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Soft-tissue sarcomas are group of rare but highly aggressive malignancies. It is a tremendously
heterogeneous group of tumors. Characterizing inter-tumor heterogeneity is crucial for selecting
suitable cancer therapy as the presence of diverse molecular subgroups of patients can be associated
with disease outcome or response to treatment. However, no methods have been developed to
characterize heterogeneity based on genome-wide patient-specific regulatory networks. In this
work, we propose a simple but efficient approach to characterize inter-tumor regulatory network
heterogeneity, which we call PORCUPINE (Principal Components Analysis to Obtain Regulatory
Contributions Using Pathway-based Interpretation of Network Estimates). PORCUPINE uses
as input individual patient regulatory networks, represented by estimated regulatory interactions
between transcription factors and their target genes, and a list of genes assigned to biological
pathways in order to identify key pathways that drive heterogeneity among individuals. We used
PORCUPINE to model regulatory heterogeneity in leiomyosarcoma, one of the most common soft-
tissue sarcomas subtypes. We applied it to 80 genome-wide leiomyosarcoma regulatory networks
modeled on data from The Cancer Genome Atlas and validated the results in an independent dataset
of 37 leiomyosarcoma cases from the German Cancer Research Center. PORCUPINE identified
37 pathways, including pathways that represent potential targets for treatment of subgroups of
leiomyosarcoma patients, such as FGFR and CTLA4 inhibitory signaling. PORCUPINE thereby
provides a robust way of analyzing and interpreting patient-specific regulatory networks and is the
first step towards implementing network-informed personalized medicine in leiomyosarcoma.

I. INTRODUCTION

Soft-tissue sarcomas are a group of rare but highly
aggressive malignancies. While they account for less than
1% of all malignant tumors, soft-tissue sarcomas are a
tremendously heterogeneous group of tumors and include
more than 150 different histological subtypes [1]. Partly
because of this heterogeneity, significant challenges ex-
ist in the management of sarcomas. Most soft-tissue
sarcomas are treated similarly in the clinic, regardless
of their site of origin [2]. Surgery with or without
radiotherapy is the main treatment for localized disease.
Several clinical trials have been conducted in soft-tissue
sarcomas. However, until recently such trials included
patients with many different histological subtypes in
the same cohort, causing difficulties to conclude on the
efficacy of these therapies in the individual subtypes [3].
Differences in clinical response among soft-tissue sarcoma
subtypes lead to newer studies that only enrolled patients
of certain histological subtypes [3], which have shown to
result in better response and disease control.

Over the past years it has become evident that
treatments tailored to a single patient, or group of

patients belonging to a specific molecular subtype of
cancer, can result in major improvements in cancer out-
comes [4]. Characterizing inter-patient molecular tumor
heterogeneity was shown to be crucial for selecting the
most efficient cancer therapy, and the presence of diverse
molecular subtypes can predict patient survival [5] and
relapse or resistance to treatment [6]. Therefore, it is
clear that the integration of personalized medicine into
cancer treatment strategies requires extensive knowledge
of inter-patient variability. Patients can, for example, be
grouped into molecular subtypes based on “omics” data,
including gene expression, microRNA, DNA methylation,
somatic mutations, or proteomic profiles.

The molecular landscape of soft-tissue sarcomas has
been characterized in several studies [7–10]. The Cancer
Genome Atlas (TCGA) sarcoma project, one of the
largest sarcoma sequencing projects to-date, performed
a comprehensive and integrated analysis of 206 adult
soft-tissue sarcomas, represented by six major subtypes,
and showed that sarcomas vary greatly at the genetic,
epigenetic, and transcriptomic levels [7]. More recently,
some histological subtypes of soft-tissue sarcomas were
further delineated into molecular subgroups according to
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their genomic and transcriptomic profiles. For example,
Guo et al., characterized three molecular subtypes of
leiomyosarcoma (LMS)—one of the most common sub-
types of soft-tissue sarcomas—based on transcriptomic
data. One of these subtypes was over-represented by
uterine leiomyosarcoma, while the other two were over-
represented in extra-uterine sites [11]. While these
subtypes were not associated with tumor grade, they
were somewhat related to patient survival.

Gene regulatory networks offer an in-depth view on
the mechanisms that drive gene expression, but have so-
far not been modeled for individual sarcoma patients.
Through modeling interactions between transcription
factors (TFs) or other regulators and their potential
target genes, gene regulatory networks are useful tools
to study regulatory landscapes. Recently, integrative
methods have been developed that model these net-
works genome-wide. One of these methods is PANDA,
which integrates putative TF-DNA binding with protein-
protein interactions and target gene co-expression to
infer a regulatory network for a specific condition [12].
More recently, we developed the LIONESS algorithm
that can be combined with PANDA to infer patient-
specific regulatory networks [13]. These patient-specific
network models have been instrumental in capturing
sex differences in gene regulation in healthy tissues [14]
and colon cancer [15], as well as regulatory differences
between glioblastoma patients with short-term and long-
term survival [16].

