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Abstract 

In shotgun metagenomics (SM), the state of the art bioinformatic workflows are referred 

to as high resolution shotgun metagenomics (HRSM) and require intensive computing 

and disk storage resources. The increase in data output of the latest iteration of high 

throughput DNA sequencing systems can allow for unprecedented sequencing depth at 

a minimal cost and will require adaptations in HRSM workflows architecture. Such a 

strategy is to generate so-called shallow SM datasets that contain fewer sequencing 

data per sample as compared to the more classic high coverage sequencing. While 

shallow sequencing is a promising avenue for SM, detailed benchmarks using real data 

are lacking. In this case study, we took two public SM datasets one moderate and the 

other massive in size and subsampled each dataset at various levels to mimic shallow 

sequencing datasets of various sequencing depths. Our results suggest that shallow 

SM sequencing is a viable avenue to obtain sound results regarding microbial structures 

and that high depth sequencing does not bring additional elements for ecological 

interpretation. One area, however, where ultra-deep sequencing and maximizing the 

usage of all data was undeniably beneficial was in the generation of metagenomic 

amplified genomes (MAGs). We finally include a proof of concept analysis showing that 

alpha diversity is the main driver of gut microbiome structure and demonstrate that this 

conclusion can be reached using shallow SM, validating this method as a viable and 

sound option for HRSM analyses.  
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Introduction 

DNA sequencing costs have decreased dramatically in recent years. With the 

introduction of Illumina’s short reads-based NovaSeq system, the cost of sequencing 

has reached a new low mark. In the field of metagenomics, it is challenging to estimate 

the required output of the generated sequences needed to get a satisfactory level of 

coverage and is particularly true for complex environments, like soil and animal guts.  

To date, sequencing technology could hardly reach the saturation of such complex 

environments and common wisdom in estimating sequencing output for such 

environments was simply to generate the largest possible amount of sequence within  

budget constraints. However, the amount of data generated by the latest iteration of 

sequencing systems (i.e. Illumina’s NovaSeq; Oxford Nanopores’s Promethion) has 

reached a point where it can now far exceed computational capacity in shotgun 

metagenomics (SM) workflows 1 like what is loosely referred to as high-resolution 

shotgun metagenomics (HRSM). In this type of workflow, raw sequence libraries are 

usually controlled for quality, trimmed and de novo co-assembled. Quality controlled 

reads are then mapped back to the co-assembly in order to estimate contigs and gene 

abundance to ultimately generate abundance matrices and metagenome-assembled 

genomes (MAGs) 2. The most critical aspect of this type of workflow is probably the de 

novo co-assembly of all the relevant sequence libraries generated for a given project. 

This step ideally requires what is referred to as a large compute node: a computer node 

usually equipped with tens of cores and large amounts or Random Access Memory 
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(RAM) to adequately process all short reads into a data structure to perform a de novo 

co-assembly of many samples at once. While some de novo assembly software are 

written to handle multiple compute nodes (i.e. MetaHipMer 3, Ray Meta 4) through 

distributed-memory systems paradigms such as MPI, they are not the most practical to 

implement and use because of their inherent configuration complexity and do not 

necessarily generate the most accurate assemblies 5. Moreover, the most widely used 

and arguably some of the best de novo assembly software are written as a single node 

solution (for instance metaSPAdes 6,7, MEGAHIT 6). The question of what assembling 

software package is the most performant is currently the subject of debate 8 and is 

beyond the scope of this study. Although the analysis pipeline used for this study 

supports using metaSPAdes, we ended up using MEGAHIT for our analyses because it 

was the only viable option to process this objectively large dataset in an acceptable 

amount of time. It is to be noted that in order to circumvent the issue of having enough 

RAM resource to perform a large multi-sample co-assembly, some workflows instead 

favor performing de novo assembly for each sample (for instance, see 9). This 

approach, however, prevents the optimal analysis of end results as it generates 

significant redundancy in assembled contigs and MAGs, making it intractable to directly 

compare abundance between samples. In contrast, co-assembling all samples together 

has the advantage of creating one single reliable baseline on which all samples can be 

easily compared/analyzed and increases the power of segregating contigs during MAGs 

generation. 

