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Abstract

Microbes in the wild face highly variable and unpredictable environments, and are naturally selected for
their average growth rate across environments. Apart from using sensory-regulatory systems to adapt in
a targeted manner to changing environments, microbes employ bet-hedging strategies where cells in an
isogenic population switch stochastically between alternative phenotypes. Yet, bet-hedging suffers from a
fundamental trade-off: increasing the phenotype switching rate increases the rate at which maladapted
cells explore alternative phenotypes, but also increases the rate at which cells switch out of a well-adapted
state. Consequently, it is currently believed that bet-hedging strategies are only effective when the
number of possible phenotypes is limited and when environments last for sufficiently many generations.
However, recent experimental results show that gene expression noise generally decreases with growth
rate, suggesting that phenotype switching rates may systematically decrease with growth rate. We here
show that such growth rate dependent stability (GRDS) can almost completely overcome the trade-off
that limits bet-hedging, allowing for effective adaptation even when environments are diverse and change
rapidly. GRDS allows cells to be more explorative when maladapted, and more phenotypically stable when
well-adapted. We further show that even a small decrease in switching rates of faster growing phenotypes
can substantially increase long-term fitness of bet-hedging strategies. Together, our results suggest that
stochastic strategies may play an even bigger role for microbial adaptation than hitherto appreciated.

Introduction

Many microbial organisms exhibit a remarkable ability to adapt their internal state to environments that
are highly variable and can change in unpredictable ways. For example, not only will there be different
types of carbon sources, nitrogen sources, and amino acids available in different environments, also the
concentrations of all these nutrients may vary over orders of magnitude. In addition, general variables such
as temperature, pH, osmotic pressure, and oxygen availability will vary, and cells may have to withstand a
wide array of specific stresses such as antibiotics or reactive oxygen species. It is remarkable that microbes
appear able to adapt to this enormous number of possible combinations of environmental variables, not
only because it requires coordinating the expression of many genes, but also because it seems unlikely
that the microbes can have been specifically selected for adapting to all these environments. For example,
E. coli is able to adapt its gene expression in order to allow it to grow in fully deuterated water, a highly
unnatural condition that it almost certainly never encountered in the wild [1].

It is well-known that microbes have evolved sensory-regulatory machinery that can sense a large variety
of internal and environmental variables, and adapt gene expression patterns in response. In principle,
the more information an organism gathers about its environment, the better it can adapt to it [2, 3].
However, sensory-regulatory strategies face a number of limitations. First, sensing is limited to those
environmental variables for which the organism has evolved sensors, which is likely only a subset of the
many additional environmental variables that affect optimal gene expression states. Second, given the
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small number of molecules involved, there are fundamental thermodynamic limits on the accuracy with
which cells can gather information about their environment [4, 5]. Third, even if cells are able to gather
accurate information about the state of environmental variables, the processing and integrating of this
information so as to optimally set gene expression levels is a non-trivial regulatory problem, and the
regulation of gene expression is itself also significantly affected by thermodynamic noise. Finally, there
may be intrinsic costs associated with sensory-regulatory machinery, be it through the cost of expressing
proteins that do not directly contribute to growth [6, 7], or due to energetic costs [8].

Instead of adapting gene expression in a regulated manner, microbial populations can also adapt
to changing environments by using a so called bet-hedging strategy [9–15]. Isogenic cells then explore
alternative phenotypes by switching stochastically between different phenotypes, and the subpopulation
with a fast-growing phenotype is automatically expanded because of its higher growth rate. This strategy
allows microbes to adapt to a wide variety of unexpected environmental changes, including those that
they are unable to sense.

However, the long-term fitness that can be attained with this bet-hedging strategy, i.e. the long-term
average population growth rate [16, 17], is limited by an intrinsic trade-off: increasing the stochastic
phenotype switching rate speeds up adaptation to new environments, but it also decreases the long-term
growth rate in each environment since it increases the rate at which cells switch out of well-adapted
phenotypes [18]. Due to this inherent trade-off, as demonstrated both by theoretical modelling [10, 18, 19]
and by experimental approaches [20, 21], bet-hedging strategies are only effective when durations of
environments are large relative to the doubling times of the cells, and when the number of possible
environments that populations need to anticipate is limited.

Several recent studies have observed that gene expression noise generally increases at low growth
rates [22–24]. Since many phenotype switches may be driven by gene expression fluctuations [25–29],
these observations suggest that there may be an intrinsic coupling between the growth rate of cells and
their phenotypic stability. That is, stochastic phenotype switching rates may naturally be higher for
slow growing cells than for fast growing cells. Intuitively, it seems that such Growth Rate Dependent
Stability (GRDS) could benefit bet-hedging strategies since it would reduce the rate at which well-adapted
cells switch to maladapted phenotypes, while at the same time increasing the rate at which maladapted
cells explore alternatives. Indeed, as has been shown by Kaneko and coworkers in a non-evolutionary
setting [30,31], when phenotypic stability increases with growth rate, the distribution of phenotypes in
the population is shifted toward faster growing phenotypes.

Here we systematically investigate the effect of GRDS on the performance of bet-hedging. In particular,
we extend the basic model of a population evolving in a changing environment introduced in [18], and
using a combination of analytical solutions, mathematical proofs and simulations, we determine how
GRDS affects the long-term average growth rates that stochastically switching populations can achieve.
We show that even a small growth rate dependence of the phenotype switching rates immediately increases
the average growth rate of bet-hedging populations, and that GRDS can completely resolve the inherent
trade-off of traditional bet-hedging strategies when the ratio of switching rates of slow and fast growing
cells is sufficiently high. We also find that GRDS improves average population growth rates through two
qualitatively distinct mechanisms depending on whether environment durations are short or long relative
to the doubling time of adapted phenotypes. Taken together, our results show that GRDS dramatically
expands the range of scenarios for which stochastic bet-hedging strategies can attain high long-term
average growth rate.
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Results

Model setup

To investigate the effects of growth rate dependent stability (GRDS) on bet-hedging strategies for microbial
populations growing in changing environments we extend the general model introduced by Kussell and
Leibler [18]. We consider a population of cells that switch stochastically between n+1 discrete phenotypes
and grow in an environment that switches stochastically between m discrete environment-types. For
a given realisation of the stochastic environment switches, the sequence of environments is described
by the function E(t), denoting which environment-type is present at time t. The average time that an
environment of type J remains before it switches to another environment-type is τJ . The order in which
environment-types occur is determined by a Markov chain: upon a switch, the probability that environment
J is followed by environment I is denoted by bIJ , where

∑
I bIJ = 1 and bII = 0. In environment J , cells

with phenotype i grow at a rate µ
(J)
i , and switch stochastically from phenotype j to i at rate ϕ

(J)
ij .

The population is assumed to be sufficiently large such that the population dynamics can be modelled
by a set of deterministic differential equations. The state of the population is described by an (n+ 1)-
dimensional vector s, containing the number of cells of each phenotype, whose dynamics are described
by

d

dt
s = AE(t)s, (1)

where AE(t) is the time-evolution matrix of environment E(t). The components A
(K)
ij of the time-evolution

matrix of environment K are given by

A
(K)
ij =

µ(K)
i −

∑
k ̸=i

ϕ
(K)
ki

 δij + ϕ
(K)
ij , (2)

where δij is the Kronecker delta-function that is one when i = j and zero otherwise.
Up to this point, this model is identical to the general model used in [18] for modelling a bet-hedging

population in fluctuating environments. In the classical bet-hedging scenario of [18], the switching rates

ϕ
(K)
ij are assumed independent of the environment, i.e. ϕ

(K)
ij = ϕij for all K. To investigate the effects

of GRDS, we extend this classical model by allowing the switching rates ϕ
(K)
ij to be functions of the

current growth rate of the cell, i.e. ϕ
(K)
ij = ϕij

(
µ
(K)
j

)
, and generally assume that ϕij(µ) is a decreasing

function of the growth rate µ. We will quantify the strength of GRDS by the parameter r, which is
the ratio of switching rates between the fastest and slowest growing phenotypes, i.e. when phenotype j
achieves its maximal growth rate in environment J and its minimal growth rate in environment I we get

ϕij(µ
(I)
j ) = rϕij(µ

(J)
j ). Note that the case where r = 1 thus corresponds to classical bet-hedging without

GRDS.
The total number of cells at time t is given by N(t) =

∑
i si(t) and we are generally interested in the

average growth rate G of the population over a long sequence of environments, i.e.

G = lim
t→∞

1

t
log

(
N(t)

N(0)

)
, (3)

which quantifies the ‘fitness’ of a given strategy [3, 16,17]. In particular, we will compare the long-term
growth rates G that are obtained with classical bet-hedging with those obtained with GRDS.

A toy example that qualitatively illustrates the benefits of GRDS

We use a toy example of this general model to illustrate the differences in behaviour between classical
bet-hedging and bet-hedging with GRDS (Fig. 1). In this example there are are only 3 environments and
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phenotypes (shown as purple, red, and green); in each environment, one phenotype is optimal and leads to
a growth rate of µ1 = 1.0, while the other phenotypes have a growth rate of µ0 = 0. For the population
dynamics shown here, all cells start out in the green phenotype and encounter the purple environment,
followed by the red environment; both environments have a duration of T = 10. We assume that cells in
the optimal phenotype switch with a rate ϕ, while the other cells switch at a rate rϕ where r = 10 for
bet-hedging with GRDS (and r = 1 for classical bet-hedging). The switching rate ϕ was optimised to
maximise G for both strategies separately.

Figure 1. A toy example illustrates how GRDS increases the effectiveness of bet-hedging. a)
Growth was simulated in a sequence of two environments (purple and red background) for cells with three
different phenotypes: optimal for either the purple, red or green environment. The growth of a phenotype
is indicated by the arrow marked by µ, while the other arrows indicate switching between phenotypes.
Bolder lines indicate higher rates. Random phenotype switching rates are either constant (bet-hedging) or
growth rate dependent (GRDS). The optimal tuning of the switching rates ϕ to maximise the average
growth rates G resulted in ϕ = 0.13 for bet-hedging without GRDS, and ϕ = 0.26 for bet-hedging with
GRDS. b) Population growth rates as a function of time for bet-hedging without GRDS (blue curve) and
with GRDS (red curve), starting from an initial condition with all cells in the green phenotype. The
average growth rates for both strategies are indicated by dashed lines. c) Time courses of the fractions of
the population in each of the phenotypes (colors) for the bet-hedging (top panel) and GRDS (bottom
panel) strategies. The red curves show time courses of the population heterogeneity, defined as the
entropy of the distribution of phenotypes in the population. The parameters used for these simulations,
as described in the Model setup-section, were n+ 1 = 3, T = 10, µ = 1.0 and r = 10.

The inherent trade-off of classical bet-hedging is illustrated in Figure 1a. Because the switching rate
is independent of the environment, a cell in a given phenotype is equally likely to switch independent
of whether this phenotype is well or badly adapted to the current environment. Thus, increasing the
switching rate will not only increase the rate at which cells in maladapted phenotypes explore alternative
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phenotypes, it will also increase the rate at which cells with optimal phenotype switch to worse phenotypes.
The trade-off thus arises because a high long-term growth rate requires a relatively low switching rate,
while fast adaptation requires a high switching rate. Indeed, at the switching rate ϕ that optimises this
trade-off, the adaptation takes about half the environment duration, but speeding this up would require a
higher switching rate which would decrease the long-term population growth rate (Fig. 1b, blue curve).

GRDS can largely resolve this trade-off by decoupling the rate of exploration by non-adapted cells,
i.e. rϕ, from the rate of switching of well-adapted cells, i.e. ϕ. This makes it possible to speed up the
adaptation to a new environment, while the same long-term population growth rate is reached (Fig. 1b,
red curve). Note that the population in each environment stabilises with a similar fraction of cells in
suboptimal phenotypes as with the classical bet-hedging strategy (Fig. 1c, bottom panel). This shows
that, at least in this setting, GRDS mainly works because it allows for a ‘panic mode’: immediately after
an environment change the growth rate of the majority of cells drops so that their phenotype switching
rates increase, quickly generating a heterogeneous population of cells that explore different phenotypes.
Moreover, these exploring cells only stabilise once they find a phenotype that supports fast growth. Since
these adapted cells are both more stable and grow faster, the population quickly becomes dominated by
optimised cells again (Fig. 1c, bottom panel).

