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Abstract 30 

Conduction velocity is the speed at which electrical signals travel along axons and is a crucial 31 

determinant of neural communication. Inferences about conduction velocity can now be made 32 

in vivo in humans using magnetic resonance (MR) imaging and a measure called the MR g-33 

ratio. Here, in the first application to cognition, we found that increased MR g-ratio, and by 34 

inference faster conduction velocity, specifically in the parahippocampal cingulum bundle, 35 

which connects the hippocampus with a range of other brain areas, was associated with better 36 

memory recall ability in 217 healthy adults. Moreover, two tract features seemed to favour 37 

better memory retrieval – large inner axon diameters and coherently organised neurites, both 38 

of which facilitate speedy signalling. These results offer a new perspective on drivers of 39 

individual differences in memory recall ability. More broadly, they show that MR g-ratio can 40 

provide novel insights into how the human brain processes and integrates information.     41 
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Introduction  42 

Communication between neurons in the brain is critical for cognition, and depends upon action 43 

potentials being conveyed along axons within white matter tracts. The speed at which these 44 

electrical signals travel along axons is known as the conduction velocity. It has been suggested 45 

that faster axonal conduction velocity promotes better cognition. For example, an increase in 46 

axonal conduction velocity is hypothesised to underpin the greater cognitive processing ability 47 

of vertebrates, in particular primates and humans (Brancucci, 2012; Miller, 1994), compared 48 

to invertebrates (Arancibia-Cárcamo et al., 2017; Bullock et al., 1984; Nave, 2010). In rats 49 

(Aston-Jones et al., 1985) and cats (Xi et al., 1999), faster axonal conduction velocity has been 50 

observed in younger compared to older animals. In a similar vein, axonal degradation that can 51 

lead to reduced conduction velocity has been identified in older compared to younger monkeys 52 

(Peters et al., 2000; Peters and Sethares, 2002).  Slower conduction velocity may, therefore, be 53 

a factor in age-related cognitive decline.  54 

Echoing these findings from non-humans, estimates of conduction velocity in humans 55 

from the latency of visual evoked potentials recorded over primary visual cortex (Reed and 56 

Jensen, 1992) and between the thalamus and parietal cortex (Reed and Jensen, 1993) have been 57 

positively correlated with nonverbal intelligence quotients. In addition, faster axonal 58 

conduction velocities are thought to better explain increases in intelligence than absolute and 59 

relative brain volumes (Dicke and Roth, 2016).  60 

That faster conduction velocity might confer an evolutionary cognitive advantage is 61 

perhaps unsurprising. The scope for signals to travel quickly and efficiently between brain 62 

regions could make all the difference for an individual’s survival.      63 

The conduction velocity of an axon is dependent upon two biological features – the 64 

axon diameter and the presence and thickness of a myelin sheath (Gasser and Grundfest, 1939; 65 
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Hursh, 1939; Huxley and Stämpeli, 1949; Rushton, 1951). A larger axon diameter results in 66 

less resistance to the action potential ion flow, resulting in faster conduction velocity. The 67 

presence of a myelin sheath around an axon acts like an electrical insulating layer, reducing 68 

ion loss and preserving the action potential, and this helps to maintain or even increase 69 

conduction velocity. A key factor in determining an axon’s conduction velocity is the g-ratio 70 

(Chomiak and Hu, 2009; Rushton, 1951; Schmidt and Knösche, 2019), which is computed as 71 

the ratio of the inner axon diameter, or radius, relative to that of the axon plus the myelin sheath 72 

that encases it (Figure 1A). Given that the g-ratio encompasses information about the inner 73 

axon diameter and myelin thickness, differences in g-ratio can help to differentiate which of 74 

these two features might be influencing variations in conduction velocity (Caeyenberghs et al., 75 

2016; Kaller et al., 2017; Lakhani et al., 2016; Waxman, 1980; Xin and Chan, 2020). Here we 76 

consider four different scenarios, central to our hypothesis testing, from which faster 77 

conduction velocity might arise, with each scenario differing in the underlying microstructure 78 

and consequently indexed differently by the g-ratio.  79 

In Figure 1F, inner axon diameter, myelin thickness and g-ratio are plotted together. 80 

Myelin thickness is represented by the gradient in background colour and contours, with 81 

thinnest myelin at the bottom right, and thickest on the top left. The direction of the arrows 82 

describes the change in g-ratio for the microstructural variations presented in the four scenarios 83 

of interest. Specifically (1) faster conduction velocity could be due to an increase in the 84 

thickness of the myelin sheath, with the inner axon diameter remaining constant. This is 85 

observed as a decrease in g-ratio values (Figure 1B and Figure 1F, blue arrow). (2) An increase 86 

in conduction velocity could arise primarily from an increase in myelin sheath thickness, but 87 

one that is also accompanied by a larger inner axon diameter. Here, a decrease in g-ratio would 88 

also be observed, but to a lesser extent than when the inner axon diameter remains constant 89 

(Figure 1C and Figure 1F, red arrow). (3) Quicker conduction velocity could be due 90 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.06.487313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487313
http://creativecommons.org/licenses/by/4.0/


5 

 

predominantly to a larger inner axon diameter, but with some increase in myelin thickness also 91 

being present. This would result in an increase in the g-ratio (Figure 1D and Figure 1F, orange 92 

arrow). (4) Faster conduction velocity could be a consequence of both the inner axon diameter 93 

and myelin thickness increasing proportionally to each other, and a constant g-ratio value 94 

would be expected in this circumstance (Figure 1E and Figure 1F, black arrow).  95 

   96 
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 97 
Figure 1. Illustration of the g-ratio and how it relates to specific microstructural properties that could 98 
give rise to faster conduction velocity. (A) Schematic of a myelinated axon. (B-E) Illustrations of how 99 
changes in axonal microstructure could result in faster conduction velocity, and how these are 100 
manifested in the g-ratio. (F) Graphical representation of B-E (see Appendix 1 for details of the 101 
simulation). Myelin thickness is represented by the gradient in background colour and contours on the 102 
graph, with the thinnest myelin at the bottom right and thickest at the top left. The direction of the 103 
arrows describes the change in g-ratio for each microstructural variation presented in B-E. The 104 
positioning and colours of the arrows correspond to the text box outline colours in B-E.  105 
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Until recently, g-ratio measurements have been restricted to invasive studies in animals, 106 

consequently limiting its application. However, by combining diffusion magnetic resonance 107 

imaging (MRI) with quantitative structural MRI scans optimised to measure myelination (e.g. 108 

magnetisation transfer saturation; Weiskopf et al., 2013), it is now possible to estimate the g-109 

ratio in vivo in healthy humans across the whole brain (Drakesmith et al., 2019; Mohammadi 110 

et al., 2015; Mohammadi and Callaghan, 2020; Stikov et al., 2015). This is achieved by 111 

measuring an aggregate g-ratio, calculating the ensemble average across a voxel of an 112 

underlying microstructural distribution of g-ratios (Stikov et al., 2015; West et al., 2016).  113 

Whole brain MR g-ratio maps enable the investigation of the MR g-ratio of white matter fibre 114 

pathways at the group level. These MR g-ratio estimates have been optimised (Ellerbrock and 115 

Mohammadi, 2018; Jung et al., 2018; West et al., 2018) and used to investigate white matter 116 

development (Cercignani et al., 2017), changes in the g-ratio during aging (Berman et al., 117 

2018), and as a potential neuroimaging marker in patients with multiple sclerosis (Yu et al., 118 

2019). As far as we are aware, the MR g-ratio has never been examined in relation to cognition. 119 

This is despite the novel insights it could provide, for example, into individual differences.   120 

The rich recall of personal past experiences known as autobiographical memories is a 121 

critical cognitive function that serves to sustain our sense of self, enable independent living, 122 

and prolong survival (Tulving, 2002). While some healthy individuals can recollect decades-123 

old autobiographical memories with great richness and clarity, others struggle to recall what 124 

they did last weekend (LePort et al., 2012; Palombo et al., 2015). In the context of the healthy 125 

population, we currently lack a clear biological explanation for the basis of these individual 126 

differences (Palombo et al., 2018). There is no doubt that the hippocampus is central to the 127 

processing of autobiographical memories, and hippocampal damage is linked with 128 

autobiographical memory impairments (McCormick et al., 2018; Scoville and Milner, 1957; 129 

Winocur and Moscovitch, 2011). However, no consistent relationship between 130 
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autobiographical memory recall ability and hippocampal grey matter volume or microstructure 131 

has been identified in healthy individuals (Clark et al., 2020; Clark et al., 2021a; LePort et al., 132 