Here we investigated the end results of a typical HRSM workflow using the 

largest public Illumina Novaseq6000 dataset available at the moment of writing 
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(PRJNA588513 10). This dataset holds 912 paired-end (2 x 150 bp) human gut 

microbiome shotgun metagenomic sequence libraries representing 12,389 giga-bases 

(Gb) of raw sequence data for a total of 5.6 terabytes (TB) of compressed fastqs. Co-

assembling an amount of sequence data of this magnitude is not achievable on the vast 

majority of existing large compute node hardware as it would require unrealistic - or at 

least hardly accessible - amounts of both RAM and compute time. To circumvent this 

limitation, we emulated various level of shallow sequencing by iteratively subsampling 

this sequence data to up to a total of 2,927 Gb (3.2 Gb / library) which saturated our 

largest compute node (i.e. one ‘4 x Intel Xeon E7-8860v3 @ 2.20GHz; 3 TB RAM; 64 

cores’ node) and dissected the end results (taxonomic profiles, alpha- beta- diversity 

and MAGs). We performed the same exercise with a more modest dataset consisting of 

18 NovaSeq6000 libraries (2 x 150 bp; 583 Gb) from samples obtained from Antarctic 

soil environments  (PRJNA513362 9).  

 

Results 

Experimental design. A large-scale shotgun metagenomic sequencing project 

consisting of 912 gut microbiome samples collected from individuals across six 

provinces of China was recently published 10. These samples were sequenced on 

numerous lanes of a NovaSeq6000 system and yielded a total of 12,232 Gb 

representing 5.7 TB of compressed fastqs. To our knowledge, this dataset is one of, if 

not the largest SM dataset to be made publicly available as part of a single project and 

provides an opportunity to determine if generating that much data was necessary to 

obtain meaningful results or validate hypotheses. As sequencing systems keep getting 
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more performant in generating data, this becomes an increasingly important question as 

processing 5.7 TB of raw SM data is not a trivial endeavour and will generate countless 

intermediate files, inflating the storage and compute resources requirements to properly 

analyze the end results. This maked it unsuitable for a HRSM workflow as is (i.e. 

without subsampling or reducing the raw reads input load). With the current trends in 

sequencing technology development, it is not unreasonable to expect a similar amount 

of sequencing data being routinely generated in the near future for any given SM 

projects. 

We therefore downloaded the raw fastq files related to this project and processed 

them with an iterative subsampling strategy in order to determine if smaller subsets of 

this dataset would be sufficient to reach sound biological conclusions. Like the vast 

majority of research units, we did not have a compute node with enough RAM to 

perform a de novo co-assembly for the entirety of such a large dataset. The best 

resources we had access to at the moment of writing were 3 TB RAM 64 core nodes. 

Therefore, for each dataset, we adopted a strategy (Fig. 1) in which we performed 

quality control of all the raw sequence data files to trim adapters and remove 

sequencing artefacts and contaminants which yielded what we will refer to as quality 

controlled reads. We iteratively subsampled the quality-controlled fastqs to obtain 0.1, 

0.5, 1, 4, 8 and 12 million of sequencing clusters (i.e. one sequencing cluster represents 

two reads of 150 bp each) for each sample which amounts to approximately 0.03, 0.14, 

0.27, 1.07, 2.14 and 3.21 Gb per library, respectively (Table I). We then executed the 

remaining part of our HRSM workflow to perform the de novo co-assembly, mapping of 

quality controlled reads on the co-assembly to generate contigs and gene abundance 
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matrices, computation of alpha and beta diversity, assignation of both taxonomic 

lineages and KEGG orthologs (KO) and MAGs generation. We favored the MEGAHIT 

software to perform the de novo co-assembly because of its speed, its capacity to 

handle relatively large sequencing datasets and because it is designed to be executed 

on a single compute node. We performed the same in silico experiment with a SM 

sequence dataset of lower magnitude obtained from natural extreme Antarctic 

environments (PRJNA513362 9). Although this latter dataset is not as massive as the 

one described above, it is nonetheless substantial and typical of a recent SM dataset. 