A minimal model of bet-hedging with GRDS

To quantify the effect of GRDS on bet-hedging strategies we first analyse a model in which the number of
parameters is reduced to a minimum and which can be solved analytically. In this minimal model we set
the number of environments and phenotypes both to n+ 1. We assume each environment lasts for a fixed
time T and then switches to another environment with uniform probability, i.e. bIJ = 1/n for all I ̸= J .
In addition, we assume that there are only two possible growth rates, a ‘fast’ growth rate µ1 and a ‘slow’
growth rate µ0, i.e. µ1 > µ0, and that in each environment I, only cells in a ‘good’ phenotype i = I grow
at the fast rate µ1 and cells in the n (‘bad’) other phenotypes grow at the slow rate µ0. Regarding the
phenotype switching, we assume that whenever a cell switches its phenotype, it is equally likely to switch
to any of the n other phenotypes. Finally, to tune the overall switching rates and amount of GRDS we
assume that cells in the fast growing phenotype i = I switch out of their phenotype at a total rate ϕ,
whereas cells in any of the n slow growing phenotypes switch out of their phenotype at a total rate rϕ

with r ≥ 1. Thus, formally the switching rates are given by ϕ
(J)
ij = ϕ/n for all i ̸= j when j = J , and

ϕ
(J)
ij = rϕ/n for all i ̸= j and j ̸= J .
Because switching rates to and from all bad phenotypes are equal in this model, we can describe the

state of the population by the number of cells sg(t) and sb(t) in the good and bad phenotypes, respectively
(see SI 1.B.1 for more details). Without loss of generality we can restrict ourselves to solving models
where the bad phenotype does not grow at all, i.e. µ0 = 0, and measure time in units such that µ1 = 1
(see SI Section 1.B). Solutions for any other setting of the growth rates µ1 and µ0 can then be obtained by
rescaling and shifting the resulting time dynamics. This leaves us with the following differential equations
for the number of cells with good and bad phenotypes

dsg(t)

dt
= (1− ϕ)sg(t) +

ϕr

n
sb(t),

dsb(t)

dt
= −ϕr

n
sb(t) + ϕsg(t),

(4)

where ϕ is the switching rate of adapted (‘good’) phenotype cells and rϕ the switching rate of cells in
a bad phenotype. Note that, because a cell in a bad phenotype can switch to n other phenotypes and
only one of these is the good phenotype, the effective switching rate of cells from a bad to the good
phenotype is ϕr/n. The equations (4) would not change if instead of one good phenotype and n bad ones,
we assumed there were K good phenotypes and nK bad ones. This suggests interpreting the probability
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1/n more generally as the probability that, under a stochastic phenotype switch, a cell in a bad phenotype
will switch to a good phenotype. That is, the parameter n quantifies how rare fast growing phenotypes
are and thereby quantifies the complexity of the fluctuating environment.

When the environment changes, a new phenotype will become optimal so that all cells that were in the
good phenotype now find themselves in a bad phenotype, whereas some cells that were in a bad phenotype
may coincidentally find themselves in the new good phenotype. In our analysis of the minimal model, we
will make the approximation that all cells that were in a bad phenotype in the previous environment have
a probability 1/n to find themselves in the good phenotype of the new environment. Thus, if we denote
the fraction of adapted cells at the end of an environment as p(T ), the initial fraction of adapted cells in
the next environment is (1− p(T ))/n. In Section SI 1.C.2 we explain why, under mild conditions on the
model parameters, this approximation is justified.

The dynamics of this system can be solved analytically (see SI 1.C and 1.D) yielding an expression for
the long-term average growth rate G that is fully determined by the four parameters T, n, r and ϕ. Of
these parameters, n and T parametrise the regulatory problem that the microbial population faces: the
complexity of the environment is set by n, and T sets the number of generations between environmental
changes which determines the relative importance of fast adaptation versus a high stationary growth rate.
In turn, the strength of GRDS r and the switching rate ϕ set the behaviour of the cellular population.

To further analyse this minimal model, we assume that natural selection has optimised the switching
rate ϕ to maximise the average growth rate G. In Figure 2 we systematically investigate how the resulting
average growth rate G varies with n, T , and the strength of GRDS r. We vary n and T on the vertical
axes of Figures 2a-b, while the strength of GRDS increases along the horizontal axes. The growth rates
for classical bet-hedging correspond to r = 1 and are thus shown along the vertical axes in these plots. We
see that, as derived previously [18], the fitness of a bet-hedging population decreases with the complexity
of the environment n and increases with the environment duration T for classical bet hedging. Increasing
GRDS by moving away from the vertical axes at r = 1 in Figs. 2a-b, we see that GRDS can dramatically
increase the average growth rate and that increasing r is always beneficial. That is, at least in this minimal
model, evolution would favour making the ratio r between the switching rates at slow and fast growth
as large as possible. Moreover, provided the strength of GRDS r is made sufficiently large, the average
growth rate G can approach the theoretical optimum G = 1 arbitrarily closely.

To illustrate the dependence of the average growth rate G on the parameters, we start from a reference
parameter set n = 100, T = 10, r = 10 (red dots in Fig. 2a-b) and either increase r by a factor of ten
(grey dots Fig. 2a-b), decrease n by a factor ten (green dot in Fig. 2a) or increase T by a factor ten
(purple dot in Fig. 2b). When the strength of GRDS r is increased by a factor ten, this has a similar
effect on growth rate G as decreasing the number of bad phenotypes n by ten, and more generally the
approximately straight diagonal contours in Fig. 2a show that G effectively only depends on the ratio
r/n. This can be understood by noting that the population dynamics of (4) depends on r and n only
through the ratio r/n. Although the initial fraction of good phenotype cells after an environment switch
does depend directly on n and not r, we find that this is negligible when T is not small.

Long environment durations

Of the three parameter changes in Fig. 2, the optimal switching rate ϕopt only changes significantly
with the change in environment duration T , and is largely insensitive to changes in the other parameters.
Indeed, as shown in Suppl. Fig. S7, we find that when T is sufficiently large (i.e. around T = 10
generations or larger), and r is not too large (i.e. r < nT , as discussed below), the optimal switching rate
is just the inverse of the environment duration:

ϕopt ≈ 1

T
(large T, r < nT ) (5)
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Figure 2. Effect of GRDS on the average growth rate of bet-hedging strategies as a function
of environment complexity and duration. The contourplots in panels a and b show the average
population growth rate (G) at optimal switching rate ϕ as a function of the strength of GRDS (horizontal
axes, both panels) and either the number of environments (a) or the environment duration (b). Since
µ1 = 1 and µ0 = 0, 0 ≤ G ≤ 1 and the contours occur at integer multiples of 0.1. The optimal switching
rates ϕ at 4 example parameter settings (colored dots) are indicated in the contour plots. All axes are on
logarithmic scales. Contour plots for additional parameter settings are shown in Suppl. Figs. S3 and S4.
c: Population growth rate versus time over the course of one environment for the parameter sets
indicated by coloured dots in panels a and b. The dashed lines indicate the average growth rate G. Note
that the grey, green and purple parameter settings each differ from the red parameter setting by a change
in one parameter.
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and in SI Section 2.B.2 we mathematically prove that this relationship holds exactly in the limit of long
environment durations. Thus, the optimal phenotype switching rate for cells in the fast growth phenotype
exactly equals the rate at which the environment changes. This extends a classical result for conventional
bet-hedging which states that the probability of using a strategy should equal the probability that the
strategy will become useful in the future [18,19,32,33]. Note that, in this large T parameter regime, the
optimal switching rate is independent of r and thus the same for classical bet hedging and bet hedging
with GRDS. This shows that the benefits of GRDS derive not from a greater stability of cells in the
optimal phenotype but from the increased switching rate of the slow growing cells. That is, GRDS allows
slow growing cells to ‘panic’ and rapidly explore different phenotypes until a fast growing phenotype is
found. Such an adaptive transition of the population from stable to explorative and back is impossible
without GRDS.

We also derived an analytical approximation for G in the parameter regime where environment
durations are sufficiently long for the population to reach its steady-state distribution of phenotypes (see
SI 2.B.2):

G ≈ 1− 1

T︸︷︷︸
diversity cost

− 1

T
log

[
Tn

2

]
︸ ︷︷ ︸

delay cost

+
1

T
log

[
1 + r

2

]
︸ ︷︷ ︸

GRDS effect

. (6)

The terms in this equation have intuitive interpretations: first, at the optimal switching rate ϕopt = 1/T ,
the long-term growth rate is 1 − 1/T because a fraction 1/T of the population will be in non-growing
phenotypes. In [18] this is referred to as the ‘diversity cost’ of bet-hedging. Second, at the end of a given
environment, the non-growing cells will be equally distributed over the n non-growing phenotypes, so that
the fraction of cells in the ‘good’ phenotype just after an environment switch will be 1/(nT ). The ‘delay
cost’ log[nT/2]/T corresponds to the reduction of the average growth rate from having to expand this
small subpopulation. The final term log[(1 + r)/2]/T is unique to bet-hedging with GRDS and quantifies
the extent to which GRDS can compensate the intrinsic delay and diversity costs of bet-hedging. We have
validated numerically that (6) provides an excellent approximation to G as long as environment durations
are not short, i.e. T ≥ 10 generations (Suppl. Fig. S8). Supplemental Fig. S8 also shows that once r
becomes so large that the delay costs are fully compensated, i.e. when r ≥ Tn, Equation (6) starts to
overestimate G, and the true growth rate saturates towards G = 1 when r increases further. As discussed
in the next section, in this regime the optimal switching rate no longer equals 1/T and the approximation
breaks down.

We derived an analogous expression to Equation (6) for the more general model, including differing
average environment durations τJ and transition probabilities bIJ , using the same assumptions as were
used in [18] for the case without GRDS (see SI 2.B.2). In this more general setting GRDS still increases
the average growth rate with log[(1 + r)/2]/T , giving

G ≈ µmax −
1

τ︸︷︷︸
diversity cost

−
∑
I

pI
τ

log
[τI
2

]
− Senv

τ︸ ︷︷ ︸
delay cost

+
1

τ
log

[
1 + r

2

]
︸ ︷︷ ︸

GRDS effect

, (7)

where µmax is the growth rate of the adapted phenotype in each environment, τ =
∑

I pIτI is the average
environment duration, pI is the probability of environment I occurring, and Senv = −

∑
I,J bIJpJ log(bIJ)

is the environment entropy, which quantifies how hard it is on average to predict the next environment
given the current environment. In Equation (6), this entropy term was log(n) because we assumed that
after each environment all other environments were equally likely to occur next. In general, the change
of environments can be much more predictable, for example when environment I is always followed by
environment J (i.e. bIJ = 1), which decreases the delay cost for bet-hedging since switching rates can be
adapted to this predictability.
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Equation (7) shows that GRDS can compensate the intrinsic costs of bet-hedging, including the
uncertainty about the environment captured by Senv, revealing that GRDS makes cells effectively learn
about their environment through their growth rate. The logarithmic dependence also shows that even a
slight growth rate dependence of the phenotype switching rates can already provide a substantial fitness
advantage. Finally, Equation (7) implies that a population employing GRDS outgrows a population
employing classical bet-hedging by a factor (1 + r)/2 over the course of each environment, independent of
the number of environment-types, the transition rates bIJ between them, or their durations τI .

Short environment durations

For classical bet-hedging it is known that, when environment durations are short relative to the doubling
time of the fastest growing cells, bet-hedging is ineffective because natural selection has no time to expand
the subpopulation of fast growing cells. However, Fig. 2b shows that, even when T = 1, bet-hedging
with GRDS can reach close to maximal fitness provided that r is made sufficiently large. Interestingly,
in this small T regime, the optimal strategy is to switch as fast as possible, i.e. ϕopt → ∞. In this
limit of very fast switching, the steady-state fraction of cells in the fast growth phenotype is given by
pϕ→∞ = r/(n+ r). Due to the fast switching this steady-state is reached very quickly and, consequently,
the average population growth rate becomes

G =
r

n+ r
. (8)

Although an infinite switching rate is not realistic, this strategy of fast switching is already effective when
ϕ is large compared to the rate at which environments switch (1/T ) and compared to the growth rate of
adapted cells (µ = 1).

