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Abstract 
 
We aimed at investigating host-virus co-metabolism during SARS-CoV-2 infection. Therefore, 
we extended comprehensive sex-specific, whole-body organ resolved models of human 
metabolism with the necessary reactions to replicate SARS-CoV-2 in the lung as well as 
selected peripheral organs. Using this comprehensive host-virus model, we obtained the 
following key results: 1. The predicted maximal possible virus shedding rate was limited by 
isoleucine availability. 2. The supported initial viral load depended on the increase in CD4+ T-
cells, consistent with the literature. 3. During viral infection, the whole-body metabolism 
changed including the blood metabolome, which agreed well with metabolomic studies from 
COVID-19 patients and healthy controls. 4. The virus shedding rate could be reduced by either 
inhibition of the guanylate kinase 1 or availability of amino acids, e.g., in the diet. 5. The virus 
variants achieved differed in their maximal possible virus shedding rates, which could be 
inversely linked to isoleucine occurrences in the sequences. Taken together, this study presents 
the metabolic crosstalk between host and virus and emphasis the role of amino acid metabolism 
during SARS-CoV-2 infection, in particular of isoleucine. As such, it provides an example of 
how computational modelling can complement more canonical approaches to gain insight into 
host-virus crosstalk and to identify potential therapeutic strategies. 
 
 
Introduction 
Covid-19 is an infection of the respiratory tract caused by the severe acute respiratory 
syndrome corona virus-2 (SARS-CoV-2) [1]. It is characterised by a wide range of symptoms, 
including cough, fever, diarrhoea, and shortness of breath, depending on the disease severity 
[1]. The severity of Covid-19 varies between infected individuals, ranging from asymptomatic 
to critical, severe pneumonia, with multiple organ failure as a leading cause of death [1]. 
Several susceptibility factors and pre-dispositions, such as age, sex, and co-morbidities, have 
been linked to disease severity and outcome [1-3]. In addition to affecting the respiratory 
system, SARS-CoV-2 affects other organs [4], which has been mainly attributed to the broad 
expression of the receptors (hACE2) to which SARS-CoV-2 binds [5]. Accordingly, SARS-
CoV-2 has been found in various organs beyond the lung, such as the liver [6], adipose tissue 
[7, 8], and small intestine [9-11]. The brain can also be affected leading to clinical phenotypes, 
such as cognitive impairment [12, 13]. Hence, Covid-19 has been recognised as a multisystem 
disease involving numerous organs [4].  
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Viral infections are known to hijack the metabolism of the infected cells [14], as they require 
the host’s cell metabolic machinery to produce the viral particles [5]. Consequently, the viral 
infection could lead to substantial alterations of cellular metabolism in the SARS-CoV-2 
infected organs. Hence, the question is whether the metabolic changes do not only occur on a 
cellular or organ level but rather involve metabolic reprogramming on a whole-body scale, 
which could underlie multi-organ failure. 

 
The disentanglement of the complex host-virus interactions can be aided by computational 
modelling. One suitable approach is the constraint-based reconstruction and analyses approach 
(COBRA) [15], in which the metabolic network of a target organism is constructed based on 
genomic, biochemical, physiological, and phenotypic data [16]. The metabolic reconstruction 
can then be used to interrogate emergent, functional properties [15]. The COBRA approach 
has been successfully applied to a variety of biomedical questions [17, 18], including host-
pathogen interactions [19]. One of the advantages of metabolic reconstructions is that they can 
be tailored to a particular question or condition through the application of constraints [15], 
which could, for example, be dietary availability [20-22], gene defects [23, 24], or omics data 
[25-27]. Hence, one metabolic reconstruction can give rise to many condition-specific models. 
Moreover, the metabolic models of different organisms can be combined into a 
“superorganism” metabolic model, which allows the investigation of the metabolic interactions 
between the modelled organisms. For example, host-pathogen models have been investigated 
to understand the interplay between the host and pathogen metabolism and to predict potential 
drug targets. A few host cell – Covid-19 models have been generated to provide insights into 
cellular reprogramming and to propose anti-viral drug targets [28-30].  
 
We have recently generated sex-specific, whole-body organ-resolved reconstructions of human 
metabolism (WBMs) [21], which account for 28 and 32 organs in the male and female 
reconstruction, respectively, as well as 13 biofluids (Figure 1A). The WBMs capture more than 
80,000 reactions and have been constrained using metabolomic and physiological data to 
correspond to a reference man and woman [21, 31]. Thus, the WBMs are ideally suited to infect 
the lung with SARS-CoV-2 and investigate host-virus metabolic interactions on a whole-body 
level (Figure 1B). Importantly, WBM-virus modelling represents a complementary approach 
to observational and interventional clinical studies, providing novel insights on the systemic 
consequences of COVID-19 infection and replication, which would be otherwise not possible. 
 
Methods 
 
Whole-body metabolic reconstructions  
We used the sex-specific organ-resolved whole-body reconstructions of human metabolism, 
WBMs (v1.03), with default constraints [21] (Figure 1A). Briefly, the male reconstruction 
consists of 81,094 reactions and 56,452 metabolites distributed across 28 organs. The female 
reconstruction consists of 83,521 reactions and 58,851 metabolites across 30 organs. Both 
reconstructions account for 13 biofluid compartments, including a blood compartment, which 
supplies the different organs with metabolites. The whole-body reconstructions were built from 
the generic human metabolic reconstruction, Recon 3D [32], using organ-specific literature, 
proteomic, and metabolomic data [21]. Both WBMs have been converted into personalised, 
condition-specific computational models using physiological and phenomenological data from 
a reference male and female [31] as well as constraints derived from blood, cerebrospinal fluid 
(CSF), and urine metabolite concentration data retrieved from the human metabolome database 
(HMDB) [33]. Here, we added reactions involved in N-linked glycan metabolism from Recon 
3 [32] to various organs as they were missing from the WBM reconstructions and were required 
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for the N-linked glycosylation of the spike and envelope proteins of COVID-19 (Table S1). 
Furthermore, additional metabolites and reactions have been added to allow better mapping of 
metabolomics data (Table S1). The final male reconstruction contained 83,082 reactions, 
58,501 metabolites (Figure 1C), and 105,479 coupling constraints [21, 34]. The final female 
reconstruction contained 85,568 reactions, 60,494 metabolites, and 109,294 coupling 
constraints (Table S1). 
 
Metabolic reconstruction of virus replication 
The human angiotensin-converting enzyme 2 (hACE2) serves as a receptor for SARS-CoV-2 
enabling virus endocytosis via virus spike protein interaction [1]. The receptor has been found 
in numerous organs and tissues based on antibody staining and RNA expression, including the 
lung, gastrointestinal tract, liver, and adipose tissue [7, 8]. Additional evidence supports virus 
replication in the intestine [9-11] and the liver [6]. Upon endocytosis, the virus releases its 
genome, which consists of a positive-stranded RNA (+ssRNA) [35]. The virus genome 
contains 12 open reading frames, encoding for at least 5 accessory, 15-16 non-structural, and 
four structural proteins [35]. The virus is then assembled intracellularly in a dynamic 
compartment between the endoplasmic reticulum and the Golgi (ERGIC) [36], where the virus 
also gets its membrane envelop [5]. The nascent virus particle is released from the host cell via 
exocytosis.  

 
The ssRNA strand of SARS-CoV-2 is translated by the host cell translation machinery, leading 
to the production of virus non-structural proteins that are replicating the RNA strand, resulting 
in the reverse (negative) RNA strand, which serves as a template for the translation of the 
structural proteins and for the positive strand, which will be incorporated in the nascent virus 
particle [35]. SARS-CoV-2 has four envelope proteins, being spike (S), envelop (E), membrane 
(M), and nucleoprotein N [35]. At the time of the model formulation (May 2020), the copy 
numbers were unknown for SARS-CoV-2. However, SARV-CoV has an estimated structural 
protein stoichiometry of 1S3:16M:4N to 1S3:25M:4N proteins and additional N proteins 
throughout the virion core [37]. Moreover, it has been reported that an averaged sized (i.e., 
with a diameter of 120 nm [38]) SARS-CoV virus particle contains about ~50 to 100 spike 
trimers and ~200 – 400 copies of N [37]. For the E protein, about 15-30 copies have been 
estimated to be present in the transmissible gastroenteritis coronavirus, as no information was 
available for SARS-CoV-2 or SARS-CoV [39]. Additionally, the SARS-CoV-2 virus particle 
contains a small but unknown quantity of accessory proteins [40]. The structural proteins are 
heavily modified, including N- and O-linked glycosylation of S and E (Figure 1D). In SARS-
CoV, S has 22 N-linked glycosylation sites per monomer [41] and E has two potential N-linked 
glycosylation sites [42]. Furthermore, the cytoplasmic C-terminal end of the SARS-CoV S and 
E proteins are palmitoylated through the addition of palmitate to a cysteine residue via a 
thioester linkage [43] carried out by host proteins [44]. The S protein has nine potentially 
palmitoylated cytoplasmic cysteine residues, whereas E has two to three potentially 
palmitoylated cytoplasmic cysteine residues [43].  