Additionally, for this latter dataset, our compute resources could support processing all 

the fastqs totalling 523.16 Gb. 

The amount of resources required for de novo assembly increases almost 

linearly with the number of input reads used for co-assembly. From Table I and Figure 

S1, we show that the amout of consumed RAM increases linearly with the number of 

input reads fed into the assembler, which suggests that the internal memory data 

structure of kmers still does not saturate as we reach the maximum memory capacity of 

the compute node during the assembly process. This also implies that this SM data, 

even though it is very large, contains a level of complexity for which kmer saturation is 

not reached with a 3 TB RAM node. Given the near perfect linear correlation between 

amount of bp and consumed RAM, significantly more memory would be required to take 

into account all the sequencing data (12 Tb) from this dataset which we estimated to be 

approximately 10 TB of RAM. 

De novo co-assembly contiguity is positively correlated with the number of input 

sequences used for co-assembly. There is a clear linear correlation between the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.19.488797doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.19.488797


quantity of bases used to perform the co-assembly and the contiguity of the generated 

assembly (Table I; Fig. S1). Simply put, the more the reads fed into the co-assembly, 

the more and longer contigs (and genes) are obtained. The number of quality controlled 

reads mapping on the co-assembly is a metric that can inform on the quality of the 

assembly. For the human gut dataset, the percentages of properly aligned reads were 

lower for the 0.1M cluster / library workflow (Fig. S2) while inputs from 0.5M onward 

showed an average mapped reads rate of approximately 90%. The number of reads 

mapped from the arm (i.e. all reads mapped) workflows - that is, mapping all the quality 

controlled reads from the dataset on the subsampled co-assemblies (see experimental 

design in Fig. 1) - showed high a mapping rate (> 90%) suggesting that while only a 

subset of reads were used to generate the co-assemblies, the generated contigs 

managed to catch the vast majority of the complete libraries. A similar trend is observed 

for the smaller Antarctic soil dataset, but with the saturation inflection point being 

reached at the 4M clusters onwards. 

Beta diversity (Bray-Curtis dissimilarity index) comparison between various co-

assemblies suggests that the amount of input of reads in the co-assembly does affect 

the overall population structure (Fig. 2). The Spearman correlations (Mantel tests 

between Bray-Curtis dissimilarity matrices) between low (0.1M, 0.5M and 1M clusters) 

and high (4M, 8M and 12M (and complete dataset for the Antarctic project)) input 

configurations were consistently showing lower values compared to high vs high 

configurations. The contigs and gene richness diversity index were found to be good 

indicators of each participant’s microbiota composition and is visually highlighted in the 

PCoAs (Fig. 2A lower panel) in which participants cluster according to their diversity 
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quintiles in essentially identical patterns across  all workflow configurations. For the 

Antarctic dataset, the workflow configuration that showed the lowest correlations with 

the others was the 0.1M - arm design with Spearman r statistics values of approximately 

0.85. Accordingly, the PCoAs of this dataset gave nearly identical patterns for all 

workflows except the 0.1M - arm design which is significantly different (Fig. 2B lower 

panel). 

Observed contigs and observed genes indexes as a function of sequencing 

efforts (Fig. 3) suggest that saturation is reached at the 4M subsampled clusters for the 

human gut dataset (Fig. 3A) while both metrics are still in the exponential phase for the 

Antarctic dataset (Fig. 3B). 

Correlation at the taxonomic and functional level was also assessed and followed 

similar trends to what was found in the beta diversity comparisons of Figure 2 with low 

read inputs showing lower correlation against high read input configurations (Fig S3). 