In this work, we set out to map the genome-wide regu-
latory landscapes of 206 individual sarcomas obtained
from TCGA by modeling large-scale gene regulatory
networks using PANDA and LIONESS [7]. Analysis
of heterogeneity among gene regulatory networks can
facilitate stratification of patients into novel regulatory
subtypes and identification of the regulatory programs
that drive such heterogeneity. To characterize this inter-
tumor regulatory heterogeneity, we propose a simple
but efficient approach, which we call PORCUPINE
(Principal Components Analysis to Obtain Regulatory
Contributions Using Pathway-based Interpretation of
Network Estimates). PORCUPINE detects statistically
significant, key regulatory pathways that drive hetetero-
geneity among patients.

We perform a detailed analysis of inter-patient het-
erogeneity in leiomyosarcoma by applying PORCUPINE
to 80 genome-wide leiomyosarcoma regulatory networks
modeled on data from TCGA (referred to below as
TCGA-LMS). We validated the pathways detected by
PORCUPINE in an independent dataset consisting of 37
leiomyosarcoma cases from the German Cancer Research
Center (referred to below as DKFZ-LMS) [17]. This
identified 37 shared pathways that define gene regula-
tory heterogeneity in both datasets, including pathways
that play a known role in leiomyosarcoma biology, as
well as pathways that have not been described before
in the disease. Newly identified pathways, including
FGFR signaling and CTLA4 inhibitory signaling, rep-

resent potential targets for treatment of subgroups of
leiomyosarcoma patients. In addition, we show that
the heterogeneity identified with PORCUPINE was not
associated with methylation profiles or clinical features,
thereby suggesting an independent mechanism of patient
heterogeneity driven by the complex landscape of gene
regulatory interactions.

MATERIALS AND METHODS

Gene expression data preprocessing

We downloaded expression data for all TCGA cases
using the “recount” package in R [18]. The transcriptome
data for 37 leiomyosarcoma cases obtained from the Ger-
man Cancer Research Center (DKFZ) was preprocessed
by the Omics IT and Data Management Core Facility
(DKFZ ODCF) using the One Touch Pipeline [19]. We
performed batch correction on the raw expression counts
of the set of 206 TCGA soft-tissue sarcomas and the
37 DKFZ-LMS samples together, using the “Combat-
seq” package in Bioconductor [20]. We then combined
Combat-seq-adjusted counts with the raw expression
counts of the remaining TCGA samples and performed
smooth quantile normalization using “qsmooth” package
in Bioconductor to preserve global differences in gene
expression between the different cancer types [21], speci-
fying each cancer type as a separate group level. Samples
of 206 TCGA soft-tissue sarcomas and 37 DKFZ-LMS
samples were specified as the same “soft-tissue sarcoma”
group level.

Construction of individual patient gene regulatory
networks

We used the MATLAB version of the PANDA network
reconstruction algorithm (available in the netZoo repos-
itory https://github.com/netZoo/netZooM) to esti-
mate an “aggregate” gene regulatory network, based on
a total of 11,321 samples, 17,899 genes, and 623 TFs.
These samples included 206 TCGA and 37 DKFZ soft-
tissue sarcomas—remaining samples represented other
cancer types available in TCGA. We used the entire
TCGA dataset to build the aggregate network, as we
previously found that LIONESS’ estimates of single-
sample edge weights are more robust when including a
large, heterogeneous background of samples [13].

PANDA builds an aggregate network by incorporat-
ing three types of data—a “prior” regulatory network,
which is based on a transcription factor motif scan to
identify putative regulatory interactions between TFs
and their target genes, protein-protein (PPI) interactions
between TFs, and target gene expression data. The
prior gene regulatory network was generated using a set
of transcription factor motifs obtained from the Cat-
alogue of Inferred Sequence Binding Preferences (CIS-
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BP) [22], as described by Sonawane et al., 2017 [23].
These motifs were scanned to promoters as described
previously [24]. The prior network was intersected with
the expression data to include genes and transcription
factors with available expression data and at least one
significant promoter hit. This resulted in initial map
representing potential regulatory interactions between
623 transcription factors and 17,899 target genes. An
initial protein-protein network was estimated between
all TFs from motif prior map using interaction scores
from StringDb v10 [25], which were scaled to be within
range of [0,1], where self-interactions were set equal
to one, as described previously [23]. To reconstruct
patient-specific gene regulatory networks, we applied the
LIONESS equation in MATLAB (available in the netZoo
repository https://github.com/netZoo/netZooM).

UMAP visualization

To visualize the clustering distribution of the 206
TCGA soft-tissue sarcoma patient-specific gene regu-
latory networks, we applied dimensionality reduction
with Uniform Manifold Approximation and Projection
(UMAP), using the “uwot” package in R 3.6.1, setting
the number of nearest neighbours to 20. We performed
UMAP on the matrix of gene targeting scores obtained
from the 206 individual sarcoma networks. Gene tar-
geting scores are defined as the sum of all edge weights
pointing to a gene and represent the amount of regulation
a gene receives from the entire set of TFs available
in a network [26]. These scores have previously been
used to identify gene regulatory differences in various
studies [15, 16, 26]. We visualized the results in two-
dimensional UMAP space. To identify clusters in the
data, we used the DBSCAN clustering algorithm on the
UMAP coordinates from the first two embeddings [27],
with the parameter “minPts” set to five.

Identifying regulatory heterogeneity using
PORCUPINE

To capture inter-patient heterogeneity (referred to
below as “heterogeneity”) at the gene regulatory level,
we developed a computational framework, which we call
PORCUPINE. PORCUPINE is a Principal Components
Analysis (PCA)-based approach that can be used to
identify key pathways that drive heterogeneity among
individuals in a dataset. It determines whether a
specific set of variables—for example a set of genes in
a specific pathway—have coordinated variability in their
regulation.

