
 1 

RNA decay defines the therapeutic response to transcriptional perturbation in cancer 

 
Izabela Todorovski1,2, Breon Feran3,4, Zheng Fan1,2, Sreeja Gadipally1, David Yoannidis1, Isabella Y Kong3.4, Edwin D 
Hawkins3,4, Kaylene J Simpson1,2, Gisela Mir Arnau1,2, Anthony T Papenfuss1,2,3,4, Ricky W Johnstone1,2, †*, Stephin J 
Vervoort1,2,3,4†* 

  
1Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia 
2Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia 
3The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia. 
4Department of Medical Biology, The University of Melbourne, Parkville, Australia. 

†Co-senior authors. 

*Corresponding authors. Email: vervoort.s@wehi.edu.au, ricky.johnstone@petermac.org  

 

ABSTRACT 

Transcriptionally dysregulated cancers are sensitive to the inhibition of RNA Polymerase II (RNAPII) -
driven gene expression. The therapeutic effect is attributed to selective inhibition of discrete oncogenes 
regulated at the chromatin level, however the role of RNA stability remains largely unexplored. Using 
integrated transcriptomic technologies, we discovered that RNA decay is a key determinant in defining 
gene expression responses to transcriptional perturbation, where total RNA signatures are dominated with 
genes that have short transcript half-lives, including oncogenic drivers such as c-MYC. Experimentally 
increasing c-MYC RNA stability maintained total c-MYC RNA levels following RNAPII perturbation, 
despite a concordant decrease in nascent RNA. Taken together, these data demonstrate that RNA decay 
shapes the molecular and therapeutic response to transcriptional perturbation in cancer.  

 

HIGHLIGHTS 

• Selective inhibition of oncogenic transcription in response to epigenetic and transcriptional inhibitors 
in cancer under-estimates the role of RNA decay 

• Gene intrinsic RNA decay rates are a key determinant in shaping the total mRNA response to 
transcriptional perturbation in cancer 

• Selective disruption of core-transcription factor networks is a result of short transcript half-lives  

• Modulation of c-MYC decay rates can render it insensitive to transcriptional targeting 
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INTRODUCTION 

Genetic alterations in cancer can affect proteins 
involved in almost all regulatory steps of RNA 
Polymerase II (RNAPII) -driven transcription, 
including histones, transcription factors (TFs), 
epigenetic enzymes and reader proteins, chromatin 
remodelers and RNAPII itself 1. These changes 
dysregulate transcription and ultimately contribute 
to cellular transformation and the development 
malignant phenotypes 1,2.  
 
Transcriptionally dysregulated cancers exhibit a 
critical dependency on components of the core 
transcription machinery that regulate RNAPII-
driven gene expression, a notion termed 
‘transcription addiction’ 1. This has spurred the 
development of small molecule inhibitors that 
target core transcriptional enzymes and structural 
proteins for therapeutic benefit 3,4. For example, 
displacement or degradation of the Bromodomain 
and Extra Terminal (BET) family of epigenetic 
reader proteins such as Bromodomain-Containing 
Protein 4 (BRD4) has demonstrated pre-clinical 
efficacy across solid and hematological 
malignancies 5–13. Moreover, perturbation of the 
histone acetyltransferase activity of the 
transcriptional co-activator p300/cAMP-response 
element binding protein (CBP) with A-485 reduced 
the proliferation of androgen receptor (AR) -
positive prostate cells and provided therapeutic 
benefit in pre-clinical studies 14. In addition to 
disrupting the epigenetic control of transcription,  
the productive cycling of RNAPII through 
initiation, elongation and termination can be 
prevented by inhibition of transcriptional Cyclin 
Dependent Kinases (t-CDKs) and steric hinderance 
via DNA-intercalating agents like Actinomycin D 
(ACTD) 15,16. Targeting of the t-CDK, CDK9, 
reduced tumor load in pre-clinical models of Mixed 
Lineage Leukaemia (MLL) -driven Acute Myeloid 
Leukemias (AMLs) and MYC-amplified 
malignancies 15,17,18. Notably, the CDK9 inhibitor 
BAY1251152, is currently in phase I clinical trials 

in advanced solid neoplasms 19. In contrast, ACTD 
is already a widely used chemotherapy agent for 
Ewing’s sarcoma, rhabdomyosarcoma and Wilm’s 
tumor 19.  
 
Therapeutic inhibition of RNAPII-driven gene 
expression has been proposed to elicit selective 
transcriptional responses. A current model suggests 
that this selectivity is associated with particular 
genomic elements such as super-enhancers (SEs), 
which are large collections of enhancers that 
exhibit high occupancy of cell type specific 
transcription factors (TFs), p300/CBP and BRD4 
among other epigenetic co-factors 20. For example, 
JQ1 treatment in models of Multiple Myeloma 
(MM) disproportionately downregulated key SE-
associated MM-driver genes in comparison to 
typical enhancers via the displacement of BRD4 21. 
This was similarly observed with the t-
CDK7/12/13 inhibitor THZ1, whereby oncogenes 
and TFs associated with SEs were uniquely 
sensitive in MYC-amplified neuroblastoma, Small 
Cell Lung Cancer (SCLC) and T-cell Acute 
Lymphoblastic Leukaemia (T-ALL) 22–24. In contrast, 
CDK9 inhibitors can globally affect transcription 
to varying degrees by perturbating early elongation 
and polyadenylation (polyA) checkpoints, with 
apoptotic regulatory genes such as MCL-1 and 
XIAP proposed to be selectively downregulated 19,25. 
Similarly, gene expression is broadly inhibited 
with ACTD treatment 16,19.  
 
Conventional RNA profiling techniques that 
measure total RNA abundance are routinely used 
to assess gene expression. However, this precludes 
any differences in intrinsic RNA production and 
decay rates that might influence changes in 
expression. Recent technological advances have 
enabled the measurement of nascent RNA and its 
decay over time. Metabolic labelling of RNA with 
the nucleotide analog 4-thiouridine (4sU), and its 
quantification using affinity- or conversion-based 
technologies, represents the most widely used 
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approach to track an RNA species over time 
without affecting cellular integrity 26–31. For example, 
thiol (SH)-linked alkylation for the metabolic 
sequencing of RNA sequencing (SLAM-seq) is a 
conversion-based approach that uses 4sU 
dependent thymine-to-cytosine (T > C) 
conversions for the in silico separation of newly 
synthesized and pre-existing transcripts 26. Indeed, 
assessment of transcriptional responses to BRD4 
and CDK9 inhibition in pre-clinical models of 
leukaemia using SLAM-seq revealed a global 
decrease in nascent RNA that was not recapitulated 
in the total RNA pool 32. Although the nascent gene 
response to BRD4 inhibition was well predicted by 
various chromatin factors occupying the 
transcription start site (TSS) of downregulated 
genes, such as c-MYC and PIM1 32, the role of RNA 
decay in affecting global changes in total RNA 
expression in cancer is yet to be explored.  
 
Here, we used SLAM-seq to assess the role of RNA 
decay in shaping gene expression responses to the 
therapeutic targeting of different transcriptional 
regulatory components. Genes with short lived 
transcripts were the most prominent in RNA 
signatures derived upon global transcriptional 
perturbation. Small molecule inhibition of t-CDKs 
and the general RNAPII machinery, resulted in 
gene expression changes that could most strongly 
be predicted by transcript half-lives alone. Using 
this information, we demonstrated that stabilization 
of the c-MYC transcript through re-engineering of 
the 3’ untranslated region (UTR) was sufficient to 
render it less sensitive to global transcriptional 
inhibition. Taken together, we provide a novel 
insight into the impact of RNA decay to changes in 
total RNA abundance following inhibition of the 
general transcription machinery and associated 
factors in cancer.  
 

RESULTS 

Transcriptional inhibition selectively reduces 
total mRNA levels 
To assess whether the therapeutic response to 
transcriptional inhibition is selective, SLAM-seq 
was performed on K562 cells treated with small 
molecule inhibitors of p300/CBP (A-485), BRD4 
(JQ1), CDK9 (AZ-5576) and RNAPII (ACTD) 26 

(Fig. 1A, B). The on-target activity of p300/CBPi, 
BRD4i and CDK9i was validated by western blot 
analysis of H3K18ac, c-MYC protein and RNAPII 
carboxy-terminal domain (CTD) Serine 2 (Ser2) 
phosphorylation, respectively 14,33,34 (Fig. S1. A).  
Differential gene expression analysis (DGEA) of 
total messenger RNA (mRNA) read counts from 
SLAM-seq libraries normalized to an external 
spike-in of Drosophila melanogaster Schneider 2 
(S2) cell RNA revealed that all transcriptional 
inhibitors affected the levels of only a fraction of 
expressed genes (Fig. 1C, D). Principal component 
analysis (PCA) of total mRNA changes highlighted 
distinct responses to p300/CBPi, BRD4i, CDK9i 
and ACTD, whereby CDK9i and ACTD signatures 
co-clustered and exhibited the highest degree of 
similarity (Fig. S1. B). Consistent with previous 
studies 20,35, 785 SEs defined using publicly available 
H3K27ac ChIP-seq data in K562 cells (Fig. 1E) 
and 83 CR SE-associated TFs identified using the 
Coltron algorithm (Fig. 1F, G) were significantly 
more down-regulated compared to all other genes 
(Fig. 1H, I). Moreover, Gene Set Enrichment 
Analysis (GSEA) highlighted negative enrichment 
of several cancer and inflammatory hallmark 
pathways, including MYC targets and cytokine 
signalling, respectively (Fig. 1J). However, the vast 
majority of genes were refractory to changes in 
total mRNA levels at these timepoints and inhibitor 
concentrations (Fig. 1C, D), including several SE 
associated genes and CR TFs (Fig. S1. C, D). 
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Figure 1 Transcriptional inhibition results in selective changes in total RNA levels 
(A) Simplified schematic of transcription inhibition by A-485 (p300/CBPi), JQ1 (BRD4i), AZ-5576 (CDK9i) and Actinomycin 
D (ACTD). (B) Schematic of SLAM-seq experimental procedure. Nascent reads are defined as RNA containing at least two 
thymine-to-cytosine (T>C) conversions and total reads are defined as the sum of unconverted and converted RNA. Schneider 2 
(S2) RNA was spiked-in as an external reference control. (C) Scatterplot of baseline total mRNA expression versus change in 
spike-in normalized total expression upon two hours of transcription inhibition. Significantly up- or down-regulated genes 
highlighted in red and blue, respectively. Sum of significantly differentially altered events indicated in bar chart above. (D) Venn 
diagram of significantly down-regulated genes for each treatment condition using spike in normalized total mRNA reads. 
Remaining genes indicated as ‘other.’ (E) Super-enhancer (SEs; blue) and enhancers (grey) ranked by H3K27ac signal. A total 
of 785 SEs were identified and genes associated with the top 15 are highlighted. (F) Network plot of SE-associated core-
regulatory (CR) transcription factors (TFs) identified using the Coltron algorithm 35. TFs previously identified as part of K562 
cell core regulatory networks highlighted in red 84. (G) Integrated Genomics Viewer (IGV) screen shots of CEBPB and TAL1 
genomic loci with CR TF occupancy obtained from ENCODE. (H) Boxplot of spike-in normalized total gene expression of SE-
associated genes or (I) SE-associated CR TFs relative to all other genes upon two hours of transcription inhibition. (J) Gene Set 
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Enrichment Analysis (GSEA) Normalized Enrichment Scores (NES) and significance of cancer hallmark pathways using ranked 
total mRNA changes upon two hours of transcription inhibition.  
RNAPII: RNA Polymerase II. TF: Transcription factor. BRD4: Bromodomain-Containing Protein 4. p300/CBP: p300/cAMP-
response element binding protein (CBP). CDK9: Cyclin Dependent Kinase 9. Ac: Acetyl group. P: Phosphate group. 4sU: 4-
thiouridine. H: Hour. 3’UTR: 3’ Untranslated Region. LogFC: log2 fold change relative to DMSO. Baseline expression: spike-
in normalized total log2 CPM in DMSO-treated conditions. CPM: Counts Per Million. Significantly up-regulated: P Value < 
0.05 & logFC > 0.5. Significantly down-regulated: P Value < 0.05 & logFC < -0.5.  ****, **, *: P Value < 0.0001, < 0.01 and 
<0.05, respectively, using an unpaired Wilcoxon test. 
 