Even though workflows with more input sequences are associated with a higher number 

of recovered taxa (Fig. S3 - barplots and Venn diagrams), these “rare” taxa only 

account for a minor fraction of the total reads (Fig. S3 lower right panels) and the quasi-

totality of  reads are associated with taxa common to all workflows. For each of the 

human gut and antarctic datasets, relative abundance profiles of a selection of some of 

the most overall abundant taxa (Fig. 4A;C) and KOs were generated to further validate 

their consistency through all workflows. For the human gut microbiome dataset, it is 

generally the case except for contigs assigned to the genus Prevotella that show 

significant variation in the 0.1M, 0.5M and 1M cluster workflows (Fig. 4A). Interestingly, 

the same sequencing cluster input loads processed with the arm method correct these 
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variations and bring them to the same stability level as the other workflow 

configurations. Important ecological trends like the overrepresentation of Coproccus and 

prevalence of Bacteroides and Megamonas in participants harboring a high diversity 

microbiota are consistent across all workflows. Except for the 0.1M clusters workflow, 

functional profiles were in general similar between other input workflows (Fig. S4). 

Significantly differentially abundant KOs were determined between low diversity (quintile 

#1) and high diversity (quintile #5) groups and their abundance profiles were similar 

between workflows as shown by the selected KOs K01593, K11444, K18143, K22225, 

K22607 that were found to be more abundant in low diversity participants and  K00178, 

K16149 that were more abundant in high diversity participants. As shown in Fig. 4B, the 

abundance of these KOs are nearly identical for all participants in all workflows.  

For the Antarctic dataset, a similar trend is observed with the relative abundance 

of selected taxa higher in low input workflows (0.1M, 0.5M and 1M), but with no 

correction by the arm method (Fig. 4C). This is also observed for KO relative 

abundance as illustrated by the selected KOs relative abundance through all workflows 

in Fig. 4D. In this dataset, ecological trends are consistent across workflows that contain 

4M sequencing clusters or more, but lower input workflows show taxonomic and 

functional abundance profiles significantly different from the complete dataset.  

 The relationship between sequencing input and MAGs generation yield and 

quality was also investigated and showed that the yield, % contamination and 

completeness are positively correlated with the amount of input sequences in each 

workflow (Fig. 5). Moreover, the arm workflows consistently generated higher yield 

MAGs of better quality compared to the standard workflows. 
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Discussion 

Shallow sequencing vs high depth sequencing.  

Shallow shotgun metagenomic (SSM) sequencing has been the subject of only a 

few studies so far 11–13 and focused mainly on the correlation between SSM and 16S 

rRNA amplicon sequencing. They were done with artificial datasets or executed with 

reads-based bioinformatics methods, avoiding the de novo co-assembly process 

inherent to HRSM workflows. Here, we adopted an approach where we used real SM 

datasets of two very different environments and sequencing depths to get insights on 1) 

how much data is actually needed to obtain reliable microbial ecology results and 2) the 

consequences on computational resources required to analyze ever expanding SM 

datasets - a topic often overlooked and poorly considered during planning of a shotgun 

metagenomic project. We performed this study using a state of the art high-resolution 

shotgun metagenomic methodology, which compared to other methods such as reads-

based and sample-centric assembly methods (i.e. performing a separate de novo 

assembly of each sequence library) is arguably the bioinformatic method that allows the 

generation of the most comprehensive and meaningful end results from raw SM 

datasets, including the generation of beta- alpha- diversity metrics, full length genes and 

MAGs 2. In that regard, the human gut microbiome dataset selected for this study 

(PRJNA588513) was of particular interest, as it is one of the first massive publicly 

available SM dataset (12,389 Gb of raw sequence data) enabled by the Illumina 

NovaSeq platform generated as part of a single finite project and offers a glimpse of 

what kind of sequencing output could be routinely achieved in terms of sequencing 
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output in the near future for a metagenomic project. At first glance, obtaining lots of 

sequencing data for a SM project might seem like a good thing, but since a sequencing 

dataset of that magnitude cannot be readily used in its entirety in a HRSM workflow (i.e. 

storage of intermediate files; RAM requirements for co-assembly) on the vast majority of 

HPC systems, how to extract the most of it has yet to be explored. In order to shed 

some lights on these questions, we favored an experimental design where the complete 

dataset was randomly subsampled at various loads to mimic various sequencing 

depths.  