PORCUPINE uses as input individual patient net-
works, for example networks modeled using PANDA
and LIONESS, as well as a .gmt file (in MSigDb file
format [28]) that includes biological pathways and the
genes belonging to them. For each pathway, it extracts all

edges connected to the genes belonging to that pathway
and scales each edge across individuals. It then performs
a PCA analysis on these edge weights, as well as on a
null background that is based on random pathways. For
the randomization (permutation), PORCUPINE creates
a set of 1000 gene sets equal in size to the pathway
of interest, where genes are randomly selected from all
genes present in the .gmt file. The edges connected to
these genes are then extracted. The amount of variance
explained by the first principal component (PC1) in the
pathway of interest is then compared to the amount of
variance explained by PC1 in the random (permuted)
data. To identify significant pathways, PORCUPINE
applies a one-tailed t-test and calculates the effect size
(ES). The latter is calculated as the difference between
the variance explained by PC1 of the pathway of in-
terest and the mean of the variance explained by PC1
corresponding to the random sets of pathways, divided
by standard deviation of the variance explained by PC1
in the random sets using the cohensD function in the
“lsr” package in R. P-values are adjusted for multiple
testing with the Benjamini-Hochberg method [29] and
significant pathways are returned based on user-defined
thresholds of adjusted p-value and effect size. We
developed PORCUPINE as R package and it is available
as open-source code on GitHub (https://github.com/
kuijjerlab/PORCUPINE).

We applied PORCUPINE to TCGA and DKFZ
leiomyosarcoma data using Reactome pathways v7.1
from MSigDb, excluding pathways that consisted of more
than 200 genes. Pathways with adjusted p-value less than
0.01 and effect size >=2 were reported as significant.
As the number of genes in each pathway is different,
we investigated whether the obtained results were biased
towards pathways of smaller size. To test this, we split
pathways in four groups based on their size, namely
pathways containing less than 50, 50-100, 100-150, 150-
200 genes. We then calculated the proportions of these
groups among Reactome pathways and among the set of
deregulated pathways identified in the TCGA-LMS and
DKFZ-LMS datasets.

Clustering of pathways and identification of
redundant aspects of gene regulatory heterogeneity

To investigate potential redundant patterns of het-
erogeneity captured by pathways identified with POR-
CUPINE, we computed the Pearson correlation coef-
ficient for every pair of individuals for each pathway,
based on the individual’s TF-target edge weights in
that pathway. We then combined pathway-level inter-
individual correlations into a matrix for all pathways
and performed clustering, visualizing the results using
the “ComplexHeatmap” package in R. Additionally, to
identify pathways with overlapping genes, we computed
the Jaccard similarity between pairs of pathways.
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Identification of top ranked target genes and
transcription factors

To identify those genes and TFs that contribute most
to the pathway’s significance, we extracted the edge load-
ings of the first principal component (referred to below as
the “edge contribution score”). Because the sum of the
squares of all edge contribution scores for an individual
principal component must be one, we calculated the
expected edge contribution score, assuming that all edges
contributed equally to that principal component. Edges
with a contribution score > 1.5× the expected score
were regarded as important contributors to that principal
component. To identify transcription factors with many
co-regulated genes, we then grouped transcription factors
corresponding to these top edges according to the number
of their targets.

Association of the significant pathways with clinical
phenotypes

To investigate whether the heterogeneity captured by
each pathway was associated with clinical features, we
performed an association analysis of the coordinates of
patients on the first principal component in each path-
way (referred to below as the “pathway-based patient
heterogeneity score”) with the clinical data available for
these patients. Clinical features for TCGA leiomyosar-
coma patients were obtained using the “TCGAbiolinks”
package from Bioconductor [30]. Clinical information
for 37 DKFZ patients was obtained from the study by
Chudasama et al. [17]. Since the clinical attributes
represent a mix of categorical and numerical features, we
applied Kruskal-Wallis and Pearson correlation tests for
categorical and numerical features, respectively. We cor-
rected p-values for multiple testing using the Benjamini-
Hochberg approach and applied a threshold of 0.05 to
identify significant associations.

In order to determine whether any of the identified
pathways were associated with patient survival, we used
the first principal component from each pathway in a Cox
regression model to predict patient survival.

Association of the significant pathways with
pathway-based mutation profiles

We downloaded and preprocessed leiomyosarcoma mu-
tation data as previously described in Kuijjer et al. [31].
We used the SAMBAR algorithm [31] to obtain patient-
specific pathway mutation scores for TCGA-LMS pa-
tients. Among 1,455 pathways, 954 pathways had muta-
tion scores larger than zero in the TCGA-LMS dataset.
To assess the association between pathways identified
with PORCUPINE and these pathways mutation scores,
we used a Kruskal Wallis test, comparing the pathway-
based patient heterogeneity scores on the first principal

component between two groups, i.e. mutated vs not
mutated, for each mutated pathway. We used FDR <0.05
as threshold for reporting significant differences between
the groups.