2012; Maguire et al., 2003; Van Petten, 2004). The hippocampus does not act alone, and 133 

functional neuroimaging studies have revealed that a distributed set of brain areas supports 134 

autobiographical memory recall along with the hippocampus, including the parahippocampal, 135 

retrosplenial, parietal and medial prefrontal cortices (Andrews-Hanna et al., 2014; Maguire, 136 

2001; Spreng et al., 2009; Svoboda et al., 2006).  Changes in MR g-ratio and, by inference, 137 

conduction velocity, might affect communication between these brain regions and so influence 138 

individual differences in autobiographical memory recall within the healthy population.  139 

Three white matter pathways in particular enable communication with the hippocampal 140 

region – the fornix, the uncinate fasciculus and the parahippocampal cingulum bundle. The 141 

fornix (Figure 2A) is a major pathway in and out of the hippocampus and connects it to the 142 

orbital and medial prefrontal cortices, the basal forebrain, the anterior thalamus, the 143 

hypothalamus and the mammillary bodies (Aggleton et al., 2015; Croxson et al., 2005). The 144 

uncinate fasciculus (Figure 2B) originates in the uncus, entorhinal and parahippocampal 145 

cortices and passes over the lateral nucleus of the amygdala, arcs around the Sylvian fissure, 146 

terminating in various locations throughout the prefrontal cortex (Croxson et al., 2005; Von 147 

Der Heide et al., 2013). The parahippocampal cingulum bundle (Figure 2C) links the 148 

hippocampus with the entorhinal, parahippocampal, retrosplenial and parietal cortices, as well 149 

as providing another route between the hippocampus and anterior thalamus (Bubb et al., 2018; 150 

Jones et al., 2013b).  It also links to the prefrontal cortex via its connections with other parts of 151 

the cingulum bundle.   152 
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 153 

 154 
Figure 2. The three white matter tracts of interest, given their relationship with the hippocampal region. 155 
The white matter tracts were defined using the Johns Hopkins probabilistic white matter tractography 156 
atlas (Hua et al., 2008). with the minimum probability threshold set to 25%, with the exception of the 157 
fornix as the available fornix tract was not probabilistic. 158 

 159 

In the current study we calculated the MR g-ratio within these three pathways to 160 

ascertain whether this was significantly related to autobiographical memory recall ability. The 161 

relationship of g-ratio to the underlying microstructure as outlined in Figure 1, allowed us to 162 

further gauge whether any significant effects were more likely to be explained by the extent of 163 

myelination or the size of the inner axonal diameter of the fibres in these three white matter 164 

tracts. As well as the MR g-ratio, we also used the neurite orientation dispersion and density 165 

imaging (NODDI; Zhang et al., 2012) biophysical model to derive two complementary 166 
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biological measures that could provide further insights into the arrangement of neurites in a 167 

voxel. A neurite is any projection from a neuron’s cell body, such as an axon or a dendrite. The 168 

neurite orientation dispersion index is an estimate of the organisation of the neurites in a voxel, 169 

where a small orientation dispersion index value indicates a low dispersion of neurites, in other 170 

words, that the neurites are coherently organised. The second property, neurite density, is a 171 

measure of the density of the neurites in a voxel. For completeness, the commonly reported 172 

physical parameters (e.g. fractional anisotropy and mean diffusivity; Basser, 1995) that are 173 

often derived from diffusion data were also computed (Oeschger et al., 2021; see Appendix 1 174 

and Supplementary files 1 and 2). However, these metrics lack biological specificity (Jensen 175 

and Helpern, 2010; Jones et al., 2013a) and, consequently, could not speak to our research 176 

questions. 177 

To ensure an appropriate sample size and a wide range of autobiographical memory 178 

recall ability, we examined a large group of healthy young adults from the general population 179 

(n = 217; 109 female, 108 male; mean age of 29.0 years, SD = 5.60; age was restricted to 180 

between 20-41 years to limit the possible effects of aging).  181 

All participants underwent the widely-used Autobiographical Interview (Levine et al., 182 

2002), which provided a detailed metric characterising their autobiographical memory recall 183 

ability as well as a control measure. Diffusion and magnetisation transfer saturation MRI scans 184 

were obtained for each person to enable calculation of the MR g-ratio and the other measures. 185 

Our analyses were performed using weighted means from each of the three white matter tracts 186 

of interest rather than voxel-wise across the whole brain, reducing the potential for false 187 

positives (Marek et al., 2022).  188 

Focusing on the fornix, uncinate fasciculus and parahippocampal cingulum bundle, and 189 

assuming that better autobiographical memory recall is associated with faster conduction 190 

velocity (e.g. Brancucci, 2012; Dicke and Roth, 2016; Reed and Jensen, 1992; Xi et al., 1999), 191 
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we predicted that variations in the MR g-ratio from some or all of these tracts would be 192 

associated with better autobiographical memory recall ability. We further sought to adjudicate 193 

between the scenarios outlined in Figure 1 to ascertain if better autobiographical memory recall 194 

was associated with an increase in myelin thickness. This would be reflected as a negative 195 

relationship between the MR g-ratio and autobiographical memory recall ability (Figure 1B, C 196 

and F – blue and red arrows). Alternatively, better autobiographical memory recall ability could 197 

be related to predominantly larger inner axon diameters of the fibres within the tracts. This 198 

would be observed in the form of a positive relationship between the MR g-ratio and 199 

autobiographical memory recall ability (Figure 1D and F – orange arrow). 200 

 201 

Results  202 

Autobiographical memory recall 203 

We employed the widely-used Autobiographical Interview (Levine et al., 2002) to score 204 

autobiographical memory recall (see Materials and Methods for full details). The main measure 205 

of autobiographical memory recall ability was the mean number of “internal” details from the 206 

freely recalled autobiographical memories. Internal details are those that describe the specific 207 

past event in question, and are considered to reflect episodic information. Across the 208 

participants, the mean number of internal details provided per memory was 23.95 (SD = 7.25; 209 

range = 4.60–44.60).   210 

As a control measure, the mean number of “external” details was also calculated from 211 

the autobiographical memory descriptions. External details pertain to semantic information 212 

about the past event, and other non-event information. Across the participants, the mean 213 

number of external details provided per memory was 5.35 (SD = 3.20; range = 0.8–17.40).  214 

 215 
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No relationships between autobiographical memory recall ability and fornix or uncinate 216 

fasciculus microstructure measures 217 

We first investigated the fornix and uncinate fasciculus. None of the measures from either tract 218 

were associated with autobiographical memory recall ability. This was the case when using a 219 

corrected p < 0.017 (see Materials and Methods) or an uncorrected p < 0.05 threshold. Full 220 

details of these results are provided in Appendix 1 (Appendix 1–figures 1 and 2; Appendix 1–221 

tables 1-4), with the source data available in Supplementary file 1.  222 

Of note, and for completeness, we also performed exploratory analyses in six additional 223 

white matter tracts: the anterior thalamic radiation, the dorsal cingulum bundle, the forceps 224 

minor, the inferior longitudinal fasciculus, the inferior occipitofrontal fasciculus and the 225 

superior longitudinal fasciculus. However, as with the fornix and the uncinate fasciculus, none 226 

of the metrics from any of these tracts were associated with autobiographical memory recall 227 

ability, even when using an uncorrected p < 0.05 threshold (see Appendix 1– figures 3-8 and 228 

Appendix 1– tables 5-16 for full details).  229 

As noted in the Introduction, traditional physical parameters (e.g. fractional anisotropy 230 

and mean diffusivity) were also extracted for all tracts but, given their lack of biological 231 

specificity (Jensen and Helpern, 2010; Jones et al., 2013a), these are reported in Appendix 1–232 

tables 1-16.  233 

 234 

The parahippocampal cingulum bundle 235 

We found that variations in autobiographical memory recall ability were uniquely related to 236 

the microstructure of the parahippocampal cingulum bundle. This tract connects the 237 

hippocampus with the entorhinal, parahippocampal, retrosplenial and parietal cortices, and the 238 

anterior thalamus (Figure 3). Moreover, via other subdivisions of the cingulum bundle, it is 239 

indirectly connected with prefrontal regions including the medial prefrontal cortex. The 240 
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parahippocampal cingulum bundle is, therefore, well positioned for information transfer 241 

between the key regions involved in autobiographical memory recall (Andrews-Hanna et al., 242 

2014; Maguire, 2001; Spreng et al., 2009; Svoboda et al., 2006). 243 

 244 

  245 

 246 

Figure 3. Simplified schematic of the location and main connections of the parahippocampal cingulum 247 
bundle. The blue lines indicate direct connections, and the dashed blue line an indirect connection.  248 

