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Abstract  

Nature challenges microbes with change at different frequencies and demands an effective 

response for survival. Here, we used controlled laboratory experiments to investigate the 

ecological success of different response strategies, such as post-translational modification, 

transcriptional regulation, and specialized versus adaptable metabolisms. For this, we inoculated 

replicated chemostats with an enrichment culture obtained from sulfidic stream microbiomes 16 

weeks prior. The chemostats were submitted to alternatingly oxic and anoxic conditions at three 

frequencies, with periods of 1 day, 4 days and 16 days. The microbial response was recorded with 

16S rRNA gene amplicon sequencing, shotgun metagenomics, transcriptomics and proteomics. 

Metagenomics resolved 26 nearly complete genomes of bacterial populations, mainly affiliated 

with Proteobacteria and Bacteroidetes. Almost all these populations maintained a steady growth 

rate under both redox conditions at all three frequencies of change. Apparently, oscillating 

oxic/anoxic conditions selected for generalistic species, rather than species specializing in only a 

single condition. Rapid (1-day) dynamics yielded more stochasticity, both in community dynamics 

and gene expression, indicating that bet-hedging might be an effective coping strategy for 

relatively rapid environmental change. Codon-usage bias, previously associated with copiotrophic 

and oligotrophic lifestyles, was found to be a powerful predictor of ecological success at different 

frequencies, with copiotrophs and oligotrophs more successful at a rapid and a slow pace of change, 

respectively, independent of growth rate.   
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Introduction 

“The only constant in life is change”, according to the philosopher Heraclitus, ~500 BC 

in Ancient Greece. “Changes are in diverse forms, up or down, rigid or flexible, and throughout 

the whole universe”, as stated in I Ching, an ancient Chinese divination text, ~1000 BC. Microbes, 

the smallest and most abundant in numbers among cellular organisms, are coping with change all 

the time. Microbiomes of the oral and digestive-tract of animals experience dynamics associated 

with feeding regimes, leading to cycles of feast and famine multiple times per day1,2. At even 

shorter timescales - minutes to seconds - these microbiomes experience periods of oxygen excess 

or limitation. Cyanobacteria display a progression of gene expression in response to diurnal 

cycles3,4. Seasons dictate change in lakes, with water columns mixing in spring and winter whereas 

stratifying during summer and fall5. At longer timescales, global climate change and 

eutrophication tip entire ecosystems into different modes of operation6-8. Often, change affects 

redox conditions, which are the topic of this study. 

Nature challenges microbes with change of different periodicities, and microbes have 

developed different coping strategies in response. Post-translational modifications to proteins can 

(de)activate biochemical pathways quickly, reversibly and with minimal bio-energetic costs9. For 

example, 30% of the yeast proteome is affected by phosphorylation10 and a similar extent of the 

Escherichia coli proteome undergoes acetylation11. Cyanobacterial rhythms can be governed by 

phosphorylation of circadian clock proteins12. Regulation of gene transcription and translation 

resets priorities for protein production, remodeling a cell’s proteome in response to a changing 

situation. Bacterial and archaeal genomes differ from eukaryotic genomes in that subcellular 

systems are organized in modular gene clusters known as operons. These are expressed under the 

control of a single response mechanism, such as one/two-component regulators or DNA 
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methylation. In Escherichia coli, transcription factors have been shown to regulate operon 

expression in response to carbon, phosphorus and nitrogen availability13,14 Transcriptional control 

of circadian rhythms is widespread among microbes15-17. Interestingly, correlation between mRNA 

and protein levels is sometimes poor18,19. For change at longer timescales, some microbes have 

developed specialized survival forms, such as spores, that can maintain viability through thousands 

of years of unfavorable conditions20. Evolution is a more general mechanism of adaptation to even 

slower change, acting over thousands of generations21. 

Even though it is generally assumed that bacteria are always responsive to their 

environment, this is not necessarily the case. After all, regulation is associated with trade-offs, 

such as the bio-energetic costs associated with accelerated turnover of the proteome. Both protein 

biosynthesis and protein degradation cost energy and consume ATP22. Instead of responding to 

change, microbes may survive a period of unfavorable conditions without adaptation, counting on 

conditions to become more favorable quickly enough. Alternatively, they may constitutively 

express a multifunctional proteome that provides answers to different conditions23. For example, 

in bioreactors cycled every 6-12 hours, relatively few proteins were found responsive between 

oxic and anoxic phases24,25. In intertidal sediments, transcription of genes for aerobic respiration 

and denitrification was unaffected by oxygen concentrations26. In tropical forest soils, many taxa 

displayed sustained activity through rapidly fluctuating redox conditions27. 