Association of the identified pathways with overall
methylation profiles

DNA methylation data measured on the Illumina
Infinium Human Methylation 450 BeadChip platform
were downloaded for all sarcoma patients available in
TCGA using the Bioconductor “TCGA biolinks” package
in R. We downloaded raw methylation IDAT files and
performed preprocessing and normalization with subset-
quantile within array normalization (SWAN) using Bio-
conductor package “minfi.” [32]. We calculated overall
methylation profiles for each individual by using the
mean value across all probes. We then correlated these
values to the pathway-based patient heterogeneity scores
in each pathway. Associations with FDR <0.05 were
considered significant.

Validation of the pathways in healthy tissues

We obtained patient-specific regulatory networks for
healthy smooth-muscle–derived tissues, represented by
esophageal muscularis and uterus from the Genotype-
Tissue Expression (GTEx) project, through the GRAND
database of gene regulatory network models [33]. In
total, 283 and 90 patient-specific networks were available
for esophageal muscularis and uterus, respectively. We
applied PORCUPINE to evaluate gene regulatory het-
erogeneity among the individuals in the merged set of
373 networks.

RESULTS

Pan-sarcoma clustering of patient-specific regulatory
networks

In this study, we modeled genome-wide, patient-
specific gene regulatory networks for 206 TCGA sarcoma
patients using two computational algorithms, PANDA
and LIONESS (Figure 1).

These patient-specific networks include information on
likelihoods of regulatory interactions (represented as edge
weights) between 623 transcription factors and 17,899
target genes. To explore and visualize patient hetero-
geneity based on the regulatory landscape of sarcomas,
we first calculated gene targeting scores in these networks
(see Methods), and then used uniform manifold approx-
imation and projection (UMAP) for visualization. To
investigate whether regulatory profiles cluster differently
than expression data, we also performed UMAP on the
expression data (Figure 2).
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Figure 1. Schematic overview of the study. We modeled individual patient gene regulatory networks for leiomyosarcoma patients
from two datasets (TCGA and DKFZ) with PANDA and LIONESS, integrating information on protein-protein interactions
(PPI) between transcription factors (TF), prior information on TF-DNA motif binding, and gene expression data. We then
developed and applied a new computational comparative network analysis tool (PORCUPINE) to identify significant pathways
that capture heterogeneity in gene regulation across these datasets.
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Figure 2. UMAP visualization of the distribution of 206
soft-tissue sarcomas, representing seven different histological
subtypes (indicated with different colors) based on (A) gene
targeting scores (B) expression.

In both cases, it is clear that the majority of
leiomyosarcoma, represented by uterine (ULMS) and
soft-tissue leiomyosarcoma (STLMS), cluster separately
from other sarcoma subtypes, with a more distinct
separation observed in the gene expression profiles.
Interestingly, co-localization of uterine and soft-tissue
leiomyosarcomas was different between the two UMAP
embeddings. While ULMS samples show separation from
STLMS in the expression data, clustering of leiomyosar-
coma based on gene regulatory networks did not show
such a separation. This indicates that, despite the
apparent differences in gene expression between the two
tissue-sites where leiomyosarcoma can develop, tumors
from these sites do not have clearly distinct regulatory
profiles. Additionally, the regulatory networks capture
heterogeneity among leiomyosarcoma tumors that is not
directly obvious from analysis of the expression data
alone.

The remaining sarcoma subtypes were more spread

out, with no clear co-localization of the gene regulatory
networks derived from the same sarcoma histological
subtype in distinct clusters, except for the cases of
synovial sarcoma (SS). With the use of DBSCAN in
2D UMAP space, we next clustered the gene regulatory
profiles for 206 sarcoma cases and identified ten clusters
(Figure S1). Two clusters were mainly represented
by leiomyosarcoma samples and contained 60% of all
leiomyosarcoma samples. The remaining leiomyosarcoma
samples were part of mixed clusters or belong to unclus-
tered data.

In-depth analysis of gene regulatory heterogeneity
in leiomyosarcoma with PORCUPINE

The distinct regulatory clusters we identified in
leiomyosarcoma motivated us to perform an in-depth
analysis of the regulatory heterogeneity of leiomyosar-
coma. To do this, we developed PORCUPINE, a novel
pathway-based approach that can be applied to patient-
specific gene regulatory networks to identify biological
pathways that capture regulatory heterogeneity in a
patient population (Figure 3). PORCUPINE examines
a pre-defined set of pathways, e.g. pathways from
published resources such as Reactome [34], and then
identifies those pathways that show a statistically signif-
icant excess of coordinated variability in gene regulation
across individuals. The method performs PCA on all
estimated regulatory interactions connected to genes
from a specific pathway, obtained from a cohort of
patient-specific networks. It then compares the variance
captured by the first principal component in a pathway
to the amount of variance that would be expected by
chance. This process is repeated for each pathway.
Significant pathways can then be selected based on user-
defined thresholds of adjusted p-value and effect size.