Transcriptional inhibition broadly perturbs 
nascent RNA production 
To investigate whether selective changes in total 
mRNA levels following small molecule inhibition 
of p300/CBP, BRD4, CDK9 and RNAPII are due 
to a concordant change in mRNA production, 
DGEA was performed on spike-in normalized 
nascent read counts as marked by at least two T > 
C conversions in 3’UTR derived reads (Fig. 1B). In 
contrast to the effect seen on total mRNA (Fig. 1C, 
D), nascent mRNA was more broadly repressed in 
response to all inhibitors (Fig. 2A, B, S1. E). The 
greatest effect on nascent mRNA expression was 
observed following treatment with CDK9i and 
ACTD, and due to their ability to globally down-
regulate the de novo mRNA synthesis of > 80% of 
genes, these agents were termed broad or class I 
inhibitors (Fig. 1A, 2A, B). In contrast, 
transcriptional inhibition with p300/CBPi and 
BRD4i, designated henceforth as class II 
compounds, was selective and significantly 
reduced the mRNA synthesis of < 50% of 
expressed genes (Fig. 1A, 2A, B). Importantly, 
changes in nascent gene expression with class II 
inhibitor treatment was still significantly greater in 
comparison to associated total mRNA changes 
(Fig. S2. F). In agreement with differences 
observed between total and nascent mRNA levels 
seen following treatment with all transcriptional 

inhibitors tested (Fig. S2. F), comparison between 
these two modalities revealed only a modest 
Pearson’s correlation coefficient (Fig. 2C). 
Correlations were lower with class I inhibitors 
(0.17-0.3) in comparison to more selective 
transcriptional perturbation with class II 
compounds (0.43-0.46) (Fig. 2C). As an example 
of the disconnect between changes in nascent and 
total mRNA abundance, genes such as HPRT1 that 
were the least responsive (P-value > 0.05, -0.25 < 
logFC < 0.25; 200 genes closest to the mean logFC) 
to changes in total mRNA had significantly down-
regulated nascent gene expression, especially in 
response to class I compounds (Fig. 2D, E). In 
contrast, the proto-oncogene c-MYC was amongst 
the most responsive to transcriptional perturbation 
(top 200 genes most significantly down-regulated) 
on both total and nascent mRNA levels (Fig. 2D, 
F). This highlights that in a subset of genes, down-
regulation of de novo mRNA synthesis can result 
in a concomitant reduction in total mRNA. 
However, despite global down-regulation of 
nascent transcripts, most genes appear to be 
refractory to changes in total mRNA following 
acute transcriptional inhibition. Taken together, 
these data suggest that post-transcriptional gene-
intrinsic parameters that define total mRNA levels 
might be driving down-regulation of a discrete 
subset of genes upon transcriptional perturbation.  
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Figure 2 Nascent and total mRNA changes are disconnected upon transcriptional perturbation 
 (A) Scatterplot of baseline total mRNA expression versus change in spike-in normalized nascent expression upon two hours of 
transcription inhibition. Significantly up- or down-regulated genes highlighted in red and blue, respectively. Sum of significantly 
differentially altered events indicated in bar chart above. (B) Venn diagram of significantly down-regulated genes for each 
treatment condition using spike in normalized nascent mRNA reads. Remaining genes indicated as ‘other.’ (C) Scatter plot of 
spike-in normalized total and nascent gene expression upon two hours of transcription inhibition. (D) Change in spike-in 
normalized total and nascent expression of (left) most- and (right) least-responsive genes. (E) Spike-in normalized (left) total 
and (right) nascent mRNA expression of HPRT1 or (F) c-MYC upon two hours of transcription inhibition.  
Baseline expression: spike-in normalized total log2 CPM in DMSO-treated conditions. CPM: Counts Per Million. Significantly 
up-regulated: P Value < 0.05 & logFC > 0.5. Significantly down-regulated: P Value < 0.05 & logFC < -0.5. Cor: Pearson’s 
correlation co-efficient. ****: P Value < 0.0001 using an unpaired Wilcoxon test. 
 
Core Regulatory Transcription Factors are 
encoded by highly produced and labile transcripts 
mRNA decay rates determine total transcript levels 
36. To investigate whether mRNA stability 
influences changes in total mRNA levels following 
transcriptional inhibition, we first directly 
measured mRNA half-lives in K562 cells using 
4sU pulse-chase combined with SLAM-seq 26 (Fig. 
3A, S2. A). Decay kinetics were quantitatively 
determined by fitting exponential decay functions 
to normalized transcript levels measured over the 

time-course and estimating the mRNA half-lives 
(t1/2 ) (Fig. 3A). As cellular division results in the 
dilution of 4sU derived reads, half-life 
measurements were further normalized to the cell 
cycle (Fig. S2. B), generating estimated decay 
parameters for 6580 genes (Fig. 3B), including for 
short-lived genes such as c-MYC (t1/2 = 1.3 hours) 
(Fig. 3C), which were concordant with published 
decay measurements obtained in K562 cells with 
conversion-based protocols (Fig. S2. C) 28,37  
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To assess whether gene function is indeed related 
to mRNA half-life, transcript decay measurements 
were divided into pentiles and the most short- and 
long-lived groups were used for gene ontology 
(GO) analysis (Fig. 3D). Genes with the shortest 
half-lives were enriched for those encoding TFs 
and transcription regulators (Fig. 3D). In contrast, 
long-lived transcripts were over-represented for 
terms related to cellular homeostasis and 
metabolism (Fig. 3D). As de novo mRNA synthesis 
also determines total transcript abundance 36, it was 
determined whether mRNA production in addition 
to decay is correlated with gene function. 
Production rates for each gene were first obtained 
by subjecting K562 cells to 4sU labelling for 5 and 
15 minutes, followed by transient transcriptome 
(TT) -seq, after which 4sU-containing nascent 
RNA was isolated via affinity purification and 
sequenced 29. mRNA synthesis measurements were 
then divided into pentiles and compared to decay 
groups previously defined. Despite GO term 
analysis demonstrating that genes with the shortest 

half-life and either very high (pentile 5) or low 
(pentile 1) production rates both encoded for TFs 
(Fig 3D), only those with high mRNA synthesis 
rates were enriched for CR TFs (Fig. 1F. G, 3D, S2. 
D). These findings suggest that in order to rapidly 
and accurately control their expression, transcripts 
encoding key lineage specific and CR TFs may 
have evolved to be extremely labile, resulting in 
rapid decay and necessitating high productions 
rates in order to maintain cellular mRNA levels. As 
such, the frequently observed association between 
CR TFs and genomic elements such as super-
enhancers to drive high-level expression may be 
driven by the continual need to synthesize de novo 
RNA due to their short intrinsic half-lives 1,38. 
Conversely, long lived mRNA with low production 
kinetics were related to exocytic and organelle 
fusion processes, and those with high synthesis 
rates with cellular translation and metabolism (Fig 
3D). This highlights that slow mRNA dynamics are 
critical for roles that ensure constant and normal 
cellular homeostasis.  