GRDS can thus aid adaptation through two qualitatively different strategies. When environment
durations T are large, fast growing cells come to dominate the population by outgrowing the slow growing
cells, and the optimal strategy is for fast growing cells to switch relatively infrequently, i.e. at the same
rate as the environment switches. In contrast, when environment durations T are short, fast growing cells
can still come to dominate the population when r is sufficiently large simply because the phenotypes of
faster growing cells are more stable than those of more slowly growing cells, i.e. as previously identified
in [30,31]. In this regime, fitness is optimised by maximising switching rates.

As shown in Suppl. Figs. S5 and S6, the boundary between the long-T regime where ϕ = 1/T is
optimal and the short-T regime where ϕ → ∞ is optimal, approximately corresponds to the line T = r/n
when T ≥ 10 generations. When T is small, high average growth rates can only be achieved using the
short-T strategy and require r ≫ n. When both T is small and GRDS is weak (small r), high average
growth rates can not be achieved.

General model: GRDS always increases population fitness

Our calculations so far have quantified the benefits of GRDS under the assumption that switching rates
were optimised by natural selection. Next, we investigated to what extent GRDS is also beneficial
when switching rates are not optimised. First, in SI Section 2.B.1 we prove mathematically that, when
environment durations are not very short and switching rates obey some weak constraints, GRDS always
improves the average growth rate of bet-hedging strategies. Notably, this proof applies to the general model
and is thus valid for an arbitrary number of phenotypes, growth rates, environments, and regardless of
whether all environments have the same duration or whether the phenotype switching rates are optimised.
This proof thus strongly suggests that GRDS is generically beneficial when environment durations are not
short.

Finally, to quantify the extent of the growth rate improvement when switching rates are not optimised
and to explore whether the benefits of GRDS also extend to the regime of short environment durations,
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Figure 3. Population growth rates rise with increasing strength of GRDS r, even when
switching rates are not optimised. Each coloured line corresponds to a different randomly-picked
parameter set, and shows how the average population growth rate G increases when the strength of
GRDS r is increased. Different colours correspond to different average environment durations T , where
T = 1 corresponds roughly to a single doubling of the fastest growing phenotype in each environment (see
SI Sect. 3). The bolder black line indicates the average. The vertical axis shows the difference between
the average population growth rate with a certain strength of GRDS and the average growth rate without
GRDS. The rate of switching from phenotype j to i decreases with the growth rate of phenotype j, and
the ratio of the highest and lowest switching rate from j to i in different environments is r (see Methods
for details). The random sampling of the other parameters is described in SI Section 3.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488059doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488059
http://creativecommons.org/licenses/by/4.0/


11

we numerically computed the effect of GRDS on average growth rate for many different parameter sets
(Fig. 3). The parameter sets were picked as follows: we systematically varied the number of environments
between 5 and 20, chose the environment switching probabilities bIJ uniformly at random, and varied the
average environment duration from T = 1 to T = 40. The number of phenotypes m was chosen either
equal, twice, or half the number of environments. For each environment the growth rate of the fastest
growing phenotype was drawn randomly over a range, such that one unit of time on average corresponds
to one doubling of the best phenotype. All other phenotypes were assigned growth rates at random, chosen
uniformly over a range below the maximal growth rate in that environment. The switching rate ϕij for
each pair of phenotypes was chosen randomly over a thousand-fold range. To model the effect of GRDS,
we then add growth rate dependence to these randomly chosen switching rates, such that we get rates ϕK

ij

that are higher in environments where phenotype j grows slow, and lower where phenotype j grows fast
(see the Methods-section and SI Sect. 3 for details). GRDS of strength r (plotted on the horizontal axis in
Figure 3) was then implemented by making the maximal ratio between the ϕK

ij in different environments
K equal to r. For r = 1 we thus model a population with fixed, randomly-chosen switching rates, and
with r > 1 we model a population in which some GRDS was added.

For almost all of the parameter sets (1872 out of 1875), a small growth rate dependence immediately
increases the long-term growth rate that is achieved by a randomly switching population (Fig 3). Although
the size of the fitness benefit of GRDS as a function of r varies across the randomly chosen parameter
settings and is consistently smaller when the average environment duration is short, essentially all curves
show an initial steep increase followed by a slower but non-saturating increase with r, similar to the
dependence observed for the minimal model with optimal switching rates (Equations (6) and (8)).

Discussion

Although it has long been observed that microbial populations of isogenic cells can exhibit significant
phenotypic variability, over the last two decades it has become increasingly appreciated that such
phenotypic variability is pervasive and involves both continuous fluctuations in gene expression and
stochastic switching between discrete phenotypic states [9–11, 13, 34–38]. A large body of theoretical
work has shown that such phenotypic heterogeneity can be beneficial in fluctuating environments, which
led to the suggestion that microbial populations may be employing ‘bet-hedging’ strategies [34, 39, 40].
However, previous theoretical work has also suggested that bet-hedging strategies can only be effective
if environments are not too diverse and environment durations are relatively long [10, 18, 19]. These
fairly restrictive bounds on the benefits of bet-hedging raise the question to what extent the pervasive
phenotypic heterogeneity that is observed in microbial populations can be attributed to bet-hedging.
Here we have shown that these bounds on the effectiveness of bet-hedging strategies disappear when we
account for one additional ingredient: Growth Rate Dependent Stability (GRDS). With GRDS, phenotype
switching rates decrease with growth rate and we have shown that, as the ratio between switching rates of
slow- and fast-growing cells increases, the intrinsic costs of bet-hedging can be compensated and average
population growth rates can approximate the theoretical maximum.

There is in fact significant evidence supporting that phenotype switching rates tend to decrease with
growth rate. In a number of studies it has been observed that gene expression noise levels decrease with
growth rate [22–24, 30] and metabolic heterogeneity has also been observed to increase with nutrient
limitation [41–46]. Since phenotype switches are often ultimately driven by fluctuations in gene expression
or metabolic state [12,25–29,47], phenotype switching rates will generally increase with gene expression
noise levels. Notably, if we assume that a particular phenotype switch occurs under a particular rare
fluctuation in gene expression, then even a small change in noise level can have a large effect on the
phenotype switching rate. For example, when noise levels differ two-fold between fast and slow-growing
cells, and the gene expression fluctuation that is required for a phenotype switch corresponds to 4 standard-
deviations in fast growing cells, then the same fluctuation would correspond to 2 standard-deviations in
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slow growing cells, leading to a e4
2/2/e2

2/2 ≈ 400 fold increase in switching rate in slow growing cells.
It is currently not clear what mechanisms underlie the decrease of gene expression noise with growth

rate. Analysis of genome-wide noise in E. coli across different growth conditions has shown that while
relative noise levels of different genes are highly condition-dependent and are driven by noise propagation
through the regulatory network, absolute noise levels decrease systematically with growth rate in a
way that appears to affect all genes [24]. This suggests that the overall decrease in gene expression
noise with growth rate results from mechanisms that affect all genes. However, this still leaves many
possible mechanisms including fluctuations in chromosome copy numbers across the cell cycle, fluctuations
in transcription initiation rates due to variations in RNA polymerase concentration, fluctuations in
transcription elongation rates due to variation in nucleotide concentrations, fluctuations in translation
initiation rates due to variation in ribosome concentration, fluctuations in translation elongation rates due
to variation in charged tRNA concentrations, fluctuations in dilution rate due to variation in growth rate,
intrinsic Poissonian fluctuations in all steps of the gene expression process, unequal division of proteins at
cell division, and so on. Although a number of models has been proposed that show how some of these
sources of noise may explain a decrease in noise with growth rate, e.g. [22, 31,48,49], these models make
many simplifying assumptions and only consider some of the mechanisms listed above. As it is currently
unknown which mechanisms are most important for determining expression noise levels in realistic settings,
it is thus not yet clear which mechanisms drive the observed decrease in noise with growth rate.

We hypothesise that one important contributor to the decrease of noise with growth rate is that
the growth rate sets the dilution rate of most intracellular molecules and thus also the rate at which
intracellular fluctuations are diluted. Although both the frequency and amplitude of some intracellular
noise may naturally increase with growth rate, thereby compensating for the increased dilution rate,
this may not apply to all sources of noise, such as fluctuations in extracellular levels of metabolites and
stressors. Indeed, in a study of regulatory circuits with positive feedback in E. coli, we have recently
shown that, because signalling molecules are diluted more quickly at higher growth rates, the sensitivity
of these regulatory circuits to external signals generally decreases with growth rate [50], supporting that
faster dilution may dampen fluctuations in the internal states of cells. Of course, since GRDS generally
increases long-term average growth rates, the decrease of fluctuations with growth rate may even be an
adaptation that has evolved through natural selection.

Finally, we have so far implicitly assumed that sensing/regulation and bet-hedging are mutually
exclusive strategies, but these strategies can of course act in parallel and may in fact be deeply entangled.
By comparing native and synthetic promoters, we have previously shown that natural selection has acted
to increase the noise levels of native E. coli promoters [51]. Moreover, expression noise in E. coli results
to a substantial extent from noise propagating through the regulatory network so that noise levels are
highly condition-dependent, with noise in more-regulated promoters being both higher on average and
more variable [24]. These observations indicate that gene regulation and expression noise are intimately
coupled and that the fluctuations in gene expression that we call ‘noise’ at least to some extent result
from fluctuations in environmental conditions that propagate through the gene regulatory network. This
suggests a strategy in which sensing, regulation, and bet-hedging are all acting in concert, with sensing and
regulation being used to constrain the subspace of phenotypes that is explored by stochastic phenotype
switching.

Methods

The general setup of our model has been introduced in the ‘Model Setup’-part of the Results-section (see
also SI 2.A.1). We have studied this model through several methods: by simplifying it to a toy example and
a minimal model, by mathematically studying a limit where environment changes are relatively infrequent
and switching rates are low, and by simulating the general model for many random samples of the model
parameters. We will here briefly describe each of these methods. All mentioned Python- and Mathematica-
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scripts have been made publicly available at https://github.com/dhdegroot/GRDS-code-repository.

Toy example

For Figure 1 we simulated the general model using a Python-script with only n+ 1 = 3 phenotypes in
a sequence of two environments with a duration of T = 10. The growth rate of the optimal phenotype
was set to µ1 = 1, while the other phenotypes did not grow: µ0 = 0; the strength of GRDS was r = 10.

For bet-hedging cells, we allow for only one global switching rate: ϕ
(K)
ij = ϕ. With GRDS, this switching

rate becomes rϕ from non-growing phenotypes. In both cases ϕ was numerically optimised to maximise
average growth rate.

Minimal model

All results related to the minimal model were obtained with Mathematica and an analytical expression
was obtained for the average growth rate G as a function of the parameters (n, T, r, ϕ). Optimisation of
the switching rate ϕ to maximise the average growth rate G was done numerically.

Mathematical proofs

In Supporting Information Section 2.B.1 we prove that GRDS can always increase the average population
growth rate G; in Section 2.B.2 we approximate the fitness benefit as a function of the strength of the
growth rate dependence r. These proofs are only possible if we apply the same approximation as proposed
in [18], which entail:

1. The duration of environments is long enough compared to division times and switching times, such
that the phenotype distribution in the population has relaxed to a stationary distribution before the
next environment switch.

2. The switching rates are small compared to the differences between the fastest growth rate and
other growth rates in an environment, such that the stationary phenotype distribution can be
well-approximated by determining the dominant eigenvector of the time-evolution matrix with
perturbation theory.