We applied PORCUPINE to a set of 80 patient-specific
leiomyosarcoma gene regulatory networks modeled on
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Figure 3. Overview of PORCUPINE (PCA to Obtain Regulatory Contributions Using Pathway-based Interpretation of Network
Estimates). PORCUPINE applies the following steps: 1) TF-gene edge weight information is extracted from each individual
gene regulatory network for all genes belonging to a certain pathway; 2) Principal Component Analysis is performed on the
pathway-associated TF-gene weight matrix. The variance explained by the first principal component is extracted; 3) The
amount of variance explained by PC1 is compared to the expected amount of variance explained, which is obtained by applying
PCA on edge weights connected to 1,000 randomly generated gene sets of the same size as the selected pathway. Effect size is
calculated. These steps are repeated for each pathway. P-values obtained from step 3 are then corrected for multiple testing
with the Benjamini-Hochberg method.

data from TCGA, using 1,455 Reactome pathways from
MSigDb (see Methods). This identified 72 significant
pathways (adjusted p-value less than 0.01 and effect size
>=2). We validated these results in an independent set of
patient-specific networks modeled on 37 leiomyosarcoma
samples from DKFZ. In the validation dataset, we
identified 91 pathways, of which 37 were also identified
in the networks modeled on TCGA. The overlap of 37
pathways is higher than expected by chance, with p-
value <9.522e-29 based on a hypergeometric test, indi-
cating that PORCUPINE’s results are robust and highly
reproducible across networks modeled on independent
datasets. The 37 pathways that were detected in both
datasets are shown in Figure 3, with corresponding effect
sizes.

Notably, the pathways PORCUPINE identified varied
in size, indicating that PORCUPINE analysis is not
biased towards pathways of smaller or larger size (Ta-
ble S1).

PORCUPINE identifies regulatory heterogeneity in
pathways with known and new roles in

leiomyosarcoma

The two most significant pathways that were identified
in both datasets are “Inhibition of replication initiation
of damaged DNA by RB1/E2F1” and “E2F mediated

regulation of DNA replication,” containing 13 and 22
genes, respectively. A closer examination of the genes
in these pathways shows that all 13 genes in the first
pathway are also part of the second pathway. POR-
CUPINE provides evidence of a coordinated change in
the regulation of multiple genes in these pathways, which
is not directly captured by expression data (Figure S2).
These pathways are leiomyosarcoma-relevant, given that
leiomyosarcomas are characterized by a high frequency
of alterations in tumor suppressor gene RB1, which
negatively regulates transcription factor E2F1 [17].

The 37 pathways can be further grouped into subcat-
egories according to their cellular function (see Figure
4). Pathways with genes involved in cell cycle and
signal transduction were the most frequent subcategories.
Among others, we identified pathways such as “Negative
regulation of FGFR2 signaling,” “FGFRL1 modulation
of FGFR1 signaling,” “ERKs are inactivated,” and
“SMAD2/SMAD3:SMAD4 heterotrimer regulates tran-
scription.”

Fibroblast growth factor receptors (FGFR) are ty-
rosine kinase receptors that are involved in several
biological functions including regulation of cell growth,
proliferation, survival, differentiation, and angiogene-
sis. Aberrant FGFR signaling has been shown to
be associated with several human cancers and thus
FGFRs are attractive druggable targets [35]. To our
knowledge, among members of the FGFR family, only
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Figure 4. Pathways identified with PORCUPINE in both leiomyosarcoma datasets, based on FDR <0.05 and effect size >2.
Pathways are colored according to their cellular function, with the size of the bubble reflecting the size of—or number of genes
in—a pathway.

the inhibition of FGFR1 has been investigated in a
patient with metastatic leiomyosarcoma, which showed
clinical improvement [36]. However, there is an ongoing
clinical trial testing the selective pan-FGFR inhibitor
Rogaratinib, to treat patients with advanced sarcoma
with alterations in FGFR 1-4 [37].

Two pathways were associated with TP53 regulation,
including “TP53 regulates transcription of genes involved
in G2 cell cycle arrest” and “TP53 regulates transcription

of cell cycle genes.” TP53 mutations are frequently
identified in leiomyosarcoma. It was shown that TP53 is
predictive of response to VEGFR inhibition in advanced
sarcomas [38]. Gendicine, which represents a recom-
binant adenoviral vector expressing wild-type p53, was
approved by the China Food and Drug Administration
and is used in combination with chemotherapy to treat
uterine leiomyosarcoma [39].

Other categories include pathways involved in
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metabolism and metabolism of proteins and programmed
cell death such as “PP2A-mediated dephosphorylation
of key metabolic factors” and “Activation of BH3-only
proteins.”

Two pathways associated with immune system func-
tion were identified—“CTLA-4 inhibitory signaling” and
“Defensins.” CTLA-4 is an immune checkpoint, and
monocolonal antibodies such as ipilimumab and tremeli-
mumab have been developed to target CTLA-4. These
CTLA-4 inhibitors have already been used in clini-
cal studies for treatment of several cancers, including
melanoma, mesothelioma, breast cancer, prostate cancer,
pancreatic cancer, hepatocellular carcinoma, and non-
small cell lung cancer [40]. The efficacy of immunother-
apy with CTLA-4 inhibitors in sarcoma has only been
evaluated in one study to-date, in which six patients
with synovial sarcoma were treated with ipilimumab [41].
However, treatment with anti-CTLA-4 did not result in
an immunological antitumor response and the disease
progressed rapidly in all patients. To our knowledge,
no clinical results testing the effect of anti-CTLA-4 in
leiomyosarcoma are available or exist to-date.