From our results with the human gut dataset, it is clear that the 0.1M clusters 

dataset (or 0.03 Gbases / sample; total of 24.43 Gbases) was not enough to achieve a 

good correlation with the results of other subsampled analyses. However, because this 

dataset had 912 samples, sub-sampling slightly higher, at levels as low as 0.5M clusters 

/ sample (0.14 Gbases / sample; total of 130.25 Gbases) resulted in acceptable 

correlations with larger subsampled datasets (Figs. S3-4). Even though the number of 

bases at 0.5M clusters sampling is objectively low on a per-sample basis, the 

corresponding total amount of bases can be considered adequate for capturing 

accurate population structure metrics. Moreover, even if the variability of the microbial 

diversity in each sample is highly dispersed (i.e. alpha diversity results in Fig. 3A), the 

fact that pooling 912 samples of 0.14 Gb each is enough to obtain a sound co-assembly 

and corresponding downstream results suggest that there is a redundant core of 

microbes common and abundant enough to many samples so that this allows for the 

pooling of only a tiny fraction of each library to obtain a decent quality co-assembly and 

consequently accurate downstream results. The estimations of required reads for SM 
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projects are usually considered on a per-sample basis, but this information should 

ideally be combined with the total number of samples that are part of the project. 

Accordingly, the number of required bases per sample should probably not be 

calculated on a per-sample basis, but on the total amount of bases required to obtain a 

reasonable co-assembly for the investigated biological system. In the case of the 

human gut dataset investigated here, it could be argued that 130 (0.5M clusters / 

sample) or 244 Gb (1M clusters / sample) of input data used for the co-assembly gave 

end results that were overall very similar to the results of the largest subsampled 

dataset of 2,927 Gb (12M clusters). In more practical terms, this suggests that this set 

of 912 samples could have been sequenced on one or two lanes of NovaSeq6000 S4 

and give very similar results for a fraction of the cost of the original study. Similar trends 

were observed with the Antarctic SM dataset. In this case however, since the number of 

samples was much lower (i.e. 18) and highly variable from one another, the lowest 

subsampling level that gave the results mostly similar to the total dataset was 

approximately 20 Gbases (4M clusters / sample or 1.12 Gbases / sample). 

 

Compute resources 

In the field of SM, the question of how many reads should be generated per 

sample has always been critical and the subject of continuing discussions. Currently, 

the most common accepted answer is probably along the lines of: the more the better - 

depending on the available funds of course. However, with the significant increase in 
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sequencing throughput seen recently with the Illumina NovaSeq platform, we have 

reached a tipping point where computational capabilities required to perform a sound 

HRSM workflow are not sufficient to integrate all of the generated data anymore. In the 

current study it was simply not possible to perform a co-assembly of 12 Tb worth of SM 

data. By extrapolating from the relation between RAM as a function of input data (Table 

I; Fig. S1), co-assembling the human gut microbiome dataset would require 

approximately 10 TB of RAM and 900 hours (37.5 days) of continuous compute real 

time, which would translate into 57,600 core∙hour (or 6.57 core∙year). On most 

governmental and academic HPC systems, resources are usually allocated on a yearly 

basis and have to be carefully managed. In that regard, completely processing such a 

large dataset would inevitably represent a major sink in consumption of allocated 

resources, leaving few resources for the data processing of other projects. 

 

MAGs 

The one area where having more data unquestionably improved end results was 

for MAGs generation (Fig. 5). For both Human gut and Antarctic datasets investigated 
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here, the number and quality of MAGs increased with the number of reads used for the 

co-assembly. Moreover, MAGs generation was the only area where using the arm (all 

reads mapped) workflow undoubtedly benefited end results metrics (i.e. yield and 

quality of MAGs). There are a number of software packages to generate MAGs, here 

we presented results generated with MetaBAT2, essentially because the other 

implemented method in our workflow, Maxbin2, could not complete even after more 

than 200 hours of runtime on a 16 cores compute node for the human gut dataset.  