 
Figure 3 RNA decay is strongly related to gene function  
A) Schematic of 4-thiouridine (4sU) pulse labelling and chase. T > C conversion rates were calculated for each time point, 
normalized to 0-h and fit with exponential decay functions derive half-life (t1/2). (B) Distribution of mRNA stability of 6580 genes 
in the K562 cell line. (C) c-MYC transcript half-life estimation. Half-life values represented are from technical duplicates and 
normalized for K562 cell division time from S2. B. (D) Heatmap of mean mRNA half-life (blue) and production rate (red) for 
each mRNA decay and production pentile. Gene Ontology (GO) terms of genes within subsets highlighted in black are indicated 
in bar charts.  
H: hour. SE: Standard Error.  
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Gene-intrinsic RNA decay properties shape the 
response to transcriptional inhibitors 
The vast majority of publications studying the 
effect of transcriptional/epigenetic compounds in 
cancer share the observation that selective gene 
expression responses arise from perturbation of 
core RNAPII machinery. The selectivity is 
generally attributed to gene-specific chromatin 
features, including occupancy of the targeted 
factor, cell-type specific TFs and super-enhancers 
1,32, all of which impact the de novo production of 
RNA. In the context of cancer this has been 
described to primarily affect oncogenic networks 
driven by key TFs such as c-MYC 32,39–41. In light 
of our observation that transcripts within these 
oncogenic networks are rapidly turned over 
through a cycle of rapid production and decay (Fig. 
3), we hypothesized that gene-intrinsic parameters 
are the causative factor driving selective total 
transcriptional changes to perturbation of the core-
transcriptional machinery. Indeed, the most 
responsive genes to class I and II inhibitors (Fig. 
2D) were approximately 3-4 times more shorter-
lived than those least responsive to RNAPII-
targeting, and the median half-life of each category 
varied little between class I- or II- mediated 
transcriptional inhibition (Fig. 4A). Conversely, 
previously defined mRNA decay pentiles (Fig. 3D) 
revealed that the 20% most short-lived genes were 
significantly down-regulated in comparison to 
longer-lived gene groups on the total mRNA level 
with all compounds tested (Fig. S2. E), and were 
enriched for genes defined as the most responsive 
(Fig. 4B). This was more evident with class I 
compounds, where >90% of most responsive genes 
were in the shortest t1/2 group (Fig. 4B). Contrarily, 
genes that were least responsive to RNAPII-
targeting were over-represented for longer t1/2 gene 
categories (Fig. S2. F), indicating that transcripts 
with slow decay kinetics maintained total mRNA 
levels following acute transcriptional inhibition. In 
addition, mRNA production rates were predictive 
of total mRNA downregulation only in the context 

of transcript half-lives, where genes with the 
highest mRNA production rates (pentile 5; 4.2e-
02- 6.7 FPKM h-1) and shortest half-lives (pentile 1; 
t1/2 0.9-3.3 hours) were most strongly repressed (Fig. 
4C). Moreover, the most-responsive genes (Fig. 
2D) were enriched (25.5-37%) in the shortest lived  

and most highly produced subset (Fig. 4C), where 
this was not observed for genes least-responsive 
(Fig. 2D, S2. G).   

 
To quantitatively assess the impact of transcript 
half-lives to total mRNA abundance upon 
transcriptional inhibition in silico, we developed a 
mono-exponential model of steady state gene 
expression using only mRNA production and 
decay rates (Fig. 4D). Production rates (k1) and 
decay rates (k2) were determined as described 
above. Predicted steady state mRNA levels 
obtained using the ratio of synthesis and decay 
rates for each gene significantly correlated with 
experimental measurements of baseline mRNA 
abundance (Pearson’s correlation coefficient 0.65) 
(Fig. S2. H), indicating that the model was 
sufficiently accurate to estimate equilibrium 
mRNA levels with a variety of initial conditions 
and time intervals.  
To investigate in silico the effect of mRNA decay 
on total transcript levels upon complete abrogation 
of de novo mRNA synthesis, the production rate of 
each gene was set to zero and total mRNA 
abundance was modelled after two hours (Fig. 4D, 
S2. I). Consistent with experimental data (Fig. 2E, 
F), c-MYC and HPRT1 were found to be down-
regulated with logFC values of -1.53 and -0.06, 
respectively (Fig. S2. I). Functional annotation of 
genes down-regulated in this model of 
transcriptional shutdown using GSEA revealed 
significant negative enrichment of cytokine 
signalling, inflammatory and c-MYC target cancer 
hallmark pathways and SE-transcriptional 
programs (Fig. 4E). Moreover, additional gene 
ontology (GO) analysis using ToppGene 42–44 of the 
top 200 most down-regulated genes, which 
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included oncogenes such as c-MYC (Fig. S2. J), 
demonstrated signatures associated with TF 
function 45 (Fig. 4F).  
Correlation analysis between in silico and 
experimental total mRNA measurements of 
transcriptional perturbation revealed that class I 
inhibitors resulted in gene expression changes that 
were significant and highly similar to a modelled 
complete abrogation of nascent transcription 
(Pearson’s correlation coefficient 0.59-63) (Fig. 
4G). Conversely, changes in total mRNA levels 
following treatment with class II compounds only 
modestly correlated with the model (Pearson’s 
correlation coefficient 0.26-0.34) (Fig. 4G). In 
agreement with these results, receiver operator 
characteristic (ROC) analysis and derivation of the 
area under the curve (AUC) of simulated and 
experimental total mRNA levels revealed that 
genes with short RNA t1/2 were strongly predicted to 
be more responsive to RNAPII targeting (Fig. 4H). 
Predictive accuracy was higher with class I 
inhibitors (AUC 0.93-0.94) in comparison to class 
II (AUC 0.86-0.90) (Fig. 4H). This firstly 
highlights that any change in total mRNA levels 
following global perturbation of mRNA production 
with class I inhibitors is strongly determined by 
mRNA half-lives. Secondly, these data also 
suggest that changes in total mRNA levels of 
distinct genes mediated by class II compounds 
stems from a combination of selective inhibition of 
de novo mRNA synthesis and gene intrinsic RNA 
t1/2.  
Analysis of an independent SLAM-seq data from 
K562 cells (Fig. S3A-D) revealed transcript half-
life also defines the response to transcriptional 
disruption through small molecule mediated 
inhibition of BRD4 or CDK9, as well as, acute 
protein degradation of MYC and BRD4 (Fig. S3E-
I). In addition, short-lived transcripts were most 
sensitive to inhibition of BCR-ABL1 signalling 
(Fig. S3E-I). Concordant with our observations, the 
magnitude of nascent RNA responses greatly 

exceeded those on the total RNA level, indicating 
that transcript stability greatly buffers this 
response, which has therapeutic implications. To 
extend our findings to another cell line we 
measured RNA decay parameters (Fig. S4A, B) 
and transcriptional responses to therapeutically 
relevant (Fig. S4C, D) compounds in THP-1 cells. 
This revealed that similar to K562 cells, that the 
total mRNA response in this THP-1 cells to a 
distinct BET, CDK9, CDK12/13 and CDK7 
inhibitors was largely dependent on gene-intrinsic 
decay properties, with a much larger transcriptional 
response observed on the nascent RNA level (Fig. 
S4E-H).  
Reciprocal adjustments in RNA synthesis and 
decay rates to maintain total cellular RNA 
concentrations is a phenomenon called 
‘transcriptional buffering’ 47. To determine if 
therapeutic perturbation of RNAPII transcription 
affected RNA decay rates via transcriptional 
buffering, RNA half-lives were measured using 
4sU pulse-chase combined with SLAM-seq in the 
presence of either JQ1 (BRD4i, class II) or AZ-
5576 (CDK9i, class I) (Fig. S5A). This 
demonstrated that BETi modestly increased RNA 
decay rates, and resulted in a lower mean half-life 
of 4.92 hours (Fig. S5B, C). In contrast, CDK9i 
treatment broadly decreased RNA rates, increasing 
the mean RNA half-life in K562 cells to 6.62 hours 
(Fig. S5B, C). This observation is consistent with 
prior reports demonstrating that loss of core 
RNAPII machinery, such as RNAPII, the pre-
initiation complex (PIC) and Mediator, increases 
RNA half-lives 47. Importantly, modelling of 
complete transcriptional shutdown using treatment 
specific RNA decay rates (Fig. S5D) correlated 
significantly with experimentally measured total 
RNA changes (Fig. S5E), indicating that 
transcriptional buffering does not negate the 
importance of RNA decay rates in shaping the total 
mRNA response to the class of therapeutic 
transcriptional inhibitors. 
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Figure 4 RNA decay is a critical determinant of gene sensitivities to transcriptional inhibition 
(A) Boxplot of mRNA half-lives of genes most- and least-responsive to treatments indicated. (B) Stacked bar chart of mRNA 
half-life pentiles in genes most-responsive to treatments indicated. (C) Heatmap of mean total mRNA logFC for each mRNA 
decay and production pentile. Numbers indicated are percentage of most-responsive genes within each subset. (D) Mathematical 
model of mRNA production (k1) and decay (k2). (Top right) Differential equation describing total mRNA. (Bottom right) 
Simulation of total mRNA levels with complete transcription shutdown. (E) GSEA analysis of hallmark, SE and SE-associated 
TF gene sets using simulated total gene expression following complete transcription shut-down ranked by z-scored logFC values. 
Signatures with Normalized Enrichment Scores (NES) < 0 shown. (F) GO analysis of the top 200 most down-regulated genes 
with simulated total transcription shutdown for two hours indicated in blue in S2. J. (G) Scatter plot of simulated total gene 
expression response following two hours of complete transcription shutdown and measured total gene expression response to 
inhibitors indicated. (H) Receiver Operator Characteristic (ROC) analysis of total logFC with treatments indicated and simulated 
total logFC after complete transcription shutdown for 2 hours. logFC values were binarized according to whether genes were 
most-responsive to treatments indicated.  
****: P Value < 0.0001, using an unpaired Wilcoxon test. Most-responsive: top 200 most significantly down-regulated genes 
(logFC < -0.5 and P Value < 0.05) using spike-in normalized total reads. Least-responsive: 200 unaltered (-0.25 < logFC < 0.25 
and P Value > 0.05) genes using spike-in normalized total reads. logFC: log2 fold change relative to DMSO or 0 hours. AUC: 
Area Under the Curve.  
 