When an ecosystem shifts back and forth between two different redox conditions, will it 

select for two different, specialized microbiomes, one for each condition? Or will it select for a 

single, generalist microbiome that functions under both conditions? We hypothesize that this 

depends on the frequency of change, with generalists successful at a rapid pace and specialists at 

a slower pace. In generalized microbiomes, will species express a stable proteome that can handle 
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different conditions? Or will they adapt their proteome each time conditions change? We 

hypothesize that stable expression will occur at a high pace of change, whereas remodeling will 

happen at a lower pace. Will species have more success with post-translational modification or 

with transcriptional regulation? Again, we hypothesize this will depend on the pace of change, 

with a bigger role for transcriptional regulation at a lower rate of change. 

To address these hypotheses, we need to pit the different strategies against each other, 

under defined conditions. For this, we could use an enrichment culture, a consortium of microbes 

obtained from a single microbiome, assembled in a lab environment relatively recently. 

Alternatively, we could use a synthetic microbial community, a collection of microbial isolates 

obtained from culture collections. Here, we opted for an enrichment culture, (a) for avoiding 

selection effects and evolutionary adaptation associated with long-term lab-cultivation, (b) because 

more biodiversity in the source community improved the likelihood of representation of varied 

ecological strategies in the experiment. We used microbiomes sampled from a sulfidic spring as 

the source community. This community was naturally exposed to redox gradients in space and 

time and was easily accessible year-round, facilitating future reproduction of the work. No single 

study will be able to conclusively address the sweeping questions we are asking, so generalization 

will depend on future studies with a diversity of approaches and source communities. 

When a wild microbiome is first transferred to the lab, initial selection may be governed 

by factors outside the scope of a study’s design - for example, the growth medium may be toxic to 

some of the microbes present in the natural sample. On the other hand, when enrichment proceeds 

for too long, evolutionary adaptation to the experimental setup may become a confounding 

factor28,29. To strike a balance between these two, we used a sixteen-week pre-adaptation period 

in batch-incubations, exposed to alternating redox conditions, followed by the actual experiments 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.04.01.486770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486770
http://creativecommons.org/licenses/by-nd/4.0/


 

6 
 

conducted in chemostats, for at most 16 generations, at a dilution rate of 0.5 volume changes per 

day. This corresponds to a doubling time of 1.4 days, much longer than typical for isolated bacteria 

grown in the lab. We applied three different change regimes (Fig. 1). In the first set of triplicated 

chemostats, cells experienced alternatingly oxic and anoxic conditions about twice per generation. 

In the second set, redox conditions changed in pace with generation time. In the third set, the cells 

experienced redox change about once per four generations. We obtained metagenome-assembled 

genomes (MAGs) for 26 populations and monitored responses by transcriptomics and proteomics. 

By pitting microbes employing different response strategies against each other, competing for 

resources in a changing environment, this study set out to falsify our three hypotheses. 

 

Results 

Sediment samples were collected from sulfidic streams at Canyon Creek in Canada (Fig. 

S1a-c). The sediments were naturally exposed to oxygen gradients in space and time (Fig. S1d-j) 

and both aerobes (e.g. Thiobacillus, Thiothrix and Thiomicrorhabdus) and anaerobes (e.g. 

Geobacter, Desulfocapsa and Sulfurovum) were present in the original sediment community (Fig. 

S2, Supplementary Table 2). Stream sediments were first pre-adapted to the laboratory in six 

parallel batch cultures for 16 weeks. Next, we inoculated the combined batch cultures into three 

sets of chemostat experiments at a dilution rate of 0.5 per day. Each set experienced alternating 

oxic and anoxic phases, controlled by flushing the chemostats with either air or Argon (Fig. 1). 

The first set of triplicated chemostats had short phases, so that each generation of microbes 

experienced oxic/anoxic shifts multiple times. In the second set, each generation experienced only 

about one shift. The third set had long phases that lasted longer than a single generation. At the 

end of each oxic and anoxic phase, we determined the outcomes of microbial metabolism based 
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on nutrient concentrations and the community composition with amplicon sequencing. Multi-

omics was performed during the final oxic and anoxic phase, to investigate the selected response 

strategies in more detail (Fig. 1). 