 249 

As with the other tracts (see Materials and Methods), the parahippocampal cingulum 250 

bundle region of interest (ROI) was defined bilaterally using the Johns Hopkins probabilistic 251 

white matter tractography atlas (Hua et al., 2008). To reduce partial volume effects, we used a 252 

conservative minimum probability of 25%, and the tract ROI was refined for each participant 253 

to ensure the mask was limited to each person’s white matter. The mean number of voxels in 254 

the parahippocampal cingulum bundle ROI was 129.11 (SD = 25.68), and the variance in 255 

number of voxels across individuals was accounted for in our analyses. Table 1 shows the 256 

summary statistics for the microstructure measures (see Appendix 1–tables 17 and 18, 257 

Appendix 1–figures 9 and 10, and Supplementary file 2 for the traditional physical parameters, 258 

e.g. fractional anisotropy, extracted from the parahippocampal cingulum bundle).  259 
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 260 

Table 1. Means and standard deviations for the microstructure measures from the 261 

parahippocampal cingulum bundle.  262 

 263 

Microstructure Measure Mean Standard Deviation 

   

MR g-ratio 0.647 0.043 

Neurite dispersion (ODI) 0.189 0.038 

Neurite density 0.480 0.051 

   
Note. ODI = Orientation Dispersion Index 264 
 265 

Greater MR g-ratio of the parahippocampal cingulum bundle was associated with 266 

better autobiographical memory recall  267 

We first investigated whether the MR g-ratio of the parahippocampal cingulum bundle was 268 

associated with autobiographical memory recall ability, performing partial correlation analyses 269 

with age, gender, scanner and the number of voxels in the ROI included as covariates. A 270 

significant positive association was observed between the parahippocampal cingulum bundle 271 

MR g-ratio and the number of internal details (Figure 4A; r(211) = 0.18, p = 0.008, 95% CI = 272 

0.05, 0.29). This relationship was specific to internal details, with no association evident for 273 

the external details control measure (Figure 4B; r(211) = -0.09, p = 0.17, 95% CI = -0.21, 274 

0.019). Direct comparison of the correlations confirmed there was a significantly larger 275 

correlation between the MR g-ratio and internal details than for external details (Figure 4C; 276 

mean r difference = 0.28 (95% CI = 0.11, 0.45), z = 3.21, p = 0.0013). Therefore, when MR g-277 

ratio values were higher in the parahippocampal cingulum bundle, suggesting the presence of 278 

fibres with larger inner axon diameters (see Figure 1D and 1F, orange arrow), better 279 

autobiographical memory recall was observed. 280 
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 281 

Figure 4. G-ratio and the parahippocampal cingulum bundle. The relationship between 282 
parahippocampal cingulum bundle MR g-ratio and autobiographical memory recall ability (internal 283 
details), and the control measure (external details) are shown. (A) There was a significant positive 284 
correlation between g-ratio and internal details (dashed lines indicate the confidence intervals). (B) 285 
There was no significant relationship between g-ratio and external details. (C) Bar chart showing the 286 
partial correlation coefficients (with standard errors) between g-ratio and internal and external details. 287 
There was a significant difference between the correlations when they were directly compared; ***p < 288 
0.001. Data points for this figure are provided in Figure 4-source data 1.  289 
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Low neurite dispersion was related to better autobiographical memory recall 290 

In addition to the MR g-ratio, we also examined the relationship between autobiographical 291 

memory recall ability and two complementary biological measures, the neurite orientation 292 

dispersion index and neurite density maps estimated using the NODDI biophysical model 293 

(Zhang et al., 2012). Partial correlations revealed a significant negative correlation between the 294 

neurite orientation dispersion index (a small orientation dispersion index value indicates low 295 

dispersion) and internal details (Figure 5A; r(211) = -0.19, p = 0.005, 95% CI = -0.32, -0.06). 296 

This was again specific to internal details with no significant relationship between the neurite 297 

orientation dispersion index and external details (Figure 5B; r(211) = 0.07, p = 0.28, 95% CI 298 

= -0.05, 0.20). Direct comparison of the correlations revealed a significantly larger correlation 299 

between the neurite orientation dispersion index and internal details than for external details 300 

(Figure 5C; mean r difference = 0.27 (95% CI = 0.44, 0.10), z = 3.13, p = 0.0017). Neurite 301 

density was not significantly related to either internal (r(211) = 0.04, p = 0.60, 95% CI = -0.09, 302 

0.16), or external (r(211) = 0.01, p = 0.93, 95% CI = -0.12, 0.13) details. Therefore, in addition 303 

to a greater MR g-ratio, when neurites in the parahippocampal cingulum bundle were less 304 

dispersed and thus more coherently organised, this was associated with better autobiographical 305 

memory recall. 306 

 307 

 308 
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 309 

Figure 5. Neurite dispersion and the parahippocampal cingulum bundle.  The relationship between 310 
parahippocampal cingulum bundle neurite dispersion (orientation dispersion index) and 311 
autobiographical memory recall ability (internal details), and the control measure (external details) are 312 
shown. (A) There was a significant negative correlation between neurite dispersion and internal details 313 
(dashed lines indicate the confidence intervals). (B) There was no significant relationship between 314 
neurite dispersion and external details. (C) Bar chart showing the partial correlation coefficients (with 315 
standard errors) between neurite dispersion and internal and external details. There was a significant 316 
difference between the correlations when they were directly compared; **p < 0.01. Data points for this 317 
figure are provided in the Figure 5-source data 1.  318 

 319 

 320 

 321 
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Discussion 322 

The conduction velocity of action potentials along axons is crucial for neural communication. 323 

Until recently it was not possible to examine metrics associated with axonal conduction 324 

velocity, such as the g-ratio, in vivo in the human brain, with this being largely the preserve of 325 

studies involving non-humans. However, by combining diffusion MRI with quantitative 326 

structural MRI scans optimised to assess myelination (Weiskopf et al., 2013), it is now possible 327 

to estimate the MR g-ratio in vivo in humans (Drakesmith et al., 2019; Mohammadi et al., 328 

2015; Mohammadi and Callaghan, 2020; Stikov et al., 2015).  Here, in the first application to 329 

human cognition, we found that variations in the MR g-ratio specifically in the 330 

parahippocampal cingulum bundle were associated with individual differences in 331 

autobiographical memory recall ability in a large sample of healthy adults. Moreover, we were 332 

able to identify two particular features in the parahippocampal cingulum bundle that might 333 

favour better memory recall, namely larger inner axon diameters, which are indicated by the 334 

increased MR g-ratio, and lower neurite dispersion, which suggests more coherently organised 335 

neurites. These results offer a new perspective on the neural instantiation of autobiographical 336 

memories, and in particular on drivers of individual differences in recall ability. This is 337 

especially welcome given the dearth of consistent findings linking hippocampal grey matter 338 

volume or microstructure with autobiographical memory recall ability in the healthy population 339 

(Clark et al., 2020; Clark et al., 2021a; LePort et al., 2012; Maguire et al., 2003; Van Petten, 340 

2004).  341 

 Our use of a biophysical model of the MR signal enabled us to link our findings to 342 

different mechanistic processes in the underlying microstructure. We considered four scenarios 343 

involving axonal microstructure that could give rise to faster conduction velocities, which in 344 

turn might promote better memory recall. As shown in Figure 1, each of these axonal 345 
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microstructure changes has a different outcome in terms of the g-ratio. The positive relationship 346 

we observed between the MR g-ratio and autobiographical memory recall ability suggests that 347 

this effect was associated predominantly with greater inner axon diameter (Figure 1D and 348 

Figure 1F, orange arrow). By contrast, had a negative correlation between the MR g-ratio and 349 

autobiographical memory recall ability been identified, we could instead have inferred that an 350 

increase in myelin was the relevant microstructural feature. Increases in myelination are often 351 

held to be a prominent source of white matter alterations associated with changes in 352 

behavioural and cognitive performance (Caeyenberghs et al., 2016; Kaller et al., 2017; Lakhani 353 

et al., 2016; Waxman, 1980; Xin and Chan, 2020). By contrast, our results highlight the 354 

potentially important role that the inner axon diameter could be playing in the recall of a critical 355 

form of memory.   356 

We also found that lower neurite dispersion, suggesting more coherent neurite 357 

organisation, was related to better autobiographical memory recall ability. Our measure of 358 

neurite dispersion was obtained using the NODDI biophysical model (Zhang et al., 2012), 359 

which aims to isolate the organisation of the neurites in a voxel from the density of the neurites 360 

in a voxel. While neurite dispersion was significantly related to autobiographical memory 361 

recall, no relationship was observed with neurite density.  362 

A larger inner axon diameter reduces resistance to action potential signals enabling 363 

greater conduction velocities (Gasser and Grundfest, 1939; Hursh, 1939), and coherently 364 

organised fibres may decrease the distance signals need to travel, further reducing 365 

communication times (Salami et al., 2003; Steriade, 1995). This combination of features might 366 

optimise a fibre bundle for faster communication which in turn may enhance autobiographical 367 

memory recall.   368 

These results were specific to one white matter tract, the parahippocampal cingulum 369 

bundle (Bubb et al., 2018). MR g-ratio measures from no other tract, including the dorsal part 370 
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of the cingulum bundle, showed any association with autobiographical memory recall ability. 371 