Despite these analyses being completely agnostic 
to the chromatin landscape or the molecular 
consequences of the core-transcriptional 

component targeted, they were able to effectively 
isolate a group of responsive genes to all forms of 
transcriptional perturbation. This highlights that 
the selectivity of these therapies is over-estimated 
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and suggests that oncogenic and pro-inflammatory 
networks driven by short-lived and highly 
produced TFs are intrinsically sensitized to any 
form of abrogation of de novo RNA synthesis, thus 
challenging the notion that selective targeting is 
required to specifically disrupt oncogenic 
transcription. Finally, particular genomic elements, 
such as SEs, may correlate with transcriptional 
responses to this class  
 
MAC-seq defines the role of RNA decay to 
changes in gene expression with 73 
transcriptional and epigenetic compounds  
To assess the role of mRNA half-life to gene 
expression responses across a wider range of 
clinically relevant inhibitors, we used Multiplexed 
Analysis of Cells sequencing (MAC-seq) to profile 
changes in total mRNA levels in response to 73 
small molecule inhibitors of epigenetic and 
transcriptional proteins in K562 cells, where 
previously tested drugs (Fig. 1-4) were included as 
controls 48 (Fig. 5A, S6. A). De-multiplexing of 
treatment conditions and DGEA thereafter 
revealed a number of differentially expressed 
events (Fig. 5B), where only eight out the 73 
compounds tested globally repressed transcription 
and significantly down-regulated > 1000 genes 
(Fig. 5C). This first class of inhibitors (class I) 
consisted of those able target t-CDKs and the core 
RNAPII machinery (Pan-Tx) (Fig. 5C, S6. A). 
Moreover, a second group (class II) of an 
additional six drugs targeting BRD4, p300/CBP, 
pan-histone deacetylases (HDACs), and protein 
phosphatases (PP), were able to selectively down-
regulate a subset of least 200 genes (Fig. 5C, S6. 
A). Despite technical and experimental differences 
between the MAC- and SLAM-seq protocols, 
analysis of MAC-seq total mRNA abundance 
relative to the External RNA Control Consortium 
(ERCC) RNA external reference control, 
recapitulated the segregation of the tested 
compounds into class I and II (Fig. 2A, Fig, 5C). 
Remaining compounds, defined as class III, that 

targeted histone demethylases (HDMe) and 
methyltransferases (HMe), DNA alkyl- (DNA 
AGT) and methyl-transferases (DNAMe), sirituin 
(SIRT), PARP, HuR/ELAVL1 and topoisomerases 
(Topo) either repressed the expression of a minimal 
number of genes (< 200) or primarily up-regulated 
transcription (% down- or up- regulated < 50%) 
(Fig. 5C). This indicates that gene-intrinsic RNA 
stability most likely has minimal influence on the 
total transcriptome for class III compounds.  
Uniform Manifold Approximation and Projection 
(UMAP) of drug treatments revealed that gene 
changes grouped according to drug treatment (Fig. 
S6. B, middle), drug protein target (Fig. S6. B, 
bottom) and family (Fig. 5D, top) and class (Fig. 
5D, middle). Notably, despite all class I compounds 
forming an entirely distinct cluster (Fig. 5D, 
middle), more detailed PCA analysis of this drug 
class in an isolated setting revealed separation 
between Pan-Tx, CDK9/7/12/13 and 
CDK11/12/13 inhibitors (Fig. 5D bottom, S6. A). 
This suggests that though class I compounds are 
able to broadly repress gene expression, they are 
mechanistically distinct and not equivalent. 
Inhibitors within the class II category however, 
with the exception of drugs targeting BET proteins, 
clustered separately (Fig. 5D bottom, S6. A), 
highlighting that they induce distinct and selective 
transcriptional responses.  
Data from figures 1-4 demonstrated that RNA 
decay is a critical determinant to changes in total 
gene expression following transcription inhibition 
with p300/CBPi, BRD4i, CDK9i and ACTD, so it 
was determined if these findings could be extended 
to other compounds able to globally (class I) or 
selectively (class II) repress gene expression as 
defined by MAC-seq (Fig. 5C). Genes most 
responsive (top 200 genes most significantly down-
regulated) to class I and II inhibitors were 
significantly shorter lived in comparison to genes 
least responsive (P-Value > 0.05, -0.25 < logFC < 
0.25; 200 genes closest to the mean logFC) to 
transcriptional targeting (Fig. 5E, S6. C).  
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Figure 5 RNA half-life strongly shapes transcriptional response to transcriptional and epigenetic inhibitors as defined by 
MAC-seq 
(A) Schematic of MAC-seq experimental procedure. (B) Box plot of change in gene expression relative to DMSO/EtOH controls 
with inhibitors indicated. Inhibitors are grouped according to drug protein target family. (C) (Top) Percentage ratio or (bottom) 
absolute number of significantly up- and down-regulated genes. Inhibitors able to significantly down-regulate > 1000 genes are 
termed ‘Class I’ and by **. Inhibitors able to significantly down-regulate > 200 genes are termed ‘Class II’ and indicated by *. 
Remaining compounds as designated as class III. (D) Uniform Manifold Approximation and Projection (UMAP) of treatment 
conditions with (top) drug protein target family (middle) or pre-defined classes highlighted. (Bottom) PCA plot of drug classes 
(right) II and (left) I with drug names shown. (E) Boxplot of mRNA half-life of most- and least-responsive genes to class I and 
II inhibitors. (F) Bar chart representation of mRNA half-life pentiles in genes most-responsive to class I and II inhibitors. (G) 
Receiver Operator Characteristic (ROC) analysis of logFC with class I and II inhibitors and simulated total logFC after complete 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487057doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487057


 13 

transcription shutdown for 6 hours. logFC values were binarized according to whether genes were most-responsive to treatments 
indicated.  
UMI: Unique Molecular Identifier. logFC: log2 fold change. BRD: Bromodomain. CDK: Cyclin Dependant Kinase. DNA AGT: 
DNA alkyl-transferase. DNAMe: DNA methyl-transferase. HAc: Histone acetylase. HDAC: Histone deacetylase. HDMe: 
Histone demethylase. HMe: Histone methyl-transferase. Pan-Tx: Pan-transcription. PP: Protein Phosphotase. RBP: RNA 
Binding Protein. SIRT: Sirtuin. Topo: Topoisomerase. Significantly up-regulated: P-Value < 0.05 and average logFC > 0.5. 
Significantly down-regulated: P-Value < 0.05 and average logFC < -0.5. logFC: log2 fold change relative to DMSO/EtOH. AUC: 
Area Under the Curve. Most-responsive: top 200 most significantly down-regulated genes (logFC < -0.5 and P Value < 0.05) 
using spike-in normalized reads. Least-responsive: 200 unaltered (-0.25 < logFC < 0.25 and P Value > 0.05) genes using spike-
in normalized reads. 
 
The difference in half-life between most and least 
responsive gene sets was most striking with class I 
inhibitors, where mRNA stability varied up to 
three-fold between the two categories (Fig. 5E, S6. 
C). Consistently, the 20% most short-lived genes, 
as defined previously in Fig. 3, were enriched as 
genes most responsive to transcriptional targeting 
by class I and II inhibitors (Fig. 5F). This was more 
evident with class I compounds, which had > 40% 
of most-responsive genes within the most short-
lived pentile (Fig. 5F). In agreement with these 
data, AUCell analysis revealed that the same half-
life pentile was significantly depleted within the 
top 10% most highly abundant genes that 
responded to class I compounds in comparison to 
class II and III (Fig. S6. E). The 20% most long-
lived genes were under-represented as genes most-
responsive to class I- and II-type transcriptional 
perturbation, but more enriched in genes least-
responsive to targeting by most inhibitors within 
the two classes (Fig. S6. D). Genes with the longest 
half-lives were also found to be significantly 
enriched within highly expressed genes in response 
to class I and II compounds compared to class III 
(Fig. S6. F). Furthermore, ROC analysis and 
derivation of the AUC of simulated total mRNA 
levels following complete abrogation of de novo 
transcription and gene expression changes to class 
I and II inhibitors (Fig. 5B) revealed that genes 
with short half-lives were highly predictive as 
genes amenable to t-CDK and general RNAPII 
inhibition (Fig. 5G), consistent with previous 
findings (Fig. 4H). Due to selective targeting 
observed on the nascent mRNA level and longer 
drug incubation times, predictive accuracy was 

modest with BRD4, p300/CBP, pan-HDAC and PP 
targeting (Fig. 5G). Taken together, these data 
demonstrate that the role of mRNA decay can be 
extended to several transcriptional and epigenetic 
inhibitors, where both selective and global down-
regulation of gene expression is strongly dictated 
by gene intrinsic properties including RNA 
stability.  
 
c-MYC RNA stabilization is sufficient to confer 
resistance to transcriptional targeting 
Sequence motifs within the 3’ UTR of genes 
strongly influence the decay rate of eukaryotic 
transcripts 49,50. For example, inflammatory and 
immune mediators, and oncogenes including TNF, 
PD-L1 and c-MYC, have unstable mRNAs 
implicated with the presence of AU-rich elements 
(AREs), AUUUA and miRNA recognition motifs 
within their 3’UTR 51–55.  
To functionally investigate whether gene-intrinsic 
RNA decay properties are the key determinant in 
shaping the response to transcriptional inhibition, 
we decided to alter the RNA decay parameters of 
the c-MYC oncogene via its 3’UTR, whilst 
preserving the endogenous chromatin context. 
Using CRISPR/Cas9 -mediated homology directed 
repair (HDR) in K562 cells, the c-MYC 
endogenous 3’UTR was substituted with the 
3’UTR of the longer-lived gene HPRT1 with a 
destabilized GFP (dsGFP) reporter, termed ‘c-
MYC-HPRT1 3’UTR’ (Fig. 6A). Designated as ‘c-
MYC-control 3’UTR’, dsGFP was knocked-in 5’ of 
the endogenous c-MYC 3’UTR sequence as a 
control cell line (Fig. 6A). Validation of HDR was 
assessed with PCR using primers amplifying 
regions around and within the c-MYC 3’UTR 
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genomic locus (Fig. S7. A-F), where PCR 
fragments were of lengths corresponding to 
successful knock-in of either dsGFP only (S4. A-
D) or dsGDP and HPRT1 3’UTR sequences (S7. 
A, B, E, F). Sanger sequencing of the same PCR 
fragments revealed 100% homology between 
products and defined P2A, dsGFP and/or HPRT1-
3’UTR sequences (S7. G, H).  
RNA stability for c-MYC was assessed using 
quantitative real time (qRT) -PCR, which 
demonstrated that knock-in of the HPRT1 3’UTR 
increased the half-life of the chimeric c-MYC 
transcript by approximately eight hours in response 
to ActD, representing a four-fold increase over the 
half-life of the endogenous and entopic c-MYC 
transcripts (Fig. 6B, S8. A, B). Interestingly, c-
MYC mRNA in the c-MYC-HPRT1-3’UTR cell 
line was not as stable as endogenous HPRT1 
transcripts, suggesting that c-MYC mRNA stability 
is influenced not only by its 3’UTR (Fig 6B, S8. A, 
B). This is consistent with previous studies 
demonstrating that important decay elements are 
located in the third exon of the coding sequence of 
c-MYC 53.  
As mRNA production and decay may both 
determine total mRNA levels, we investigated 
whether increased c-MYC transcript stability 
influenced its nascent and total mRNA abundance. 
Whole transcriptome RNA-seq followed by DGEA 
of exon read counts in DMSO-treated conditions 
revealed that steady state total c-MYC mRNA 
expression between c-MYC-control and -HPRT1 
3’UTR cell lines was unaltered (Fig. 5C, S8. C). 
Moreover, c-MYC nascent mRNA abundance, 
inferred using intron read counts, was significantly 
lower in the c-MYC-HPRT1 3’UTR cell line in 
comparison to c-MYC-control 3’UTR (Fig. S8. D). 
This was not completely unexpected as mRNA 
synthesis and degradation are linked processes, and 
alteration of either has been demonstrated to result 
in a phenomenon called ‘transcript buffering’ 56.  
Gene sensitivities to transcriptional perturbation 
have largely been associated SEs and CR TFs 21,57. 