In addition to the pathways described above, several
pathways were associated with vesicle-mediated trans-
port and transport of small molecules, among them
the “Zinc influx into cells by the SLC39 gene family”
pathway. The solute carrier (SLC) superfamily con-
tains a large diversity of membrane-bound transporters,
which mediate transport of substrates across various
cellular membranes. The SLC39 gene family controls
the influx of zinc and has been shown to play a critical
role in several cancers. For example, upregulation of
SLC39A4 was associated with increased cell migration,
cisplatin resistance, and poor survival in lung cancer [42].
Increased expression of SLC39A6 was associated with
shorter overall survival in esophageal carcinoma [43] and
decreased expression of SLC39A14 with aggressive tumor
progression in prostate cancer [44]. To our knowledge,
there are no studies regarding the role of the SLC39 gene
family in sarcomas.

To evaluate whether the identified pathways capture
similar patterns of regulatory heterogeneity, we per-
formed clustering of pathways based on inter-individual
correlations of edge weights, as described in the Methods
section (Figure S3). Pathways were grouped into three
main clusters, where pathways in each cluster stratified
leiomyosarcoma tumors into similar subtypes. The
clustering of pathways we observed was partly explained
by gene overlap in these pathways (Figure S3). Pathways
in cluster 1 had highest gene overlap (mean Jaccard
index 0.18), followed by cluster 2 (mean Jaccard index
0.04), with almost no gene overlap between pathways in
cluster 3 (mean Jaccard index 0.006) (Figure S3). Shared
patterns of heterogeneity between pathways without ap-
parent gene sharing can also indicate a higher order of co-
regulation of these pathways. An example is the pathway
“Negative regulation of FGFR2 signaling,” which belongs
to cluster 1, however, based on its Jaccard indices, this

pathway does not cluster with remaining pathways from
the same cluster.

Gene regulatory heterogeneity is not associated with
clinical features in leiomyosarcoma

To investigate if the identified pathways were asso-
ciated with clinicopathological features, we performed
an association analysis of the pathway-based patient
heterogeneity scores with clinical features available from
the TCGA and DKFZ resources (Figure S4). As shown
in Figure S4, there were no significant associations be-
tween the clinical features and the pathway-based patient
heterogeneity scores on the first principal component (at
FDR <5%).

To determine whether any of the identified pathways
were related to patient survival, we used the pathway-
based patient heterogeneity scores on the first principal
component in Cox regression models to predict patient
outcome. We did not identify any significant associations
with survival.

Major genes and transcription factors contributing
to leiomyosarcoma heterogeneity

We next selected those regulatory interactions in each
of the 37 pathways that contributed most to the reg-
ulatory heterogeneity we observed in leiomyosarcoma
(see Methods). Across all pathways, genes including
PPP2R1A, PPP2CB, TFDP2, CCNB1, and RB1 were
frequently found among the top targets (Figure 5,
Supplementary file 1). These genes are related to cell
proliferation and growth. Noteworthy, PPP2R1A was
among the top contributors in 13 out of 37 pathways and
may therefore be a key player in driving leiomyosarcoma
heterogeneity. It encodes for a subunit of protein
phosphatase 2 (PP2), which plays a role in the negative
control of cell growth and division. PP2A inactivation
is a crucial step in malignant development [45]. It was
previously shown that PPP2R1A mutation is frequent in
uterine cancers [46]. However, we did not identify any as-
sociation between the histological subtype of leiomyosar-
coma and gene regulatory heterogeneity in pathways that
had PPP2R1A among their major contributors. We also
did not identify any significant association of patient
heterogeneity scores with PPP2R1A mutation profiles,
indicating that regulatory heterogeneity of PPP2R1A is
not driven by mutations in the gene itself.

In addition to reporting the top target genes, we
identified top transcription factors contributing to reg-
ulatory heterogeneity in each pathway. Transcription
factors with coordinated variability in regulation of an
enriched number of targets are shown in Figures 5C
and S5. As can be seen from these figures, some TFs
had a limited number of targets that they regulate in
a coordinated manner, such as in seen in the pathway
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“Inhibition of replication initiation of damaged DNA by
RB1/E2F1.” Other TFs, such as ZNF282 and E2F8 in
“Negative regulation of FGFR2 signalling,” have a large
number of targets (Figure 5C). Transcription factors
that are frequent top regulators of heterogeneity among
the identified pathways are E2F8, ZNF282, EMX2,
GSX2, BARX1, and HNF1A. E2F8 and ZNF282 were
the most frequent TFs that connected to a large number
of targets across all identified pathways.

The E2F family of transcription factors contains eight
members that play central roles in many biological pro-
cesses, including cell proliferation, differentiation, DNA
repair, cell cycle, and apoptosis. Several studies have
shown that dysregulation of E2F8 is associated with
oncogenesis and tumor progression in many cancers.
For example, it was shown that expression of E2F8 is
associated with tumor progression in breast cancer [47],
human hepatocellular carcinoma [48], and lung can-
cer [49]. However, not much is known about the role
and clinical significance of E2F8 in leiomyosaroma, nor
in other sarcomas. Also, the role of ZNF282 (Zinc finger
protein 282) in human cancers, including sarcomas, is
unknown. In a study by Yeo et al. , it was shown that
ZNF282 overexpression was associated with poor survival
in esophageal squamous cell carcinoma, and depletion
of ZNF282 inhibited cell cycle progression, migration,
and invasion of cancer cells [50]. Additionally, the
authors provided evidence that ZNF282 functions as an
E2F1 co-activator in esophageal squamous cell carcinoma
cells, highlighting a potential connection between this
transcription factor and E2F signaling.