The parahippocampal cingulum bundle directly connects the hippocampus, parahippocampal, 372 

retrosplenial and parietal cortices, the anterior thalamus and, through other subdivisions of the 373 

cingulum bundle, the medial prefrontal cortex. These regions are typically engaged during 374 

fMRI studies of autobiographical memory recall (Andrews-Hanna et al., 2014; Maguire, 2001; 375 

Spreng et al., 2009; Svoboda et al., 2006), and damage to them is often associated with 376 

autobiographical memory impairments (Berryhill et al., 2007; McCormick et al., 2018; 377 

Scoville and Milner, 1957; Vann et al., 2009). The retrosplenial and parahippocampal cortices 378 

are thought to provide visuospatial elements of autobiographical memories (Dalton and 379 

Maguire, 2017; Epstein and Higgins, 2007; Mullally and Maguire, 2011; Vann et al., 2009), 380 

while the medial prefrontal cortex may initiate autobiographical retrieval and support schema-381 

guided recall (Gilboa and Marlatte, 2017; McCormick et al., 2018; McCormick et al., 2020). 382 

The parahippocampal cingulum bundle is, therefore, uniquely positioned as a transmission 383 

highway enabling this information to reach the hippocampus, where memories can be 384 

reconstructed (Bartlett, 1932; Hassabis and Maguire, 2007; Schacter et al., 2012).  Larger inner 385 

axon diameters and coherently organised neurites could facilitate rapid information flow along 386 

the parahippocampal cingulum bundle leading to more memory elements being available 387 

simultaneously, which in turn may result in increased detail and better integration of a memory 388 

representation.  389 

There have only been a small number of previous studies investigating white matter 390 

tracts and individual differences in autobiographical memory recall ability in healthy people, 391 

with some suggesting a relationship between the parahippocampal cingulum bundle and 392 

autobiographical memory recall (Irish et al., 2014; Memel et al., 2020). However, interpretation 393 

of those findings is difficult given the relatively small sample sizes, the older age of participants 394 

in some of the studies, and the testing of mixed groups of healthy older people and patients 395 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.06.487313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487313
http://creativecommons.org/licenses/by/4.0/


21 

 

with dementia. No previous study has examined the MR g-ratio, instead they focussed on 396 

commonly reported physical parameters such as fractional anisotropy and mean diffusivity 397 

(Basser, 1995).  However, these metrics lack biological specificity (Jensen and Helpern, 2010; 398 

Jones et al., 2013a) and, consequently, they cannot speak to questions concerning axonal 399 

conduction velocity.  In a similar vein, we are not aware of any reports of bilateral lesions that 400 

selectively compromise or sever the parahippocampal cingulum bundle in humans. Given our 401 

findings, we would predict that such lesions would adversely affect the ability to recall 402 

autobiographical memories. 403 

Despite its prime location and connectivity at the heart of the brain’s autobiographical 404 

memory system, the dearth of studies in humans and the rarity of selective bilateral lesions to 405 

the parahippocampal cingulum bundle have perhaps obscured its importance when compared 406 

to other, more celebrated, memory-related white matter tracts.  We also examined two such 407 

tracts, the fornix and the uncinate fasciculus, but in both cases no significant relationships 408 

between the MR g-ratio, neurite dispersion (or neurite density) and autobiographical memory 409 

recall ability were evident in our large cohort of young healthy adults. Both the fornix and 410 

parahippocampal cingulum bundle are vulnerable to partial volume effects (Concha et al., 411 

2005). However, to mitigate this issue we took steps to ensure the data were extracted only 412 

from white matter voxels (see Materials and Methods). Diffusion data are also susceptible to 413 

distortions which can particularly affect the uncinate fasciculus. We addressed this challenge 414 

by using a new technique that improves distortion correction in this region (Clark et al., 2021b). 415 

The absence of fornix findings in our study could echo those relating to hippocampal volume 416 

(Clark et al., 2020; Clark et al., 2021a), whereby the structure is widely acknowledged to be 417 

involved in autobiographical memory recall, and damage impedes retrieval (Aggleton et al., 418 

2000; D'Esposito et al., 1995; Gaffan and Gaffan, 1991; Tsivilis et al., 2008), but 419 

microstructural variations have limited impact within the healthy adult population. Regarding 420 
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the uncinate fasciculus, unilateral lesions do not seem to significantly impair performance on 421 

laboratory-based memory tasks (Papagno et al., 2011) or the recall of premorbid 422 

autobiographical memories (Levine et al., 2009).  Bilateral uncinate fasciculus lesions are very 423 

rare in humans, but might result in greater memory impairment. Alternatively, hippocampal-424 

prefrontal connections may be better served by other pathways, for example, via the fornix or 425 

parts of the cingulum bundle.  426 

Our findings were not only specific to the parahippocampal cingulum bundle, but also 427 

to the internal details of autobiographical memories which reflect the episodicity of past 428 

experiences. By contrast, our control measure of external details, which concerns non-episodic 429 

information in the autobiographical memories, did not correlate with any white matter 430 

microstructure metrics. In addition, age, gender, scanner and the number of voxels within an 431 

ROI were included as covariates in all analyses, limiting the potential confounding effects of 432 

these variables. Our analyses were also performed using weighted means from each of the three 433 

white matter tracts of interest rather than voxel-wise across the whole brain, reducing the 434 

potential for false positives (Marek et al., 2022).  435 

While we examined the parahippocampal cingulum bundle as a unitary pathway, it 436 

comprises both long and short association fibres with differing connectivity (Bubb et al., 2018). 437 

Some fibres will form long range connections between, for example, the hippocampus and 438 

retrosplenial cortex, whereas others will make shorter range connections between neighbouring 439 

regions.  The use of connectome MRI scanners is starting to make examination of short range 440 

“u-fibres” possible in vivo in humans (Movahedian Attar et al., 2020; Shastin et al., pre print), 441 

and future studies could seek to identify specific connections within the parahippocampal 442 

cingulum bundle that relate to individual differences in autobiographical memory recall.   443 

In conclusion, it is perhaps no surprise that speed may be of the essence when it comes 444 

to neural communication, and this could influence individual differences in cognition. 445 
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Microstructure measures related to conduction velocity are now possible to derive in vivo in 446 

humans and have the potential to provide novel insights into how the brain processes and 447 

integrates information (Berman et al., 2019; Drakesmith et al., 2019), deepening our 448 

understanding of the information flow that underpins critical cognitive functions.  449 

 450 

Materials and Methods 451 

Participants 452 

Two hundred and seventeen healthy people took part in the study, including 109 females and 453 

108 males. The age range was restricted to 20-41 years old to limit the possible effects of aging 454 

(mean age = 29.0 years, SD = 5.60). Participants had English as their first language and reported 455 

no history of psychological, psychiatric or neurological conditions. People with hobbies or 456 

vocations known to be associated with the hippocampus (e.g. licenced London taxi drivers) 457 

were excluded. Participants were reimbursed £10 per hour for taking part which was paid at 458 

study completion. All participants gave written informed consent and the study was approved 459 

by the University College London Research Ethics Committee (project ID: 6743/001). 460 

 A sample size of 217 was determined during study design to be robust to employing 461 

different statistical approaches when answering multiple questions of interest. Specifically, the 462 

sample allowed for sufficient power to identify medium effect sizes when conducting 463 

correlation analyses at alpha levels of 0.01 and when comparing correlations at alpha levels of 464 

0.05 (Cohen, 1992). 465 

 466 

 467 

 468 

 469 
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Procedure 470 

Participants completed the study over multiple visits. Diffusion imaging and magnetisation 471 

transfer saturation scans were acquired on two separate days, and the Autobiographical 472 

Interview was conducted during a third visit. All participants completed all parts of the study. 473 

 474 

The Autobiographical Interview 475 

This widely-used test (Levine et al., 2002) was employed to measure autobiographical memory 476 

recall ability. Participants are asked to provide autobiographical memories from a specific time 477 

and place over four time periods – early childhood (up to age 11), teenage years (aged from 478 

11-17), adulthood (from age 18 years to 12 months prior to the interview; two memories are 479 

requested) and the last year (a memory from the last 12 months); therefore, five memories in 480 

total are harvested. Recordings of the memory descriptions are transcribed for later scoring.  481 

