability of obtaining stable limit cycles is comparable to
the best implementation of the incoherent input system
(Fig. 4A).
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FIG. 4: The likelihood of robust oscillations depends strongly on the regulatory implementation. A)
Incoherent input system topology (top inset). The bar chart quantifies the robustness responses of each of the 27 distinct
implementations of the incoherent input topology. Each implementation results in a different robustness response of the
oscillator topology, of which the top three most robust implementations are shown here. B) Coherent input system topology
(top inset). The bar chart quantifies the robustness responses of each of the 27 distinct implementations of the coherent input
topology. Each implementation results in a different robustness response of the oscillator topology, of which the top three
most robust implementations are shown here. We compare the bar charts in A) and B) to conclude that coherent and
incoherent input systems have comparable robustness when each is implemented with the optimal mechanism, as shown in
the insets in the above panels.

Loop Oscillators

While positive-negative motifs are one way to achieve
oscillations, it is also possible to create oscillating
biochemical circuits with multistep negative feedback
loops that do not utilize positive feedback. A histori-
cally important model of a biological oscillator is the
Goodwin model, a negative feedback-only loop, where
the high degree of cooperativity in the final negative
interaction provided the necessary non-linearity to
achieve oscillations [25]. The repressilator motif (Fig.
5A (i)), created synthetically by Elowitz and Leibler [26]
distributes the non-linearity over multiple steps, and
can thus generate oscillations with a smaller degree of
cooperativity in any individual step. In the repressilator
loop, each component is a transcription factor that
inhibits expression of the next element in the loop.
Thus, negative logical interactions are achieved through
repression of production (RoP).

Following the same methodology used above to scan over
regulatory interactions, we consider a simplified version
of the repressilator, without explicitly modeling the tran-
scription process. A simplified mathematical description
of one of the genes of the repressilator circuit can be
written as:

dX

dt
= αg(Z)− βX (II.4)

where g is the repressive regulatory function defined in

the Introduction. However, we can also model the nega-
tive interaction as Z stimulating the degradation rates of
X. In this case the dynamics of X can be written as:

dX

dt
= α− βf(Z)X (II.5)

where f is the stimulatory regulatory function, described
in the Introduction.

Each of the two implementations of the repressilator
discussed above achieve negative regulation by acting on
different reaction steps. The negative feedback can be
implemented through the repression of the production
step (RoP), or through the stimulation of the degrada-
tion step (SoD), or through Dual Regulation. The three
implementations of the Repressilator motif are shown in
Figs. 5A ii (1-3).

For each implementation of the loop shown in Fig. 5A,
we quantify the fraction of parameter sets randomly
drawn from the distributions in Table 1 which give
stable limit cycle oscillations. Fig. 5B compares the
numerical outcomes in each case. Notably, while RoP is
preferred compared to SoD, Dual Regulation, where each
component can regulate both production and removal
is markedly superior. Implementation of the negative
interaction through dual regulation is five times more
likely to give oscillations than other implementations
of the negative interaction. This result is commensu-
rate with our finding in Fig. 4B, which shows that
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Ø
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XØ

Z
Ø

Y Ø

XØ
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Ø

i)

ii)

1. 2. 3.

FIG. 5: Dual regulation is the optimal implementation of negative regulation when a node receives only one
negative input. A) The repressilator motif (i) is implemented in three different ways, through (ii) 1. the Stimulation of
Degradation (SoD), 2. the Repression of Production (RoP), and 3. Dual Regulation. B) The bar chart shows the fraction of
parameter sets that give stable limit cycles when parameters are drawn randomly from distributions of the reaction rates of
the repressilator motif. C) Phase diagram, with n = 3, depicts the region of stability of a dual regulated repressilator,
non-dimensionalized such that the κ → 0 limit recovers the regulation through repression of production limit. Square brackets
in panels indicate the biologically plausible region for a growing E. coli cell, from which the parameter sets are drawn to
arrive at the bar chart in panel B). The mathematical implementation of the non-dimensionalization which gives the phase
diagram in C) is also presented.

in coherent input systems, at the node Y which re-
ceives a single negative input, Dual Regulation enhances
the probability of obtaining stable limit cycle oscillations.