 

Conclusion 

The main driver that prompted us to perform this in silico study is the foreseeable 

inability to use all of the reads generated by the most recent sequencing platforms for a 

given shotgun metagenomics project in a HRMS type of workflow. We anticipate that 

even our largest memory compute nodes will hardly keep up with the amount of 

sequences to consider all of the reads in the de novo assembly process inherent to 

HRSM workflows. Disk storage also becomes a concern as the total file size of the 

sequencing library files and the intermediate data that has to be transiently stored on 

rapid disk storage is significant. For instance, for the human gut microbiome 12M 

clusters arm workflow, the total compressed file size including intermediate files (i.e. 

filtered fastqs, bam, co-assembly, abundance matrices) was approximately 20 TB. 

Therefore, the always increasing output of sequencing data is a significant concern for 

the stress imposed even on large high performance computing systems. As access for 

HPC resources becomes increasingly competitive (see for instance 2021 Resource 

Allocations Competition Results), fewer resources can be allocated to an ever 
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increasing pool of research needs. This underscores the importance of refining 

strategies for analyzing SM data and finding alternative advantageous ways to make 

good use of all the reads generated by latest sequencing technologies. In this regard, a  

type of workflow of potential interest would be to assemble each sample individually and 

combine the assembled contigs to generate a single consensual assembly. This 

workflow would have the advantage of eliminating the limitations in memory as de novo 

assembling a single library at a time should not require sizable amounts of RAM. The 

execution of such a workflow would however require an accepted computational method 

to merge or combine multiple assemblies together, which to the best of our knowledge 

does not exist. Software reported to perform this type of merging task are usually not 

maintained anymore and not suitable for modern large metagenomic assemblies 14–16 

and target single genome assemblies 17–19. At first glance, long reads (PacBio, Oxford 

Nanopores) can also seem attractive to replace short-reads in the objective of obtaining 

more contiguous co-assemblies, but performing a multi-library co-assembly of long 

reads data type also requires enormous amounts of RAM and compute time (personal 

observations), especially if reads need to be corrected prior to be assembled, as it is 

often the case with error-prone long reads data types. 

Overall the findings reported here suggest that shallow sequencing, up to a 

certain level, allows reaching similar conclusions that could be reached with deep 

sequencing. The only exception to this is if maximizing the yield of high quality MAGs is 

a primary outcome or if there is a particular interest in rare functions or taxa. These 

conclusions are prone to have significant impacts on the planning of shotgun 

metagenomic projects as - in light of the results presented here - the number of 
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sequences per sample does not need to be overly abundant to reach sound conclusions 

of a biological system.  

 

Methods 

Bioinformatics. Sequencing libraries were processed in ShotgunMG, our 

metagenomics bioinformatics pipeline 20–22 that was developed over the GenPipes 

workflow management system 23. Sequencing adapters were first removed from each 

read and bases at the end of reads having a quality score <30 were cut off 

(Trimmomatic v0.39;24) and scanned for sequencing adapters contaminants reads using 

BBDUK (BBTools v38.1) 25 to generate quality controlled (QC) reads. The QC-passed 

reads from each sample were co-assembled using MEGAHIT v1.2.9 6 on a 3 terabytes 

of RAM compute node with iterative kmer sizes of 31, 41, 51, 61, 71, 81, 91, 101, 111, 

121 and 131 bases. MetaSPAdes 7 was also considered for co-assembly, but could not 

complete even after several days of computing for the lowest input human gut dataset. 

Ab initio gene prediction was performed by calling genes on each assembled contig 

using Prodigal v2.6.3 26. Assignment of KEGG orthologs (KO) was done by using 

DIAMOND Blastp v2.0.8 27 to compare each predicted gene amino acids sequence of 

the co-assembly against the KEGG GENES database 28,29 (downloaded on 2020-03-

23). COG orthologs were assigned using RPSBLAST (v2.10.1+) 30 with the CDD 

training sets (ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/little_endian/). The QC-passed reads 

were mapped (BWA mem v0.7.17; 31) against contigs to assess quality of metagenome 

assembly and to obtain contig abundance profiles.  Alignment files in bam format were 
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sorted by read coordinates using samtools v1.9 32, and only properly aligned read pairs 

were kept for downstream steps. Each bam file (containing properly aligned paired-

reads only) was analyzed for coverage of contigs and predicted genes using bedtools 

(v2.23.0; 33) using a custom bed file representing gene coordinates on each contig. Only 

paired reads both overlapping their contig or gene were considered for gene counts. 