The main outcome measure of the Autobiographical Interview is the mean number of 482 

internal details included in the description of an event from across the five autobiographical 483 

memories. Internal details are those describing the event in question (i.e. episodic details) and 484 

include event, place, time and perceptual information, as well as thoughts and emotions relating 485 

to the event itself. We used the secondary outcome measure of the Autobiographical Interview, 486 

the mean number of external details included in the five autobiographical memories, as a 487 

control measure. External details include semantic information concerning the event, or other 488 

non-event information, and are not considered to reflect autobiographical memory recall 489 

ability. 490 

 Double scoring was performed on 20% of the data. Inter-class correlation coefficients, 491 

with a two-way random effects model looking for absolute agreement were calculated for both 492 

internal and external details. This was performed both for individual memories and as an 493 

average of all five memories across each participant. For internal details the coefficients were 494 
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0.94 and 0.97 respectively, and for external details they were 0.84 and 0.87 respectively. For 495 

reference, a score of 0.8 or above is considered excellent agreement beyond chance. 496 

 497 

Diffusion MRI data acquisition 498 

Three MRI scanners were used to collect the neuroimaging data. All scanners were Siemens 499 

Magnetom TIM Trio systems with 32 channel head coils and were located at the same 500 

neuroimaging centre, running the same software. The sequences were loaded identically onto 501 

the individual scanners. Participant set-up and positioning followed the same protocol for each 502 

scanner. 503 

Diffusion-weighted images were collected using the multiband accelerated EPI pulse 504 

sequence developed by the Centre for Magnetic Resonance Research at the University of 505 

Minnesota (R012a-c, R013a on VB17, https://www.cmrr.umn.edu/multiband/; Feinberg et al., 506 

2010; Xu et al., 2013). Acquisition parameters were: resolution = 1.7 mm isotropic; FOV = 507 

220 mm × 220 mm × 138 mm; 60 directions with 6 interleaved b0 images, echo time (TE) = 508 

112 ms, repetition time (TR) = 4.84 s, with a multiband acceleration factor of 3. The sequence 509 

was performed 4 times – twice with b-values of 1000 and twice with b-values of 2500. The 510 

first acquisition of each set of b-values was performed with phase-encoding in the anterior to 511 

posterior direction (blip-up), the second in the posterior to anterior direction (blip-down). The 512 

total acquisition time was 22 minutes. 513 

 514 

Magnetisation transfer saturation data acquisition 515 

The specific scanner used to collect a participant’s diffusion-weighted images was also used to 516 

obtain their magnetisation transfer saturation map. 517 

Whole brain structural maps of magnetisation transfer saturation, at an isotropic 518 

resolution of 800 μm, were derived from a multi-parameter mapping quantitative imaging 519 
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protocol (Callaghan et al., 2015; Callaghan et al., 2019; Weiskopf et al., 2013). This protocol 520 

consisted of the acquisition of three multi-echo gradient-echo acquisitions with either proton 521 

density, T1 or magnetisation transfer weighting. Each acquisition had a TR of 25 ms. Proton 522 

density weighting was achieved with an excitation flip angle of 60, which was increased to 210 523 

to achieve T1 weighting. Magnetisation transfer weighting was achieved through the 524 

application of a Gaussian RF pulse 2 kHz off resonance with 4 ms duration and a nominal flip 525 

angle of 2200. This acquisition had an excitation flip angle of 60. The field of view was 256 526 

mm head-foot, 224 mm anterior-posterior, and 179 mm right-left. The multiple gradient echoes 527 

per contrast were acquired with alternating readout gradient polarity at eight equidistant echo 528 

times ranging from 2.34 to 18.44 ms in steps of 2.30 ms using a readout bandwidth of 488 529 

Hz/pixel. Only six echoes were acquired for the magnetisation transfer weighted volume to 530 

facilitate the off-resonance pre-saturation pulse and subsequent spoiling gradient within the 531 

TR. To accelerate the data acquisition, partially parallel imaging using the GRAPPA algorithm 532 

was employed in each phase-encoded direction (anterior-posterior and right-left) with forty 533 

integrated reference lines and a speed up factor of two. Calibration data were also acquired at 534 

the outset of each session to correct for inhomogeneities in the RF transmit field (Lutti et al., 535 

2010). The total acquisition time was 27 minutes.  536 

 537 

Diffusion MRI pre-processing 538 

The diffusion MRI data were processed using the ACID toolbox (www.diffusiontools.com) 539 

within SPM12 (www.fil.ion.ucl.ac.uk/spm). The weighted average consecutive HySCO 540 

pipeline described in Clark et al. (2021b) was followed, with the addition of multi-shell 541 

Position-Orientation Adaptive Smoothing (msPOAS; Becker et al., 2012) and Rician bias 542 

correction (André et al., 2014). In brief, the blip-up and blip-down data were first separately 543 
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corrected for motion and eddy current artefacts. Next, msPOAS was performed, followed by 544 

correction for susceptibility-related distortion artefacts using the HySCO2 module (Macdonald 545 

and Ruthotto, 2018; Ruthotto et al., 2012). Tensor fitting (Mohammadi et al., 2013) was then 546 

implemented separately on each of the distortion corrected blip-up and blip-down datasets to 547 

estimate FA maps. HySCO2 was then repeated using the distortion corrected and brain-masked 548 

FA maps as input instead of b0 images; the second HySCO2 field map being consecutively 549 

applied to the “pre-corrected” diffusion MRI data. Finally, Rician bias noise correction was 550 

employed on the distortion corrected data (André et al., 2014), before the data were combined 551 

using a weighted average to minimise information loss due to susceptibility distortion blurring 552 

induced by local spatial compression. 553 

 554 

Magnetisation transfer saturation pre-processing 555 

The magnetisation transfer saturation data were processed for each participant using the hMRI 556 

toolbox (Tabelow et al., 2019) within SPM12. The default toolbox configuration settings were 557 

used, with the exception that correction for imperfect spoiling was additionally enabled (Corbin 558 

and Callaghan, 2021). The output magnetisation transfer saturation map quantified the degree 559 

of saturation of the steady state signal induced by the application of the off-resonance pre-560 

pulse, having accounted for spatially varying T1 times and RF field inhomogeneity (Weiskopf 561 

et al., 2013).  562 

Each participant’s magnetisation transfer saturation map was segmented into white 563 

matter probability maps using the unified segmentation approach (Ashburner and Friston, 564 

2005), but with no bias field correction (since the magnetisation transfer saturation map does 565 

not suffer from any bias field modulation) and using the tissue probability maps developed by 566 

Lorio et al. (2016). 567 
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 568 

Diffusion model fitting 569 

The MR g-ratio was calculated according to Ellerbrock and Mohammadi (2018): 570 

 571 

gMR = √1 −
MVFMR

MVFMR+AVFMR
    572 

 573 

with MVFMR being the myelin-volume fraction estimated from the magnetisation transfer 574 

saturation map and  AVFMR being the axonal-volume fraction. The AVFMR was estimated as 575 

AVFMR = (1 − MVFMR) AWF according to Stikov et al. (2015), where AWF was obtained by 576 

combining the intra-cellular fraction (νicvf) and isotropic fraction (νiso) maps from NODDI 577 

(Zhang et al., 2012) as AWF = (1 −  νiso) νicvf.  The magnetisation transfer saturation map 578 

was obtained from the hMRI toolbox as described above. For calibration of the magnetisation 579 

transfer saturation map to a myelin-volume fraction map (MVFMR =  α MTsat), we used the g-580 

ratio based calibration method as reported in Ellerbrock and Mohammadi (2018) and 581 

Mohammadi and Callaghan (2020), with α = 0.1683. 582 

The NODDI biophysical model (Zhang et al., 2012) was also used to obtain maps of 583 

the neurite orientation dispersion index and neurite density using the NODDI toolbox 584 

(http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab). 585 

Finally, for completeness, Axial-Symmetric DKI (Oeschger et al., 2021) was performed 586 

on the pre-processed diffusion data using the ACID toolbox to generate maps of the more 587 

commonly reported physical parameters of fractional anisotropy, mean diffusivity, mean 588 

kurtosis, diffusivities parallel and diffusivities perpendicular.  589 

 590 

 591 
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Microstructure data extraction 592 

Microstructure data extraction was performed in Montreal Neurological Institute (MNI) space. 593 