We confirm numerically and analytically, that Dual Reg-
ulation enhancing the likelihood of obtaining stable limit
cycles is not an artefact of a specific choice of parameter
distribution or the particular form of the Hill function
used to model regulation. Analytically, for symmetric

systems, where the rate constants associated with the
three dynamical variables are identical, we derive the con-
dition for oscillations through the Jacobian, and verify
that the condition for oscillations for the Dual regulated
system is more likely to be satisfied, as it constructively
combines the conditions for each of the two single regu-
lations. This is described in more detail in Equation Box
2. Numerically, we consider two non-dimensionalization
schemes, which have the property that we obtain one of
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Equation Box 2: We compare the conditions for oscillations for the three implementations of the repressilator
system. Linear stability analysis gives us the condition for oscillations when the negative loop is implemented
through the repression of the production reaction:

g′(X∗) <
−2β

α
(II.1)

where g′(X∗) is the slope of the repressive regulatory function g at the fixed point X∗, α is the production
rate, and β is the degradation rate.

The condition for oscillations when the repressilator loop is implemented through the stimulation of the degra-
dation reaction is:

f ′(X∗) >
2f(X∗)

X∗ (II.2)

where f ′(X∗) is the slope of the stimulatory regulatory function f at the fixed point X∗.

The reason that RoP is more likely to give oscillations
can be understood through a scaling argument. If
the fixed point X∗ is rescaled by a scalar λ such that
X∗ → λX∗, then g′(λX∗) → λg′(X∗), which rescales
the above equation. So, if one set of parameters do
not satisfy the condition initially, a rescaling factor λ

can be found such that Eqn. 1.1 is satisfied, assuming
the position of the fixed point is set by the scale of g(X).

However, such a rescaling factor scales both sides of
Eqn. 1.2. Thus, the probability of obtaining stable
limit cycles is higher for RoP implementation compared
to the SoD implementation.

The condition for oscillations for dual regulation of the repressilator is:

−2βf(X∗)− αg′(X∗) + βf ′(X∗)X∗ > 0 (II.3)

For most parameter sets, we can find a rescaling factor λ such that parameters satisfying (1.1) or (1.2) also
satisfy Eq (1.3), making dual regulation the easiest way to obtain oscillations.

the two single regulation limits as we tune a system pa-
rameter κ (Fig. 5C) to zero. One such scheme, where we
recover the single regulation mechanism where the nega-
tive regulation is achieved through the repression of the
production step, is shown in Fig. 5C.

The phase-diagram showing the regions of parameter
space that support oscillations is shown in Fig. 5C. For
each randomly drawn parameter set, we calculate the
Jacobian, and verify whether that parameter set satisfies
the condition for oscillation or not.

We see that the regions of phase-diagram that support
oscillations expand as we increase κ. As we approach
the Dual Regulation regime, the probability of obtain-
ing stable limit cycles increases. Dual Regulation also
performs progressively better as we increase the value of
the parameter κ, in the case where κ → 0 limit recovers
the single regulation where negative interaction is imple-
mented through Stimulation of Degradation (see SI 6).
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Regulatory implementations in biological and
synthetic oscillators

To contextualize our numerical and analytical results for
positive-negative oscillators, and loop oscillators, we con-
sider multiple biological and synthetic oscillators which
have been characterized experimentally. We sketch out
the regulatory mechanisms of the interactions that have
been discovered experimentally. Biological oscillators
that may be used to generate precise timing likely
require a high degree of phase-coherence and tend to
utilize the incoherent input system topology, and its pre-
ferred implementation, XX: SoP, XY: SoP, and YX: SoD.

Synthetic oscillator systems are typically built such that
the regulations are all on the production step. This is
presumably because it is experimentally easier to engi-
neer circuits by introducing transcription factor binding
sites to stimulate or repress production reactions using a
cognate transcription factor in the circuit. However, our
results show that implementing the negative regulation
through the stimulation of the degradation will lead
to a higher probability of sustained oscillations in an
incoherent input system.

In the following discussion, we present simplified ar-
chitectures for some natural biological oscillators, and
suggest regulatory implementations for enhancing the
operational range of synthetic oscillators. For natural
systems where the molecular architecture appears to
deviate from the optimal designs described here, our
results may motivate a search for previously undescribed
regulatory interactions. This is particularly the case
for dual regulation (both production and removal are
regulated) which has the potential to markedly enhance
oscillator function and may have been missed in previous
experimental studies.