Numerical simulations

The numerical calculations for the general model were done in Python. As detailed in SI Sect. 3, we
randomly pick a number of environments m, a number of phenotypes n, an average environment duration

τ , a growth rate for each phenotype in each environment µ
(K)
i , and parameters bIJ that determine

the random sequence of environment-types. Then we randomly choose a switching rate ϕij for each
pair of phenotypes i, j, and implement GRDS of strength r as follows. We start by taking the range
Rϕ(r) = [log(ϕij) − 0.5 log(r), log(ϕij) + 0.5 log(r)]. Then we determine the range of growth rates that

cells of phenotype j can achieve in the different environments: Rµ = [minK{µ(K)
j },maxK{µ(K)

j }], and we
let tr be the linear map from Rµ to Rϕ(r) that maps the minimal growth rate to the maximal switching
rate and vice versa. Now the switching rate from phenotype j to i in environment I with GRDS of

strength r is determined by log
(
ϕ
(K)
ij

)
= tr(µ

(K)
j ). Based on the growth rate in the current environment,

the switching rates between two phenotypes are thus linearly interpolated in log-scale between an upper
bound and a lower bound, where the factor difference between the upper and lower bound is r. In addition,
to allow an unbiased comparison between different strenghts of GRDS, we rescale these switching rates

such that the average switching rate between two phenotypes ( 1
m

∑m
K=1 ϕ

(K)
ij ) is equal to the initially
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drawn switching rate ϕij for all strengths of GRDS. For the results presented in Figure 3, we did these
simulations for 10 different values of r, where r = 1 corresponds to the case with no GRDS.

Given this complete set of parameters, we compute the average population growth rate by simulating
a sequence of environments with a total duration that exceeded n2τ to ensure that we sufficiently sampled
the possible switches between different environments.
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Supplementary Information

The Supporting Information Text is organised as follows. In Section 1 we describe the setup and
analysis of our minimal model; this section is complemented by the Mathematica notebook named
GRDS_minimal_model_analysis.nb. In Section 2, we derive an approximation of the average population
growth rate under the assumption that the environment durations are relatively long, and the switching
rates relatively small. We prove that GRDS always increases the average population growth rate as long
as this approximation holds. Finally, in Section 3 we describe how we performed numerical simulations
that test if the results obtained in Sections 1 and 2 hold for the most general version of the model.

1 Analytical derivations minimal model

1.A Model set-up

In this first part of the SI, we investigate a minimal model of Growth Rate Dependent Stability (GRDS).
We start by assuming that there are only two growth rates with µ1 > µ0, and that in each environment
there are n slow-growing phenotypes for only 1 fast-growing phenotype. Cells can stochastically switch
between phenotypes, and we will (for now) assume that the switching rate between all phenotypic states
is equal: h/n, which is chosen such that the total switching rate away from each phenotype is equal to h.
Growth rate dependence of the switching rates will be introduced later. In one environment, we thus get
the set of differential equations:

ṡg(t)
˙sb1(t)
...

˙sbn(t)

 =


µ1 − h h

n · · · h
n

h
n µ0 − h · · · h

n
...

...
. . .

...
h
n

h
n · · · µ0 − h



sg(t)
sb1(t)

...
sbn(t)

 , (9)

1.B Rewriting the model

1.B.1 Summing the cells in slow growth phenotypes

We will show that we can safely approximate this system as a two-state system, where we describe only
the sum of all the cells that are in a slow-growth phenotype instead of all phenotypes separately. From
(9), we can write down the differential equation for the sum of all cells in the slow growth states:

d (sb1(t) + · · ·+ sbn(t))

dt
= n

h

n
sg(t) +

(
µ0 − h+

h(n− 1)

n

)
(sb1(t) + · · ·+ sbn(t))

= hsg(t) +

(
µ0 −

h

n

)
(sb1(t) + · · ·+ sbn(t)),

and for the cells in the fast growth states we get:

dsg(t)

dt
= (µ1 − h) sg(t) +

h

n
(sb1(t) + · · ·+ sbn(t)).

So, if we define sb(t) as the number of cells that are in one of the bad states sb(t) = sb1(t) + · · ·+ sbn(t)
then we can write [

ṡg(t)
ṡb(t)

]
=

[
µ1 − h h

n

h µ0 − h
n

] [
sg(t)
sb(t)

]
. (10)

Note the intuition here: the switching rate from all states is h, but the probability that a cell that switches
from a bad phenotype ends up in a good phenotype is 1

n since there are n− 1 different bad phenotypes

and only one good phenotype. The net switching rate from the bad to the good phenotype is therefore h
n .
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1.B.2 Shifting the slow growth rate to 0

To make our model as minimal as possible, we can rescale the system to get rid of some parameters. First,
let us check what the effects are of shifting both growth rates by a constant, i.e. we use µ1 → µ1 − δµ
and µ0 → µ0 − δµ. Let us assume that we already have a solution (s∗g(t), s

∗
b(t)) that solves the system in

(10). We can use this to generate a solution for the shifted ODEs

dsg(t)

dt
= (µ1 − δµ− h)sg(t) +

h

n
sb(t),

dsb(t)

dt
= (µ0 − δµ− h

n
)sb(t) + hsg(t).

(11)

To see this, take sg(t) = e−δµs∗g(t) and sb(t) = e−δµs∗b(t). If we insert this in the differential equation for
sg(t), we get:

dsg(t)

dt
=

d
(
e−δµs∗g(t)

)
dt

= e−δµ
d
(
s∗g(t)

)
dt

− δµe−δµs∗g(t),

= e−δµ

(
(µ1 − h)s∗g(t) +

h

n
s∗b(t)

)
− δµe−δµs∗g(t),

= (µ1 − δµ− h)e−δµs∗g(t) +
h

n
e−δµs∗b(t),

= (µ1 − δµ− h)sg(t) +
h

n
sb(t),

and similar for the differential equation of sb(t). This shows that the solutions are only rescaled by an
overall factor when we shift the growth rates by an equal amount. Intuitively, the reported growth rates
in the new system are just lower by δµ, but the relative growth in the different phenotypes is the same.

We can now choose δµ = µ0. This implies that we can always look at systems where the slow growth
rate is zero, without loss of generality. We get

dsg(t)

dt
= (µ− h)sg(t) +

h

n
sb(t),

dsb(t)

dt
= −h

n
sb(t) + hsg(t),

(12)

where we have used µ = µ1 − µ0.

1.B.3 Scaling the fast growth rate to 1

We now still have a degree of freedom in picking our time units. We can use the fast growth rate, and
take τ = µt, which means that one time unit (τ = 1) now corresponds to t = 1

µ , which is the time that it
takes a fast growing cell to grow to a factor e. The benefit of this rescaling is apparent when we insert it
in the differential equations, for example

dsg(τ)

dτ
=

ds̃g(t)

d(µt)
=

1

µ

ds̃g(t)

dt
= (1− h

µ
)s̃g(t) +

h

nµ
s̃b(t) = (1− h

µ
)sg(τ) +

h

nµ
sb(τ),

where s̃g(t) is defined such that s̃g(t) = sg(τ). We can now define ϕ := h
µ as the rate of switching relative

to the growth rate of the fast growing phenotype. One can also look at it from another perspective by

writing ϕ =
1
µ
1
h

, which can be interpreted loosely as the ratio of the cell cycle time with the time it takes
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to switch, or: how often does a cell switch before it doubles. When we again write t for our rescaled time
instead of τ , we get our minimal differential equations:

dsg(t)

dt
= (1− ϕ)sg(t) +

ϕ

n
sb(t),

dsb(t)

dt
= −ϕ

n
sb(t) + ϕsg(t),

(13)

1.C Solving the differential equations

1.C.1 The general analytical solution to the differential equations

The system in (13) can be solved analytically by solving the quadratic equations to find the eigenvalues and
-vectors. The solution can be found in the Mathematica notebook: GRDS_minimal_model_analysis.nb.

Since we are eventually only interested in the growth rate, we have some freedom in choosing the initial
number of cells. We choose the total number of cells to be 1 at timepoint 0: stot(0) = sg(0) + sb(0) = 1.
We then know that a fraction of the population is in the good phenotype, sg(0) = p0, and the rest is in
one of the bad phenotypes sb(0) = 1− p0. Given these initial conditions, we can find out the state of the
population after one environment duration: T (note that T is now in units that give the times that a fast
growing cell could have e-folded itself). We get expresssions for sg(T, ϕ, n, p0) and sb(T, ϕ, n, p0). At the
end of the period, we can again calculate the fraction of adapted cells:

p(T, ϕ, n, p0) =
sg(T, ϕ, n, p0)

sg(T, ϕ, n, p0) + sg(T, ϕ, n, p0)
.

The analytic expression for this fraction is fairly cumbersome (see Mathematica-file GRDS_minimal_model_
analysis.nb), but if we gather a recurring combination of terms in a separate variable, D, we can write
it down as:

p(T, ϕ, n, p0) =
2
(
−1 + e

√
DT
)

ϕ
n +

(√
D
(
1 + e

√
DT
)
−
(
−1 + e

√
DT
)
(−1 + ϕ+ ϕ

n )
)
p0

√
D
(
1 + e

√
DT
)
+
(
−1 + e

√
DT
)
(−1 + ϕ+ ϕ

n ) + 2
(
−1 + e

√
DT
)
p0

, (14)

where

D = 1 + ϕ(−2 +
2

n
) + ϕ2(1 +

2

n
+

1

n2
). (15)

We find that the large-t-limit is independent of p0, as expected:

lim
T→∞

p(T, ϕ, n, p0) =
1

2

(
1 +

√
D − ϕ

n
− ϕ

)
=

1

2

(
1 +

√
1 + ϕ(−2 +

2

n
) + ϕ2(1 +

2

n
+

1

n2
)− ϕ

n
− ϕ

)

=
1

2

(
1 +

√
(1 + ϕ(

1

n
− 1))2 + 4

ϕ2

n
− (1 +

1

n
)ϕ

) (16)

1.C.2 Introducing periodic initial conditions

When the environment switches, we assume that all cells in a good state will automatically switch to
a bad state. However, the cells that were in a bad state might coincidentally be pre-adapted for the
new environment. We will now make the assumption that the non-adapted cells are distributed equally
over the non-adapted phenotypes at the end of an environment, and we will discuss below why this is
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reasonable for a very large parameter regime. Under this assumption, since there are n phenotypes, a cell
in a bad phenotype has a probability of 1

n to be pre-adapted upon an environment switch, and the initial
fraction of cells in a good phenotype will thus be 1

n (1− p(T, ϕ, n, p0)). This can be seen as a recursive

mapping: pi+1
0 = 1

n (1 − p(T, ϕ, n, pi0)). We prove below that this initial fraction of adapted cells will
converge to a fixed point p∗0 upon repetition of this mapping.

Lemma 1. Let the time evolution within one environment of the number of adapted, sg(t), and non-
adapted, sb(t), cells be given by (13). The fraction of adapted cells in the i-th environment is given
by

pi(t) =
sig(t)

sig(t) + sib(t)
.

Say that, after a fixed environment duration T , the environment switches and the new fraction of adapted
cells is given by pi+1(0) = 1

n (1− pi(T )). Then, the initial fraction of adapted cells will converge when the
number of past environments becomes large: limi→∞ pi(0) = p∗0.

Proof. The time evolution of the number of cells can be captured as a linear system of differential
equations:

d

[
sg
sb

]
dt

=

[
1− ϕ ϕ

n

ϕ −ϕ
n

] [
sg
sb

]
=: As.

If the environment stays for a certain fixed time T , we can solve this equation as s(T ) = s(0)eAT , where
eAT is again a matrix. Upon an environment switch, the redistribution of the cells over adapted and
non-adapted phenotypes can also be written as a matrix multiplication:

si+1(0) =

[
0 1

n
1 1− 1

n

]
si(T ) =: Bsi(T ).

Together this shows that for a fixed environment duration T we can write down a linear map from the cell
numbers at the start of the first environment, to the cell numbers at the start of the second environment,
and so on:

si+1(0) = BeAT si(0).

Now let us consider the matrix BeAT . One can check that the assumptions for the Perron-Frobenius
theorem hold for this matrix, i.e., there is some λ such that BeAT + λI is a positive-valued matrix
that is primitive (see Section 2.A.2 for details where we check this for a very similar matrix). The
Perron-Frobenius theorem tells us that BeAT has a real-valued largest eigenvalue and that there is a
nonzero difference to all other eigenvalues. This means that we can use the diagonalisation of the matrix to
write it as BeAT = MΛM−1, where M is the matrix with the eigenvectors of BeAT and Λ is the diagonal
matrix with the eigenvalues. If we now want to know the initial numbers of cells after N iterations of the
environment we can write:

sN (0) = (BeAT )Ns0(0) = MΛNM−1s0(0).