As our system genetically engineered the 
endogenous 3’UTR of c-MYC, its genomic 
location, in addition to cis- and trans-factors that 
impact its regulation remained unaffected. This 
therefore enables the direct assessment of altered 
mRNA stability to transcription targeting within 
the wild type chromatin context. To investigate the 
response of stabilized c-MYC to RNAPII targeting, 
c-MYC-control and -HPRT1 3’UTR cell lines were 
treated with the class I compounds AZ-5576 
(CDK9i) or ACTD for six hours, and whole 
transcriptome RNA-seq was performed. Consistent 
with previous findings (Fig. 1, 2, 5), DGEA 
analysis of exon and intron external spike-in 
normalized reads revealed a global decrease in total 
and nascent gene expression, respectively (Fig. S8. 
E-G).  
To determine whether altered c-MYC mRNA 
stability influenced nascent responses to CDK9i 
and ACTD treatment, we compared c-MYC 
intronic counts between c-MYC-control and -
HPRT1 3’UTR cell lines following transcription 
perturbation. De novo c-MYC synthesis was 
significantly down-regulated with each compound 
irrespective of mRNA half-life (Fig. 5C right). In 
contrast, assessment of c-MYC-dsGFP total RNA 
(Fig. 5C left) and protein abundance (Fig. 5D-G, 
S8. H) revealed that c-MYC stabilization rendered 
it less sensitive to targeting by either compound. 
The resistance to RNAPII targeting on the total 
mRNA level was c-MYC specific, as c-MYC was 
the most significantly altered gene with each 
treatment (Fig. 5H) and PCA of spike-in 
normalized total mRNA changes highlighted that 
conditions clustered according to inhibitor and not 
cell line (Fig. S8. I). Consistently, correlation 
analysis of all DEGs in c-MYC-control and -
HPRT1 3’UTR cell lines with CDK9i and ACTD 
revealed that changes were highly similar and 
statistically significant (Pearson’s correlation 
coefficient 0.96-0.97, P-Value < 2.2e-16) (Fig. S8. 
J). 
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Figure 6 Increased c-MYC RNA stability renders it less sensitive to transcriptional targeting  
(A) Schematic of CRISPR/Cas9 -homology directed repair (HDR) used to endogenously swap the c-MYC 3’ untranslated region 
(3’UTR) for the HPRT1 3’UTR in the K562 cell line. (B) Normalized expression of (left) c-MYC and (right) HPRT1 transcripts 
following the addition of ACTD at indicated time points as measured by quantitative real time PCR (qRT-PCR). Values are 
mean with error bars representing standard deviation (sd) of three biological replicates from three separate single cell clones. (C) 
(Left) Total gene expression of reads mapping across c-MYC and dsGFP sequences with indicated treatments and cell lines after 
6 hours. (Right) c-MYC intron expression with indicated treatments and cell lines after 6 hours. (D) Western blot of (top) c-
MYC, (middle) GFP and (bottom) ACTIN protein with indicated treatments and cell lines after six hours. Values indicated are 
protein levels normalized to ACTIN and DMSO controls. (E) Western blot protein signal of (left) c-MYC and (right) GFP 
relative to ACTIN and DMSO controls after 6 hours of treatment. Values are mean with error bars representing sd of three 
biological replicates. (F) Representative histogram of intracellular c-MYC protein staining following 6 hours of indicated 
treatments. (G) Proportion of cells positive for intracellular c-MYC protein staining following 0, 2 and 6 hours of indicated 
treatments. Values are normalized to 0-hour time point and are mean with error bars representing sd of two biological replicates. 
(H) Scatter plot of significance and difference in total gene expression with (left) CDK9i and (right) ACTD treatment between 
c-MYC-control and -HPRT1 3’UTR cell lines. (I) Simplified schematic of transcriptional responses with class I (selective) and 
class II (broad) inhibitors of c-MYC chimeric loci. 
 
Prolonged c-MYC mRNA half-life did not rescue 
the expression of previously defined c-MYC target 
genes following transcriptional inhibition as 
assessed by nascent and total mRNA abundance 32 
(Fig. S8. K, L). Although nascent c-MYC target 
gene expression was significantly less down-

regulated with CDK9i treatment in the c-MYC-
HPRT1 3’UTR cell line (Fig. S8. L), it was not 
sufficient to prevent reductions in total mRNA 
(Fig. S8. K), suggesting that class I inhibitors can 
perturb the expression of c-MYC-dependent targets 
independently from sustained c-MYC expression. 
Moreover, this also indicates that c-MYC driven 
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transcription itself may be inherently reliant on the 
molecular level on core-transcriptional 
components.  
Taken together, these data show that swapping the 
c-MYC 3’UTR to the 3’UTR of a long-lived gene 
within its endogenous chromatin context, preserves 
the targeting of de novo mRNA production in 
response to transcriptional inhibitors, but renders c-
MYC insensitive to transcriptional targeting when 
assessing total mRNA levels due to its increased 
transcript stability (Fig. 5I). Gene-intrinsic RNA 
decay properties are therefore a key determinant in 
establishing gene responsiveness to compounds 
that target RNAPII driven gene expression, and 
without which, selective responses would not be 
found with most transcriptional compounds (Fig. 
7). 
 
Discussion 
RNAPII-driven transcription has been 
therapeutically targeted in oncology with 
biological and therapeutic effects proposed to 
occur through selective perturbation of oncogenic 
gene networks 1,20. The current literature suggests 
that the discrete targeting of selected genes 
following transcriptional perturbation is 
mechanistically linked to association with SEs and 
disproportionate occupancy of critical chromatin 
co-factors, such as BRD4, at promotors; however, 

the role of RNA stability has not been extensively 
assessed in this context.  
Here, we demonstrate that selective and broad 
targeting of RNAPII-driven transcription by class I 
and II therapeutic inhibitors, respectively, results in 
discrete alterations in total mRNA abundance that 
are defined by transcript decay rates (Fig. 7). Both 
class I and II inhibitors reduce the total mRNA 
levels of genes with short transcript half-lives, 
several of which are CR TFs, associated with 
oncogenic signaling pathways or promotor 
proximal to SEs. Although some studies indicate 
that these oncogenic networks are particularly 
sensitive due to reduction of the CR TFs within SE 
and promotor regions, whether down-regulation of 
TFs and SE-driven transcription were causally 
linked remained unclear 20,38,58. Our data indicates that 
targeting of SE-driven transcription is only 
possible when the associated gene has short-lived 
RNA, and therefore implicates gene-intrinsic RNA 
decay parameters in the selective perturbation of 
SE oncogenic programs. In contrast, genes with 
stable RNAs are largely refractory to 
transcriptional targeting when assessing total RNA 
levels and are functionally related to cellular 
housekeeping roles 26,59. This may prove a challenge 
for the use of transcriptional inhibitors as a 
therapeutic intervention for cancers that exhibit 
dysregulated metabolic activity or a heightened 
dependence on metabolic pathways.  

 
Figure 7 Simplified schematic of transcriptional responses of genes with short and long RNA half-lives with class I 
(selective) and class II (broad) inhibitors. 
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Transcript half-lives are strongly related to gene 
function 60. For example, short-lived mRNA tend to 
be expressed from genes encoding chromatin co-
factors, TFs, cytokines, cell-cycle and mitosis 
regulators 26,59,60. As short-lived transcripts are able to 
be more rapidly induced and cleared in comparison 
to stable mRNA, it has been suggested that they 
have evolved to enable acute alterations of total 
mRNA levels 61. This is critical for biological 
processes such as transcription, cellular 
proliferation and inflammation, which without 
rapid modulation and proper control can lead to 
cellular transformation and inappropriate 
immunological responses 55,62,63. Maintenance of the 
steady state abundance of short-lived transcripts 
requires high RNA production rates 61. It has been 
postulated that in cancer, genes encoding CR TFs 
have evolved and acquired SEs to drive their high-
level production, and therefore are increased in 
their sensitivity to transcriptional perturbation 1. An 
association between sensitive genes and these 
elements may therefore not be causal, but may 
rather be a consequence of the constant need to 
synthesize de novo RNA due to gene-intrinsic short 
half-lives.  

 
Outside of the cancer context, transcriptional and 
epigenetic inhibitors have been employed as 
immunomodulatory and anti-inflammation agents. 
This includes as therapies to reduce PD-L1 
expression and promote host anti-tumour responses 
64–66, downregulate cytokine signalling pathways 
such as NFkB and TGF-β in rheumatic diseases 67–70 
and repress pro-survival apoptotic proteins in 
arthritis 71. In addition to their tumour intrinsic 
effects, transcriptional and epigenetic inhibitors 
also impact immune cells and their micro-
environment directly 72,73.  Similar to our 
observations in tumour cell targeting, RNA half-
life may have a significant role in determining the 
therapeutic outcome of transcriptional and 
epigenetic compounds in the aforementioned 
diseases contexts. Indeed, our data indicates that 

short-lived transcripts are also strongly related to 
inflammatory and cytokine pathways. 