Many biological oscillators like the mammalian circa-
dian oscillator, the cell cycle, etc. when represented in
their simplest forms, share the incoherent input positive-
negative system topology [2], [27]. Here we observe that
the implementation of this regulatory logic is also shared
across many natural systems. Specifically, a positive ele-
ment that stimulates its own production, and a negative
element that stimulates the removal or degradation of the
positive element.
The mammalian circadian oscillator: The mam-
malian circadian clock is complex, and involves multiple
components that make it tick. We consider a simple
model based on previous work, where the mammalian
circadian oscillator is modelled as being composed of
four genes, or their protein products, namely Clock,

Bmal1, Cry and Per [27]. The circadian oscillator
functions through two complexes of heterodimers formed
out of these four proteins: the BMAL1-CLK complex,
and the PER-CRY complex.

The mammalian circadian oscillator consists of positive
and negative feedback arms which function together to
give stable 24 hour oscillations. BMAL1 and CLOCK
proteins form a heterodimer, which then binds to the
E-box promoters of PER and CRY genes, and activate
their transcription [27], through SoP.

Per and Cry proteins, in turn form a heterodimer
complex, and translocate into the nucleus. An increased
concentration of CRY in the nucleus results in a binding
of CRY to the BMAL1-CLK-E-box complex, inhibiting
the activity of BMAL1-CLK complex [27] - [30] through
SoD. Notably, the PER/CRY complex does not direct
act to repress transcription. Rather, PER/CRY con-
verts BMAL1-CLK into an inactive form. Although
this reaction does not destroy BMAL1-CLK, the rate
of transforming active BMAL1-CLK into an inactive
complex depends on CRY, making the kinetic equations
equivalent to SoD.

Finally, an increased concentration of PER in the
nucleus dissociates the BMAL1-CLK complex, and
induces the transcription of BMAL1 by repressing the
NRd1 factors, which inhibit BMAL1 transcription [31],
[30], and positively autoregulating through SoP.

The regulatory implementations utilized in the mam-
malian oscillator is the most robust implementation of
the positive-negative incoherent input system. Similarly,
the cell cycle, and the pulsatile actomyosin contractility
in C. elegans all implement the interactions in their
shared topology through the implementation that maxi-
mizes the likelihood of obtaining stable limit cycles for
the incoherent input system topology, as shown in Fig.
1A [20], [27], [29], [32].

Synthetic Oscillators: Synthetic oscillators have
been built for various purposes – repressilator [26],
ComK-MecA (SynEx) oscillator [29], Hasty Oscillator
[21] etc. The common element among the synthetic
oscillators is that the regulatory implementations of the
logic is achieved by altering the gene expression levels
using transcriptional promoters. Positive regulations are
implemented via the stimulation of gene expression, and
negative regulations are implemented via the repression
of gene expression.

While oscillations can be achieved this way, our results
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Biological Oscillators
Topological Diagrams Mechanistic Diagrams

BMAL1
  -CLK

PER
-CRY

CyclinB
  -Cdk1 APC/C

BMAL1
 -CLK

PER
-CRY

Ø

Ø

REV-ERBα

RORα

Rho RGA
RhoA-GDP RhoA-GTP

RGA-3/4Ø

APC/C

CyclinB
-Cdk1Ø

Ø
Wee1

Cdc25

FIG. 6: Table 2a: Models of biological
oscillators in literature for the mammalian clock
[27], for the cell cycle oscillator18, and for the
rho-rga system in C. Elegans [28] are depicted in
Column I. Column II illustrates the mechanisms
through which the interactions occur.

Synthetic Oscillators

Topological Diagrams Current Mechanisms Proposed Mechanisms

λ cl

LacITetR
LacI Ø

λ clØ

Ø
TetR Ø

Ø λ cl

TetR

Ø
LacI

AraC LacI

ComK MecA
ComK

MecA

Ø

Ø

ComK

MecA

Ø

Ø

AraC

LacI

Ø
Ø

AraC

LacI

Ø
Ø

FIG. 7: Table 2b: Examples of synthetic oscillator systems. Column I
shows the topologies of some synthetic oscillator systems. Column II
depicts the regulatory mechanisms as they are currently implemented
experimentally [26],[21],[29]. Column III illustrates the proposed optimal
regulatory implementations for the topologies in Column II.

indicate that the probability of obtaining stable limit
cycles will increase in an incoherent input architecture
when positive regulations are implemented through stim-
ulation of production steps, and negative interactions
are implemented by targeting the degradation machinery.