 

Outcomes of microbial metabolism 

Rhythms in nutrient concentrations proceeded in pace with shifts in air and Argon 

flushing (Fig. 2). This showed that (a) the shifts in redox conditions were successfully established 

and (b) the enriched bacteria were responding to the shifting conditions. Acetate was always fully 

consumed during oxic phases. During anoxic phases, it accumulated, up to 5 mM in low-frequency 

experiments. Sulfate concentrations were stable at high- and medium-frequency. At low-frequency, 

sulfate accumulated during oxic phases. Sulfide remained undetectable during oxic phases, and 

accumulated, up to 1.5 mM, during anoxic phases at low-frequency. Nitrate was mostly used up 

during both oxic and anoxic phases (Supplementary Table 4). These results indicated occurrence 

of aerobic respiration, (aerobic) denitrification, sulfide oxidation and cysteine metabolism. At low-

frequency, total cellular biomass was 3.9±1.5 times higher during oxic phases than anoxic phases 

(with DNA as a proxy for biomass, Supplementary Table 4). At medium-frequency, oxic biomass 

was 2.6±1.7 times higher than anoxic biomass. No significant differences between oxic and anoxic 

biomass were observed at high-frequency. Because aerobic metabolism provides more energy, 

biomass was expected to be higher at the end of oxic phases than anoxic phases. In addition, cells 

growing slower than a chemostat’s dilution rate may also be washed out during anoxic periods, 

reducing biomass. Not all results are easily explained. For example, where ammonia was stable 

around 0.5 mM at high- and medium-frequency, it accumulated up to 2 mM during oxic phases at 

low-frequency. 
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Community dynamics  

16S rRNA gene amplicon sequencing showed that by the end of the 16-week pre-

adaptation batch cultures, 92 out of 3071 stream populations, each represented by a single 

amplicon sequence variant (ASV), were still present (Supplementary Table 2). Of 119 abundant 

stream populations (relative sequence abundance in situ > 0.1%), 34 were still present at the end 

of the pre-adaptation. Thus, pre-adaptation outcomes were co-determined by in-situ abundance. 

Although our study did not aim to reproduce sulfidic-stream microbiomes in the lab, we still 

observed significant representation. Amplicon sequencing also showed that at least 199 

populations in total were present at the end of the pre-adaptation/chemostat inoculation. This 

biodiversity was the starting point for subsequent selection. Selection in chemostats was very 

effective, as within two days, a simple microbial community established itself in each experiment. 

These communities featured the same ten abundant populations (ASVs), making up > 88% of 

relative sequence abundance across all chemostat experiments and replicates (Fig. 3a, 

Supplementary Table 2). Three of these ten populations, 3 Thiobacillus, 9 Arenimonas and 10 

Brevundimonas were ubiquitous in stream microbiomes. Among the stream’s ten most abundant 

populations, three were represented in the chemostats, including 3 Thiobacillus (Fig. S2). Among 

these ten most abundant populations, success differed between treatments. 

At high-frequency, the community composition was relatively stable between oxic and 

anoxic phases, with 1 Pseudomonas dominating communities in two of the replicates. At low-

frequency, community compositions oscillated in tune with oxic and anoxic conditions. For 

example, 1 Pseudomonas and 2 Allorhizobium were more abundant during anoxic and oxic phases 

respectively. This was the only treatment where community differences between phases were 

larger than between replicates, as shown by nonmetric multidimensional scaling (Fig. 3b,c). 
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Differences between replicates were large at high and medium-frequency and small at 

low-frequency. Frequency of change was more important in shaping community structure than the 

occurrence of oxic or anoxic conditions. For example, 4 Rhizobiaceae was most successful at 

medium-frequency, whereas 3 Thiobacillus was mainly observed at low-frequency. All abundant 

populations appeared to be able to cope with both redox conditions, indicating they might be 

capable of both aerobic and anaerobic metabolism.  