Because the dominant eigenvalue is larger than all other eigenvalues, only the corresponding (dominant)
eigenvector will determine the sN (0) for large enough N . Since the initial fraction of good cells is
completely determined by this sN (0) by p0 = sNg (0)/sNb (0) we thus know that this will stabilise to a fixed
number after enough environment iterations.

We thus know that eventually there is a fixed initial fraction of adapted cells that satisfies the following
equation (as illustrated in Figure S1):

p0 =
1

n
(1− p(T, ϕ, n, p0)) . (17)
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Figure S1. The initial fraction of adapted cells converges to a fixed point after several
iterations of environment changes. The new initial fraction of adapted cells depends on the eventual
fraction of adapted cells through: pnew0 = 1

n (1− p(T )). Since, p(T ) can be expressed in terms of pold0 , the
relation between pnew0 and pold0 can be plotted. The red, dashed line, shows how the initial fraction
converges to a fixed point after several iterations. This figure was made for parameters:
ϕ = 0.02, n = 3, T = 3, pinit0 = 0.64, using the Mathematica-notebook
GRDS_minimal_model_analysis.nb which we have made publicly available.
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The solution of (17) can be found in the Mathematica-notebook GRDS_minimal_model_analysis.nb.
Since we already had a solution for the total number of cells stot(T, ϕ, n, p0) = sg(T, ϕ, n, p0)+sb(T, ϕ, n, p0),
we can insert the solution for p∗0 to get the growth dynamics when this fixed point is reached. We can use
this to calculate the average growth rate:

G =
1

T
log (stot(T, ϕ, n, p

∗
0(T, ϕ, n))) ,

which is only a function of T , ϕ and n. This provides an analytical expression for the long term average
growth rate as a function of all parameters in the model. We have not found an analytical expression for
the optimal switching rate ϕopt, but it is easy to find it numerically for a given set of parameters.

The approximation that non-adapted cells are equally distributed over non-adapted phe-
notypes Above, we have used the approximation that at the end of an environment the non-adapted
cells are distributed equally over the non-adapted phenotypes. This is a very good approximation as long
as the environment durations are not very short, or the switching rates very low. Indeed, although the
cells may be non-equally distributed over the non-adapted phenotypes at the start of a new environment
(because one of these non-adapted phenotypes was the adapted phenotype in the previous environment),
they are re-distributed via two different mechanisms. First, non-adapted cells switch between each other
with the same rate ϕ (which will become rϕ once we introduce GRDS). This switching will re-distribute
the cells equally over the non-adapted phenotypes. As long as most non-adapted cells have switched at
least once during the current environment, cells will have redistributed randomly over the phenotypes and
this occurs when rϕT is on the order of 1 or larger, i.e when rϕ is not small compared to the environment
switching rate 1/T . Alternative, the non-adapted phenotypes may also be equilibrated by switching of
adapted cells to non-adapted phenotypes. Note that the cells in the adapted phenotype will start growing
and their offspring will switch to all non-adapted phenotypes at the same rate ϕ/n. When the environment
duration is large enough, the cells in the good phenotype have produced enough offspring that switched
to non-adapted phenotypes to equilibrate the cell numbers in those phenotypes. To make this specific,
at the start of an environment there will be one non-adapted phenotype with many more cells than the
others because this phenotype was optimal in the previous environment. Generally, it will have N(1− ϕ)
cells, while the other phenotypes each contain Nϕ/n cells. One of the other phenotypes is adapted to

the current environment, and these cells will grow to approximately N ϕeT

n after a time T . By that time

∼ N ϕ2eT

n2 of these cells will have switched to each of the other phenotypes. If N ϕ2eT

n2 is large compared to
N(1− ϕ), these switched cells will have equalised the initial difference in cell number in the non-adapted
phenotypes. From this we see that whenever T is larger than 2 log(n/ϕ), the non-adapted cells are also
guaranteed to have equilibrated.

Finally, note that separating these two mechanisms of re-distributing the non-adapted cells leads to
quite pessimistic bounds on when the approximation is reasonable. In reality, these two mechanisms will
work in concert, so that the approximation is reasonable for a considerably larger range of parameters.
As confirmed by the contour plots of Figures S5 and S6, there is indeed only a small region for small r,
short T , and large n, where the optimal switching rates behave qualitatively different. In this regime the
approximation breaks down and any results near this regime are unreliable. However, note that in this
regime bet hedging strategies are guaranteed to perform poorly in any case.

1.C.3 Summarising the model of conventional bet hedging

We have here reduced a model of conventional bet hedging to its simplest form, (13), after which we
introduced periodic initial conditions. For any choice of the parameters n and T , and a given switching
rate ϕ we have an analytical expression for the long-term average population growth rate G. This allows
us to numerically optimise the switching rate to maximise G.
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1.D Introducing growth rate dependence

We will now introduce growth rate dependent stability (GRDS) in the model. Let’s recall the original
system of equations here:

dsg(t)

dt
= (1− ϕ)sg(t) +

ϕ

n
sb(t),

dsb(t)

dt
= −ϕ

n
sb(t) + ϕsg(t),

(18)

We now introduce Growth Rate Dependent Stability by allowing for two different switching rates: ϕ
determines the switching away from adapted phenotypes, and ϕ0 = ϕr denotes the switching rate away
from non-adapted phenotypes. The parameter r > 1 thus captures the strength of GRDS by giving the
factor difference between fast and slow switching rates. This gives the following system

dsg(t)

dt
= (1− ϕ)sg(t) +

rϕ

n
sb(t),

dsb(t)

dt
= −rϕ

n
sb(t) + ϕsg(t),

(19)

The new system ((19)) is of the same form as the original system ((18)) if we use: ng = n
r , such that

1
ng

= r
n . This new parameter may, just like the original 1

n , be interpreted as a parameter that captures

the decrease in switching rate from a bad phenotype to the good phenotype. This gives

dsg(t)

dt
= (1− ϕ)sg(t) +

ϕ

ng
sb(t),

dsb(t)

dt
= − ϕ

ng
sb(t) + ϕsg(t),

(20)

Since this model is essentially the same as before, we can re-use (14), (15), and (16). The limiting fraction
for large T for example becomes

lim
T→∞

p(T, ϕ, n, r, p0) =
1

2

(
1 +

√
(1 + ϕ(

r

n
− 1))2 + 4ϕ2

r

n
− (1 +

r

n
)ϕ

)
(21)

Figure S2 shows that the growth rate dependent stability already has a large effect on this limiting fraction
of cells in the good phenotype.

This new GRDS model behaves essentially different from the model of conventional bet hedging
when we look at the periodic initial conditions. These initial conditions are still given by the fixed point
equation: p0 = 1

n (1 − p(T, ϕ, n, p0)), and Theorem 1 is easily extended to show that this fixed point
is again globally stable. However, note that the equation is still dependent on 1

n , and not on the new
parameter 1

ng
= r

n . Thus, Growth Rate Dependent Stability can overcome the trade-off between fast

adaptation (high switching rate needed from non-adapted phenotypes) and a fast stationary growth rate
(low switching rate needed from adapted phenotypes), but it does not avoid that a high fraction of adapted
cells at the end of one environment leads to a small adapted fraction at the start of the next environment.

In the following, we will study the effect of GRDS by varying the parameter r, while we optimise the
switching rate ϕ for every case.

1.D.1 The dependence of G on the model parameters

In Figures S3 and S4 we plot how the average population growth rate depends on the complexity of the
environment (captured by the number of bad phenotypes n), and on the duration of the environment. On
the horizontal axis we vary how much Growth Rate Dependent Stability the system has: from no GRDS
at r = 1 until a thousand-fold difference between fast and slow switching rates (r = 1000).
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Figure S2. At the same switching rate away from adapted phenotypes, Growth Rate Dependent
Stability keeps more cells in the adapted state. Shown is the dependence of the limiting fraction of
adapted cells (for very long environment duration T ) on the switching rate. The blue line shows
conventional bet hedging; the red line shows bet hedging with GRDS of strength r = 5. The number of
bad phenotypes was chosen to be n = 10. This figure was made with the Mathematica notebook
GRDS_minimal_model_analysis.nb.
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Figure S3. Average population growth rate G for a bet-hedging population that experiences GRDS. On
the horizontal axes, we change the strength of GRDS (i.e. the fold-change r between switching rates of
fast and slow growing cells). On the vertical axes, we change the number of bad phenotypes n. Each
panel corresponds to a different environment duration T . The figure was made with the Mathematica
notebook GRDS_minimal_model_analysis.nb.
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Figure S4. Average population growth rate for a bet-hedging population that experiences GRDS. On
the horizontal axes, we change the strength of GRDS (i.e. the fold-change r between switching rates of
fast and slow growing cells). On the vertical axes, we change the environment duration T . Each panel
corresponds to a different numbers of non-adapted phenotypes n. This figure was made with the
Mathematica notebook GRDS_minimal_model_analysis.nb.
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1.D.2 Model behaviour for very fast switching: large ϕ

For very fast switching we can get an analytical result for the average growth rate G. The different
switching rates will determine solely what the fraction of cells in the good phenotype will be. Therefore,
p(t, ϕ, n) will become r

n+r extremely fast, and the growth rate difference between cells in good and bad
phenotypes will not change this fraction (because growth is slow relative to switching). Therefore, at
(almost) any timepoint, a fraction of r

r+n of the cells will grow with rate 1, while the rest does not grow.
Therefore,

lim
ϕ→∞

G(T, ϕ, n, r) =
r

n+ r
, (22)

which reduces to G = 1
n+1 for bet-hedging without GRDS. Note that growth rate thus increases monoton-

ically with r and limits to G = 1 for r → ∞.

1.E Optimal switching rates

For the computation of the average population growth rates shown in Figures S3 and S4, we needed to
optimise the switching rate ϕ. In Figures S6 and S5 we show the optimal switching rates for different
parameter settings.

These contourplots indicate that, for large enough T (approximately T ≥ 10), there is an abrupt
change in the optimal switching behaviour. We make this clear by plotting a red line for T = r/n. When
T is larger than r/n, the optimal switching rate seems to be well-approximated by ϕopt ≈ 1/T . We check
this by plotting the dependence of the average population growth rate G for different parameter settings in
Figure S7. Indeed, in Section 2 we will prove mathematically that for long enough environment durations
and relatively low switching rates, the optimal switching rate is indeed by 1/T . There, we also find that
the average long-term growth rate is well-approximated by

G =
∑
I

τIµ
(I)
i

τ
− 1

τ
−
∑
I

pI
τ

log
[τI
2

]
− Senv

τ
+

1

τ
log

[
1 + r

2

]
, (23)

which in the case of our minimal model reduces to

G ≈ 1− 1

T
− 1

T
log

[
Tn

2

]
+

1

T
log

[
1 + r

2

]
. (24)

In Figure S8 we check that this expression for the growth rate is indeed a good fit as long as r < Tn,
where the actual growth rate starts saturating towards the theoretical maximum of 1. In Section 2 it will
become clear why the approximation breaks down when r becomes too large, because the switching rate
from the non-adapted phenotypes, rϕ, becomes too large for the necessary assumptions to hold.