The diffusion and magnetisation transfer saturation maps were transformed from native to MNI 594 

space using the hMRI toolbox (Tabelow et al., 2019). This involved performing inter-subject 595 

registration using DARTEL (Ashburner, 2007) on the segmented magnetisation transfer 596 

saturation grey and white matter probability maps, with the resulting DARTEL template and 597 

deformations then used to normalize the diffusion and magnetisation transfer saturation maps 598 

to MNI space at 1.5 x 1.5 x 1.5mm. 599 

Bilateral tract ROIs were defined using the Johns Hopkins probabilistic white matter 600 

tractography atlas (Hua et al., 2008). Our primary foci were the fornix, uncinate fasciculus and 601 

parahippocampal cingulum bundle. However, we also performed exploratory analyses on six 602 

other tracts - the anterior thalamic radiation, the dorsal cingulum bundle, forceps minor, inferior 603 

longitudinal fasciculus, inferior occipitofrontal fasciculus and superior longitudinal fasciculus. 604 

To reduce partial volume effects, for all tracts (with the exception of the fornix as the available 605 

fornix tract was not probabilistic) the minimum probability threshold was set to 25%. In 606 

addition, all of the tract ROIs were refined for each participant using their segmented 607 

magnetisation transfer saturation white matter probability map, with a minimum probability of 608 

90% to limit the mask to white matter. This also served to remove any residual mis-alignment 609 

from the maps being transformed into MNI space, as no smoothing was performed to preserve 610 

the quantitative values. As this resulted in differing tract ROI sizes for each participant, the 611 

number of voxels in each tract for each participant was calculated. Mean values of the extracted 612 

microstructure metrics from the tract ROIs were determined using a weighted average, where 613 

voxels with higher white matter probabilities contributed more to the mean.  614 

 615 

 616 
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Statistical analyses  617 

Analyses were performed in SPSS v27 unless otherwise stated. Data were summarised using 618 

means and standard deviations. There were no missing data, and no data needed to be removed 619 

from any analysis.  620 

As we had different tract ROI sizes for each participant, we first assessed whether there 621 

were any relationships between the number of voxels in the tract ROIs and autobiographical 622 

memory recall ability. We performed partial correlations for each tract between the number of 623 

voxels in the tract ROI and the number of internal details on the Autobiographical Interview, 624 

with age, gender and scanner as covariates. No significant relationships were identified (all r < 625 

0.12, all p > 0.1). However, to ensure no residual effects were present, the number of voxels in 626 

a tract ROI was included as a covariate in the analyses.  627 

In our main analyses, we first investigated the relationships between each 628 

microstructure measure and the number of internal details from the Autobiographical Interview 629 

using partial correlations, with bootstrapping performed 10,000 times to calculate confidence 630 

intervals. Four covariates were included in each partial correlation: age, gender, scanner and 631 

the number of voxels in a tract ROI. For these primary analyses, similar partial correlations 632 

were performed for the external details control measure. If an internal details correlation was 633 

significant, the internal and external details correlations were then directly compared in order 634 

to test for statistical difference using the technique described by Meng et al. (1992). This 635 

approach extends the Fisher z transformation, allowing for more accurate testing and 636 

comparison of two related correlations. The correlation comparison was performed using the 637 

R cocor package v1.1.3 (Diedenhofen and Musch, 2015). 638 

As the microstructure measures were investigated across several tracts, we corrected 639 

for the repeated testing of the same measures across our three main tracts of interest (the fornix, 640 

the uncinate fasciculus and the parahippocampal cingulum bundle) using the Bonferroni 641 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.06.487313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487313
http://creativecommons.org/licenses/by/4.0/


31 

 

method; dividing alpha = 0.05 by 3. Consequently, associations with a two-sided p-value < 642 

0.017 were considered significant. As the comparison of correlations was performed only when 643 

a significant correlation was identified, a two-sided p-value < 0.05 was deemed significant.  644 
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Appendix 1 1068 

 1069 

 1070 

▪ Details of the simulation performed for Figure 1F. 1071 

 1072 

▪ Investigation of the MR g-ratio, neurite orientation dispersion index, neurite 1073 

density and physical parameters in the fornix and uncinate fasciculus.  1074 

 1075 

▪ Exploratory analyses of the MR g-ratio, neurite orientation dispersion index, 1076 

neurite density and physical parameters in other white matter tracts. 1077 

 1078 

▪ Investigation of the physical parameters extracted from the parahippocampal 1079 

cingulum bundle.  1080 
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Details of the simulation performed for Figure 1F 1081 

 1082 

In Figure 1F, inner axon diameter, myelin thickness and g-ratio are plotted together. The range 1083 

of g-ratio values used in the simulation spanned two standard deviations about the mean MR 1084 

g-ratio observed for the parahippocampal cingulum bundle in the current study (mean = 0.647, 1085 

standard deviation = 0.043).  The axon diameter was computed for this MR g-ratio range by 1086 

re-arranging the equation presented in Berman et al. (2019) such that axon diameter =1087 

exp (
g−ratio−0.506

0.22
). Fibre dimeter was then calculated as fibre diameter =

axon diamter

g−ratio
, 1088 

enabling myelin thickness to be computed as myelin thickness =
fibre diameter−axon diameter

2
.  1089 

We note that discrepancies between reported microscopic parameters (i.e., g-ratio, 1090 

modelled axon diameter, and myelin thickness) derived from in vivo and ex vivo histology may 1091 

arise due to two reasons. (1) The in vivo MR g-ratio is computed from volume-fractions unlike 1092 

the microscopic g-ratio measured with histology. (2) The heuristic equation by Berman et al. 1093 

(2019) that is relating the in vivo MR g-ratio to axon diameter is rather capturing the tail of the 1094 

axon radii distribution. 1095 

 1096 

  1097 
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Investigation of the MR g-ratio, neurite orientation dispersion index, neurite 1098 

density and physical parameters in the fornix and uncinate fasciculus 1099 

 1100 

As can be observed in the tables below, there were no significant correlations between 1101 

microstructural measures or physical parameters and autobiographical memory recall ability 1102 

for either of the tracts when using the corrected (p < 0.017) threshold.    1103 

 1104 

Fornix 1105 

The mean number of voxels in the region of interest (ROI) was 249.55 (SD = 23.09). 1106 

 1107 
Appendix 1–figure 1. The location of the fornix. 1108 

 1109 

Appendix 1–table 1. Means and standard deviations for the microstructure measures and 1110 

physical parameters extracted from the fornix.  1111 

 1112 

Measure Mean Standard Deviation 

   

MR g-ratio 0.720 0.017 

Neurite dispersion (ODI) 0.143 0.021 

Neurite density 0.601 0.045 

Fractional anisotropy 0.605 0.035 

Mean diffusivity (10-3 mm2/s) 0.901 0.036 

Mean kurtosis 0.909 0.100 

Diffusivities parallel (10-3 mm2/s) 1.645 0.072 

Diffusivities perpendicular (10-3 mm2/s) 0.529 0.042 

   
Note. ODI = Orientation Dispersion Index 1113 

 1114 
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Appendix 1–table 2. Partial correlations between the microstructure measures or physical 1115 

parameters extracted from the fornix and memory recall ability (internal details). 1116 

 1117 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio -0.04 0.53 -0.16 0.08 

Neurite dispersion (ODI) -0.03 0.62 -0.16 0.10 

Neurite density -0.03 0.69 -0.15 0.10 

Fractional anisotropy 0.02 0.80 -0.12 0.15 

Mean diffusivity 0.07 0.35 -0.08 0.21 

Mean kurtosis -0.03 0.66 -0.16 0.10 

Diffusivities parallel 0.05 0.46 -0.09 0.19 

Diffusivities perpendicular 0.02 0.74 -0.12 0.15 

     
Note. ODI = Orientation Dispersion Index 1118 

 1119 
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Uncinate fasciculus 1121 

The mean number of voxels in the ROI was 191.98 (SD = 29.77). 1122 

 1123 

Appendix 1–figure 2. The location of the uncinate fasciculus. 1124 

 1125 

 1126 

Appendix 1–table 3. Means and standard deviations for the microstructure measures and 1127 

physical parameters extracted from the uncinate fasciculus. 1128 

 1129 

Measure Mean Standard Deviation 

   

MR g-ratio 0.723 0.016 

Neurite dispersion (ODI) 0.189 0.022 

Neurite density 0.562 0.045 

Fractional anisotropy 0.512 0.036 

Mean diffusivity (10-3 mm2/s) 0.877 0.304 

Mean kurtosis 0.913 0.100 

Diffusivities parallel (10-3 mm2/s) 1.456 0.055 

Diffusivities perpendicular (10-3 mm2/s) 0.588 0.039 

   
Note. ODI = Orientation Dispersion Index 1130 

 1131 

 1132 

 1133 

 1134 

 1135 
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Appendix 1–table 4. Partial correlations between the microstructure measures or physical 1136 

parameters extracted from the uncinate fasciculus and memory recall ability (internal details). 1137 

 1138 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio 0.10 0.15 -0.03 0.22 