 

Physiology and growth of enriched populations 

To investigate the metabolic potential and lifestyle of the enriched populations more 

closely, shotgun metagenomes were sequenced for samples collected at the end of the final oxic 

and anoxic phases of each chemostat experiment. The metagenomes were assembled and binned 

into MAGs. We obtained 26 MAGs in total, including 18 MAGs with completeness > 90% and 

contamination < 10% (Supplementary Table 5). The total abundance of the 26 MAGs accounted 

for over 99% of sequenced DNA in all samples (Fig. 4a, Supplementary Table 5). Although the 

metagenomes were obtained at the end of the experiments, the MAGs were associated with 

populations active throughout chemostat selection. Only populations that were completely 

unsuccessful and disappeared from the experiment entirely, such as ASV 8 Desulfurivibrio, were 

not represented among MAGs. Community composition based on 16S and shotgun sequencing 

were consistent, but relationships between ASVs and MAGs were not always one to one. For 

example, ASV “1 Pseudomonas” was associated with two MAGs, “Pseudomonas A” and 

“Pseudomonas C”. 

Analysis of gene content of MAGs indicated that 22 out of 26 associated populations 

selected during chemostat trials were capable of both aerobic and anaerobic growth (Fig. 4a, 
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Supplementary Tables 6-31). Most deciphered metabolic pathways were encoded in > 50% of 

MAGs, indicating vast functional redundancy among community members. As cysteine was a 

major source of energy, carbon and sulfur in the medium, it was not surprising that all selected 

populations encoded cysteine desulfurase in their genomes. Aerobic respiration, denitrification and 

sulfide oxidation were common and consistent with observed nutrient dynamics (Fig. 2). One 

metabolic pathway we did not expect to see was the Calvin cycle for carbon fixation: ten genomes 

contained both ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and 

phosphoribulokinase (PRK)30.  Apparently, almost half of the enriched populations potentially 

used carbon dioxide as a carbon source even though organic substrates such as acetate were often 

present in excess (Fig. 2). 

The capacity of most populations to grow both aerobically and anaerobically was 

supported by stable relative sequence abundance of associated MAGs during oxic and anoxic 

phases at high- and medium- frequency, in agreement with amplicon sequencing results. However, 

at low frequency, 1 Pseudomonas AC and 2 Allorhizobium A were more abundant during anoxic 

and oxic phases respectively. To compare aerobic and anaerobic growth rates of individual 

populations, we calculated the peak-to-trough (PTR) ratio of sequencing depth for each MAG 

during oxic and anoxic conditions with iRep31. A high growth rate is associated with a high genome 

replication rate, resulting in a high PTR ratio. Although PTR is a poor proxy for growth rate when 

comparing different species32, it works well for comparing growth rates of the same species across 

different samples31. We found PTR ratios did not differ significantly between phases, even for 1 

Pseudomonas AC and 2 Allorhizobium A at low frequency (Fig. 4b, Supplementary Table 32). 

This indicated that aerobic and anaerobic growth rates were similar. Overall, analysis of PTR ratios 

supported the conclusion that dynamic conditions selected for species that coped well with both 
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oxic and anoxic conditions. Even in the case of 1 Pseudomonas AC and 2 Allorhizobium A at low-

frequency, the observed changes in abundance could be explained with only minor differences in 

growth rate. 

In contrast to redox state, frequency of change did select for specific populations, in 

agreement with amplicon sequencing results. For example, 1 Pseudomonas AC, 4 Allorhizobium 

B and 3,6 Thiobacillus AB were most successful at high-, medium- and low-frequency respectively. 

To explain this outcome, we investigated the codon usage bias of the MAGs with gRodon33 

(Supplementary Table 33). Strong codon usage is associated with rapid growth, but could also 

facilitate rapid gene expression in response to environmental cues. According to the predicted 

minimum doubling times by gRodon, we grouped the populations to fast copiotrophs (< 2 hours), 

slow copiotrophs (> 2 and < 5 hours) and oligotrophs (> 5 hours) (Fig. 4c, Supplementary Table 

33). The chemostats selected for a mix of copiotrophs and oligotrophs (Fig. 4c). However, fast 

copiotrophs were more successful at high- and medium-frequency than low-frequency, while slow 

copiotrophs were more successful at medium- and low-frequency, and oligotrophs were more 

successful at low-frequency (Fig. 4c). Thus, codon usage bias was identified as an important 

predictor of success in coping with change of different frequencies. 