In the parameter regime where T < r/n we get that ϕopt → ∞, so that the growth rate is described
by G = r

r+n as pointed out in subsection 1.D.2.
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Figure S5. Optimal switching rate ϕ for a bet-hedging population that experiences GRDS. On the
horizontal axes, we change the strength of GRDS, i.e. the ratio r of switching rates of slow and fast
growing phenotypes. On the vertical axes, we change the environment duration T . Each panel
corresponds to a different number of bad phenotypes n. The red line shows T = r/n which, for large
enough T , divides the parameter regimes where ϕ ≈ 1/T (for T > r/n) and where ϕ → ∞ (for T < r/n).
This figure was made with the Mathematica notebook GRDS_minimal_model_analysis.nb.
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Figure S6. Optimal switching rate ϕ for a bet-hedging population that experiences GRDS. On the
horizontal axes, we change the strength of GRDS, i.e. the ratio r of switching rates of slow and fast
growing phenotypes. On the vertical axes, we change the number of bad phenotypes n. Each panel
corresponds to a different environment duration T . The red line shows T = r/n which, for large enough
T , divides the parameter regimes where ϕ ≈ 1/T (for T > r/n) and where ϕ → ∞ (for T < r/n). This
figure was made with the Mathematica notebook GRDS_minimal_model_analysis.nb.
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Figure S7. The optimal switching rate is approximately ϕ = 1
T . The left panels show the average

population growth rate as a function of ϕ and the right panels as a function of ϕT . Other parameters are
as indicated at the top of each panel and in the legends. The dots indicate the optimal switching rate and
the dashed lines in the right panels show ϕ = 1

T . The optimal switching rates converge to 1/T when T
becomes large (seen middle row of panels). This figure was made with the Mathematica notebook
GRDS_minimal_model_analysis.nb.
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Figure S8. Analytical approximation of the average growth rate. Each panel shows G as a
function of the strength of GRDS r (solid lines) and the analytical approximation

G ≈ 1− 1
T − 1

T log
[

Tn
1+r

]
, derived in Section 2 (dashed lines). Each panel corresponds to a different

environment duration T (see titles), and each color corresponds to a different number of bad phenotypes n
(see legends). This figure was made with the Mathematica notebook GRDS_minimal_model_analysis.nb.
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2 Analytical derivations for the long-time limit of the general
model

We will here first describe the original phenotype switching model of Kussell and Leibler [18]. We will
describe the model formalism and their analytical approximation of the optimal solution. To keep this
document self-contained, we will repeat the steps in the derivations by Kussell and Leibler and often add
details where we think they are needed.

We will then extend this model with growth rate dependent switching rates. We will prove that growth
rate-dependent switching increases a population’s average growth rate, in the situations where certain
assumptions hold. These assumptions are clearly indicated in the text.

In this part of the SI dedicated to the general model, we will use n as the number of phenotypes
instead of n+ 1, since in the general model there is not necessarily one phenotype that is adapted while
the rest is not.

2.A Prerequisite theory: Phenotype switching with constant switching rates

2.A.1 The original phenotype switching model

The essential ingredients of the model are:

• m is the number of environments, n the number of phenotypes,

• E(t) denotes a stochastic process determining which environment is active at time t

• the duration of an occurrence of environment i is drawn from an exponential distribution with mean
τI ,

• the order in which the environments occur is determined by a Markov chain. The probability that
environment I follows environment J is denoted by bIJ . Using these parameters, we can find the
probability that environment I occurs as pI ,

• a cell in phenotype i grows in environment I with rate µ
(I)
i ,

• the switching rate from phenotype j to i in environment I is denoted by ϕ
(I)
ij .

Given these ingredients, the growth of the population can be modelled by the differential equation

d

dt
s = AE(t)s, (25)

where AE(t) is the matrix belonging to the environment E(t). This matrix can be written as a sum of a
diagonal matrix with the growth rates of all phenotypes in that environment, and a switching matrix Φ.
The off-diagonal entries of the switching matrix are all positive, being filled with the abovementioned

switching rates: ϕ
(E(t))
ij . The diagonal elements are the negative sums of the corresponding columns,

so that all cells that switch to a different phenotype are subtracted from the number of cells in their
phenotype.

The total number of cells at time t is given by N(t) =
∑

i si(t). We are interested in the average
growth rate of the population over a long sequence of environments. We therefore define the long-term
average growth rate as

G = lim
t→∞

1

t
log (N(t)) . (26)

We use G instead of the Λ that was used in [18] to keep notation consistent across this work.
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2.A.2 Derivation of an analytic approximation for the average growth rate

In this subsection we will describe how the following approximation for the average growth rate can be
derived

τG =
n∑

I=1

pIτIλ1(AI) +
n∑

I,J=1

pJbIJ log qIJ , (27)

where τ is the average duration of an environment, and λ1(AI) is the dominant eigenvalue of the matrix
AI corresponding to environment I.The terms qij are obtained by projecting the dominant eigenvector
of environment J onto the dominant eigenvector of environment I. The term log qIJ quantifies the loss
of fitness after a transition in the environment due to the fraction of the population that is not in the
optimal phenotype to grow in the new environment.

Slicing up time The first step in the derivation is dividing the simulation time in intervals in which the
environment does not change. This facilitates separating the different environments, which is practical
since the model properties are markedly different in different environments. The length of these intervals
are denoted Tl and the cumulative time is denoted tL =

∑L
l=1 Tl. The state of the environment during

the l-th interval is denoted ϵ(l).

Applying the theorem of Perron-Frobenius The derivation depends on the assumption that the
dominant eigenvalue of the matrices AI is real and that there is a gap between the dominant eigenvalue
and the second eigenvalue. We can apply the Perron-Frobenius theorem to ensure these assumptions are
met.

The Perron-Frobenius theorem can be applied only to nonnegative matrices, so that we will apply it
to A+ λI, where I is the identity matrix. If λ is chosen large enough, this will give a matrix with only
non-negative entries, because all off-diagonal elements of the switching matrix Φ are non-negative, and
the growth rates only occur on the diagonal. When this matrix is in addition primitive we can apply the
Perron-Frobenius theorem.

The matrix A + λI is primitive when it is irreducible and has period 1. It is irreducible when any
linear subspace spanned by standard basis vectors ei1 , ..., eik with 0 < ik < m is not mapped into itself by
A+ λI. This means that A+ λI is irreducible when no subset of phenotypes switches only to each other.
This is generally the case for the system under consideration. A+ λI certainly has period 1 when the
diagonal elements are all positive, which they are. Concluding, we generally have a nonnegative, primitive
matrix A+ λI. We can thus apply the Perron-Frobenius theorem.

This implies that the dominant eigenvalue of A+ λI is a positive real number, r, which has a one-
dimensional eigenspace. The corresponding right and left eigenvector have only positive entries. Note
that A thus has dominant eigenvalue r − λ.

The eigenvectors in a single environment For a given environment, we can choose the generalized

eigenvectors v
(K)
r such that

M(K) =
[
v
(K)
1 v

(K)
2 · · · v

(K)
m

]
(28)

satisfies
Λ(K) = M−1

(K)A
(K)M(K), (29)

where Λ(K) is in Jordan-block diagonal form with the eigenvalues, λ
(K)
r , in decreasing order as coefficients.
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Assuming distribution is stationary before environment switch If the environment times, Tl,
are large enough, we can assume that the distribution of phenotypes at the switching time, tl−1, is equal
to the distribution in the dominant eigenvector for this environment. So,

x(tl−1) = N(tl−1)v
ϵ(l−1)
1 , (30)

where N(tl−1) denotes the number of cells at time tl−1, and where we assume that the coefficients of the

dominant eigenvectors, v
(K)
1 , sum up to 1. In other words, we assume that the environments change slow

enough to allow relaxation of the population to their stationary distribution.

Calculating time evolution in one environment Starting from x(tl−1), how will the vector evolve in
environment ϵ(l)? We can find out by decomposing (projecting) x(tl−1) in the generalized eigenvectors of
A(ϵ(l)), which were grouped in M (ϵ(l)). The coordinates of x(tl−1) in the new eigenbasis can be calculated
with the inverse of the matrix of generalized eigenvectors:

x(tl−1) = N(tl−1)

((
ê1

(
M (ϵ(l))

)−1

v
ϵ(l−1)
1

)
v
ϵ(l)
1 + · · ·+

(
êm

(
M (ϵ(l))

)−1

v
ϵ(l−1)
1

)
vϵ(l)
m

)
,

= N(tl−1)

((
ê1

(
M (ϵ(l))

)−1

M (ϵ(l−1))ê1

)
v
ϵ(l)
1 + · · ·+

(
êm

(
M (ϵ(l))

)−1

M (ϵ(l−1))ê1

)
vϵ(l)
m

)
..

Note that this is just a sum of the generalized eigenvectors, weighted by some complicated coefficients. In
case that we have a diagonalizable A, we can just multiply this by the time evolution matrix A(ϵ(l)). This
will lead to each term being multiplied by the eigenvalue corresponding to the eigenvector in that term.

Although the initial weights for the other eigenvectors can be much larger, for large enough times

the eigenvector v
(k)
1 will again dominate the behaviour of x(t), because it has the largest eigenvalue.

Therefore, the growth of the population can be approximated by only considering this eigenvector. The
coordinate of the new dominant eigenvector in the decomposition of the previous dominant eigenvectors
in the new eigenvectors is denoted by

qϵ(l)ϵ(l−1)N(tl−1) =
(
ê1 ·M−1

l Ml−1ê1
)
N(tl−1). (31)

The time evolution of the number of cells in the l-th environment is thus given by

N(t) =
(
qϵ(l)ϵ(l−1)e

λ1(Aϵ(l))(t−tl−1) +R(t− tl−1)
)
N(tl−1), (32)

where R(T ) is a function that grows slower than eλ1Aϵ(l)T , and R(0) = 1− qϵ(l)ϵ(l−1).

Composing the average growth rate expression We can now put together the contributions of the
separate environments to describe the growth of the population over the whole sequence of environments.
From this, we can derive an expression for the average growth rate:

G = lim
L→∞

logN(tL)

tL
= lim

L→∞

1

tL

L∑
l=1

log
(
qϵ(l)ϵ(l−1)e

λ1(Aϵ(l)Tl) +G(Tl)
)
,

≈ lim
L→∞

1

tL

L∑
l=1

log
(
qϵ(l)ϵ(l−1)e

λ1(Aϵ(l)Tl)
)
,

= lim
L→∞

1

Lτ

L∑
l=1

Tlλ1(Aϵ(l)) + lim
L→∞

1

Lτ

L∑
l=1

log qϵ(l)ϵ(l−1),

where τ = limL→∞
tL
L is the average duration of environments.
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Validating the approximation For the above derivation, we made the approximation that upon
an environment switch, the system instantaneously projects to the dominant eigenvector of the new
environment, and that all the other cells are lost. This might seem unreasonable but does not have large
effects when the average durations of environments are relatively long. To be precise, we need

qϵ(l)ϵ(l−1)e
λ1(Aϵ(l)Tl) ≫ R(Tl). (33)

Now R(Tl) can be overestimated when all eigenvalues are simple (i.e. each eigenvalue occurs only once).
We get

R(T ) =
m∑
r=2

(
er ·M−1

I v
(J)
1

)
||v(I)r ||1eλr(Aϵ(l))T ,

≤
m∑
r=2

max
r ̸=1

{∣∣∣(er ·M−1
I v

(J)
1

)
||v(I)r ||1

∣∣∣} eλr(Aϵ(l))T ,

≤ max
r ̸=1

{∣∣∣(er ·M−1
I v

(J)
1

)
||v(I)r ||1

∣∣∣} m∑
r=2

eλr(Aϵ(l))T ,

≤ max
r ̸=1

{∣∣∣(er ·M−1
I v

(J)
1

)
||v(I)r ||1

∣∣∣} m∑
r=2

eλ2(Aϵ(l))T ,

≤ max
r ̸=1

{∣∣∣(er ·M−1
I v

(J)
1

)
||v(I)r ||1

∣∣∣} eλ2(Aϵ(l))T
m∑
r=2

1,

≤ mmax
r ̸=1

{∣∣∣(er ·M−1
I v

(J)
1

)
||v(I)r ||1

∣∣∣} eλ2(Aϵ(l))T ,

≤ mKIJe
λ2(Aϵ(l))T ,

where Kij is defined appropriately. Combining this with the requirement (33) above, we get

Tl ≫
1

λ1(Aϵ(l))− λ2(Aϵ(l))
log

(
mKϵ(l)ϵ(l−1)

qϵ(l)ϵ(l−1)

)
. (34)

This approximation must hold for all switches between environments. Therefore, we take the maximum to
get the requirement

Tl ≫ max
I,J

1

λ1(AI)− λ2(AI)
log

(
mKIJ

qIJ

)
. (35)

Importantly, note that the requirement is more easily met when the spectral gaps (λ1(AI)− λ2(AI)) are
large.