 
Based on this information, we formulated the biomass reaction, which represents the virus 
replication, for the SARS-CoV-2 virus using SARS-CoV-2-specific information where 
available or substituted it with related coronavirus data otherwise. For the biomass formulation, 
we followed the workflow provided elsewhere [16, 28, 45]. First, we obtained the COVID-19 
genome and protein sequence from NCBI (NC_045512.2, May 2020). The fasta file contained 
13 annotated (poly)proteins. The nucleotides of the genome sequence were counted for the 
negative and the reverse strand. The amino acids were counted for each (poly)protein and 
multiplied by the respective copy numbers (Figure 1D). We assumed that i) only one negative 
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ssRNA strand, ii) 300 S proteins [37, 46], 1000 N proteins [37, 46], 2000 M proteins [37, 46], 
and 20 E proteins [39], iii) one copy of each of the remaining, non-structural are present in 
each virus particle. The precursor requirements for the N-linked glycosylation were calculated 
assuming that all 22 potential glycosylation sites per S monomer [41] and two per E protein 
are glycosylated [42] and using the aforementioned protein copy numbers. All four O-linked 
glycosylation sites in the S protein were assumed to be glycosylated [47]. All palmitoylation 
sites were assumed to be palmitoylated (nine for S and two for E) [43]. The molecular weight 
of the virus particle was calculated accordingly. The energy cost (adenosine triphosphate 
(ATP) requirement) for nucleotide sequence polymerization was assumed to require the 
hydrolysis of one ATP to adenosine diphosphate (ADP) and orthophosphate (Pi). The 
formation of a peptide bond was assumed to require four ATP. The virus replication reaction 
was added to the lung, liver, adipocytes, and small intestinal enterocytes of the WBMs (Figure 
1B). 

 
Additionally, we added the following reactions to the WBMs to complete the virus metabolic 
reconstruction. A virus uptake reaction (EX_virus_template[a]), representing the inhalation of 
the virus to both WBM reconstructions, and a virus shedding reaction (EX_virus[a]). An import 
and export reaction of the virus template and the virus particle, respectively, to and from the 
lung (Figure 1B). A virus accumulation reaction for the liver (Liver_virus_production), the 
adipocyte tissue (Adipocytes_virus_production), and the small intestinal epithelium (sIEC 
_virus_production) (Figure 1). The virus template can be transported from the lung into the 
blood circulation (Lung_virus_template_transport[bc]) and then be taken up by the liver 
(Liver_virus_template_transport[bc]) and the adipocytes 
(Adipocyte_virus_template_transport[bc]). The small intestinal epithelium can take up the 
virus template from the air representing that the virus can enter the gastrointestinal tract (lumen, 
[lu]) via the mouth and/or nasal cavity (sIEC_virus_template_transport[lu]). The viral 
replication in the peripheral organs does not contribute to the viral shedding flux [EX_virus[a]) 
representing newly produced viruses leaving the host via the airways. 

 
To account for the host immune response, we added the uptake and degradation of the virus 
template to the reconstructions of the CD4+-T-cells present in the WBMs 
(CD4Tcells_virus_template_degrad), which accounts only for the breakdown of the ssRNA 
into its constituents but not of the viral shell (i.e., the amino acids). We did not represent the 
release of cytotoxins by the CD4+-T-cells and the host cell death upon cytotoxin release. The 
resulting WBM models were deemed WBM-SARS-CoV-2. In recovering COVID-19 patients, 
increased CD8+-T-cell and increased CD4+-T-cell levels have been found [48]. Accordingly, 
we created a female and male model that represents the increase in T-cells, deemed WBM-
SARS-CoV-2-CD4+. The CD4+-T-cells were chosen as the WBMs do not account for CD8+T-
cells. All virus-related reactions can be found in Table S2. 
 
Initial viral load 
We enforced, with coupling constraints [21, 34], that the increases in replication reaction flux 
(i.e., of the virus biomass reaction) were linked in the models to higher virus template uptake 
flux (e.g., EX_virus_template[a]). This is the case for all four organs. The upper, or maximal, 
coupling coefficient was set to 2,000, in accordance with the estimate that about 1,000 viruses 
are produced from one virus per 10 hours [46]. In addition, we also enforced that when a virus 
template is taken up that the lung has to produce at least as many viruses as there were taken 
up. This was not the case for the other tissues. 
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Diets 
All simulations have been carried out using an average European diet [49] if not specified 
differently. Diet formulations were taken from the Virtual Metabolic Human (vmh.life) 
database [49]. Each diet formulation defines the uptake rates for the different dietary 
constituents (Table S7). The diets do not differ in the metabolites (or constituents) but rather 
in their overall contribution to the diet. The list of constituents is likely to be incomplete as 
only up to 132 metabolites are regularly measured and reported per food stuff and hence, were 
thus included in the diet database of the vmh.life [49]. 
 
COBRA modelling and flux balance analysis 
The sex-specific WBM-SARS-CoV-2 and WBM-SARS-CoV-2-CD4+ models were 
mathematical representations of the host and virus metabolic transformation and transport 
reactions that were parameterised as described above. The COBRA approach assumes the 
modelled system to be at a steady state meaning that the change in metabolite concentration 
(dx) over time (dt) is zero. The underlying system of linear equations can be efficiently solved 
using linear programming. Generally, an objective function is either maximised or minimised 
subject to mass-balance constraints as well as other imposed constraints (e.g., nutrient uptake). 
This approach is called flux balance analysis [50]. If not stated differently, we used the virus 
shedding reaction (‘EX_virus[a]’) as an objective function and maximised the flux through this 
reaction. The resulting solution contains a flux value for each reaction in the WBM-SARS-
CoV-2 or WBM-SARS-CoV-2-CD4+ models. However, due to the degenerative nature of the 
underlying linear programming problem, i.e., we have more reactions (variables) than mass 
balances (equations), the solution vector is non-unique (but the objective value is). To obtain a 
reproducible, unique solution (out of the set of infinite possible solutions), one can minimise 
the Euclidean norm of the solution vectors upon maximisation of the objective function. The 
resulting solution vector is assumed to be closest to a thermodynamically feasible flux 
distribution. These flux distributions were used for the overlay onto the human metabolic map 
(ReconMap [51]) hosted at the VMH [49] using the corresponding functions in the COBRA 
Toolbox [52]. To determine metabolites, which limit higher values through the objective 
function, here the virus shedding reaction, we investigated the shadow prices, which are dual 
to the linear programming problem [15]. 
 