To illustrate the change in regulation of targets of
these important transcription factors, we visualized E2F8
targets in the pathway “CTLA4 inhibitory signalling.”
Figure 6 shows the coordinated change in regulation
of 13 genes in this pathway. Many of these genes
show similar pattern of change in targeting by E2F8
across individuals. Interestingly, two genes—AKT2 and
AKT3—show an opposite regulatory pattern compared
to other E2F8 target genes across the individuals.

Association of heterogeneously regulated pathways
with pathway mutation scores

To evaluate if any of the identified pathways could clas-
sify patients with similar mutational profiles, we associ-
ated the first principal component in these pathways with
pathway mutation scores. To do so, we downloaded and
processed mutation data obtained from leiomyosarcoma
tumors from TCGA (available for 72/80 patients) as
described in Kuijjer et al. [31]. We performed a Kruskal
Wallis test to compare the pathway-based patient hetero-
geneity scores on the first principal component in each
of the 37 pathways between two groups, i.e. mutated
compared to not mutated, for each mutated pathway.
No significant differences were identified (FDR <0.05),
indicating that the separation of leiomyosarcoma patients
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Figure 6. Pearson correlations among edge weights of target
genes of the transcription factor “E2F8” in the pathway
“CTLA4 inhibitory signalling.”

identified with PORCUPINE is independent of their
mutation profiles and thus potentially a new, mutation-
independent mechanism driving patient heterogeneity.

Regulatory heterogeneity is independent of
epigenetic heterogeneity in leiomyosarcoma

To investigate if the patient heterogeneity profiles were
associated with inter-individual differences in the tumor’s
methylation profiles, we performed correlation analysis
of the pathway-based patient heterogeneity scores on
PC1 with overall DNA methylation profiles of individual
tumors. There were no significant associations (FDR
<0.05), indicating that regulatory heterogeneity is inde-
pendent of methylation status.

Validation of the identified pathways in healthy
tissues

Finally, to explore if the 37 pathways we identified
were cancer-specific, we assessed gene regulatory het-
erogeneity in healthy smooth muscle–derived tissues,
represented by esophageal muscularis and uterus. In
total, 283 esophageal muscularis and 90 uterus sample-
specific gene regulatory networks, modeled with PANDA
and LIONESS, were available from the GTEx project
through the GRAND database [33]. We used POR-
CUPINE to characterize regulatory heterogeneity in
this dataset. Among the 37 pathways identified to
drive leiomyosarcoma heterogeneity, only one pathway,
i.e “Gap junction degradation” was significant in these
healthy tissues, showing that 36/37 pathways we identi-
fied are leiomyosarcoma-specific and that gene regulatory
heterogeneity in these pathways likely develops during
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sarcomagenesis.

Discussion

Soft-tissue sarcomas exhibit substantial heterogeneity
in their clinical behavior, which exists not only between
the known histological subtypes of these rare cancers, but
also between tumors of the same histological subtype.
This extreme heterogeneity represents a major challenge
in the treatment of patients with the disease [51]. Un-
derstanding this heterogeneity at the molecular level may
help explain variability in drug response between patients
and potentially lead to the identification of new targets
for treatment.

Genomic molecular heterogeneity, as well as hetero-
geneity in gene expression and DNA methylation levels
of soft-tissue sarcomas have previously been described
between different histological subtypes [7–10], as well
as for tumors belonging to the same histological sub-
type [11]. However, classification of patients on the basis
of gene regulatory networks has the potential to provide
additional, novel information to stratify patients into
clinically meaningful subgroups, to point to potential new
targets for treatment, and to identify new biomarkers
to guide selecting patients most likely to benefit from a
specific treatment.

In this work, we profiled the genome-wide regula-
tory landscapes of 206 sarcomas obtained from TCGA,
performing an in-depth analysis of heterogeneity oc-
curring between individual gene regulatory profiles of
leiomyosarcoma patients. To this end, we developed a
novel pathway-based approach to analyze genome-wide
networks. This approach, which we call PORCUPINE,
identifies key pathways contributing to heterogeneity
in gene regulation among the individuals in a dataset.
PORCUPINE captures the coordinated variation of mul-
tiple functionally-related genes in a pathway by esti-
mating if the variance explained by the first principal
component is higher than expected by chance. Similar
approaches have previously been successfully applied
to study heterogeneity in cancer using gene expression
profiles [52]. However, our approach differs from these
methods as we specifically designed it to analyze large-
scale, genome-wide gene regulatory networks.

We developed PORCUPINE as user-friendly R pack-
age that can be applied to single-sample networks.
While we used PORCUPINE on networks modeled with
PANDA and LIONESS, the tool is not limited to these
specific methodologies, and could potentially also be
used to analyze (bipartite) networks modeled with other
single-sample approaches. Of course, when applying
PORCUPINE, sufficient sample size and independent
validation datasets, as we showed here by including
an independent leiomyosarcoma dataset from DKFZ,
are important to include to detect relevant and robust
pathways. Additionally, it is important to note that,
while the use of a large set of randomized pathways is

beneficial, it comes with disadvantage of an increase in
computational load.