Using the Markov chain to capture the order of environments It was assumed that the
environments change according to a Markov chain defined by switching rates bIJ . The probability of
having environment I is denoted by pI . The duration of the k-th occurrence of environment I can be

described by a random variable T
(I)
k , and it is assumed that the variables T

(I)
k , T

(I)
l are independent,

identically distributed variables with mean τI .
For large L, the number of occurrences of environment I approaches pIL, and the number of subsequent
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occurrences of J and I approaches pJbIJL. Inserting this in the formula for the Lyapunov exponent gives

τG = lim
L→∞

1

L

L∑
l=1

Tlλ1(Aϵ(l)) + lim
L→∞

1

L

L∑
i=1

log qϵ(l)ϵ(l−1),

= lim
L→∞

1

L

m∑
I=1

pIL∑
k=1

T
(I)
k λ1(AI) +

1

L

m∑
I,J=1

pJbIJL log qIJ ,

=
m∑

I=1

pIτIλ1(AI) +
m∑

I,J=1

pJbIJ log qIJ .

This completes the derivation of the expression in (27) of the average growth rate of the population.

2.A.3 An approximation of the average growth rate in terms of growth and switching rates

To obtain analytical results about the effect of growth rate dependent switching rates on a population’s
average growth rate, we need an expression of this average growth rate in terms of the switching rates.
Starting with (27), we thus need to express λ1(AI) and log qIJ in terms of the model parameters. Both
are determined by the eigenvalues and eigenvectors of the time evolution matrices AI . Following Kussell
and Leibler [18], we find expressions for these eigenvalues and eigenvectors by using perturbation theory.

This perturbation theory heavily relies on the assumption that the switching rates ϕ
(I)
ji are small compared

to the growth rates µ
(I)
i , and we will see that we must even demand that the switching rates are small

compared to the growth rate differences.

Using perturbation theory to obtain expressions for the eigenvalues and -vectors We start
by separating the matrix in two parts:

A = A0 + δA = diag(µ1, . . . , µn) +

−ϕ11 · · · ϕ1n

...
. . .

...
ϕn1 · · · −ϕnn

 . (36)

It is easy to find the eigenvalues and -vectors of A0, being:

λi
0 ∈ {µ1, . . . , µn} and vi

0 ∈ {ê1, . . . ên}. (37)

The question that we want to answer now is: Can we find δλi, δv, such that the set of eigenvalues
λi = λi

0 + δλi, and eigenvectors vi = vi0 + δvi satisfies

(A0 + δA)(vi0 + δvi) = (λi
0 + δλi)(vi0 + δvi), (38)

up to first order? We can expand this to get

A0v
i
0 +A0δv

i + δAvi0 + δAδvi = λi
0v

i
0 + λi

0δv
i + δλivi0 + δλiδvi. (39)

Then, we use that A0v
i
0 = λi

0v
i
0, and we ignore all terms of order two and higher to get:

A0δv
i + δAvi0 = λi

0δv
i + δλi

0v
i
0. (40)

Since the unperturbed eigenvectors are just the elementary basis vectors, we can express the first order
corrections to the eigenvectors in terms of the unperturbed ones:

δvi =
n∑

j=1

αi
j ê

j , (41)
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We insert the above decomposition into (40) and get

A0

n∑
j=1

αi
j ê

j + δAêi = λi
0

n∑
j=1

αi
j ê

j + δλiêi,

⇒
n∑

j=1

αi
jλ

j
0ê

j + δAêi = λi
0

n∑
j=1

αi
j ê

j + δλiêi. (42)

This is a set of n equalities, one for each choice of i. When we left-multiply this equation on both sides
with the elementary unit vector êi, we get

αi
iλ

i
0 + δAii = λi

0α
i
i + δλi, (43)

showing that we need δλi = δAii = −
∑

j ̸=i ϕji. So, the first order perturbation decreases all eigenvalues
by the sum of the ’away’-switching rates.

Then, we left-multiply (42) by êk to get

αi
kλ

k
0 + δAki = λi

0α
i
k,

⇒ αi
k =

δAki

λi
0 − λk

0

=
ϕki

µi − µk
.

The only coefficients that are now undetermined are αi
i. We can determine them by demanding that the

eigenvectors are normalized. This yields:∑
k

(vi
0 + δvi)k(v

i
0 + δvi)k = 1, (44)

such that we get (to first order)∑
k

(êi)k(
∑
j

αi
j ê

j)k +
∑
k

(
∑
j

αi
j ê

j)k(ê
i)k = 0 ⇒ 2αi

i = 0. (45)

We thus get:

δvi =


ϕ1i

µi−µ1

...
ϕni

µi−µn

 , (46)

where the i-th coefficient is zero.
Concluding, the first order approximation of the eigenvalues are

λi = µi −
∑
j ̸=i

ϕji, (47)

and of the eigenvectors:

vi =



0
...
1
...
0

+



ϕ1i

µi−µ1

...
0
...

ϕni

µi−µn


. (48)

As described above, these eigenvectors will be collected in a square matrix

M (K) =
[
v
(K)
1 · · ·v(K)

n

]
. (49)

Note that the corrections to the eigenvectors only become small when the switching rates, ϕij , are small
compared to the differences between growth rates, µi − µj .
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Approximating the inverse of the eigenvector matrix To obtain analytical approximations for
the fractions qIJ in (27), we need to express the inverse of M (K) in terms of the model parameters. Let
the entries of this inverse matrix be given up to first order by M−1

km = δkm +∆mkm. Now, we demand
that [M−1M ]ki =

∑
l M

−1
kl Mli = δki. Expanding this expression gives

[M−1M ]ki =
∑
l

(δkl +∆mkl) ·
(
δli +

ϕli

µi − µl
(1− δli)

)
. (50)

In case k = i, we get
[M−1M ]ii = 1 +∆mii (51)

This implies that
∆mii = 0. (52)

In the case that k ̸= i we get

[M−1M ]ki = 0 +∆mki +
ϕki

µi − µk
, (53)

which implies

∆mki = − ϕki

µi − µk
, (54)

Concluding, the entries of (M (j))−1 are

(M (j))−1
ki = δki −

ϕ
(j)
ki

µ
(j)
i − µ

(j)
k

(1− δki), (55)

while

M
(j)
ki = δki +

ϕ
(j)
ki

µ
(j)
i − µ

(j)
k

(1− δki). (56)

An expression for the projection of dominant eigenvectors The fraction qIJ is obtained by
projection of the dominant eigenvector in environment J on the dominant eigenvector of environment I.
If we denote by αI the index of the dominant eigenvector in environment I, we get

qIJ = êαI
(M (I))−1M (J)êαJ

= δαIk

∑
l

(M (I))−1
kl M

(J)
lm δαJm,

=
∑
l

(M (I))−1
αI l

M
(J)
lαJ

,

=
∑
l

[
δαI l −

ϕ
(I)
αI l

µ
(I)
l − µ

(I)
αI

(1− δαI l)

]
·

[
δlαJ

+
ϕ
(J)
lαJ

µ
(J)
αJ − µ

(J)
l

(1− δlαJ
)

]
.

Expanding this multiplication gives if αI = αJ :

qij = 1, (57)

and if αI ̸= αJ :

qIJ =
ϕ
(J)
αIαJ

µ
(J)
αJ − µ

(J)
αI

+
ϕ
(I)
αIαJ

µ
(I)
αI − µ

(I)
αJ

. (58)
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The average growth rate in terms of model parameters Recall from Equation (27) that

τG ≈
n∑

I=1

pIτIλ1(AI) +
n∑

I,J=1

pJbIJ log qIJ , (59)

and note that we can insert the found expressions for λ1(AI) and qIJ . We get:

τG ≈
n∑

I=1

pIτI

µ(I)
αI

−
∑
k ̸=αI

ϕ
(I)
kαI

+
∑

I,J;αI ̸=αJ

pJbIJ log

(
ϕ
(J)
αIαJ

µ
(J)
αJ − µ

(J)
αI

+
ϕ
(I)
αIαJ

µ
(I)
αI − µ

(I)
αJ

)
(60)

2.A.4 The optimal constant switching rates

In [18], the switching rates were assumed independent of the current environment, just depending on the

phenotypes the cell is switching between: ϕ
(I)
ji = ϕji. Also, to facilitate clearer notation they assume that

the number of environments equals the number of phenotypes and that αi = i. We will repeat that last
assumption here, although our results are true more generally. Using the analytical approximation for the
average population growth rate in (60), we can find the optimal switching rates by setting the derivative
equal to zero. This yields:

τ
∂G

∂ϕji
= −piτi + pibki

(
1

ϕji

)
= 0 ⇒ ϕji =

bji
τi

. (61)

Inserting this in the formula for the average growth rate gives

τGopt ≈
n∑

i=1

piτi

µ
(i)
i −

∑
j ̸=i

bji
τi

+
∑

i,j;i ̸=j

pibji log (bji) +
∑

i,j;i ̸=j

pibji log

(
1

τi

(
1

µ
(i)
i − µ

(i)
j

+
1

µ
(j)
j − µ

(j)
i

))
,

=

n∑
i=1

piτiµ
(i)
i − 1 +

∑
i,j;i ̸=j

pibji log (bji) +
∑

i,j;i ̸=j

pibji log

(
1

τi

1

∆S
ij

)
,

=
n∑

i=1

piτiµ
(i)
i − 1− Ienv −

∑
i,j;i ̸=j

pibji log
(
τi∆

S
ij

)
,

where 1
∆s

ij
= 1

µ
(j)
j −µ

(j)
i

+ 1

µ
(i)
i −µ

(i)
j

, and Ienv = −
∑

i,j;i ̸=j pibji log (bji) which is interpreted as the information

entropy of the fluctuating environment.

2.A.5 Interpretation of the constant switching results: explaining the trade-off between
fast growth and fast adaptation

Let us consider the different terms in the expression for the average growth rate:

τG ≈
n∑

I=1

pIτI

µ(I)
αI

−
∑
k ̸=αI

ϕ
(I)
kαI

+
∑

I,J;αI ̸=αJ

pJbIJ log

(
ϕ
(J)
αIαJ

µ
(J)
αJ − µ

(J)
αI

+
ϕ
(I)
αIαJ

µ
(I)
αI − µ

(I)
αJ

)
. (62)

The first sum calculates an average, weighted by the occurrence of the environment, of the stationary growth
rates in the different environments. In each environment the population growth rate is approximated
by the growth rate of the fastest growth phenotype, minus the sum of the switching rates away from
this phenotype. Through this term high switching rates away from fast growing phenotypes will thus
negatively affect the average growth rate of the population.
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The second sum of the term quantifies the loss in the average growth rate due to cells that are not
instantaneously adapted to a new environment. Note that this term is negative because the switching
rates in the numerators are generally much smaller than the growth rate differences in the denominators.
The two terms in the logarithm show the two most important ways in which cells can adapt to a new
environment by random switching. The first term shows that cells can have switched from the old to the
new fastest growth phenotype before the environment switch. Through this term, high switching rates
away from the fast growth phenotype will positively affect the average growth rate of the population. The
second term in the logarithm shows that cells can switch from the old dominant phenotype to the new
dominant phenotype after the switch. This shows that high switching rates from slow growth phenotypes
to fast growth phenotypes can also benefit the average population growth rate.

Concluding, there is a clear trade-off between losing fitness due to a lower stationary growth rates at
high switching rates, and losing fitness due to a longer adaptation time at low switching rates.

2.A.6 List of assumptions

Our analytical investigation of random phenotype switching relies on several assumptions:

1. The duration of environments is long compared to division times and switching times

2. The spectral gaps (the difference between the first and second eigenvalue) of the time evolution
matrices are large compared to the reciprocal of the average environment duration

3. The switching rates are small compared to the growth rates

4. The switching rates are small compared to the differences between the fastest growth rate and other
growth rates in an environment

Note that we found that the optimal switching rates were found to be ϕji = bji/τi, so that assumptions
3 and 4 are expected to be satisfied automatically when the environment durations are long and the
switching rates are optimised.

2.B Introducing growth rate dependent stability

In this section we will investigate if, and by how much, growth rate dependent phenotype switching
increases the long-term growth rate of a population.

2.B.1 Long-term population growth rates can be increased by growth rate dependency

First, we prove that we can always increase the long-term population growth rate when phenotype

switching rates can be made dependent on the growth rates: ϕ
(I)
ji = ϕjif(µ

(I)
i ).