Prediction of the blood metabolome 
The in silico blood metabolome was determined by adding to each model individually for each 
of the 1,033 metabolites in the blood compartment ([bc]) a demand reaction (e.g., for D-
glucose: DM_glc_D[bc]: 1 glc_D[bc] à Ø). These artificial reactions break the steady-state 
assumption and allow for the accumulation of the respective metabolite in the blood 
compartment. We then maximised each demand reaction individually in the sex-specific 
version of the healthy WBMs, WBM-SARS-CoV-2, and WBM-SARS-CoV-2-CD4+ models. 
We compared the flux through the respective demand reactions between the three models for 
each sex. A metabolite was considered increased in the blood compartment of the maximal 
possible flux was higher in the SARS-CoV-2 infected models compared to the healthy WBM 
model of the same sex and decreased if the maximal possible flux was smaller. All objective 
flux values less than 1e-6 were considered to be zero. The comparison with published plasma 
metabolomic data was done by mapping the reported metabolite names into the namespace of 
the virtual metabolic human database [49], which is also used for the WBMs (Table S5, S6). 
To test whether the prediction accuracy was statistically significant, we chose 1,000,000 
random sets of 103 metabolites and their predictions from the 1,033 blood metabolites and 
compared them with the measured changes.  
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Variant and sequence-specific modelling 
We downloaded the COVID-19 sequences for the different variants from GISAID 
(https://www.gisaid.org/, between June 2021 and February 2022). To ensure that we only 
obtained high-quality sequences, we required the sequences to be complete, to have high 
coverage, with patient status, and to have complete collection dates. All submissions to 
GISAIDS must have been done after 01.01.2020, and the collection date must also have been 
on or after that date. Where necessary, we specified dates and/or geographical locations to 
reduce the number of downloaded sequences. We then used Diamond [53] with default 
parameters to perform blastp for each downloaded sequence against the reference strain 
(NC_045512.2). For further computational analysis, only those variants/sequences were used, 
for which all 13 (poly)proteins could be identified and contained no duplicates. 

 
For each sequence, we adapted the female WBM-SARS-CoV-2 model by formulating a 
sequence-specific virus_biomass reaction assuming that the copy number of each protein 
remained the same (Figure 1D) but adjusting based on the frequency of nucleosides and amino 
acids based on the sequence. We also assumed that the protein modifications (Figure 1D) were 
not affected by mutations. Each of these variant sequences resulted in a sequence-specific 
model. We maximised the virus shedding reaction for each sequence-specific model. To 
compare the amino acid frequency of each model, we added the occurrence of each amino acid 
per protein multiplied by the copy number of the protein. 
 
Code availability  
All simulations were carried out using the COBRA Toolbox v3.0 [52] and the PCSM toolbox 
[21] using Matlab 2020 (Mathworks, Inc) as simulation environment and Ilog clpex (IBM, Inc) 
as linear programming solver. The code is available in the GitHub repository of the COBRA 
Toolbox: https://github.com/opencobra/COBRA.papers (after publication). 
 
Results  
 
Generation of sex-specific host-virus metabolic whole-body models 
To model SARS-CoV-2 viral infection, we expanded the comprehensive, organ-resolved, sex-
specific whole-body models of human metabolism (WBM) [21] with SARS-CoV-2 specific 
reactions (Figure 1B). These reactions were formulated based on available data on SARS-CoV-
2 and related coronaviruses (Method section). Briefly, the virus is taken up from the air 
(EX_virus_template[a]) and then by the lung where the virus replicates (viral biomass reaction, 
VBR). The resulting virus particles leave the lung and are released into the air (EX_virus[a], 
Figure 1B). The VBR was formulated such that it accounts for all known viral biomass 
precursors, being 1. the nucleotides for the single-strand RNA (ssRNA), 2. the amino acids for 
the structural and non-structural viral proteins encoded by the ssRNA, 3. the N-linked and O-
linked glycans present on the spike and the envelope proteins, and 4. the palmityl-CoA required 
for the palmitoylation of the S and E proteins (Figure 1D). The structural protein copy numbers 
were retrieved from the literature (see Method section for details). The virus particle can be 
degraded by the CD4+ T-cells in the WBMs. We do not represent the death of lung cells and 
non-metabolic inflammation and immune responses. However, the WBMs contain reactions 
for the metabolism of immuno-metabolites (e.g., eicosanoids) and thus may capture potential 
changes along those pathways. Furthermore, the setup allows the virus to replicate in the liver, 
adipocytes, and the small intestine, consistent with reports of high expression of the human 
ACE2 receptor, to which the virus binds [7, 8]. In total, 25 virus-specific reactions were 
formulated and included in the WBMs (SI Table S2), yielding the WBM-SARS-COV-2 models 
consisting of 83,082 metabolic reactions for 28 organs for the male model and 85,568 reactions 
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for 30 organs for the female model (Figure 1C). The WBM-SARS-COV-2 models were 
constrained based on the physiological parameters of a reference man and a reference woman 
(e.g., weight, height, organ contributions to the whole-body weight, blood perfusion rates of 
the different organs) [21]. No sex-specific or personalised constraints were placed on the virus 
reactions, as such data were not available. However, we limited the ratio of the virus uptake 
reaction (e.g., EX_virus_template[a]) to the virus biomass reaction (e.g., 
Lung_virus_production) to be maximally 2,000 (per day and person), representing the 
estimated burst size of 1,000 per 10 hours [46]. Furthermore, the dietary uptake constraints 
were set to correspond to an average European diet [49], if not specified differently. Taken 
together, we generated computational metabolic models of viral infection of the human host, 
which have been tailored using condition-, sex-specific constraints. 
 
Modelling COVID-19 infection 
First, we investigated the consequences of virus replicating in the lung. In the male and the 
female WBM-SARS-COV-2 models, using flux balance analysis [50], the maximally possible 
flux through the virus shedding reaction (EX_virus[a]) was 33.0254 U (mmol/day/person) from 
1 U inhaled virus (EX_virus_template[a]) (Table S3). The predictions are not quantitative and 
the viral uptake of on mmol/day/person cannot directly be correlated with the viral load 
reported in individuals [54]. Notably, in both WBM-SARS-COV-2 models, the uptake of the 
essential amino acid isoleucine by the lung from the blood circulation was limiting the 
maximally possible flux through the virus shedding flux reaction. To test whether isoleucine is 
indeed rate limiting, we relaxed the upper bound on the lung isoleucine uptake reaction, which 
was set based on the blood concentration of isoleucine in healthy individuals and the blood 
perfusion rate through the lung [21]. The maximal flux through the virus shedding flux reaction 
increased to 41.0819 U for the male model and 38.711 U for the female model when other 
metabolites became rate-limiting (Table S3).  
 
The WBM-SARS-COV-2 models corresponded to a mild, not hospitalisation requiring, 
infection with normal amounts of CD4+ T-cells. To simulate the increased viral load reported 
for mild (but hospitalised) and severe COVID-19 patients (5.11 vs 6.17 log10 copies per mL, 
respectively, [54]), we increased the viral uptake flux to 10 U. However, no feasible solution 
could be obtained, which was expected as already a mild (but hospitalisation requiring) SARS-
COV-2 infection led to an increase in CD8+ T-cells of approximately six times and 
approximately three times for CD4+ T-cells [48]. Since the WBM-SARS-COV-2 models do 
not account for CD8+ T-cells, we decided to use a factor of ten in the subsequent simulations 
to approximate the combined raise of T-cells. The increase in T-cells was modelled by 
adjusting the coefficient corresponding to CD4+ T-cells in the whole-body biomass reaction. 
The resulting models, deemed WBM-SARS-COV-2-CD4+, had a the maximally possible flux 
through the virus shedding reaction of 33.0254 U (female and male), when the constraint on 
the isoleucine uptake was unchanged or to 41.0819 U for the male model and 38.711 U for the 
female model when the lung isoleucine was increased to 100 U (Table S3).  

 
These results show that in the host-virus WBMs an increase in T-cells is required to deal with 
a higher initial viral load, consistent with our current knowledge. 
 
Whole-body metabolic remodelling during Covid-19 infection 
To obtain an assessment of whole-body metabolic remodelling, we pursued two alternative 
approaches. First, we investigated the metabolic changes associated with the infection, the 
increase in virus load, and CD4+ T-cell availability. Therefore, we used three models for each 
sex, healthy WB), WBM-SARS-COV-2 model with 1 U virus uptake and normal CD4+ T-cell 
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levels, and WBM-SARS-COV-2-CD4+ model with 10 U virus uptake and 10 times increase 
in CD4+ T-cells. We calculated the flux distribution that minimises the Euclidean norm, 
thereby approximating the closest thermodynamically feasible flux distribution for each model. 
When comparing the flux distribution obtained from the WBM-SARS-COV-2 with the one 
from the healthy WBM model, approximately 15% of the metabolic reactions changed in flux 
values by at least 10% for both sexes (Figure 2A, Table S4). Similar numbers in reaction flux 
changes were observed when comparing the WBM-SARS-COV-2-CD4+ results with the 
WBM-SARS-COV-2 and with the healthy WBM model results. These results indicate an 
overall change in metabolism due to virus infection but also between mild and severe infection, 
involving almost all organs (Table S4). In the female lung, 12% of the 3,467 lung reactions 
increased in flux, while 14,7% of reactions decreased in flux compared to the healthy female 
WBM (Figure 3B). We noticed that these results were sensitive to the applied constraints and 
the reaction content of the WBMs, as can be seen in the differences between male and female 
models. This problem arose as we calculated only one of an infinite number of possible flux 
distributions that are consistent with the applied constraints. Nonetheless, the results illustrate 
that the metabolism in the entire body was affected during the viral infection, consistent with 
our current knowledge and reports in the literature [4]. 