Neurite dispersion (ODI) -0.01 0.94 -0.14 0.13 

Neurite density 0.01 0.89 -0.14 0.16 

Fractional anisotropy -0.01 0.94 -0.14 0.13 

Mean diffusivity -0.01 0.87 -0.14 0.13 

Mean kurtosis -0.01 0.91 -0.13 0.18 

Diffusivities parallel -0.01 0.87 -0.14 0.13 

Diffusivities perpendicular 0.00 0.96 -0.15 0.14 

     
Note. ODI = Orientation Dispersion Index 1139 
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Exploratory analyses of the MR g-ratio, neurite orientation dispersion index, 1141 

neurite density and physical parameters in other white matter tracts 1142 

 1143 

As can be observed in the tables below, there were no significant correlations between 1144 

microstructural measures or physical parameters and autobiographical memory recall ability 1145 

for any of the tracts when using the corrected (p < 0.017) threshold. 1146 

 1147 

Anterior thalamic radiation 1148 

The mean number of voxels in the ROI was 2090.21 (SD = 67.43). 1149 

 1150 

Appendix 1–figure 3. The location of the anterior thalamic radiation. 1151 

 1152 

 1153 

Appendix 1–table 5. Means and standard deviations for the microstructure measures and 1154 

physical parameters extracted from the anterior thalamic radiation. 1155 

 1156 

Measure Mean Standard Deviation 

   

MR g-ratio 0.724 0.014 

Neurite dispersion (ODI) 0.252 0.017 

Neurite density 0.598 0.041 

Fractional anisotropy 0.430 0.028 

Mean diffusivity (10-3 mm2/s) 0.861 0.029 

Mean kurtosis 0.986 0.063 

Diffusivities parallel (10-3 mm2/s) 1.328 0.041 

Diffusivities perpendicular (10-3 mm2/s) 0.627 0.034 

   
Note. ODI = Orientation Dispersion Index 1157 
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Appendix 1–table 6. Partial correlations between the microstructure measures or physical 1158 

parameters extracted from the anterior thalamic radiation and memory recall ability (internal 1159 

details). 1160 

 1161 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio 0.05 0.47 -0.06 0.17 

Neurite dispersion (ODI) -0.05 0.46 -0.18 0.09 

Neurite density 0.10 0.16 -0.04 0.23 

Fractional anisotropy 0.08 0.26 -0.06 0.21 

Mean diffusivity 0.03 0.67 -0.11 0.17 

Mean kurtosis 0.07 0.28 -0.07 0.22 

Diffusivities parallel 0.09 0.20 -0.04 0.21 

Diffusivities perpendicular -0.02 0.77 -0.16 0.12 

     
Note. ODI = Orientation Dispersion Index 1162 

 1163 

 1164 
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Dorsal cingulum bundle 1166 

The mean number of voxels in the ROI was 611.48 (SD = 25.29). 1167 

 1168 

Appendix 1–figure 4. The location of the dorsal cingulum bundle. 1169 

 1170 

 1171 

Appendix 1–table 7. Means and standard deviations for the microstructure measures and 1172 

physical parameters extracted from the dorsal cingulum bundle. 1173 

 1174 

Measure Mean Standard Deviation 

   

MR g-ratio 0.710 0.016 

Neurite dispersion (ODI) 0.147 0.019 

Neurite density 0.560 0.038 

Fractional anisotropy 0.570 0.039 

Mean diffusivity (10-3 mm2/s) 0.862 0.026 

Mean kurtosis 0.862 0.093 

Diffusivities parallel (10-3 mm2/s) 1.531 0.061 

Diffusivities perpendicular (10-3 mm2/s) 0.527 0.040 

   
Note. ODI = Orientation Dispersion Index 1175 

 1176 

 1177 

 1178 

 1179 

 1180 
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Appendix 1–table 8. Partial correlations between the microstructure measures or physical 1181 

parameters extracted from the dorsal cingulum bundle and memory recall ability (internal 1182 

details). 1183 

 1184 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio 0.09 0.22 -0.04 0.21 

Neurite dispersion (ODI) 0.09 0.17 -0.05 0.23 

Neurite density 0.09 0.17 -0.05 0.23 

Fractional anisotropy 0.01 0.85 -0.13 0.16 

Mean diffusivity 0.06 0.43 -0.08 0.19 

Mean kurtosis 0.13 0.05 0.00 0.27 

Diffusivities parallel 0.05 0.48 -0.08 0.18 

Diffusivities perpendicular 0.01 0.91 -0.14 0.15 

     
Note. ODI = Orientation Dispersion Index 1185 

 1186 

 1187 
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Forceps minor 1189 

The mean number of voxels in the ROI was 4613.67 (SD = 78.02). 1190 

 1191 

Appendix 1–figure 5. The location of the forceps minor. 1192 

 1193 

Appendix 1–table 9. Means and standard deviations for the microstructure measures and 1194 

physical parameters extracted from the forceps minor. 1195 

 1196 

Measure Mean Standard Deviation 

   

MR g-ratio 0.698 0.026 

Neurite dispersion (ODI) 0.201 0.016 

Neurite density 0.601 0.042 

Fractional anisotropy 0.500 0.027 

Mean diffusivity (10-3 mm2/s) 0.881 0.031 

Mean kurtosis 0.947 0.128 

Diffusivities parallel (10-3 mm2/s) 1.467 0.052 

Diffusivities perpendicular (10-3 mm2/s) 0.588 0.034 

   
Note. ODI = Orientation Dispersion Index 1197 

 1198 

 1199 

 1200 
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Appendix 1–table 10. Partial correlations between the microstructure measures or physical 1202 

parameters extracted from the forceps minor and memory recall ability (internal details). 1203 

 1204 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio 0.04 0.53 -0.07 0.18 

Neurite dispersion (ODI) -0.06 0.38 -0.21 0.07 

Neurite density 0.09 0.19 -0.04 0.22 

Fractional anisotropy 0.10 0.17 -0.03 0.23 

Mean diffusivity -0.04 0.56 -0.17 0.09 

Mean kurtosis 0.00 0.97 -0.11 0.21 

Diffusivities parallel 0.03 0.67 -0.09 0.18 

Diffusivities perpendicular -0.07 0.32 -0.19 0.05 

     
Note. ODI = Orientation Dispersion Index 1205 

 1206 

 1207 
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Inferior longitudinal fasciculus 1209 

The mean number of voxels in the ROI was 2844.03 (SD = 52.97). 1210 

 1211 

Appendix 1–figure 6. The location of the inferior longitudinal fasciculus. 1212 

 1213 

Appendix 1–table 11. Means and standard deviations for the microstructure measures and 1214 

physical parameters extracted from the inferior longitudinal fasciculus.  1215 

 1216 

Measure Mean Standard Deviation 

   

MR g-ratio 0.724 0.013 

Neurite dispersion (ODI) 0.184 0.017 

Neurite density 0.558 0.041 

Fractional anisotropy 0.486 0.028 

Mean diffusivity (10-3 mm2/s) 0.902 0.029 

Mean kurtosis 0.918 0.061 

Diffusivities parallel (10-3 mm2/s) 1.473 0.045 

Diffusivities perpendicular (10-3 mm2/s) 0.616 0.035 

   
Note. ODI = Orientation Dispersion Index 1217 

 1218 

 1219 

 1220 
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Appendix 1–table 12. Partial correlations between the microstructure measures or physical 1222 

parameters extracted from the inferior longitudinal fasciculus and memory recall ability 1223 

(internal details). 1224 

 1225 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio 0.07 0.35 -0.06 0.19 

Neurite dispersion (ODI) -0.03 0.64 -0.17 0.10 

Neurite density 0.07 0.35 -0.07 0.19 

Fractional anisotropy 0.10 0.14 -0.04 0.23 

Mean diffusivity -0.01 0.87 -0.15 0.13 

Mean kurtosis 0.10 0.16 -0.03 0.23 

Diffusivities parallel 0.07 0.29 -0.07 0.21 

Diffusivities perpendicular -0.07 0.34 -0.19 0.07 

     
Note. ODI = Orientation Dispersion Index 1226 

 1227 

 1228 
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Inferior occipitofrontal fasciculus 1230 

The mean number of voxels in the ROI was 3344.31 (SD = 46.0). 1231 

 1232 

 1233 

Appendix 1–figure 7. The location of the inferior occipitofrontal fasciculus. 1234 

 1235 

Appendix 1–table 13. Means and standard deviations for the microstructure measures and 1236 

physical parameters extracted from the inferior occipitofrontal fasciculus. 1237 

 1238 

Measure Mean Standard Deviation 

   