An example demonstrating this is readily found in
[29], where the authors re-engineered the ComK-ComS
system bypassing the pathway of ComS inhibiting the
degradation of ComK by MecA. The resulting “SynEx”
circuit has incoherent input logic, and is implemented
through the preferred regulatory mechanisms identified
here. Experimentally, this change in the circuit from
a non-preferred implementation of the coherent input
system to the preferred implementation of the incoherent
input system results in its loss of variability compared
to the native competence circuit with ComK and ComS.

This leads us to hypothesize that the biological function
influences both the choice of topology and regulatory im-
plementation, as the native ComK - ComS circuit likely
benefits from variability, functioning to produce popula-
tion heterogeneity in response to stress [29]. To further
demonstrate this hypothesis, we now introduce stochas-
ticity into the analysis.

Oscillator Motifs in the Stochastic Limit

So far, we have studied oscillator dynamics in the de-
terministic limit, and we have evaluated circuit function
based on the probability of obtaining stable oscillations.
This corresponds to the biological limit of having in-
finitely many copy numbers of the proteins that form the
biochemical circuits. If Ω denotes the system size, where
we imagine scaling up the size of the cell and gene copy
number together, then limΩ → ∞ is the deterministic
limit where all effects can be described in terms of
continuous concentrations. When Ω is finite, stochastic
effects become noticeable. Cells have finite volume and
thus biochemical systems in the cell are composed of
finitely many proteins. This may be especially important
for bacteria where a protein present at a concentration
of 1 nM corresponds to approximately one protein copy
in a typical E. coli cell. An alternative design criterion
for oscillators is therefore their resistance to stochastic
noise. Here we develop an approach to compare noise
resistance across oscillator architectures.

We study the different regulatory implementations of
the repressilator motif and the positive-negative oscilla-
tor motif in the stochastic limit. We use the Gillespie
stochastic algorithm to compute the time series of the
stochastic oscillator dynamics. Fig. 6A shows determin-
istic (bold line) and stochastic trajectories (thin lines)
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FIG. 8: Loop oscillators optimize the trade-off between biosynthetic cost and phase-coherence of oscillations.
A) Deterministic (bold lines) and stochastic (thin lines) simulations of the most robust implementation of the i) incoherent
input positive-negative oscillator time series, and ii) the repressilator motif with negative interaction implemented through
RoP, in a symmetric system time series. Phase space orbits of iii) the incoherent input system, and iv) the repressilator. B)
Relationship between the deterministic arclength (L) of the phase-space orbit, and the stochastic phase coherence for the i)
incoherent input system, and ii) the repressilator. The vertical axis represents the error in phase incurred in one oscillation
cycle. Symmetric parameter sets (teal dots), (i.e. repressilators with the same rate parameters for all dynamical variables)
saturate the upper bound for phase coherence values at a given deterministic arclength and protein copy number.
Asymmetric parameter sets (yellow dots) generally do not saturate the phase-coherence-deterministic arclength relationship.
To compare the performance of different topologies and regulatory implementations of those topologies, we define the
parameter-free metric of the biosynthetic cost per cycle needed to achieve a certain phase coherence value of oscillations. C)
Illustrates the notion of biosynthetic cost per cycle of oscillation, at a given copy number, . This is the integral of the
production rate over the period of oscillation. D) The biosynthetic cost per cycle needed to achieve different values of
phase-coherence for the three loop oscillator implementations, and the most robust implementations of the coherent and
incoherent input system topologies. The square dots represent the cost per cycle for different values of , as obtained through
an iterative process towards reaching a value of phase coherence equal to 0.7. Each square marker represents the median
value of phase-coherence and biosynthetic cost for 130 sets of parameters. We see that the loop oscillator systems achieve
higher phase coherence values at lower costs when compared to positive-negative oscillator systems.

for the incoherent input system (Fig. 6A (i)), and the
RoP Repressilator system (Fig. 6A (ii)). In the stochas-
tic limit, one measure of performance for an oscillator
is the phase-coherence of stochastic oscillations. We de-
fine phase-coherence as the height of the first non-unity
peak of the autocorrelation function of the stochastic
time series. Fig. 6B shows the deterministic and stochas-
tic phase-space orbits. The procedure used to calculate
the phase-coherence of oscillations is described in Sup-
plement Methods M2.