 
Interestingly, alterations in RNA decay frequently 
occur in cancer in either a gene-specific manner or 
through mutations in RNA complexes to thus affect 
global RNA turnover 55,62,74–76. For example, 
stabilization and the resultant increase in steady 
state expression of the PD-L1 transcript frequently 
occurs in haematological and stomach cancers 
from mutations that disrupt the PD-L1 3’UTR, and 
in in vivo models of lymphoma, leads to immune 
evasion and decreased survival 55. Similarly, c-
MYC 3’UTR truncations caused by chromosomal 
translocations in human T-cell leukaemias (TCL) 
have been described to increase c-MYC expression 
via transcript stabilisation 77,78. In addition to gene-
specific truncations of 3’UTR sequences in cancer, 
RNA stability can be broadly affected via genetic 
alterations that impact the RNA decay machinery 
and RNA Binding Proteins (RBPs). This includes 
loss of function mutations in the Carbon Catabolite 
Repression—Negative On TATA-less (CCR4-
NOT) Transcription subunit 3 (CNOT3) subunit of 
the CCR4-NOT deadenylase complex in T-cell 
Acute Lymphoblastic Leukaemia (T-ALL),74 and 
the 3’-5’ exoribonuclease of the exosome complex, 
DIS3 in MM and RUNX1 -mutated AML75,76. 
Moreover, widespread alternative polyadenylation 
(APA) in a variety of cancer types has been 
demonstrated to shorten 3’UTRs and increase 
transcript stability and protein levels 62,79. Whilst the 
mechanism of increased APA in cancers is poorly 
understood, there is evidence that down-regulation 
APA factors such as CFIm25 and PCF11 may 
contribute increased APA in certain malignancies 
80. Based on our observations that long-lived 
transcripts are resistant to transcriptional 
inhibition, targeting stabilized oncogenic RNA in 
the context of deregulated decay machinery may 
prove unsuccessful with class I and II therapeutic 
compounds. To our knowledge, the therapeutic 
targeting of RNA decay in the oncology setting 
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remains largely unexplored. An exception to this is 
MS-444, which inhibits HuR/ELAVL1, an RBP 
that has been associated with proto-oncogenic roles 
due to its ability to stabilize tumorigenic transcripts 
that contain AREs 81–83 Having observed that a large 
number of RNAs are not sensitive to transcriptional 
perturbation due to their long half-lives (Fig. 1-4), 
combination therapy with a transcript destabilizing 
agent such as MS-444 provides a novel opportunity 
to target genes that were otherwise impervious to 
RNAPII targeting.  

 

Overall, this study highlights the importance 
of RNA decay parameters in governing total gene 
expression levels in response to selective and 
global inhibitors of RNAPII -driven transcription, 
and provides novel mechanistic insight that can be 
leveraged for therapeutic benefit. Moreover, our 
work shifts the paradigm that selective responses 
observed in these contexts are largely driven by 
selective abrogation of RNA synthesis as a result 
of particular genomic determinants but rather 
demonstrates that these largely result from gene-
intrinsic RNA properties.  

 

MATERIALS AND METHODS 

Cell lines and culture  
K562 CML parental and HDR-edited and THP-1 AML cells  were cultured in RPMI 1640 (Thermo Fisher 
Scientific, Waltham, MA, USA, 11875093) containing 10% (v/v) heat-inactivated fetal bovine serum (HI-
FBS; Thermo Fisher Scientific, 10099), penicillin (100 U/ml), streptomycin (100 μg/ml) (Thermo Fisher 
Scientific, 15140122) and 2 mM GlutaMAX (Thermo Fisher Scientific, 35050061) at 37°C and 5% carbon 
dioxide. Drosophila melanogaster S2 cells were cultured Schneider’s Drosophila medium (Thermo Fisher 
Scientific, 21720) supplemented with 10% HI-FBS, penicillin (100 U/ml), streptomycin (100 μg/ml), and 
2 mM GlutaMAX at room temperature and atmospheric carbon dioxide. Cell lines for all assays were 
seeded at 50-70% confluency the day prior unless otherwise indicated.  
 
Compounds  
See supplementary tables 1 and 2. 
 
CRISPR HDR generation of MYC transcript stable clones 
Parental K562 cells (5e+05) were washed in Phosphate Buffered Saline (PBS) twice and resuspended in 
Cell Line Nucleofector solution SF (16.4uL) with Supplement (3.6uL) (SF Cell Line 4D-nucleofector X 
Kit, Lonza, V4XC-2032). Alt-R SpCas9 nuclease (100pmol, Integrated DNA Technologies, 1074182), 
single guide RNAs (sgRNAs) targeting the c-MYC stop codon and 3’ end of its 3’UTR (300pmol, 
supplementary table 3) and pUC57 or pUC57-Mini donor plasmid (1000ng; GenScript Gene Sythesis) 
containing recombinant sequences for dGFP, P2A cleavable peptide and HPRT1 or c-MYC 3’UTRs, 
respectively (supplementary table 4), were incubated together for 20 minutes at room temperature, prior to 
being placed on ice. Ribonucleoprotein (RNP) complex (5uL) was added to the cell suspension (20uL), 
20uL of which was subsequently transferred to 16-well Nucleocuvette Strip and electroporated using the 
4D-Nuceleofector X unit (program FF120, Lonza, AAF-1002X). Warmed culture medium (100uL) was 
added to cell suspension and incubated at 37°C and 5% carbon dioxide for 10 minutes. Cell suspension was 
then transferred to a 24-well cell culture plate containing culture medium (1mL) and IDT Alt-R HDR 
electroporation enhancer (20uM; Integrated DNA Technologies, 1081073) and incubated at 37°C and 5% 
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carbon dioxide for 24 hours, after which cells were washed twice with fresh culture medium and cultured 
at 37°C and 5% carbon dioxide. After expansion, cells were sorted and enriched for GFP positivity three 
successive times, followed by isolation of single cells into 96-well culture plates using Becton Dickinson 
(BD) FACSAria Fusion 3 or 5 Cell Sorters. Three clones with successful knock in of each donor vector 
were identified with KAPA HiFi (Roche, 7958935001) using isolated genomic DNA (DNeasy Blood & 
Tissue Kits (Qiagen, 69506) and primers designed outside or within plasmid homology arms 
(supplementary table 5). PCR fragments were subsequently separated using agarose gel electrophoresis (see 
below). Knock-in sequence was validated using Sanger sequencing of PCR fragments detailed above at the 
Australian Genome Research Facility (AGRF). Total-RNA sequencing was performed using a single 
representative clone of each knock-in.  
 
Agarose gel electrophoresis and gel imaging  
Blue/orange loading dye 6X (Promega, G1881) was added to PCR fragments, which were subsequently 
separated using 1% agarose gels prepared with molecular grade agarose (Bioline, BIO-41025), Tris base- 
acetic acid- EDTA (TAE) 1X solution and SYBR Safe DNA Gel Stain (Life Technologies, S33102). 
Agarose gels were imaged on the GelDoc XR+ Imager (BioRad) using ImageLab Software (BioRad).  
 
Propidium Iodide and Cell Trace Violet staining  
Cells (1e+07) were centrifuged (1400rpm at 4°C for 4 minutes), resuspended in PBS supplemented with 
0.1% (w/v) BSA and stained with 5uM Cell Trace Violet (CTV) dye (Thermo Fisher Scientific, C34557) 
in a 37°C water bath for 10 minutes. Five volumes of ice-cold culture medium was added to cell suspension 
to quench unbound dye. Cells were then centrifuged (1400rpm at 4°C for 4 minutes), resuspended in PBS 
supplemented with 2% (v/v) HI-FBS, sorted for CTV-positivity on BD FACSAria Fusion 3 or 5 Cell Sorters 
and treated with ultrapure water or 4-sU for 24 hours. Following treatment, cells were incubated in PBS 
containing 1ug/mL Propidium Iodide (PI) (Sigma Aldrich, P4170) and analysed using the BD Fortessa 
X20. FlowJo v10 software (Ashland) was used to analyse flow cytometric data. 
 
Quantitative PCR and analysis 
Cells (1e+06 per time point) were incubated with 1ug/mL ACTD at 37°C and 5% carbon dioxide, harvested 
0-, 2-, 4- and 8- hours post-treatment, centrifuged (1400rpm at 4°C for 4 minutes), washed in ice-cold PBS 
and resuspended in 300uL TRIzol (Thermo Fisher Scientific, 15596026). RNA was extracted from lysates 
using the Direct-zol RNA MiniPrep Kit (Zymo Research, R2052) and complimentary DNA (cDNA) was 
synthesised (from 1ug RNA) using the Applied Biosystems High Capacity cDNA Reverse Transcription 
Kit (Thermo Fisher Scientific, 4368814). Quantitative PCR (qPCR) was performed using cDNA, 0.25uM 
forward and reverse oligo primers (see supplementary table 6) and SensiFAST SYBR Hi-ROX Kit (Bioline, 
BIO-92005) in 384-well plates with the LightCycler 480 Instrument II (Roche, 05015243001). Threshold 
cycles for each reaction were analysed using the ΔΔCt method normalising to GAPDH as the housekeeping 
gene.  
 
SDS-polyacrylamide gel electrophoresis and western blotting 
Cells (1e+06) were washed in PBS, lysed in Laemelli Buffer (60 mM tris-HCl (pH 6.8), 10% (v/v) glycerol, 
and 2% (w/v) SDS) and incubated at 95°C for 10 minutes. Lysate protein concentration was determined 
using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 23225) and absorbance at 562nm 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.04.06.487057doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487057


 20 

wavelength was measured on the iMark Microplate Absorbance reader (BioRad) using MicroPlate Manager 
Software (BioRad). 20 X sample buffer (100 % β-mercaptoethanol, and bromophenol blue) was added to 
lysates and were subsequently incubated for an additional 5 minutes. Lysates were separated using Mini-
PROTEAN TGX 4 to 15% gradient gels (25 mM tris, 192 mM glycine, and 0.1% (w/v) SDS; Bio-Rad, 
4561086) and transferred at 4°C to either Immobilon-FL or Immunoblon-P (IPVH00010) polyvinylidene 
fluoride membranes (Merck, IPFL00010) (1.5 hours; 250 mA, 25 mM tris, 192 mM glycine, and 5% (v/v) 
methanol). 
Immobilon-FL membranes were dried for 1 hour at room temperature, washed in ultrapure water, 100% 
methanol, Tris buffered saline (TBS) in the listed order and blocked using Odyssey blocking buffer (Li-
COR, 927-40000). They were then incubated in primary antibodies (supplementary table 7) diluted in 
Odyssey blocking buffer supplemented with 0.2% (v/v) Tween 20 (Sigma-Aldrich, P9416) overnight at 
4°C, washed three times with TBS containing 0.1% (v/v) Tween 20 and incubated with IRDye-conjugated 
secondary antibodies (supplementary table 7) diluted in Odyssey blocking buffer supplemented with 0.2% 
(v/v) Tween 20 and 10% (v/v) sodium dodecyl sulfate (SDS) for 1 hour at room temperature. Immobilon-
FL membranes were washed in PBS and protein was visualised and quantified using the Odyssey CLx and 
Image Studio Lite software 2 (Li-COR). 
Immunoblon-P membranes were blocked in TBS supplemented with 5% (w/v) skim milk powder and 
Tween 20, incubated with primary antibodies (supplementary table 7) diluted in the same solution at 4°C 
overnight, washed three times with TBS containing 0.1% (v/v) Tween 20 and incubated with horseradish 
peroxidase-conjugated secondary antibodies (supplementary table 7) at room temperature for 1 hour. 
Protein was subsequently visualised using Amersham ECL Plus (GE Healthcare, RPN2132) and Super RX 
film (Fujifilm, 03G01).  
 