 
As a second approach, we calculated the maximally possible increase or decrease of 
metabolites in the blood compartment. Therefore, we added for each of the 1,033 metabolites 
present in the blood compartment an artificial reaction allowing for the metabolite 
accumulation (Methods) and maximised the flux through each reaction individually. We found 
that 353 out of 1,033 (34%) metabolites changed in the female WBM-SARS-COV-2 model 
and 359 out of 1,033 (35%) metabolites changed in the male WBM-SARS-COV-2 model 
(Table S5). In the female WBM-SARS-COV-2-CD4+ model, we predicted an increase of 79 
and a decrease of 278 blood metabolites. Next, we compared the predicted blood metabolite 
changes with published metabolomic data [55], which reported 474 statistically significant 
changes between healthy and non-severe Covid-19 patients (n = 28 and n = 37, respectively) 
(Table S6). We could map 127/474 (27%) measured metabolites onto the blood metabolites in 
the WBMs. Of these 127, 103 had a non-zero maximal flux value through their respective 
demand reaction. For the female WBM-SARS-COV-2 model, the predictions agreed for in 
73/103 (71%, p = 0.0006) of the cases. In six (6%) cases, we predicted a decreased metabolite 
level while an increase was reported. In further 24/103 (23%) of the cases, we predicted no 
change. The numbers were very similar for the male WBM-SARS-COV-2 model (Table S5).  

 
Taken together, our simulation results illustrate a metabolic remodelling on a whole-body level 
that also affect the blood metabolome, which showed good agreement with the published data. 
 
Simulation of potential anti-viral drug targets. 
Over the past two years, various potential drug treatment strategies have been suggested. One 
study proposed a set of 69 FDA-approved drugs targeting 66 host proteins as potential drugs, 
as they had shown that these interacted with COVID-19 proteins [56]. Hence, we investigated 
whether any of these drugs would alter the virus shedding rate (EX_virus[a]) in our host-virus 
models. Only ten of the 66 host proteins were covered in the WBM models (Figure 3A). We 
inhibited each of these proteins by setting the upper and lower constraints on the corresponding 
lung reactions to zero and maximised the virus shedding flux. None of these inhibitions resulted 
in a decrease of the maximally possible virus shedding flux in silico (Figure 3B). Another 
study, which also used a computational model of COVID-19 and a metabolic model of human 
macrophages, has suggested the guanylate kinase as a drug target [28]. The guanylate kinase 
catalyses the reversible ATP-dependent phosphorylation of GMP to GDP. In agreement with 
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that study, the inhibition of the corresponding reactions (VMH ID: GK1, DGK1) in the WBM-
SARS-COV-2 models reduced the maximal virus production potential to about 3.3% of the 
original WBM-SARS-COV-2 model flux values (Figure 3B, Table S3). The complete 
inhibition of the associated reactions led to an infeasible model, meaning that a small residual 
flux through these reactions was necessary to sustain the maintenance of the WBM model. 
Additionally, we inhibited the lung uptake of various amino acids, motivated by the result that 
isoleucine was rate-limiting for the viral shedding flux (Figure 3B). The reduction of the lung 
uptake of isoleucine and threonine resulted in a similar reduction of maximal virus shedding 
flux as did the GK1 inhibition (Figure 3B). In contrast, the reduction of uptake flux in 
tryptophan and lysine resulted in a reduction of the maximal virus shedding flux to 12.25% and 
40.3%, respectively, in both sexes. These results highlight the potential of metabolic targets for 
reducing the viral replication rate within the lung tissue. 
 
Predicted effect of diet on virus replication in various organs 
The reduction in lung amino acid uptake could be achieved by, e.g., dietary changes. Hence, 
we investigated whether different diets may alter the maximal possible viral shedding rate. 
Therefore, we altered the in silico diet of the WBM-SARS-COV-2 and WBM-SARS-COV-2-
CD4+ models and maximised the maximally possible virus shedding rate (EX_virus[a]) 
(Figure 3C, Table S3). In total, we used eight different diets from the Virtual Metabolic Human 
database (vmh.life) [49]. The lowest maximally possible virus shedding rate was predicted for 
the vegan and vegetarian diets (Figure 3C), which also have the lowest isoleucine content 
(Table S7), while all other diets resulted in the same maximal shedding flux as the average 
European diet. Interestingly, tryptophan became the rate-limiting amino acid in the vegan and 
the vegetarian diet (Table S3). Both diets have the lowest tryptophan content (Table S7). Next, 
we investigated whether diet may influence the virus replication rate in the other infected 
organs. The maximally possible virus replication fluxes were dependent on the diet in the liver 
and the adipocytes. In contrast, in the small intestine, the flux was limited by a glycan (VMH 
ID: g3m8mpdol_L), which was required for the N-linked glycosylation of the S and E proteins 
(Figure 1D, Table S3). The vegan and the vegetarian diet resulted in the lowest liver and 
adipocyte virus replication fluxes. In the liver, the highest virus replication flux was obtained 
for the unhealthy diet, which has been defined as a burger- and steak rich diet [49], followed 
by the high fat and the high protein diets (Figure 3D). The virus replication fluxes were limited 
by tryptophan in the liver and the adipocytes (Table S3). Sex-specific differences were obtained 
for the unhealthy, high fat, and high protein diets in the adipocytes (Figure 3E), which can be 
attributed to women having a higher percentage of body fat, which was also the case for our 
female WBM (Figure 3E). The results were similar for the WBM-SARS-COV-2-CD4+ models 
(Table S3). Taken together, these results suggest that diet and sex could influence the virus 
shedding flux in the different infected organs.  
 
Analysis of virus variants 
Numerous SARS-CoV-2 variants have been identified over the past two years, some of which 
have been the drivers behind the different pandemic waves. In February 2021, the World Health 
Organisation introduced a naming and monitoring system, which lead to the classification of 
variants under monitoring (VUM), variants of potential interests (VOI), and variants of 
concerns (VOC). So far, we have used for our in silico investigations the original, or parental, 
virus genome sequence, which was released in February 2020. To investigate whether the 
mutations found in the different variants may have adapted not only to evade the immune 
response, through mutations of critical amino acids in the spike protein, but also to the host 
metabolism, we obtained genome sequences from GISAID for the five VOCs, two VOIs, and 
one VUM (classification status of December 2021, Figure 4A). Furthermore, to have more 
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sequences that are likely to be closest to the parental virus, we also obtained sequences from 
Italy in February 2020, where the first wave in Europe started and that resulted in many deaths 
(Figure 4A). We then created a total of 12,233 WBM-SARS-COV-2 models (Methods), each 
specific for a virus sequence, and maximised the virus shedding reaction. Interestingly, the 
predicted virus replication rates varied significantly between the variants (Figure 4B). The delta 
variant achieved the highest shedding rate followed by B.1.640, a variant under monitoring by 
the WHO, which had been reported in France in December 2021 [57], and its occurrence 
overlapped with the omicron wave. The maximal virus shedding rate predicted for the omicron 
variant, which now represents the dominant variant worldwide, was lower than that of the 
parental strain (Figure 4B, Table S8). The variant sequenced in Italy in Spring 2020 had an 
average maximal virus shedding rate comparable to the parental variant but was lower than the 
delta variant and the B.1.640 variants. However, only 69 sequences of B.1.640 had been 
deposited at GISAID at the time of analysis, and of those, only 28 passed our stringent quality 
requirements (see method). The subvariant of the omicron variant, deemed BA.2, has overtaken 
the omicron variant BA.1 since January 2022. Its predicted maximal virus shedding rate BA.2 
was slightly higher than that of BA.1 (Figure 4B, Table S8).  
 