 

Transcriptional and translational regulation 

Metatranscriptomics and proteomics were used to determine changes to each population’s 

gene expression from the final oxic phase to the final anoxic phase (Fig. 5a, Supplementary Tables 

34-41). Genes involved in all investigated metabolic categories, including the Calvin cycle, were 

active during both oxic and anoxic phases. At all three frequencies, genes for aerobic respiration 

were more actively transcribed during oxic phases, while denitrification genes were more active 
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during anoxic phases. For some subsystems responses depended on frequency. For example, 

hydrogen oxidation by NiFe hydrogenases was more active during the oxic phase at low-frequency 

and during the anoxic phase at high-frequency. Most subsystems showed no significant differences 

in proteomes.  

To explore the role of gene expression in adaptation more broadly than these categories, 

we calculated the “turnover” of each population’s entire transcriptome and proteome across phases 

and frequencies. The turnover is the percentage of the transcriptome/proteome that differs between 

two samples. To get a sense of the experimental noise and natural variability, we compared the 

turnover from the oxic to the anoxic phase of individual replicates to the turnover between two 

replicates at the same phase (oxic or anoxic). 

Whereas transcriptome “turnover” between replicates increased with increasing 

frequency, transcriptome turnover between phases decreased with increasing frequency (Fig. 5b, 

Supplementary Table 42). Apparently, exposure to high-frequency change led to higher natural 

variability in transcriptomes. Only at low frequency was transcriptome turnover associated with 

regulation (47.9±15.4%, n=63) higher than stochastic differences between replicates (24.0±13.4%, 

n=118). Transcriptome turnover was lower than cell turnover at all three frequencies, indicating 

that organisms may not have actively degraded old transcripts (messenger RNA), but only 

responded to change by adding new ones. 

Surprisingly, proteomes showed a different trend (Fig. 5c, Supplementary Table 42): Here, 

turnover between replicates and phases both decreased with decreasing frequency of change. For 

all three frequencies, there were no significant differences between the impact of natural variability 

and regulation. Proteome turnover between phases was similar to transcriptome turnover between 

phases at low-frequency, but much higher than transcriptome turnover between phases at high- 
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and medium-frequency. Proteome turnover was lower than cell turnover at medium- and low-

frequency, but larger than cell turnover at high-frequency. This indicated active proteome 

remodeling (degradation of old proteins). Alternatively, and perhaps more likely, these results 

could also be explained by active use of post-translational modifications (PTMs, see below) at 

high frequency. Because many PTMs are unknown and not in our databases or might have been 

lost during sample processing, proteins with PTMs may not have been identified, artifactually 

increasing protein turnover numbers. 

The coherence of transcriptional and translational responses was determined by 

calculating the Pearson correlation coefficient of mRNA and protein differences between phases 

(Fig. 5d, Supplementary Table 43). Significantly higher correlations were observed at low-

frequency (0.26±0.36, n=24) than high-frequency (0.0053±0.31, n=50) and medium-frequency 

(0.066±0.43, n=48). Thus, the consistency of gene expression between transcription and 

translation increased as frequency decreased. Coherence between the transcriptome and proteome 

was only observed when the pace of change was lower than the generation time. 

 

Post-translational modifications 

Post-translational modification (PTM) is a mechanism for rapidly activating or 

suppressing a protein’s function. Phosphorylation and acetylation are two commonly observed 

PTMs9. In total, we observed 2,320 phosphorylation events and 2,003 acetylation events with high 

confidence across all 18 replicates and conditions (Fig. S3, Supplementary Tables 44,45). We 

observed more phosphorylated proteins at medium-frequency (0.38~1.9% of detected proteins) 

compared to the other two frequencies (0.10~0.77% of detected proteins). Phosphorylation was 

mainly observed for enzymes involved in central metabolism (the TCA cycle and glycolysis), such 
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as Enolase, Malate dehydrogenase and Phosphoglycerate kinase. Acetylated proteins were 

detected in similar amounts at the three frequencies (0.17~0.96% of detected proteins) and were 

more often observed for proteins associated with the cell envelope, including membrane proteins, 

flagellar biogenesis, and regulators, such as molecular sensors and two-component response 

regulators. 