Genome-wide gene regulatory networks represent high-
dimensional data. Usually, network summary statistics,
such as gene targeting scores, closeness centrality, or
betweenness centrality, are calculated prior to any further
analysis to reduce the dimensions of large-scale networks.
Then, to identify heterogeneity across a cohort, unsuper-
vised clustering approaches are widely used [53]. The
advantage of PORCUPINE is that it can be directly
applied to high-dimensional networks, as it uses as input
the network’s edge weights instead of a summary statis-
tic. Moreover, as it does this per individual biological
pathway, the output is not just a collection of significant
differential edges that need to be further analyzed, but
rather a list of differentially regulated pathways that are
easy to interpret. Additionally, the method can capture
significant aspects of heterogeneity among individuals
in situations when no clear population structure with
well defined clusters can be revealed. PORCUPINE
estimates pathway-based patient heterogeneity scores
that can facilitate the identification of either continuous
gradients or discrete gene regulatory subtypes and that
can be further used in association analyses with clinical
covariates, or in survival analyses, as we have shown in
this work.

Applying PORCUPINE to individual leiomyosarcoma
patient networks modeled in two different cohorts, we
identified 37 pathways that capture gene regulatory
heterogeneity in leiomyosarcoma. Among these, we
identified several pathways that could represent potential
targets for treatment of subgroups of leiomyosarcoma pa-
tients, including RB1/E2F1 signaling as well as pathways
involved in FGFR signaling and CTLA4 inhibitory sig-
naling. The RB1/E2F1 pathway is essential in regulating
cell growth and apoptosis, and is known to be disrupted
in many cancers including leiomyosarcoma [54], where it
is affected by frequent alterations in RB1 gene. There-
fore, the components of this pathway represent appealing
targets for cancer therapy. RB1 pathway disruption has
already been shown to be associated with resistance to
therapies in several cancers, including sarcomas. For
example, a study by Francis et al. (2017) showed that
only Rb-positive sarcoma cells were sensitive to CDK4/6
inhibitor-based therapies [55]. In addition, a recent study
by Hemming et al. [56] in patient-derived xenograft
models of leiomyosarcoma showed that CDK inhibitors
were found to inhibit tumor growth through decreasing
expression levels of E2F1 and other genes involved in the
E2F-driven oncogenic transcriptional program.

Aberrant FGFR signaling has been associated with
several human cancers and its inhibition is effectively
applied in targeted therapies with small-molecule in-
hibitors. Its clinical significance has been described in
several soft-tissue sarcomas, including synovial sarcoma,
dedifferentiated liposarcoma, and other soft-tissue sar-
coma types [57]. Pazopanib is a multitarget tyrosine ki-
nase inhibitor and has inhibitory effect against VEGFR1
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and VEGFR3, as well as other closely-related receptor-
tyrosine kinases, including FGFR1, and may be used to
treat advanced leiomyosarcoma [58]. It was also shown
that Pazopanib provides comparable response in patients
with uterine and non-uterine leiomyosarcoma [59].

In addition to targeting signal transduction pathways,
immunotherapies may provide new treatment options
and are under active investigation in sarcomas. Unfor-
tunately, a study with anti-CTLA4, which showed great
success in other cancer types, did not provide response
in sarcoma patients [41]. However, the patients enrolled
in this trial had synovial sarcoma, and to our knowledge
no clinical studies that enrolled leiomyosarcoma patients
and used anti-CTLA-4 treatment are available or exist
so far. Stratifying patients based on CTLA-4 gene
regulatory profiles could identify subgroups of patients
that are more likely to respond to anti-CTLA4 treatment.

Finally, using PORCUPINE, we could also highlight
genes and transcription factors that are important drivers

of heterogeneity among leiomyosarcoma patients, includ-
ing RB1 and PPP2R1A as target genes, as well as the
transcription factors E2F8 and ZNF282, which could
potentially also be inhibited [60].

In summary, PORCUPINE allows to uncover patterns
of inter-patient heterogeneity at the level of transcrip-
tional regulation in the cell and identify pathways that
can be potentially be targeted in the clinic. It thereby
provides one of the first steps towards implementing
network-informed personalized medicine in sarcomas.
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SUPPLEMENTARY FIGURES AND TABLES

ptw genes Reactome% TCGA% DKFZ%
<50 75.8 81.9 78

> 50& 6 100 16 12.5 12
>100 & <150 5.9 4.2 5.8

> 150 2.3 1.4 4.4

Supplemental Table S1. Proportions of pathways of different sizes among Reactome pathways and pathways identified with
PORCUPINE in the TCGA-LMS and DKFZ-LMS datasets.
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Supplementary figure S1. A. HDBSCAN clustering of 206 soft-tissue sarcomas on the first two UMAP dimensions obtained
from applying UMAP on gene targeting scores. B. Distribution of STS histological subtypes across HDBSCAN clusters.
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Supplementary figure S2. A. Pearson correlations between gene targeting scores. B. Correlations between gene expression levels
in the pathway “Inhibition of replication initiation of damaged DNA by RB1/E2F1.”
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Supplementary figure S3. Clustering of 37 pathways based on A. pair-wise correlations between individual networks from the
TCGA-LMS dataset; and B. the proportion of shared genes between the pathways.
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Supplementary figure S4. Association of the clinical features of patients and pathway-based patient heterogeneity scores on
PC1 in each of the 37 pathways.
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Supplementary figure S5. Boxplots showing the number of targets for transcription factors with most highly weighted values
to PC1 in each pathway. Transcription factors with number of targets greater than the 95th percentile are labelled.
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