We consider the repressilator motif, which has a sym-

metric topology, with cyclic repression of the genes in
the loop. The fully symmetric version of this system
has the same biochemical parameters for all the genes in
the loop.. We also consider asymmetric parameter sets
within the repressilator motif, which retain a symmetric
topology, but have asymmetric interaction strengths.
Both the symmetric and the asymmetric realizations
of the repressilator are implemented in the three ways
discussed in the section on loop oscillators.

Fig. 6B shows a relationship between the length of the
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deterministic phase-space orbit, and the error incurred
over one cycle of oscillation. This is consistent with the
intuition that oscillations with a larger deterministic
orbit (higher amplitude) will comprise more elementary
reaction steps in the stochastic limit; fluctuations in
the time to complete the orbit can be suppressed by
averaging over more steps.

Numerically, we observe that there is a lower bound on
the error incurred over a cycle of oscillation, which is
set by symmetric systems. For systems and parameters
where velocity around the orbit is constant, this relation-
ship between the deterministic arclength and the phase-
coherence value can be a good estimate for the stochas-
tic behavior of the system. Thus, negative feedback-only
loop oscillators perform optimally when timescale and in-
teraction strength is matched across all the components

Biosynthetic Expenditure - Phase-Coherence
Trade-off

Our analysis of different regulatory implementations
relied on a comparison of the relative probability of
obtaining stable oscillations for random draws of param-
eters. It is difficult to generalize this approach to make
comparisons between different classes of biochemical
systems that may have very different numbers of parame-
ters or draw those parameters from distinct distributions.

Here we propose a method to compare oscillator function
in the stochastic limit across architectures that circum-
vents these problems. We suppose that the important
function of the circuit is to produce regular oscillations
(i.e. to minimize phase error) and that it operates sub-
ject to a constraint of finite resources. Thus for each os-
cillator architecture we can define the maximal possible
phase coherence for a given biosynthetic investment per
cycle. Although all oscillators achieve perfect regularity
with infinite resources, the scaling with finite resources
can be quite different (Fig. 6).
Fig. 6D shows the relationship between the biosynthetic
cost and the phase-coherence value that can be achieved
for a given topology and implementationA clear result is
that the negative feedback-only loops are more efficient
at achieving high phase coherence. The dual regulation
scheme, where each element in the loop acts on both
production and degradation of the next, is markedly
superior to either alone.

Considering the positive-negative feedback oscillator
systems, we see that the optimal implementation of the
coherent input system requires a much larger biosyn-

thetic expenditure to achieve a given phase-coherence
value, compared to the optimal implementation of the
incoherent input system. Although these two systems
can have similar probabilities of giving deterministic
oscillations from random parameter sets, the coherent
scheme gives markedly noisier oscillations.

This gives a rationale for why biological oscillators where
high phase-coherence is likely desirable—like the mam-
malian circadian oscillator—would utilize incoherent con-
nections between positive and negative feedback loops,
while oscillators where high phase-coherence is not the
desired functionality, like the stochastic state switching
ComK-ComS circuit in B. subtilus utilizes the coherent
input system [21].

III. DISCUSSION

Biological oscillators like the cell cycle, the circadian
sleep-wake cycle, etc. are integral to the survival of or-
ganisms. They regulate downstream processes and confer
a fitness advantage by anticipating the time of day, even
in the absence of external cues [28], [33]. Thus, decoding
the design principles of oscillator circuits is crucial
to understand the workings of biological oscillator cir-
cuits, as well as for designing robust synthetic oscillators.

Tikhonov and Bialek point out in their paper that the
focus on network topology as the sole determiner of
biological function is, in all likelihood a result of the
developmental arc of experimental genetics [34]. It
is harder to study the mechanistic pathways involved
in the execution of a biological function than it is to
infer the net logic of interaction between two known
participant genes. This experimental bottleneck has
resulted in the study of biological function as the
product of circuit topologies rather than of the pathways
of implementation of the logic encoded in topological
diagrams.