Intracellular staining of c-MYC 
Intracellular staining of Myc was performed as previously described 1. Briefly, cells were harvested at the 
timepoints indicated and were immediately resuspended in fixation buffer (0.5% paraformaldehyde, 0.2% 
Tween-20 and 0.1% bovine serum albumin in PBS) at room temperature, for at least 24 hours until staining 
was performed. Fixed cells were stained with either anti-Myc (clone D84C12, Cell Signalling Technology) 
or a rabbit IgG isotype-matched control antibody (clone D1AE, Cell Signalling Technology) before staining 
with an anti-rabbit IgG conjugated to Alexa Fluor 647. Staining of all fixed samples within one experiment 
was performed at the same time. 
 
Total RNA-sequencing 
Cells (1e+066 per treatment condition) were centrifuged (1400rpm at 4°C for 4 minutes), washed in ice-
cold PBS and resuspended in 350μl of Buffer RLT Plus supplemented with 1% (v/v) β-mercaptoethanol 
from the RNeasy Plus Mini Kit (Qiagen, 74134). RNA was extracted using the same kit according to 
manufacturer’s instructions and quality was assessed using the Agilent 2200 TapeStation System (Agilent, 
G2964AA) with RNA ScreenTape (Agilent, 5067-5576) and Sample Buffer (Agilent, 5067-5577). S2 
spike-in material (5%) was added to RNA. Sequencing libraries were prepared using NEBNext Ultra II 
Directional RNA Library Prep Kit for Illumina, where ribodepletion was performed using the NEBNext 
rRNA Depletion Kit (New England BioLabs, E6310). Paired-end 75 base pair (bp) reads were sequenced 
using the NextSeq 500 (Illumina).  
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SLAM-sequencing 
Protocol was adapted from 2. K562 and THP-1 cells (1e+06 per treatment) were first pre-treated with 
small molecule inhibitors for a total time of 2 hours to pre-establish protein-target inhibition. Newly 
synthesized RNA in K562 cells was then labelled using 100 μM 4-sU in the final 1 hour of treatment at 
37°C and 5% carbon dioxide. Cells were washed in ice-cold PBS and resuspended in 300μL TRIzol. For 
direct measurement of RNA half-lives, newly synthesized RNA was labelled by incubating cells in 30μM 
4-sU for 12 hours at 37°C and 5% carbon dioxide, whereby culture medium was exchanged every 3 hours 
for the duration of the pulse. For the uridine chase, cells were centrifuged (1400rpm at 4°C for 4 
minutes), washed in sterile ice-cold PBS twice and resuspended in pre-warmed (37°C) culture medium 
containing 3mM uridine (Sigma Aldrich, U6381). At 0- ,1-, 2-, 4-, 8-, 12- hours for K562 cells and 0-, 
0.3-, 0.6-, 1-, 2-. 4-, 8- hours for THP-1 cells post the uridine chase, cells were harvested, centrifuged 
(1400rpm at 4°C for 4 minutes) and resuspended in 300μL TRIzol. For treatment-specific RNA decay 
rates, cells were centrifuged (1400rpm at 4°C for 4 minutes), washed in sterile ice-cold PBS twice and 
resuspended in pre-warmed (37°C) culture medium containing 3mM uridine (Sigma Aldrich, U6381) and 
either 1µM DMSO, JQ1 or AZ-5576. At 0-, 2-, 4- and 8- hours post uridine chase/drug addition, cells for 
each treatment condition were harvested, centrifuged (1400rpm at 4°C for 4 minutes) and resuspended in 
300μL TRIzol. All SLAM-seq experiments included a non- 4-sU labelled control unless otherwise stated. 
To extract RNA, one-fifth volume of chloroform was added to TRIzol lysates, followed by shaking, 
incubation at room temperature for 2 minutes and centrifugation (16000g at 4°C for 15 minutes). The 
aqueous phase was isolated and RNA was precipitated using DTT (10mM), 100% isopropanol (1 volume) 
and GlycolBlue co-precipitant (15ug, Ambion, AM9515), incubated at room temperature for 10 minutes 
and centrifuged (16000g at 4°C for 20 minutes). Supernatant was removed, RNA pellets were washed in 
75% (v/v) ethanol and DTT (100μM) and centrifuged (7500g at room temperature for 5 minutes). 
Supernatant was removed and RNA pellets dried for 10 minutes prior to reconstitution in Ultrapure 
DNAse/RNAse-free distilled water (Thermo Fisher Scientific, 10977023) supplemented with DTT 
(1mM) and incubation at 55°C for 10 minutes. Thiol-containing bases were reduced by incubating RNA 
(10μg) with IAA (10mM, 50 mM NaPO4 pH 8.05 and 50% (v/v) DMSO) in a final volume of 50μL for 15 
minutes at 55°C. Reaction was stopped by quenching IAA with DTT (20μM). RNA was precipitated 
using 3M NaOAc pH 5.2 (5μL), 100% ethanol (125μL) and GlycolBlue co-precipitant, incubated at -
80°C for 30 minutes and centrifuged (16000g at 4°C for 30 minutes). Supernatant was removed and RNA 
pellet was washed in 75% (v/v) ethanol and centrifuged (16000g at 4°C for 10 minutes) twice, dried at 
room temperature for 10 minutes and reconstituted in Ultrapure DNAse/RNAse-free distilled water. RNA 
clean-up was performed by incubating RNA solution in 2 volumes of AMPure XP Beads (Beckman 
Coulter, A63881) for 2 minutes at room temperature. Beads were washed in 80% (v/v) ethanol twice, 
dried at room temperature for 3 minutes and resuspended in Ultrapure DNAse/RNAse-free distilled 
water. Eluate was collected and RNA quality and concentration was assessed using the Agilent 2200 
TapeStation System (Agilent, G2964AA) with RNA ScreenTape (Agilent, 5067-5576) and Sample Buffer 
(Agilent, 5067-5577). S2 spike-in material (5%) was added to RNA. Sequencing libraries were prepared 
using the QuantSeq 3′mRNA-seq Library Prep Kit FWD for Illumina (Lexogen, Vienna, Austria) and 
sequenced as single-end 75 base pair reads using the NextSeq 500 (Illumina). 
 
TT-sequencing 
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Protocol is adapted from 3. Cells (5e+07 per treatment condition) were incubated with 1mM 4sU for either 
5 or 15 minutes at 37°C and 5% carbon dioxide, centrifuged (1400rpm at 4°C for 5 minutes) and 
resuspended in TRIzol (5mL). One-fifth volume of chloroform was added to lysates, followed by shaking, 
incubation at room temperature for 2 minutes and centrifugation (13000g at 4°C for 10 minutes). The 
aqueous phase was isolated and RNA was precipitated using 100% isopropanol (1 volume), incubated at 
room temperature for 10 minutes and centrifuged (13000rpm at 4°C for 10 minutes). Supernatant was 
removed and RNA pellet was washed in 70% (v/v) ethanol, reconstituted in Ultrapure DNAse/RNAse-free 
distilled water (100μL) and denatured at 65°C for 10 minutes. S2 spike-in (15μg) was added to RNA 
(150μg), material was adjusted to a final volume 100μL and sonicated in microTUBE AFA Fiber screw 
cap tubes (6 mm × 16 mm, Covaris, 520096) using the Covaris S220 Focused-ultrasonicator at a maximum 
power for 15 seconds. Thiol-specific biotinylation of RNA was performed in a final volume of 1.5mL by 
incubation with 10 mM tris (pH 7.4), 1 mM EDTA, 20% (v/v) dimethylformamide (200 μg/ml; Sigma-
Aldrich, 227056), and 300 μg of EZ-Link HPDP-Biotin (Thermo Fisher Scientific, 21341) for 1.5 hours at 
room temperature. An equal volume of chloroform was added to reaction, followed by shaking, incubation 
at room temperature for 2 minutes and centrifugation (1400rpm at 4°C for 5 minutes). Aqueous phase was 
isolated and an equal volume of chloroform was added, followed by shaking, incubation at room 
temperature for 2 minutes and centrifugation (1400rpm at 4°C for 5 minutes). This step was repeated an 
additional one time. Aqueous phase was isolated and RNA was precipitated using 5M NaCl (10% volume) 
and 100% isopropanol (1 volume) and centrifugation (20000g at 4°C for 20 minutes). RNA pellets were 
washed in 75% (v/v) ethanol, reconstituted in Ultrapure DNAse/RNAse-free distilled water (100μL) and 
denatured at 65°C for 10 minutes. Biotinylated RNA was separated from the total RNA pool by incubation 
with streptavidin beads (μMACs Streptavidin Kit, Miltenyi Biotec, Bergisch Gladbach, Germany, 130-074-
101) at room temperature for 15 min with constant rotation. μMACs columns pre-equilibrated with room 
temperature wash buffer (100 mM tris-HCl (pH 7.4), 10 mM EDTA, 1 M NaCl, and 0.1% (v/v) Tween 20) 
were used to bind streptavidin beads, which were then washed using 900μL wash buffer that was heated to 
65 °C or at room temperature, 5 times each. Biotinylated RNA was eluted into 700μL Buffer RLT from the 
RNeasy MinElute Cleanup Kit (Qiagen, 74204) through two additions of 100 mM DTT (100μl) 3 min apart, 
and then isolated using the same kit according to manufacturer’s instructions. RNA concentration was 
quantified using the Agilent 2200 TapeStation System (Agilent, G2964AA) with High Sensitivity RNA 
ScreenTape (Agilent, 5067-5579) and Sample Buffer (Agilent, 5067-5580). 
Sequencing libraries were prepared with the NEBNext Ultra II Directional RNA Library Prep Kit for 
Illumina (without additional fragmentation), where ribodepletion was performed using the NEBNext rRNA 
Depletion Kit (New England BioLabs, E6310). Single-end 75 base pair reads were sequenced using the 
NextSeq 500 (Illumina).  
 