 

Discussion 

We hypothesized that at high-frequency, redox change would select for a single, 

generalist microbiome capable of coping with both oxic and anoxic conditions. In contrast, at low-

frequency we expected selection of two specialized microbiomes. This hypothesis could not be 

rejected, because the amplicon data clearly showed diverging aerobic and anaerobic microbiomes 

at low-frequency.  At the same time, even at low-frequency, populations displayed relatively stable 

growth independent of redox conditions, as shown by co-expression of genes for both aerobic and 

anaerobic metabolism, stable peak-to-trough ratios in genome sequencing depth and persistent 

relative sequence abundances, with few exceptions at low-frequency. Note that our low-frequency 

experiment featured eight-day long oxic and anoxic phases, much longer than common natural 

oscillations such as day/night cycles and feeding regimes. Thus, even though specialization of 

microbiomes was detectable, the enriched microbiomes were overwhelmingly generalist. At an 

even slower pace of change, selection of specialized microbiomes will eventually proceed, as 

reported in previous studies addressing, for example, seasonal change34,35. 

We also hypothesized that at high-frequency, gene expression would be stable throughout 

oxic and anoxic conditions. In contrast, at low-frequency we expected changes in gene expression. 

This hypothesis was falsified. For example, expression of genes involved in denitrification was 
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higher during anoxic conditions, independent of frequency. In addition, overall, gene expression 

was more variable at high-frequency. This variability was not associated with changing conditions 

but was stochastic, caused by differences between replicates. High-frequency change was also 

associated with higher variability in community composition between replicates, as shown by 

amplicon sequencing. Apparently, high-frequency change increased variability, both at the level 

of populations and their phenotypes. This variability/stochasticity might result from adaptation in 

the form of “bet-hedging”36,37. In contrast, at low-frequency, variability in gene transcription could 

be mainly explained by redox state. This was also the only frequency at which transcriptomes and 

proteomes were overall consistent with each other, showing effectiveness of transcriptional 

regulation. Thus, although frequency of change did influence the effectiveness of transcriptional 

regulation as hypothesized, outcomes differed between metabolic subsystems and stochasticity 

was found to be important, especially at high-frequency. 

Our third hypothesis was that post-translational modification (PTM) and transcriptional 

regulation would be more important at high- and low-frequency, respectively. This hypothesis 

could not be rejected. As already discussed, transcriptional regulation was indeed found to be more 

pronounced at low-frequency. We did not obtain direct evidence for increased importance of PTM 

at high-frequency. This might be explained by losses of PTMs during sample processing in 

combination with occurrence of a large untested diversity in potential PTMs. However, indirect 

evidence in the form of very high proteome turnover at high-frequency experiments hinted at a 

role of PTM in coping with rapid change. Occurrence of unknown PTMs would lead to a failure 

to correctly identify peptides during proteomics and could explain large differences in proteomes 

between samples. Dedicated approaches to quantify PTMs will be needed to address this 

hypothesis more conclusively38,39. 
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In addition to addressing the hypotheses, the experiments also yielded unforeseen 

outcomes. First, we observed that codon usage bias, previously associated with oligotrophic and 

copiotrophic lifestyles, predisposes oligotrophs and copiotrophs to cope well with slow and fast 

change, respectively. In our experiments, success was not determined by differences in growth 

rate, as the growth rate was the same across all experiments. Because strong codon bias could 

enable copiotrophs to more rapidly respond to change, this outcome can still be easily understood. 

Second, expression of genes involved in carbon dioxide fixation might have contributed to the 

success of many of the enriched species, even though organic carbon in the form of acetate was 

often present in excess. 

To what extent can results of this study be generalized? At least, some key premises of 

the research were validated experimentally. The source microbiome contained a mixture of aerobes 

and anaerobes, naturally exposed to gradients of redox conditions in space and time. After pre-

adaptation in the lab, the community still featured at least 199 amplicon sequence variants that 

were available for chemostat selection to act upon. That is a much greater starting diversity than 

would be feasible using a synthetic community approach. Selection during chemostat experiments 

was very effective as anticipated. The outcomes of selection differed between treatments, and 

could be explained by a fundamental property, codon usage bias, which controls the speed of the 

transcriptional response. Nutrient concentrations clearly showed the outcomes of aerobic and 

anaerobic metabolism during oxic and anoxic phases, respectively. Thus, the deployed ecological 

strategies worked and showed that the enriched microbial communities successfully coped with 

change during the experiments. The enriched communities were mainly made up of Proteobacteria, 

Bacteroidetes and Firmicutes, globally distributed, ecologically successful bacterial phyla. These 

bacteria were only in the lab for sixteen weeks, a limited time to evolve compared to isolated 
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strains, and recorded phenotypes were more likely to be reflective of the natural situation. Thus, 

the merits of taking an enrichment approach to address the question still appear strong in retrospect. 