Although many circuits can sustain robust oscillations,
few network motifs have been evolutionarily conserved.
We see the recurrence of loop oscillator motifs and motifs
of positive-negative oscillators in many systems, and on
many different timescales of oscillations [17]. The func-
tional advantage of these motifs is attributed to the en-
hancement of the robustness of oscillations [17], [22], [35].
The ability to reliably function over a wide range of pa-
rameter values is a natural consideration, as organisms
routinely need to function in variable environments.

example, Tsai et. al. show that the addition of
positive self-loops to negative feedback cores enhances
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the probability of obtaining oscillations [22]. Positive
feedback loops also allow for high amplitude oscillations
over a wide range of frequencies [22], [35]. After system-
atic analyses of all possible two and three node circuit
topologies, Li et. al. arrive at the conclusion that joining
inputs incoherently at a node, where a positive and a
negative input type feed into the node lead to enhanced
probability of oscillations, as compared to coherent input
systems where two positive or two negative inputs feed
into a single node [17]. These studies analyze models
within a fixed paradigm where all positive and negative
interactions are implemented through stimulation of a
reaction channel.

We verify their results, but find that the function of a
given topology depends on crucially on the mechanism
by which the logical interactions are implemented. By
searching over all possible implementations, we find
that positive-negative systems with a coherent logic
can have similarly robust function to incoherent logic
systems provided they are implemented with an optimal
mechanism. This is fundamentally because different
implementations lead to different structures of the
kinetic equations. The preferred molecular mechanisms
can therefore be predicted by studying the structure of
the ODEs in phase space, and through linear stability
analysis.

Remarkably, the performance and robustness of negative
feedback loop systems is dramatically improved when
the possibility of dual regulation is allowed so that each
element acts on both the production and removal step
of the next element. In concrete terms, dual regulation
could be implemented by a transcription factor that
represses expression of its target, while also inducing
expression of a protease that specifically degrades the
target. Whether biology uses dual mechanisms that
have so far remained hidden in natural oscillators is an
interesting open question.

To compare performance of different circuits, poten-
tially with very different structure, we introduce a
parameter-free measure. We compare the biosynthetic
cost for maintaining oscillations with a given value of
phase coherence. As cells are generally resource limited,
this measure allows us to find the implementation that
minimizes the biosynthetic expenditure for maintaining
high phase coherence of oscillations. While interlocked
positive and negative feedback loops are known to have
a wide operational range in terms of parameters that
support oscillation, we find that pure negative feedback
loop oscillators are superior when judged by resistance
to stochasticity. Again, the highest performing system

is the negative feedback loop implemented through dual
regulatory mechanisms. While real biological systems
are more complex than the small circuits studied here, it
is straightforward to extend this phase coherence metric.

Based on these results, we predict that different im-
plementations of a topology are preferred for different
biological functions. In general, biological oscillators
may be under selection for functions that are quite
distinct. One possible function is time-keeping, where
frequency and phase stability are key to maintain
correlation with an external signal, e.g. in a circadian
rhythm. Another possible function is to ensure that
the system reliably progesses through a sequence of
distinct states with high amplitude and that the process
recurs—possibly a description of the free-running cell
cycle. Here, a small amount of phase drift may be
tolerable. A third possible function is for an oscillator
to intentionally operate in the stochastic regime for
the purpose of creating heterogeneity in a popula-
tion. Our results suggest that these distinct functions
will be mirrored by alternative underlying molecular
architectures For systems that require e.g. a pulse
generator where high phase coherence is unnecessary (or
even undesirable), positive-negative oscillators will be
preferred. However, for applications such as biological
clocks where a stable phase relationship between the
oscillator and the external environment is key, negative
feedback loops may be preferred.

Finally, our results suggest that synthetic biology efforts
have often used sub-optimal circuit designs to create os-
cillators. Future work engineering targeted protein or
RNA degradation may open up the ability to control the
degradation terms in the kinetic equations, likely enhanc-
ing the robustness of oscillator function. The identifica-
tion of topological oscillator motifs has been a huge step
forward for systems biology, but our understanding of the
molecular mechanisms typically used to implement these
motifs remains incomplete. Our work provides a mech-
anistic understanding of the robustness of different bio-
logical oscillator motifs, finding that the choice of which
reaction steps are regulated is a crucial determinant of
function. The approach developed here can be extended
to study how the regulatory implementations in driven
oscillator systems can alter the robustness versus entrain-
ment trade-off in oscillator systems. The end goal of this
line of analysis will be to determine whether specific os-
cillator mechanisms are preferred depending on the func-
tional demands and fitness constraints on the system.
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