Coverage profiles of each sample were merged to generate an abundance matrix (rows 

= contig, columns = samples). Taxonomic lineage assignment to each contig was 

performed using CAT v5.2.3 34 with the following key parameters (f=0.5; r=1). 

Taxonomic summaries and beta diversity metrics were computed with microbiomeutils 

v0.9.4 35. Alpha diversity metrics were obtained with RTK v0.93.2 36. MAGs were 

generated using MetaBAT (v2.12.1) 37 using an abundance matrix generated with the 

jgi_summarize_bam_contig_depths software 37 with the —minContigLength 1000 —

minContigDepth 2 and —minContigIdentity 97 parameters. The quality of obtained 

MAGs was assessed with CheckM v1.1.3 38. MaxBin2 39 was also considered, but could 

not be completed even after several days of computing the lowest input human gut 

dataset. 

Functional analyses. For each predicted gene, the best hit having at least an e-

value ≤ 1e-10 against the KEGG genes database was kept as the KEGG representative 

of that gene.  Similarly, COG representative of each gene corresponded to the best hit 

COG hit having at least an e-value ≤ 1e-10. Each assigned KEGG gene may be 

associated with a KEGG ortholog (KO). For the analyses of figures 4 and S4, read 
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counts all the genes from the human gut or antarctic gene abundance matrix that were 

assigned with the same KO were summed to generate a KO abundance matrix. For 

each library, each KO aggregated value was divided by the total read abundance of the 

recA gene (COG0468) to obtain a normalized value for each KO.  

Statistics and figures were generated using R v4.1.2 for which the code is 

available on github (https://github.com/jtremblay/shotgunmg_paper).  

 

 

Availability of source code and requirements 

ShotgunMG - http://jtremblay.github.io/shotgunmg.html 

The ShotgunMG pipeline wrapper code and Python, Perl and R scripts that are being 

called by ShotgunMG are available here: 

https://bitbucket.org/jtremblay514/nrc_pipeline_public/src/1.3.0/ 

https://bitbucket.org/jtremblay514/nrc_tools_public/src/1.3.0/ 

External software packages module install scripts are available here: 

https://bitbucket.org/jtremblay514/nrc_resources_public/src/1.3.0/ 

 

A Docker image built on the CentOS 7 operational system which contains all necessary 
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modules for full pipeline functionality is available for testing/evaluation purposes and 

running small datasets 

(https://cloud.docker.com/u/julio514/repository/docker/julio514/centos). 

 

 

Availability of supporting data and materials 

Human gut microbiome dataset: PRJNA588513 

Antarctic soil dataset: PRJNA513362 

An example of the complete list of commands with all parameters for each package 

used in our analysis pipeline for both the human gut and antarctic dataset and all the 

key results generated during this study, including de novo assemblies, genes and 

contigs abundance matrices, functional and taxonomic annotations and MAGs are 

available on zenodo.org : https://doi.org/10.5281/zenodo.6349279. 
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Figure legends 

Figure 1. Experimental design used to investigate the effects of the number of reads 
input on the end results of two shotgun metagenomics datasets sequenced on a 
NovaSeq6000 system. For each dataset, a common core workflow was performed 
where each library was trimmed according to their quality profile and filtered for 
common contaminants. Quality controlled libraries were subsampled at 0.1, 0.5, 1, 4, 8 
and 12 million clusters (i.e. times two for the number of reads). Subsampled quality 
controlled libraries were then co-assembled and analyzed for downstream analyses for 
the standard workflow. In the ‘all reads mapped’ (arm) workflow, all of the quality 
controlled reads were mapped against their corresponding co-assembly to estimate 
contig and gene abundance and investigate how it affects end results. The Antarctic 
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dataset was small enough so that the whole dataset could be assembled and processed 
at once.  