In conclusion, we incubated a sulfidic stream microbiome in replicated chemostats 

subjected to oxic/anoxic change at different frequencies. We found that generalists capable of both 

oxic and anoxic metabolism were more successful than specialists and that these bacteria co-

expressed genes for aerobic and anaerobic metabolism continuously, independent of redox state. 

High and low frequency of change was found to select for copiotrophs and oligotrophs respectively 

and this defines a novel aspect of these ecological niches. Future studies with different approaches 

and source microbiomes will show if these findings can be generalized. 

 

Materials and methods 

Sampling, pre-incubation and chemostat incubation 

Sediment samples were collected at six sampling sites from sulfidic streams at Canyon 

Creek, Canada (50.95159°N, 114.55951°W) on March 5th, 2020. 60 g of the mixed sediments 

were inoculated into six 1 L serum bottles with 600 mL fresh medium. The medium contained 

MgCl2 • 6H2O (2 mM), KH2PO4 (0.7 mM), CaCl2 (0.9 mM), NH4Cl (1.9 mM), Na2SO4 (2.5 mM), 

NaNO3 (1 mM), sodium acetate (2 mM), FeCl2 (10 mM), NaHCO3 (20 mM), trace element solution 

(1 mL/L) and vitamin solution (1 mL/L). Trace element solution contained (per liter) titriplex III 

(EDTA) (0.5 g), FeSO4 • 7H2O (0.2 g), ZnSO4 • 7H2O (0.01 g), MnCl2 • 4H2O (0.003 g), H3BO3 

(0.03 g), CoCl2 • 6H2O (0.02 g), CuCl2 • 2H2O (0.001 g), NiCl2 • 6H2O (0.002 g) and Na2MoO4 • 

2H2O (0.003 g). Vitamin solution contained (per liter) biotin (0.1 g), 4-aminobenzoic acid (0.5 g), 

calcium pantothenate (0.1 g), thiamin (0.2 g), nicotinic acid (1.0 g), pyridoxamine (2.5 g) and 

vitamin B12 (0.1 g). The six serum bottles were incubated in the dark, at room temperature in a 
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shaker for 16 weeks, for lab acclimatization. During acclimatization, the bottles were alternately 

incubated with and without oxygen for one week (8 oxic phases, 8 anoxic phases). At the beginning 

of each oxic phase, the bottles were flushed with helium. Then, about 7% oxygen (final 

concentration) was injected into each bottle with a syringe. At the beginning of each anoxic phase, 

the bottles were only flushed with helium. Sodium acetate (2 mM), NaNO3 (1 mM) and NaHCO3 

(20 mM) (final concentrations) were added to the bottles every 4 weeks.  

After 16 weeks, the acclimatized cultures were used to inoculate chemostat incubations. 

For this, the six cultures were first mixed together and then used as inoculum for three sets of 

triplicated chemostats. 100 mL of mixed acclimatized culture were added to each 1 L chemostat 

with 900 mL fresh medium. The fresh medium contained MgCl2 • 6H2O (2 mM), KH2PO4 (0.7 

mM), CaCl2 (0.9 mM), NH4Cl (1.9 mM), Na2SO4 (5 mM), NaNO3 (2 mM), sodium acetate (5 mM), 

NaHCO3 (20 mM), trace element solution (1 mL/L) and vitamin solution (1 mL/L) and L-cysteine 

(5 mM). L-cysteine solution was filter sterilized in an anaerobic chamber and kept anoxic before 

it was added to the medium bottles. The final pH was 6.5 - 7.5. 

Each chemostat setup consisted of a 1 L medium (feed) bottle, a 1 L magnetically stirred 

culture bottle and an effluent collection bottle (Fig. S4). Fresh medium was pumped from the 

medium bottle to the culture bottle at a rate of 0.5 L per day (one volume change per 2 days). The 

total culture volume of the culture bottles was maintained at 1 L by pumping out the excess culture 

volume to the effluent collection bottle. All culture bottles of the chemostats were covered with 

aluminum foil and stirred at 300 rounds per minute with a magnetic stir bar. Just like in the pre-

incubation, the chemostats experienced alternatingly oxic and anoxic conditions. During oxic 

phases, 10 mL/min air was supplied to the medium bottle and the culture bottle. During anoxic 

phases, 10 mL/min Argon was supplied to the medium bottle and the culture bottle. 2 mM FeCl2 
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was added directly to the culture bottles at the beginning of every oxic phase. Chemostats were 

started with an oxic phase and ended with an anoxic phase.  