MAC-seq 
Cells (5e+04 per well) in a final volume of 100μL in a 96-well plate format were incubated with 
transcriptional and epigenetic inhibitors in technical duplicate for 6 hours (supplementary table 8) at 37°C 
and 5% carbon dioxide. 5e+03 cells from each well were aliquoted into a separate 96-well plate, washed in 
ice-cold PBS twice and centrifuged (1400rpm at 4°C for 4minutes). Supernatant was removed and cell 
pellets were frozen at -80°C. Library preparation is adapted from 4. In detail, 17 μl lysis buffer were added 
into each well of a 96-well plate containing cell pellets and incubated at room temperature for 15 min under 
agitation (900 rpm). 12.5 μl of cell lysate were transferred into each well of a new 96-well plate previously 
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prepared with 1 μl of 10 nM well-specific RT MAC-seq primer and 7.5 μl RT mix; the RT mix contains a 
TSO primer and external ERCC RNAs. The mixture was incubated for 2 hours at 42 C to create well-
barcoded full length cDNA and then all the wells of a plate were combined into a single tube. Concentration 
and clean-up was done via column purification (DNA Clean and ConcentratorTM-100, Zymo Research) and 
RNAClean XP beads (Beckman Coulter) and each plate eluted in 22 μl nuclease free water. The purified 
cDNA was pre-amplified with KAPA HiFi HotStart ReadyMix (Roche) and MAC-seq PreAmp PCR primer 
and the quality checked on a D5000 Screentape (TapeStation, Agilent). One barcoded library was prepared 
per plate using TD buffer and TDE1 enzyme (Illumina) for tagmentation and KAPA HiFi HotStart Ready 
Mix (Roche) and custom primers (MAC-seq P5 PCR and MAC-seq Indexing Mix) for amplification. 
Libraries were purified with DNA Ampure XP beads (Beckman Coulter), quality checked on a DNA1000 
tape (TapeStation, Agilent) and quantity verified by qPCR. Two indexed libraries were sequenced on a 
NextSeq 500 instrument (Illumina) using a custom sequencing primer (MAC-seq Read primer) and a High 
Output Kit v2.5 75 Cycles (Illumina) with paired-end configuration (25 base pairs for read 1 and 50 base 
pairs for read 2).  
 
SLAM-seq analysis 
Single-end reads were demultiplexed using bcl2fastq (v2.17.1.14) and resulting FASTQ files were trimmed 
for adapter sequences using Trim_galore (v0.6.5) with a stringency overlap of 3bp. Trimmed FASTQ files 
were processed with SLAM-dunk (v0.4.3), enabling multi-mapper reconciliation and using a threshold of 
at least 2 T > C conversions to mark a read as converted. The no 4sU control sample was processed first to 
find single nucleotide polymorphisms (SNPs), which was then used to filter the subsequent samples. 
`bedtools merge` was then used to merge the 3' UTRs of each Ensembl transcript by gene (v77 identifiers 
for hg38) for use in the SLAM-dunk counting step. The Broad Institute GSEA software was used to perform 
GSEA 5. Differential gene testing was performed on counts normalized to library sizes scaled to external 
S2 spike-ins and filtered for lowly expressed genes using edgeR (v3.32.1) on Rstudio (v4.0.2). SLAM 
sequencing tcount files from 6 (GEO accession GSE138210) and 7 (GEO accession GSE111463) were 
downloaded and differential gene testing was performed as described above.  
 
TT-seq analysis 
Single-end reads were demultiplexed using bcl2fastq (v2.17.1.14) and resulting FASTQ files were aligned 
to the genome using STAR (v2.7), which were then summarized using featureCounts in Subread (v2.0.1): 
counting reads with a minimum Mapping Quality Score (MQS) of 7 in the union of all transcript isoforms 
of each Ensembl gene. Only genes with at least 10 reads per million across at least two samples within an 
experiment were retained for further analysis. In order to compare expression levels between samples, raw 
read counts for each gene were converted to reads per million using adjusted library sizes calculated with 
edgeR’s TMM implementation on the spike-in read counts.  
 
Total RNA-seq analysis 
Paired-end reads were demultiplexed using bcl2fastq (v2.17.1.14) and resulting FASTQ files were quality 
checked using fastqc (v0.11.6), trimmed 15 bp from the 5’ end to remove primer bias and filtered for quality 
and length using cutadapt (v2.1; -u 15 -U 15 -q 15 --pair-filter any --minimum-length 50). Trimmed reads 
were mapped to GRCh38/hg38 and BDGP6/dm6 genomes using hisat2 (v2.1.0) with paired read settings 
and resulting SAM files were converted to BAM files using samtools (v1.9; view), which were then sorted 
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and indexed. Reads mapping to either exonic or intronic genomic intervals were counted using a combined 
hg38/dm6/GFP GTF file with FeatureCounts from the subread package (v2.0.0; featureCounts -O -M -T 
32 -p -s 2). Differential gene testing was performed on counts normalized to library sizes scaled to external 
S2 spike-ins and filtered for lowly expressed genes using edgeR (v3.32.1) on Rstudio (v4.0.2). Gene 
Ontology analysis was performed using the ToppGene suite 8–10.  
 
MAC-seq analysis 
Paired-end reads were demultiplexed using bcl2fastq (v2.17.1.14) and resulting FASTQ files were quality 
checked using fastqc (v0.11.6) and read 2 (R2) was trimmed 15 bp from the 5’ end to remove primer bias 
using cutadapt (v2.1; -u 15). R2 FASTQ files of paired-end reads were demultiplexed according to well 
barcodes (supplementary table 9) and filtered for PCR duplicates using Unique Molecular Identifiers 
(UMIs), both present in read 1 (R1) using the scruff 11 R (v4.0.2) package dumultiplex function (bcStart = 
1, bcStop = 10, bcEdit = 0, umiStart = 11, umiStop = 20, keep = 35, minQual = 20, yieldReads = 1e+06). 
R2 FASTQ files were then mapped to the GRCh37/hg19 genome and ERCC sequences using 
alignRsubread (unique = FALSE, nBestLocations = 1, format = "BAM") and resulting BAM files were 
used to count unique R2 reads mapping to exonic genomic intervals and ERCC sequences using a combined 
hg19/ERCC GTF file with countUMI (umiEdit = 0, format = "BAM", cellPerWell = 1. Both functions are 
from the scruff R package. Gene expression counts were normalized to library size and reads mapping to 
ERCC spike-ins using the RUVseq R package (v1.24.1). Subsequent count processing was performed using 
the Seurat R package (v3.2.1) 12, where lowly expressed genes were filtered and counts were normalized for 
latent variables including plate, well row and column, using the SCTransform function. SCTransformed 
scaled gene RNA expression values were then used for PCA, where shared-nearest-neighbours (SNN) 
network was calculated using the top 10 Principal Components with the FindNeighbours function using 
default parameters. Drug-treatment clusters were subsequently identified with the Louvain algorithm using 
a resolution parameter of 2. Uniform Manifold Approximation and Projection (UMAP) values were also 
calculated using the top 10 Principal Components with the RunUMAP function using default parameters. 
Differential gene testing relative to treatment controls (DMSO or EtOH) was performed using a hurdle 
model (MAST) with un-scaled gene RNA expression counts, plate and column numbers as latent variables 
and a logFC threshold of 0 with the FindMarkers Function. Area Under the Curve (AUC) scores for each 
drug treatment and gene lists indicated was calculated using all expressed genes with the R AUCell Package 
(v0.10.0).  
 
ChIP-seq analysis and super-enhancer identification 
H3K27ac ChIP-seq FASTQ files (SRR1957037, SRR1957038, GEO Accession GSM1652918) were 
downloaded using sratoolkit (v2.9.0, fastq-dump --gzip --split-files), quality checked using fastqc 
(v0.11.6) and mapped to the GRCh37/hg19 genome using bowtie2 (v2.3.4.1) with paired end read 
settings. Resulting SAM files were converted to BAM files using samtools (v1.9; view), which were then 
sorted and indexed. Potential PCR duplicates were filtered using the MarkDuplicates function from picard 
(v2.6.0; REMOVE_DUPLICATES= true) and BAM files were converted to TDF files using igvtools 
(v2.3.95; count -z 5 -w 10). H3K27ac peaks were called relative to input using macs (v2.1.1; callpeak -f 
BAMPE -g hs -q 0.01 -call-summits –cutoff-analysis) and peaks within hg19 ENCODE blacklist regions 
(https://www.encodeproject.org/files/ENCFF356LFX/) were removed using bedtools (v2.27.1) intersect 
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function. Super-enhancer calling was performed using Ranking Ordering of Super-Enhancer (ROSE2) 
(v1.0.5; -c INPUT -g hg19 -t 2000 -s 12500) 13 and were annotated to genes according to “TOP GENE.” 
 
Coltron analysis  
The coltron algorithm (v1.0.2) 14 was used to identify SE-associated TFs and regulatory networks using 
ROSE2-determined super-enhancer peaks and H3K27ac BAM signal with default parameters.  
 
Determination of RNA synthesis and decay rates  
Solving the first order differential equation in Fig. 2F yields an exponential function with parameters for 
the synthesis rate (k1), decay rate (k2) and initial quantity of RNA (M0): 
M(t) = (M0 - K) * e^(-k2*t) + K  
where K = k1/k2 is the quantity at equilibrium. 
To determine decay rates (k2) for each gene, precision-weighted nonlinear regression was used to fit an 
exponential curve to the decreasing quantity of SLAM-seq labelled reads measured post-washout of 4sU. 
Assuming no synthesis of labelled reads post-washout (k1 = 0) leaves one parameter for the starting RNA 
concentration, which was set to the initial data point at T = 0, and one for the decay rate, which was fit 
using MINPACK’s (v1.2-1) Levenberg-Marquardt implementation in R.  
Precision weights for the fit were estimated using local regression. The standard deviation between 
technical replicates for a given mean expression level in the baseline SLAM-seq dataset was modelled with 
R’s `loess` implementation, and then applied to calculate weights for the other samples during fitting. 
Synthesis rates were determined by dividing the TT-seq adjusted reads per million for each gene by the 
length and sampling time, producing a scaled FPKM h-1 averaged across replicates. 
 
Predictions 
Predictions were made with the model using the fitted rates and differing initial conditions, then compared 
against a separate dataset of total mRNA measurements at T = 2, 6h. 
Parameters set for simulated results: 

Simulated Result Decay rate (k1) Synth. rate (k2) Initial qty (M0) 
Simulated total transcriptional 
shutdown 

Fitted decay rate 
under drug 

0 Baseline 
equilibrium 
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