Figure 2. Heatmaps of Spearman correlation coefficients (Mantel test) of normalized 
(TMM method from edgeR) contigs abundance Bray-Curtis (beta diversity) dissimilarity 
matrices between each workflow for the A) human gut and B) Antarctic datasets. Higher 
coefficient means higher correlation between distance matrices. The lower panels show 
PCoA plots of beta-diversity of each dataset at each sequencing depth. For the human 
gut dataset, samples were found to cluster according to their diversity level (i.e. diversity 
quantiles) with high diversity individuals clustering together and low diversity individuals 
clustering together as well. Samples were colored by sampling location for the Antarctic 
dataset. 

Figure 3. Observed contigs and genes indices binned by quintiles for the A) human gut  
and B) Antarctic datasets. To improve ease of data visualization, each data point was 
binned in a quintile. The data points for a given quintile correspond to the same data 
points from one boxplot to another. Diversity indices were computed from raw contigs or 
genes abundance tables using RTK v0.93.2. 

Figure 4. Taxonomic and functional profiles of selected taxa and KOs for the human gut 
and Antarctic datasets for each of the described workflows. A) Taxonomic summary of 
selected taxa for each workflow for quintiles #1 (participants with low diversity 
microbiota) and #5 (participants with high diversity microbiota). B) Abundance profiles of 
a selection of significantly differentially abundant KOs for each workflow for quintiles #1 
and #5. KOs were identified by using a one-way anova between samples of quintiles #1 
and #5 followed by a Bonferroni correction. KOs having a corrected p-value < 0.01 and 
a 8 times fold-change between the two quintiles were selected. C) Taxonomic summary 
of selected taxa for the Siegfried Peak and University Valley locations. D) Abundance 
profile of selected KOs for these same two locations. The Antarctic dataset was 
unreplicated and was therefore not conducive for feature selection by a statistical 
method. As a consequence, a selection of the most abundant KOs is displayed in D). 
Each point represents the aggregated normalized KO count (see methods) of a sample. 

Figure 5. Histograms of MAGs quality assessment metrics for each workflow of the A) 
human gut and B) Antarctic datasets. MAGs were generated with MetaBAT2 v2.12.1 
and Completion % and contamination % were obtained with CheckM v1.1.3. 

 

Figure S1. Statistics on the various co-assemblies generated on a A) per Gb scale and 
B) per million sequencing clusters scale.  

Figure S2.  Statistics of aligned reads on co-assembly references for the A) human gut 
and B) Antarctic datasets. arm = all reads mapped workflow.  

Figure S3. Taxonomic coverage analyses for the A) human gut and B) Antarctic 
datasets. Top left panel: Spearman correlation coefficients of  Bray-Curtis dissimilarity 
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matrices  computed from relative abundance taxonomic summary tables of each 
workflow. The Higher coefficient means higher correlation between taxonomic 
summaries. Top right panel:  Number of unique taxonomic lineages observed as a 
function of each workflow’s input data load. Lower left panel: Venn diagram of each 
unique taxonomic lineage as a function of data input load workflows. Lower right panel: 
Number of reads associated with each category listed in the Venn diagram. 

Figure S4. KEGG orthologs (KO) coverage analyses for the A) human gut and B) 
Antarctic datasets. Top left panel: Spearman correlation coefficients of  Bray-Curtis 
dissimilarity matrices  computed from normalized KO abundance tables of each 
workflow. The Higher coefficient means higher correlation between KO abundance 
profiles. Top right panel:  Number of unique KO observed as a function of each 
workflow’s input data load. Lower left panel: Venn diagram of each unique KO as a 
function of data input load workflows. Lower right panel: Number of reads associated 
with each category listed in the Venn diagram. 
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Table I. Assembly statistics for each data input loads of both human gut and Antarctic shotgun metagenomic datasets. 
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