To better understand the variation in replication rates, we analysed the amino acid composition 
of COVID-19 variants (Figure 4C, Table S9). As the sequence itself is not sufficient for the 
amino acid requirements to create a new virus particle, we multiplied each amino acid 
frequency with the copy number of the viral proteins (Figure 1D). We found that the highest 
requirements were for leucine, alanine, glycine, serine, and threonine, while the lowest 
requirements were for histidine, methionine, cysteine, and tryptophan (Figure 4C). Curiously, 
but consistent with the simulation results using the parental variant, the predicted virus 
shedding flux increased linearly with decreasing isoleucine abundance in the viral proteome 
(R2=0.99, Figure 5A, Table S8). In contrast, we observed that the virus exhalation flux 
increased linearly with increasing threonine requirements, except for the omicron subvariants 
(Figure 5B, Table S8, Figure S1). The omicron threonine requirements were comparable to 
those of the delta variant, but its replication rate was limited by its high requirement for 
isoleucine. 

 
The Covid-19 variants are defined by their mutations, which differ in type (i.e., nucleotide 
change) as well as in the affected proteins (Figure 4F, Figure S2-4). Much attention has focused 
on mutations in the spike protein, which is of high importance as the vaccines have been 
developed to enable immune system recognition of certain parts of the spike protein. However, 
less attention has been given to the other open reading frames. For instance, in the delta and 
the B.1.640 variant, one isoleucine has been substituted in the M protein with threonine when 
compared with the parental variant (Figure 5C). However, since one virus particle contains 
2,000 M proteins, this single non-synonymous replacement led to the greatly reduced 
requirement for the essential amino acid isoleucine and thus, to an increased maximal possible 
virus shedding rate. The B.1.640 variant had one additional isoleucine in the N protein (Figure 
S3) reducing its maximal possible shedding flux compared to the delta variant. In contrast, the 
omicron variants did not contain this mutation (Figure 4F). Overall, the sequences of the delta 
variants were decreased in aspartate and isoleucine content, while increased in cysteine and 
methionine content, compared to the variant that caused the Italian wave (Table S9). Omicron, 
in contrast, was mostly decreased in glutamine (Figure S2) and increased in lysine (Figure S4) 
content. However, for all variants lung isoleucine uptake remained rate-limiting for the virus 
shedding flux. 
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Taken together, single mutation and their combinations in the structural proteins can lead to 
differences in silico virus shedding rates and may reflect potential adaptation to metabolic 
properties of the host. 
 
Discussion 
We investigated host-virus co-metabolism during SARS-CoV-2 infection. Therefore, we 
extended the comprehensive sex-specific, whole-body organ resolved models of human 
metabolism with the necessary reactions to replicate SARS-CoV-2 in the lung as well as 
selected peripheral organs. We used the host-virus model to predict the maximal possible virus 
shedding rate in silico. To replicate within the in silico host cells, the virus template is 
transcribed and translated, and the nascent proteins may be further modified (Figure 1B) [5]. 
As such, the viral infection poses an additional metabolic burden on the in silico host and leads 
to the re-direction of metabolic fluxes towards the viral replication. Our predictions of large-
scale metabolic changes in metabolic fluxes (Figure 2A) are thus consistent that any viral 
infection leads to remodelling of cellular metabolism [14, 58, 59]. However, the identification 
of potential bottlenecks, or rate-limiting steps, might be difficult using in vitro or in vivo 
experimental systems. Hence, computational modelling provides a great opportunity to gain 
further mechanistic insight and to identify potential innovative drug targets and treatment 
strategies. Our simulation results using the genome sequence of SARS-CoV-2 identified the 
essential amino acid isoleucine as a rate-limiting metabolite. To our knowledge, such a 
dependency has not been reported in the literature. One study [60] linked lower isoleucine 
biosynthesis capability by the gut microbiome of severe/critical COVID-19 patients to higher 
inflammation. While this observation seems counterintuitive to our results, it is not known 
whether these patients had a more isoleucine-rich diet than healthy individuals, and thus a pre-
infection microbiome low in isoleucine biosynthetic capabilities [60].  
 
The viral load has been reported to be about ten times higher in patients with severe COVID-
19 infections compared to the mild cases [54]. Consistently, for the WBM-virus models to 
remain feasible, we needed to increase the fraction of CD4+-T-cell, corresponding to T-cell 
activation, in the whole-body maintenance reaction to the reported increase of about 10 times 
(Table S3). This requirement is also consistent with our knowledge that immunocompromised 
individuals have a more severe COVID-19 infection outcome [2, 61, 62] and the central role 
of CD4+ T-cells in effective immune response and protection [63]. Thus, our host-virus model 
captures this aspect even though we do not explicitly model inflammation and immune 
response. 
 
COVID-19 is primarily characterised by an infection of the respiratory tract [1] but its 
multisystemic nature has been well documented [4] and has been mainly attributed to the broad 
tissue expression of the hACE2 receptor [1]. In COVID-19 patients with severe infection or 
poor outcome, multi-organ failure has been observed [1], which raises the question of whether 
co-morbidities, such as liver damage, or the viral infection itself caused the multi-organ 
failures. Our computational modelling indicated a metabolic remodelling beyond the four 
organs that we infected in silico with SARS-CoV-2 (Figure 2, Table S4), while we did not 
model any organ damages. These results suggest that SARS-CoV-2, and likely any viral 
infection, initiates a metabolic remodelling on the whole-body level and not only on the level 
of the infected cells [14, 58, 59]. We observed such remodelling also in our mild SARS-CoV-
2 models (Figure 2, Table S4), consistent with recent findings that also asymptomatic and mild 
infections can lead to, e.g., cognitive impairment [12] and long covid [13], which is 
characterised by a range of symptoms, such as fatigue, cognitive impairment, and shortness of 
breath [64]. This feature of COVID-19 raises the question of whether the observed and 
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predicted, whole-body metabolic changes may become irreversible via, e.g., metabolic 
imprinting, thereby leading to chronic disease [65]. 
 
The blood metabolome represents a multi-facet readout of whole-body metabolic activity and 
environmental cues. Hence, we predicted potential changes in the blood metabolome upon 
SARS-CoV-2 infection, with and without T-cell activation, as an alternative read-out of whole-
body metabolic remodelling (Table S5). Comparison with published plasma metabolomic data 
[55] from COVID-19 patients and healthy controls generally overlapped well with our 
predictions, thus, illustrating that the WBMs can be used, in principle, to predict plasma 
metabolome changes. Furthermore, numerous reported metabolites are either diet and/or 
microbiome associated. For instance, the tryptophane metabolism is well known to be 
influenced by the microbiome, which has also been shown to alter significantly in individuals 
infected with mild and severe COVID [66]. We are currently not accounting for microbial 
metabolic activity, but it would be a valuable extension of the current effort as it also permits 
elucidate host-microbiome co-metabolism [21]. Moreover, in our models, the availability of 
carnitine and its derivative was limited by the defined diet uptake, while carnitine and 
associated lipids have been reported to change with infection and disease severity [67]. 
Similarly, biotin [68] is increased in COVID patients. Biotin is either produced by the 
microbiome [69] or taken up with the diet. Similarly, one study [68] reported an increase in 
theophylline in COVID-2 patients. This metabolite is a drug, which is used to prevent and treat 
shortness of breath in asthma and COPD patients (Medline/Wiki – REF). Hence, medication 
needs to be recorded and corrected (as a confounding variable) when conducting metabolomic 
analysis, as it is well studied that medication directly influences the plasma metabolome [70, 
71]. 
 