Theorem 1. We consider population growth in a sequence of environments that satisfies the assumptions
from Section 2.A.6. We start from a population with phenotype switching rates that are independent of the
current environment. The long-term population growth rate can be increased by allowing for a dependency
on the phenotype’s growth rate of the switching rate away from that phenotype.

Proof. Let us take the expression for the average population growth rate as the benchmark:

τG ≈
n∑

I=1

pIτI

µ(I)
αI

−
∑
k ̸=αI

ϕ
(I)
kαI

+
∑

I,J;αI ̸=αJ

pJbIJ log

(
ϕ
(J)
αIαJ

µ
(J)
αJ − µ

(J)
αI

+
ϕ
(I)
αIαJ

µ
(I)
αI − µ

(I)
αJ

)
. (63)
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We introduce a growth rate dependence of the switching rates by assuming that the switching rates

from non-dominant phenotypes increase (ϕ
(I)
αIαJ → ϕ

(I)
αIαJ + δ

(I)
αIαJ ), while switching rates from dominant

phenotypes decrease (ϕ
(J)
αIαJ → ϕ

(J)
αIαJ − δ

(J)
αIαJ ). This gives

τG ≈
n∑

I=1

pIτI

µ(I)
αI

−
∑
k ̸=αI

(
ϕ
(I)
kαI

− δ
(I)
kαI

)+
∑

I,J;αI ̸=αJ

pJbIJ log

(
ϕ
(J)
αIαJ − δ

(J)
αIαJ

µ
(J)
αJ − µ

(J)
αI

+
ϕ
(I)
αIαJ + δ

(I)
αIαJ

µ
(I)
αI − µ

(I)
αJ

)
.

It is clear that the decrease of the switching rates away from optimal phenotypes provides a fitness
benefit in the first term. This effect captures that fewer cells switch from the optimal phenotype in each
environment, so that the stationary population growth rate is higher. Still, this beneficial effect might be
undone by the changes in the terms of the second sum. We can show, however, that the overall change in
the second sum is also positive, if the growth rate dependence is chosen well.

We define δ+αIαJ
= minK ̸=J{δ(K)

αIαJ}, and δ−αIαJ
= δ

(J)
αIαJ , so that δ+αIαJ

is the minimal increase in
switching rate over all environments in which phenotype αJ is not optimal. We then get

τG ≥
n∑

I=1

pIτI

µ(I)
αI

−
∑
k ̸=αI

(
ϕ
(I)
kαI

− δ
(I)
kαI

)+
∑

I,J;αI ̸=αJ

pJbIJ log

(
ϕ
(J)
αIαJ − δ−αIαJ

µ
(J)
αJ − µ

(J)
αI

+
ϕ
(I)
αIαJ + δ+αIαJ

µ
(I)
αI − µ

(I)
αJ

)
,

=

n∑
I=1

pIτI

µ(I)
αI

−
∑
k ̸=αI

(
ϕ
(I)
kαI

− δ
(I)
kαI

)
+

∑
I,J;αI ̸=αJ

pJbIJ log

(
ϕ
(J)
αIαJ

µ
(J)
αJ − µ

(J)
αI

+
ϕ
(I)
αIαJ

µ
(I)
αI − µ

(I)
αJ

−
δ−αIαJ

µ
(J)
αJ − µ

(J)
αI

+
δ+αIαJ

µ
(I)
αI − µ

(I)
αJ

)
.

The growth rate dependence can now be chosen such that δ+αIαJ
and δ−αIαJ

satisfy

−
δ−αIαJ

µ
(J)
αJ − µ

(J)
αI

+
δ+αIαJ

µ
(I)
αI − µ

(I)
αJ

≥ 0, =⇒ δ+αIαJ
≥ δ−αIαJ

µ
(I)
αI − µ

(I)
αJ

µ
(J)
αJ − µ

(J)
αI

, (64)

which implies that both terms in the expression for τG increase as a consequence of the growth rate
dependence, which completes our proof.

We emphasise that the theorem was proven for any set of constant phenotype switching rates. This
means that it does not matter if these phenotype switching rates were optimised or not, with growth rate
dependent switching rates a population can always do better.

2.B.2 Analytical approximation of the benefit of growth rate dependence

Consider a model of the type discussed in Section 2.A. We would like to get some estimate of how large
the growth rate benefit due to growth rate dependent switching can become. To facilitate the analytical
approximation, we will investigate the effects of this growth rate dependence in a simplified case. This
will give us an expression that can be further simplified into the long-time limit of the minimal model
described in Section 1. More general cases will be analysed numerically (Section 3). Here, we assume that:

1. the number of environments equals the number of phenotypes; each phenotype is optimal in one
environment, and we will assume αi = i without loss of generality

2. the dominant phenotypes all have growth rate µmax,

3. the non-dominant phenotypes all have growth rate 0,
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4. the factor difference between a switching rate from a slow-growth phenotype, and a switching rate
from a fast-growth phenotype, is bounded by a parameter r.

Since we have only two possible growth rates, there are only two switching rates per pair of phenotypes: a

switching rate away from fast-growth phenotypes ϕ
(i)
ji =: ϕµ

ji, and a switching rate away from slow-growth

phenotypes ϕ
(k)
ji , with the constraint that

ϕ
(k)
ji

ϕ
(i)
ji

≤ r.

We start by inserting these simplifying assumptions in the expression for the average population growth
rate

τG ≈
n∑

i=1

piτi

µmax −
∑
k ̸=i

ϕ
(i)
ki

+
∑

i,j;i ̸=j

pjbij log

(
ϕ
(j)
ij

µmax
+

ϕ
(i)
ij

µmax

)
.

This expression shows that if the average growth rate is to be maximised, the switching rates away from

slow-growth phenotypes (ϕ
(i)
ij ) should be as high as possible. Therefore, we know that the constraint

bounding the factor difference between high and low switching rates is always saturated in the optimum.

As a consequence, we can write: ϕ
(i)
ij = rϕ

(j)
ij =: rϕµ

ij , which gives

τG ≈
n∑

i=1

piτi

µmax −
∑
k ̸=i

ϕµ
ki

+
∑

i,j;i ̸=j

pjbij log

(
ϕµ
ij

1 + r

µmax

)
,

=

n∑
i=1

piτi

µmax −
∑
k ̸=i

ϕµ
ki

+
∑

i,j;i ̸=j

pjbij

(
log

(
1 + r

µmax

)
+ log

(
ϕµ
ij

))
.

We can then find an analytical expression for the optimal switching rates by setting the derivative with
respect to the switching rates to zero:

τ
∂G

∂ϕµ
ji

= −piτi + pibji
1

ϕµ
ji

= 0 ⇒ ϕµ
ji =

bji
τi

. (65)

Note that these are the same optimal switching rates as in the non-growth rate dependent case. Inserting
this in the formula for the average growth rate gives

τGµ
opt ≈

n∑
i=1

piτi

µmax −
∑
j ̸=i

bji
τi

+
∑

i,j;i ̸=j

pibji

(
log

(
1 + r

µmax

)
+ log

(
bji
τi

))
,

=
n∑

i=1

piτiµmax − 1 +
∑

i,j;i ̸=j

pibji log (bji) +
∑

i,j;i ̸=j

pibji log

(
1 + r

τiµmax

)
,

=
n∑

i=1

piτiµmax − 1− Ienv −
∑

i,j;i ̸=j

pibji log

(
τiµmax

1 + r

)
, (66)

where Ienv = −
∑

i,j;i ̸=j pibji log (bji) which is interpreted as the information entropy of the fluctuating
environment.

We can compare this with the case where the switching rates were not growth rate dependent. In
that case, and under the assumptions about the growth rates that we have used here, the expression for
the long term growth rate is

τGconst
opt =

n∑
i=1

piτiµmax − 1− Ienv −
∑

i,j;i ̸=j

pibji log
(τiµmax

2

)
. (67)
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The growth rate benefit that growth rate dependent switching brings is thus

τGµ
opt − τGconst

opt = −
∑

i,j;i ̸=j

pibji log

(
τiµmax

1 + r

)
+
∑

i,j;i ̸=j

pibji log
(τiµmax

2

)
,

=
∑

i,j;i ̸=j

pibji log

(
1 + r

2

)

= log

(
1 + r

2

)
, (68)

which implies that the average growth rate increases by

Gµ
opt −Gconst

opt =
1

τ
log

(
1 + r

2

)
. (69)
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3 Numerics: Quantifying the advantage of growth rate depen-
dent stability

We implemented the model described in Section 2.A in Python, which can be found at https://github.
com/dhdegroot/GRDS-code-repository. In this section we will show the results of various numerical
simulations to validate and elaborate on the intuition gained by the preceding analytical approach. We do
this by performing many simulations for different choices of parameters to see if the fitness benefit of
GRDS is present across all parameters, the results of which are shown in Figure 3 of the main text. We
here explain which parameter sets were simulated.

For the first part of the parameters, we iterate their value over the elements from a list. All combinations
of these parameter values were tested:

• the number of environments, n, was iterated over the set {4, 5, 8, 13, 19}

• the number of phenotypes, m, was either n/2, n or 2n; this number was rounded up when it was
not an integer value.

• the average environment duration, τ , was picked from the set {1, 10.75, 20.5, 30.25, 40}. For each
occurrence of an environment we sampled its duration from an exponential distribution with mean
τ .

• for picking the growth rates of the various phenotypes in the different environments, we will need two
parameters: the spread in growth rates of the fast phenotypes in different environments, µfast,spread,
and the minimal difference between a fast and a slow growth rate, δ. We iterated µfast,spread over
{0.05, 0.2, 0.35, 0.5, 0.65}, and δ over {0.05, 0.1, 0.15, 0.2, 0.25}.

For the next subset of the parameters, each parameter value was drawn randomly for each of the
combinations of the above parameters. We draw them in the following way:

• the Markov chain switching probabilities, bIJ , were drawn from a uniform distribution between 0
and 1, and then normalised such that

∑
I bIJ = 1.

• the maximal growth rates in the various environments, µ
(I)
fast, were drawn from a uniform distribution

[0.9− µfast,spread, 0.9]

• the rest of the phenotypes in environment I have growth rates drawn from a uniform distribution

on [0, µ
(I)
fast − δ].

Given these parameters, we now choose random switching rates:

• for the case of bet hedging, the constant phenotype switching rates ϕij were drawn uniformly

in log-scale from the range: [ 10
−3

m−1 ,
1

m−1 ]. The dependence on the number of phenotypes m is
introduced here to ensure that the maximal possible rate of switching out of a given phenotype is

1
m−1 (m− 1) = 1.

Based on these switching rates, we then choose growth rate dependent switching rates, such that we can
modify the strength of GRDS:

• for bet-hedging with GRDS of strength r, we take the range Rϕ(r) = [log(ϕij)− 0.5 log(r), log(ϕij)+
0.5 log(r)]. We subsequently determine the range of growth rates that cells in phenotype j can

have in the different environments: Rµ = [minI{µ(I)
j },maxI{µ(I)

j }], and we let tr be the linear
map from Rµ to Rϕ(r) that maps the minimal growth rate to the maximal switching rate and vice
versa. The switching rate from phenotype j to i in environment I with GRDS of strength r is now
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determined by log
(
ϕ
(I)
ij

)
= tr(µ

(I)
j ). Based on the growth rate in the current environment, the

switching rates between two phenotypes are thus interpolated in log-scale between an upper bound
and a lower bound, where the factor difference between the upper and lower bound is r. To have
a fair comparison between different strenghts of GRDS, we make sure that the average switching

rate between two phenotypes ( 1
m

∑m
K=1 ϕ

(K)
ij ) is the same for all strengths of GRDS. We do this by

scaling all switching rates such that the average is equal to the originally drawn switching rate ϕij :

ϕ
(I)
ij → ϕ

(I)
ij

ϕij

1
m

∑m
K=1 ϕ

(K)
ij

.

Given this complete set of parameters, we simulate population growth to compute the average population
growth rate for various strengths of GRDS r. All simulations were done over a sequence of environments
with a total duration that exceeded at least n2τ , so that we have had a reasonable sampling of the different
environment switches that can occur.
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