MR g-ratio 0.729 0.011 

Neurite dispersion (ODI) 0.179 0.012 

Neurite density 0.563 0.036 

Fractional anisotropy 0.508 0.024 

Mean diffusivity (10-3 mm2/s) 0.889 0.026 

Mean kurtosis 0.912 0.057 

Diffusivities parallel (10-3 mm2/s) 1.488 0.039 

Diffusivities perpendicular (10-3 mm2/s) 0.590 0.031 

   
Note. ODI = Orientation Dispersion Index 1239 

 1240 

 1241 

 1242 

 1243 
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Appendix 1–table 14. Partial correlations between the microstructure measures or physical 1244 

parameters extracted from the inferior occipitofrontal fasciculus and memory recall ability 1245 

(internal details). 1246 

 1247 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio -0.01 0.93 -0.12 0.12 

Neurite dispersion (ODI) -0.01 0.89 -0.14 0.13 

Neurite density 0.06 0.42 -0.07 0.18 

Fractional anisotropy 0.06 0.38 -0.08 0.20 

Mean diffusivity 0.00 0.99 -0.13 0.13 

Mean kurtosis 0.07 0.31 -0.06 0.19 

Diffusivities parallel 0.05 0.50 -0.09 0.18 

Diffusivities perpendicular -0.03 0.62 -0.17 0.10 

     
Note. ODI = Orientation Dispersion Index 1248 

 1249 

 1250 

 1251 
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Superior longitudinal fasciculus 1253 

The mean number of voxels in the ROI was 4243.22 (SD = 39.80). 1254 

 1255 

Appendix 1–figure 8. The location of the superior longitudinal fasciculus. 1256 

 1257 

Appendix 1–table 15. Means and standard deviations for the microstructure measures and 1258 

physical parameters extracted from the superior longitudinal fasciculus. 1259 

 1260 

Measure Mean Standard Deviation 

   

MR g-ratio 0.751 0.011 

Neurite dispersion (ODI) 0.218 0.012 

Neurite density 0.634 0.034 

Fractional anisotropy 0.471 0.026 

Mean diffusivity (10-3 mm2/s) 0.825 0.025 

Mean kurtosis 1.029 0.041 

Diffusivities parallel (10-3 mm2/s) 1.324 0.035 

Diffusivities perpendicular (10-3 mm2/s) 0.575 0.041 

   
Note. ODI = Orientation Dispersion Index 1261 

 1262 

 1263 

 1264 

 1265 

 1266 

 1267 

 1268 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.06.487313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487313
http://creativecommons.org/licenses/by/4.0/


59 

 

Appendix 1–table 16. Partial correlations between microstructure measures or physical 1269 

parameters extracted from the superior longitudinal fasciculus and memory recall ability 1270 

(internal details). 1271 

 1272 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

MR g-ratio 0.08 0.28 -0.05 0.20 

Neurite dispersion (ODI) -0.09 0.17 -0.23 0.05 

Neurite density 0.12 0.09 -0.01 0.24 

Fractional anisotropy 0.13 0.05 0.01 0.26 

Mean diffusivity -0.02 0.80 -0.14 0.11 

Mean kurtosis 0.11 0.12 -0.03 0.24 

Diffusivities parallel 0.12 0.09 -0.03 0.25 

Diffusivities perpendicular -0.08 0.23 -0.20 0.03 

     
Note. ODI = Orientation Dispersion Index 1273 

 1274 

 1275 
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Investigation of the physical parameters extracted from the 1277 

parahippocampal cingulum bundle 1278 

 1279 

As reported in the main text, significant correlations between a number of microstructural 1280 

measures from the parahippocampal cingulum bundle and autobiographical memory recall 1281 

ability were evident. This was also the case for several of the physical parameters – see 1282 

Appendix 1–tables 17 and 18 and Appendix 1–figures 9 and 10 below.  1283 

 1284 

Appendix 1–table 17. Means and standard deviations for the physical parameters extracted 1285 

from the parahippocampal cingulum bundle.  1286 

 1287 

Measure Mean Standard Deviation 

   

Fractional anisotropy 0.466 0.053 

Mean diffusivity (10-3 mm2/s) 0.931 0.041 

Mean kurtosis 0.779 0.122 

Diffusivities parallel (10-3 mm2/s) 1.479 0.071 

Diffusivities perpendicular (10-3 mm2/s) 0.656 0.057 

   

 1288 

Appendix 1–table 18. Partial correlations between the physical parameters extracted from the 1289 

parahippocampal cingulum bundle and memory recall ability (internal details). 1290 

 1291 

Measure r(211) p 
95% Confidence Interval 

Lower Upper 

     

Fractional anisotropy 0.20 0.003* 0.07 0.32 

Mean diffusivity -0.02 0.72 -0.15 0.11 

Mean kurtosis 0.08 0.23 -0.05 0.21 

Diffusivities parallel 0.19 0.005* 0.06 0.32 

Diffusivities perpendicular 0.15 0.03 -0.27 -0.02 

     
* p < 0.017 (two-sided Bonferroni corrected threshold) 1292 

  1293 

 1294 

Specifically, partial correlation analyses, with age, gender, scanner and the number of voxels 1295 

in the ROI included as covariates revealed a significant positive correlation between internal 1296 

details and fractional anisotropy (FA) (Appendix 1–figure 9A; r(211) = 0.20, p = 0.003, 95% 1297 
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CI = 0.07, 0.32). This relationship was specific to internal details, and was not evident for the 1298 

external details control measure (Appendix 1–figure 9B; r(211) = -0.06, p = 0.39, 95% CI = -1299 

0.19, 0.07). Direct comparison of the two correlations confirmed a significant difference 1300 

between them, showing that parahippocampal cingulum bundle FA was related to internal 1301 

details to a greater extent than external details (Appendix 1–figure 9C; mean r difference = 1302 

0.26 (95% CI = 0.10, 0.44), z = 3.08, p = 0.002).  1303 

 1304 

 1305 

Appendix 1–figure 9. Fractional anisotropy (FA) and the parahippocampal cingulum bundle.  1306 

The relationships between parahippocampal cingulum bundle FA and autobiographical 1307 

memory recall ability (internal details), and the control measure (external details) are shown. 1308 

(A) There was a significant positive correlation between FA and internal details (dashed lines 1309 

indicate the confidence intervals). (B) There was no significant relationship between FA and 1310 

external details. (C) Bar chart showing the partial correlation coefficients (with standard errors) 1311 

between FA and internal and external details. There was a significant difference between the 1312 

correlations when they were directly compared; **p < 0.01. Data points for this figure are 1313 

provided in Supplementary file 2.  1314 
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In addition, a significant positive correlation between parallel diffusivity and the 1315 

number of internal details was also apparent (Appendix 1–figure 10A; r(211) = 0.19, p = 0.005, 1316 

95% CI = 0.06, 0.32). As with FA, no significant relationship was observed between parallel 1317 

diffusivity and external details (Appendix 1–figure 10B; r(211) = -0.048, p = 0.49, 95% CI = -1318 

0.19, 0.10). Direct comparison of the correlations confirmed that parallel diffusivity was related 1319 

to internal details to a greater extent than external details (Appendix 1–figure 10C; mean r 1320 

difference = 0.24 (95% CI = 0.07, 0.41), z = 2.81, p = 0.0049).  1321 

 1322 

Appendix 1–figure 10. Dpara and the parahippocampal cingulum bundle.  The relationships 1323 

between parahippocampal cingulum bundle parallel diffusivity (Dpara) and autobiographical 1324 

memory recall ability (internal details), and the control measure (external details) are shown. 1325 

(A) There was a significant positive correlation between Dpara and internal details (dashed 1326 

lines indicate the confidence intervals). (B) There was no significant relationship between 1327 

Dpara and external details. (C) Bar chart showing the partial correlation coefficients (with 1328 

standard errors) between Dpara and internal and external details. There was a significant 1329 

difference between the correlations when they were directly compared; **p < 0.01. Data points 1330 

for this figure are provided in Supplementary file 2. 1331 
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In contrast, no relationships were observed when examining the partial correlations 1332 

between either internal or external details and MD (internal: r(211) = -0.02, p = 0.72, 95% CI 1333 

= -0.15, 0.11; external: r(211) = 0.01, p = 0.86, 95% CI = -0.11, 0.14), the mean kurtosis 1334 

(internal: r(211) = 0.08, p = 0.23, 95% CI = -0.05, 0.21; external: r(211) = 0.03, p = 0.62, 95% 1335 

CI = -0.01, 0.16) or perpendicular diffusivity (internal: r(211) = -0.15, p = 0.03, 95% CI = -1336 

0.27, -0.02; external: r(211) = 0.44, p = 0.52, 95% CI = -0.08, 0.17), when using the corrected 1337 

(p < 0.017) threshold. This suggests that none of these parameters were strongly associated 1338 

with individual differences in autobiographical memory recall.  1339 
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