Almost 70 potential host drug targets and corresponding FDA-approved drugs have been 
suggested based on host-virus protein-protein interaction data [56]. We expected that of the 
few host proteins that mapped onto the genes included in the WBM model, which nonetheless 
covers the metabolic function of nearly 1,700 genes (Figure 1), at least some would alter the 
maximally possible virus shedding rate (Figure 3A, 3B). However, the inhibition of these 
proteins did not reduce the virus shedding rate. This result may be explained by how these drug 
targets were identified. These drug targets were chosen based on protein-protein interaction 
experiments [72] indicating that there is a physical interaction between the virus and host 
protein. However, interruption of this physical interaction cannot be modelled with our 
approach. It is also notable that only a very small fraction of these potential drug targets 
represents metabolic enzymes. In contrast, a substantial reduction in maximal possible virus 
shedding rate was achieved by inhibiting the guanylate kinase 1, which also can activate anti-
viral prodrugs [73]. Interestingly, similar flux reduction was also achieved by reducing the lung 
uptake of either isoleucine or threonine. Such reduction in uptake rates may be achieved by 
reducing the blood concentration of the respective amino acids, e.g., through an altered diet.  
 
No definite link between diet and the susceptibility to COVID-19 infection and the disease 
severity has been established yet [74]. Nonetheless, during the pandemic, the world health 
organisation (WHO) has been promoting healthy eating to boost the immune system and lower 
the risk of chronic diseases1, which are risk factors for a more severe outcome of COVID-19 
[2]. Our simulation results suggest a link between diet and maximally possible virus shedding 
rate and even propose a sex-specific effect (Figure 3B-D). Our in silico results can be explained 

 
1 http://www.emro.who.int/nutrition/nutrition-infocus/nutrition-advice-for-adults-during-the-covid-19-
outbreak.html 
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due to the mechanistic nature of our computational models and are a direct consequence of the 
varied amino acid content (especially of isoleucine) in the different in silico diets. This 
observation is exemplified by the finding of an essential amino acid (isoleucine) limiting the 
virus replication capacity, leading to the plausible hypothesis that inter-individual diet 
differences may contribute to the broad range of observed disease outcomes and clinical 
phenotypes. However, only integrating infection and clinical data with nutrition data will 
enable the validation of this hypothesis that we derived from our simulations. Future 
epidemiological studies, using infection, transmission and nutritional data across various 
countries may be able to shed a light on the role of diet habits in COVID-19 as will clinical 
trials involving nutritional components [74].  
 
Most studies have focused on the significance of mutations in the spike (S) protein, as these 
have direct implications on how well the virus may be able to enter the cells and the 
effectiveness of the developed vaccines. While mutations in the other proteins may have 
structural and functional consequences, our simulation results suggest that there could also be 
a link to how fast the virus can replicate in the lung and that increases in virus replication, and 
thus virus shedding may be achieved by adapting better to host metabolism. We observed a 
striking anticorrelation between isoleucine requirement and the predicted virus shedding rate 
(Figure 5A). In contrast, the threonine requirement correlated with the predicted virus shedding 
rate for all variants, except for omicron (Figure 5B). Notably, while the abundance of these 
two amino acids did not alter substantially in the variant sequences (Figure 5C), the fact that 
they occurred in highly abundant proteins decreased/increased the amino acid’s requirement 
for viral replication. To our knowledge, this observation has not yet been reported in the 
literature and complements structural considerations of the virus mutations. Many factors 
influence whether a mutant becomes dominant and has a more severe outcome for infected 
individuals, including isolation, contract tracing, and lockdowns, which slow done 
transmission as well as the vaccination status of the population. Hence, our predicted virus 
shedding rates cannot easily be correlated with virus dominance. Also, the availability of 
genome sequences of variants on public servers, such as GISAID, is not suitable for correlating 
our predictions with a prominence of a variant due to biases in the selection of samples to be 
sequenced or differences in sequence capabilities of the different countries [75]. Nonetheless, 
it is remarkable that the delta variant, which has dominated most countries for many months in 
2021 and caused many deaths worldwide, was predicted to have the highest maximal possible 
shedding rate while having the lowest isoleucine and highest threonine requirements. In 
contrast, the omicron variant, which has higher infectiousness but results overall in less severe 
COVID-19 cases [75], has a predicted virus shedding rate than the parental variant. 
Consistently, the sub-variant of omicron BA.2, which currently dominates the northern 
European countries has a similar predicted virus shedding rate as omicron BA.1. Our results 
highlight that in addition to the structural implications of virus mutations, one should also 
consider host metabolism implications. Importantly, these observations could lead to further 
novel treatment strategies for viral infections, including dietary restrictions on amino acid 
intake.  

 
Numerous assumptions underlie our computational WBM-SARS-COV-2 models. One of the 
chief assumptions is the steady-state of the modelled metabolic network. As we consider, e.g., 
the virus replication potential for a day, we can assume that metabolism is at a steady-state, as 
biochemical reaction rates generally occur at a millisecond to seconds time scale [76]. A 
consequence of the steady-state assumption is that we cannot predict any concentration 
changes, except for those changes occurring across the system's boundaries (e.g., virus 
shedding rate or blood metabolite accumulation/depletion rates). Equally, our modelling 
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approach does not capture the dynamic changes occurring during infection but rather predicts 
a final feasible steady-state. Moreover, our WBM-SARS-COV-2 models only capture 
metabolism and thus can only inform about virus-host metabolic interactions, while viral 
infections and immune response are associated with substantial changes in the regulatory and 
signalling machinery [59]. Similarly, we do not consider the effect of fever on enzymatic rates 
or gene expression and also do not alter the blood supply to the different organs, which 
corresponded in our simulations to the resting state [21]. Moreover, we do not model decreased 
oxygen blood saturation that has been reported in severe COVID-19 cases [77, 78]. However, 
it has been estimated that virus shedding occurs already two to three days before symptoms 
appear [79], justifying our choice of not further parameterising the models with symptoms. Our 
models should therefore be seen as a model best suited for the early stages of the infection. 
Finally, we only performed our simulations using a representative reference man and woman 
[31]. More extensive simulations need to be carried out by parameterising the WBM-SARS-
COV-2 models with data from, e.g., vulnerable populations (e.g., elderly or obese individuals), 
as well as ethnicity-specific parameters.  

 
Despite these assumptions and limitations, we believe that our modelling approach provides 
valuable insights and strengths, such as the generation of novel hypotheses in a sex-specific, 
whole-body yet organ resolved manner during COVID-19 infection. These hypotheses, such 
as the possibility to reduce the virus replication rate by restricting isoleucine availability in the 
diet can be translated into clinical research, delivering thereby additional targets for 
intervention. Notably, the overall computational modelling paradigm could be extended to 
other viruses, such as influenza and human pathogens. 
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Figures 
 

 
 
Figure 1: Overview of the sex-specific host-virus metabolic whole-body models. A. 
Schematic overview of the host-virus model. B. Schematic overview of the virus metabolic 
reactions added to the sex-specific, organ-resolved whole-body human metabolic models. B. 
Statistics on reaction and metabolite content of the host-virus models. D. Structural viral 
proteins, their copy numbers used for modelling the viral infection, and their protein 
modifications (see Methods for more details). 
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Figure 2. Metabolite changes occurring during mild and severe virus infection. A. Overall 
changes in reaction flux values in the WBM models in mild (WBM-SARS-COV-2) and severe 
(WBM-SARS-COV-2-CD4+) infection models compared with the healthy WBM models. B. 
Biochemical network visualisation of predicted metabolic changes occurring in the female lung 
during mild infection. Flux values that increased (red) or decreased (blue) by more than 10% 
when comparing the female WBM-SARS-COV-2 with the healthy WBM model.  
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Figure 3: Predicted effect of drug treatment (A) and different dietary regimes on the 
maximally possible virus shedding rates in the different organs (B). All fluxes are given in 
mmol/day/person. 
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Figure 4. Analysis of SARS-CoV-2 variants in the context of the host-virus whole-body 
models. A. List of considered variants and their classifications. A total of 12,233 variant 
sequences were analysed. B. Predicted maximal possible virus shedding flux using the variant-
specific WBM-SARS-COV-2 models. C. Mean amino acid requirements per particle were 
determined by multiplying the number of amino acids in the structural and non-structural 
proteins by the protein copy numbers (Figure 1D). 
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Figure 5. Predicted dependency of the maximal possible virus shedding flux on isoleucine 
and threonine requirements of the nascent virus particle. Predicted anticorrelation of the 
maximal possible virus shedding flux in the variant-specific female WBM-SARS-COV-2 
models on isoleucine (A) and threonine (B). C. Sequence alignment of randomly chosen 
sequences of three variants and the parental virus for the M protein. See also Figure S2-4 for 
more examples. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488249doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488249
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

20 

References 
 
1. Yuki K, Fujiogi M, Koutsogiannaki S: COVID-19 pathophysiology: A review. Clin 

Immunol 2020, 215:108427. 
2. Wang B, Li R, Lu Z, Huang Y: Does comorbidity increase the risk of patients with 

COVID-19: evidence from meta-analysis. Aging 2020, 12. 
3. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, Zhang W, Wang Y, Bao S, Li Y et al: 

SARS-CoV-2 Infection in Children. New England Journal of Medicine 2020. 
4. Gavriatopoulou M, Korompoki E, Fotiou D, Ntanasis-Stathopoulos I, Psaltopoulou T, 

Kastritis E, Terpos E, Dimopoulos MA: Organ-specific manifestations of COVID-
19 infection. Clin Exp Med 2020, 20(4):493-506. 

5. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V: Coronavirus biology and 
replication: implications for SARS-CoV-2. Nature reviews 2021, 19(3):155-170. 

6. Amin M: COVID-19 and the liver: overview. Eur J Gastroenterol Hepatol 2021, 
33(3):309-311. 

7. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen 
M, Kampf C, Wester K, Hober S et al: Towards a knowledge-based Human 
Protein Atlas. Nat Biotechnol 2010, 28(12):1248-1250. 

8. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H: Tissue 
distribution of ACE2 protein, the functional receptor for SARS coronavirus. A 
first step in understanding SARS pathogenesis. J Pathol 2004, 203(2):631-637. 

9. Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli 
RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ et al: SARS-CoV-2 
productively infects human gut enterocytes. Science (New York, NY 2020, 
369(6499):50-54. 

10. Wong SH, Lui RN, Sung JJ: Covid-19 and the Digestive System. J Gastroenterol 
Hepatol 2020. 

11. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H: Evidence for Gastrointestinal 
Infection of SARS-CoV-2. Gastroenterology 2020, 158(6):1831-1833 e1833. 

12. Fernandez-Castaneda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, Yalcin B, 
Taylor KR, Dutton S, Acosta-Alvarez L et al: Mild respiratory SARS-CoV-2 
infection can cause multi-lineage cellular dysregulation and myelin loss in the 
brain. bioRxiv 2022. 

13. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ: 6-month neurological and 
psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort 
study using electronic health records. Lancet Psychiatry 2021, 8(5):416-427. 

14. Thaker SK, Ch'ng J, Christofk HR: Viral hijacking of cellular metabolism. BMC 
Biol 2019, 17(1):59. 

15. Palsson BO: Systems Biology: Constraint-based Reconstruction and Analysis. 
UK: Cambridge university press; 2015. 

16. Thiele I, Palsson BØ: A protocol for generating a high-quality genome-scale 
metabolic reconstruction. Nature protocols 2010, 5(1):93-121. 

17. Mardinoglu A, Nielsen J: Systems medicine and metabolic modelling. J Intern Med 
2012, 271(2):142-154. 

18. Aurich MK, Thiele I: Computational Modeling of Human Metabolism and Its 
Application to Systems Biomedicine. Methods in molecular biology (Clifton, NJ 
2016, 1386:253-281. 

19. Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N: Insight into 
human alveolar macrophage and M. tuberculosis interactions via metabolic 
reconstructions. Molecular systems biology 2010, 6:422. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488249doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488249
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

21 

20. Sahoo S, Thiele I: Predicting the impact of diet and enzymopathies on human 
small intestinal epithelial cells. Hum Mol Genet 2013, 22(13):2705-2722. 

21. Thiele I, Sahoo S, Heinken A, Hertel J, Heirendt L, Aurich MK, Fleming RM: 
Personalized whole-body models integrate metabolism, physiology, and the gut 
microbiome. Molecular systems biology 2020, 16(5):e8982. 

22. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, Pujos-Guillot E, 
de Wouters T, Juste C, Rizkalla S, Chilloux J et al: Quantifying Diet-Induced 
Metabolic Changes of the Human Gut Microbiome. Cell metabolism 2015, 
22(2):320-331. 

23. Sahoo S, Franzson L, Jonsson JJ, Thiele I: A compendium of inborn errors of 
metabolism mapped onto the human metabolic network. Molecular bioSystems 
2012, 8(10):2545-2558. 

24. Cheng Y, Schlosser P, Hertel J, Sekula P, Oefner PJ, Spiekerkoetter U, Mielke J, 
Freitag DF, Schmidts M, Investigators G et al: Rare genetic variants affecting urine 
metabolite levels link population variation to inborn errors of metabolism. Nat 
Commun 2021, 12(1):964. 

25. Hyduke DR, Lewis NE, Palsson BO: Analysis of omics data with genome-scale 
models of metabolism. Molecular bioSystems 2013, 9(2):167-174. 

26. Saha R, Chowdhury A, Maranas CD: Recent advances in the reconstruction of 
metabolic models and integration of omics data. Curr Opin Biotechnol 2014, 
29:39-45. 

27. Preciat Gonzalez GA: XomicsToModel: Multiomics data integration and 
generation of thermodynamically consistent metabolic models. bioRxiv 2021. 

28. Renz A, Widerspick L, Drager A: FBA reveals guanylate kinase as a potential 
target for antiviral therapies against SARS-CoV-2. Bioinformatics (Oxford, 
England) 2020, 36(Suppl 2):i813-i821. 

29. Renz A, Widerspick L, Drager A: Genome-Scale Metabolic Model of Infection 
with SARS-CoV-2 Mutants Confirms Guanylate Kinase as Robust Potential 
Antiviral Target. Genes (Basel) 2021, 12(6). 

30. Cheng K, Martin-Sancho L, Pal LR, Pu Y, Riva L, Yin X, Sinha S, Nair NU, Chanda 
SK, Ruppin E: Genome-scale metabolic modeling reveals SARS-CoV-2-induced 
metabolic changes and antiviral targets. Molecular systems biology 2021, 
17(11):e10260. 

31. Snyder WS, Cook MJ, Karhausen LR, Nasset ES, Parry Howells G, Tipton IH: 
Report on the Task Group on Reference Man; 1975. 

32. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, Gatto F, Nilsson A, 
Preciat Gonzalez GA, Aurich MK et al: Recon3D enables a three-dimensional view 
of gene variation in human metabolism. Nat Biotechnol 2018, 36(3):272-281. 

33. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal 
R, Aziat F, Dong E et al: HMDB 3.0--The Human Metabolome Database in 2013. 
Nucleic Acids Res 2013, 41(Database issue):D801-807. 

34. Thiele I, Fleming RM, Bordbar A, Schellenberger J, Palsson BO: Functional 
characterization of alternate optimal solutions of Escherichia coli's 
transcriptional and translational machinery. Biophysical journal 2010, 
98(10):2072-2081. 

35. Fukushima H, Hoshina K, Nakamura R, Ito Y, Gomyoda M: Epidemiological study 
of Yersinia enterocolitica and Yersinia pseudotuberculosis in Shimane 
Prefecture, Japan. Contrib Microbiol Immunol 1987, 9:103-110. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488249doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488249
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

22 

36. Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ: 
Coronavirus M proteins accumulate in the Golgi complex beyond the site of 
virion budding. Journal of virology 1994, 68(10):6523-6534. 

37. Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, 
Yeager M, Buchmeier MJ: Supramolecular architecture of severe acute 
respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal 
of virology 2006, 80(16):7918-7928. 

38. Sturman LS, Holmes KV, Behnke J: Isolation of coronavirus envelope 
glycoproteins and interaction with the viral nucleocapsid. Journal of virology 
1980, 33(1):449-462. 

39. Godet M, L'Haridon R, Vautherot JF, Laude H: TGEV corona virus ORF4 encodes 
a membrane protein that is incorporated into virions. Virology 1992, 188(2):666-
675. 

40. Neuman BW, Joseph JS, Saikatendu KS, Serrano P, Chatterjee A, Johnson MA, Liao 
L, Klaus JP, Yates JR, 3rd, Wuthrich K et al: Proteomics analysis unravels the 
functional repertoire of coronavirus nonstructural protein 3. Journal of virology 
2008, 82(11):5279-5294. 

41. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, 
McLellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion 
conformation. Science (New York, NY 2020, 367(6483):1260-1263. 

42. Fung TS, Liu DX: Post-translational modifications of coronavirus proteins: roles 
and function. Future Virol 2018, 13(6):405-430. 

43. McBride CE, Machamer CE: Palmitoylation of SARS-CoV S protein is necessary 
for partitioning into detergent-resistant membranes and cell-cell fusion but not 
interaction with M protein. Virology 2010, 405(1):139-148. 

44. Guan X, Fierke CA: Understanding Protein Palmitoylation: Biological 
Significance and Enzymology. Sci China Chem 2011, 54(12):1888-1897. 

45. Aller S, Scott A, Sarkar-Tyson M, Soyer OS: Integrated human-virus metabolic 
stoichiometric modelling predicts host-based antiviral targets against 
Chikungunya, Dengue and Zika viruses. J R Soc Interface 2018, 15(146). 

46. Bar-On YM, Flamholz A, Phillips R, Milo R: SARS-CoV-2 (COVID-19) by the 
numbers. eLife 2020, 9. 

47. Vankadari N, Wilce JA: Emerging WuHan (COVID-19) coronavirus: glycan 
shield and structure prediction of spike glycoprotein and its interaction with 
human CD26. Emerg Microbes Infect 2020, 9(1):601-604. 

48. Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, Jia X, 
Nicholson S, Catton M, Cowie B et al: Breadth of concomitant immune responses 
prior to patient recovery: a case report of non-severe COVID-19. Nature 
Medicine 2020. 

49. Noronha A, Modamio J, Jarosz Y, Guerard E, Sompairac N, Preciat G, Danielsdottir 
AD, Krecke M, Merten D, Haraldsdottir HS et al: The Virtual Metabolic Human 
database: integrating human and gut microbiome metabolism with nutrition and 
disease. Nucleic Acids Res 2019, 47(D1):D614-D624. 

50. Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat Biotechnol 2010, 
28(3):245-248. 

51. Noronha A, Danielsdottir AD, Gawron P, Johannsson F, Jonsdottir S, Jarlsson S, 
Gunnarsson JP, Brynjolfsson S, Schneider R, Thiele I et al: ReconMap: an 
interactive visualization of human metabolism. Bioinformatics (Oxford, England) 
2017, 33(4):605-607. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488249doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488249
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

23 

52. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdottir 
HS, Wachowiak J, Keating SM, Vlasov V et al: Creation and analysis of 
biochemical constraint-based models using the COBRA Toolbox v.3.0. Nature 
protocols 2019, 14(3):639-702. 

53. Buchfink B, Xie C, Huson DH: Fast and sensitive protein alignment using 
DIAMOND. Nature methods 2015, 12(1):59-60. 

54. Chen Y, Li L: SARS-CoV-2: virus dynamics and host response. Lancet Infect Dis 
2020. 

55. Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, Quan S, Zhang F, Sun R, Qian L et al: 
Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 
2020, 182(1):59-72 e15. 

56. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O’Meara MJ, Guo JZ, 
Swaney DL, Tummino TA, Huettenhain R et al: A SARS-CoV-2-Human Protein-
Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. 
bioRxiv 2020:2020.2003.2022.002386. 

57. Colson P, Delerce J, Burel E, Dahan J, Jouffret A, Fenollar F, Yahi N, Fantini J, La 
Scola B, Raoult D: Emergence in southern France of a new SARS-CoV-2 variant 
harbouring both N501Y and E484K substitutions in the spike protein. Arch Virol 
2022, 167(4):1185-1190. 

58. Goodwin CM, Xu S, Munger J: Stealing the Keys to the Kitchen: Viral 
Manipulation of the Host Cell Metabolic Network. Trends Microbiol 2015, 
23(12):789-798. 

59. Raniga K, Liang C: Interferons: Reprogramming the Metabolic Network against 
Viral Infection. Viruses 2018, 10(1). 

60. Zhang F, Wan Y, Zuo T, Yeoh YK, Liu Q, Zhang L, Zhan H, Lu W, Xu W, Lui GCY 
et al: Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine 
Biosynthesis in Gut Microbiome in Patients With COVID-19. Gastroenterology 
2022, 162(2):548-561 e544. 

61. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O'Donnell LF, Chernyak Y, Tobin K, 
Cerfolio RJ, Francois F, Horwitz LI: Factors associated with hospitalization and 
critical illness among 4,103 patients with COVID-19 disease in New York City. 
medRxiv 2020:2020.2004.2008.20057794. 

62. Drucker DJ: Coronavirus infections and type 2 diabetes-shared pathways with 
therapeutic implications. Endocrine reviews 2020:bnaa011. 

63. Swain SL, McKinstry KK, Strutt TM: Expanding roles for CD4(+) T cells in 
immunity to viruses. Nature reviews 2012, 12(2):136-148. 

64. Crook H, Raza S, Nowell J, Young M, Edison P: Long covid-mechanisms, risk 
factors, and management. Bmj 2021, 374:n1648. 

65. Waterland RA, Garza C: Potential mechanisms of metabolic imprinting that lead 
to chronic disease. Am J Clin Nutr 1999, 69(2):179-197. 

66. Yamamoto S, Saito M, Tamura A, Prawisuda D, Mizutani T, Yotsuyanagi H: The 
human microbiome and COVID-19: A systematic review. PLoS One 2021, 
16(6):e0253293. 

67. Li C, Ou R, Wei Q, Shang H: Carnitine and COVID-19 Susceptibility and 
Severity: A Mendelian Randomization Study. Front Nutr 2021, 8:780205. 

68. Blasco H, Bessy C, Plantier L, Lefevre A, Piver E, Bernard L, Marlet J, Stefic K, 
Benz-de Bretagne I, Cannet P et al: The specific metabolome profiling of patients 
infected by SARS-COV-2 supports the key role of tryptophan-nicotinamide 
pathway and cytosine metabolism. Scientific reports 2020, 10(1):16824. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488249doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488249
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

24 

69. Magnusdottir S, Ravcheev D, de Crecy-Lagard V, Thiele I: Systematic genome 
assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. 
Front Genet 2015, 6:148. 

70. Krauss RM, Zhu H, Kaddurah-Daouk R: Pharmacometabolomics of statin 
response. Clin Pharmacol Ther 2013, 94(5):562-565. 

71. Elbadawi-Sidhu M, Baillie RA, Zhu H, Chen YI, Goodarzi MO, Rotter JI, Krauss 
RM, Fiehn O, Kaddurah-Daouk R: Pharmacometabolomic signature links 
simvastatin therapy and insulin resistance. Metabolomics : Official journal of the 
Metabolomic Society 2017, 13. 

72. !!! INVALID CITATION !!! [76]. 
73. Hible G, Daalova P, Gilles AM, Cherfils J: Crystal structures of GMP kinase in 

complex with ganciclovir monophosphate and Ap5G. Biochimie 2006, 88(9):1157-
1164. 

74. James PT, Ali Z, Armitage AE, Bonell A, Cerami C, Drakesmith H, Jobe M, Jones 
KS, Liew Z, Moore SE et al: The Role of Nutrition in COVID-19 Susceptibility 
and Severity of Disease: A Systematic Review. J Nutr 2021, 151(7):1854-1878. 

75. Maxmen A: Omicron blindspots: why it's hard to track coronavirus variants. 
Nature 2021, 600(7890):579. 

76. Papin JA, Hunter T, Palsson BO, Subramaniam S: Reconstruction of cellular 
signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 2005, 
6(2):99-111. 

77. Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, Dai J, Sun Q, Zhao F, Qu J et al: 
Clinical characteristics and imaging manifestations of the 2019 novel 
coronavirus disease (COVID-19):A multi-center study in Wenzhou city, 
Zhejiang, China. J Infect 2020, 80(4):388-393. 

78. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, 
Coluccello A, Foti G, Fumagalli R et al: Baseline Characteristics and Outcomes of 
1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy 
Region, Italy. JAMA 2020. 

79. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, Lau YC, Wong JY, Guan Y, Tan X 
et al: Temporal dynamics in viral shedding and transmissibility of COVID-19. 
Nature Medicine 2020. 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488249doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488249
http://creativecommons.org/licenses/by-nd/4.0/