There were 3 treatments for the chemostat incubations, high-frequency, medium-

frequency and low-frequency (Fig. 1). For each treatment, a set of triplicated chemostats was run. 

The nine chemostats were operated independently in parallel with the same inoculum. For high-

frequency experiments, each phase lasted for 0.5 days and the total culture time was 10 days (10 

oxic phases and 10 anoxic phases, 5 culture volume changes). For medium-frequency experiments, 

each phase lasted for 2 days and the total culture time was 20 days (5 oxic phases and 5 anoxic 

phases, 10 culture volume changes). For low-frequency experiments, each phase lasted for 8 days 

and the total culture time was 32 days (2 oxic phases and 2 anoxic phases, 16 culture volume 

changes).   

Culture samples were collected immediately at the beginning of the incubations and at 

the end of every phase. The samples were centrifuged at 5,000 rpm for 10 min. 0.2μm-filtered 

supernatants were used for chemical measurements and cell pellets were used for DNA, RNA and 

protein extractions. The workflow of the experiment and data analysis were illustrated in Fig. S5. 

 

Chemical measurements 

Sulfide, ammonia, ferrous iron and nitrite were determined with an Evolution 260 Bio UV-

Visible Spectrophotometer (Thermo Scientific, CA, USA). Ammonia was measured by the 

indophenol reaction40. Nitrite was measured by a reaction with sulfanilamide and N-(1-

naphthyl)ethylenediamine41. Sulfide was fixed with zinc acetate and determined by a reaction with 

dimethylparafenyldiamine and Fe(NH4)(SO4)2  12 H2O as previously described42. Ferrous iron was 

measured with the ferrozine method43. Acetate was quantified by high-performance liquid 
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chromatography (HPLC) using a Thermo RS3000 HPLC fitted with a Kinetex 2.6 μm EVO C18 

100 Å LC column, a Thermo RS3000 pump and an UltiMate 3000 fluorescence detector (Thermo 

Scientific, CA, USA). Nitrate and sulfate were measured by a Dionex ICS-5000 Ion 

Chromatography System (Thermo Scientific, CA, USA) equipped with an anion-exchange column 

(Dionex IonPac AS22; 4×250 mm; Thermo Scientific), an EGC-500 K2CO3 eluent generator 

cartridge and a conductivity detector.  

 

DNA extraction and amplicon sequencing 

DNA was extracted from sediments, pre-incubated culture pellets and chemostat culture 

pellets with the FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, OH, USA). Qubit 2.0 

Fluorometer (Invitrogen, CA) was used to estimate the DNA concentration. Amplicon sequencing 

was performed with the primers A519F (5’-CAGCMGCCGCGGTAA-3’) and Pro805R (5’-

GACTACNVGGGTATCTAATCC-3’), targeting both archaea and bacteria44,45. PCR systems 

were prepared with template DNA, the forward and the reverse primers and 2x KAPA HiFi Hot 

Start Ready Mix (Roche, CA). PCR was performed with the following protocol: an initial 

denaturation cycle (95°C for 3 min), 25 cycles of denaturation (95°C for 30 s), annealing (55°C 

for 45 s) and extension (72°C for 60 s), and a final extension cycle (72 °C for 5 min). Triplicated 

PCR reactions were conducted for each DNA sample and the PCR products were verified by 1% 

agarose gel electrophoresis. The amplicons were pooled, purified and sequenced with an Illumina 

Miseq System (Illumina, San Diego, CA) using the 2 × 300 bp MiSeq Reagent Kit v3. Raw data 

was processed with amplicon sequencing variant (ASV) analysis in MetaAmp46. Non-metric 

multidimensional scaling (NMDS) analysis was performed with the ‘vegan’ package in R v4.0.3. 

Different groups were labelled with the ‘ordiellipse’ function, which invisibly returns an object 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.04.01.486770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486770
http://creativecommons.org/licenses/by-nd/4.0/


 

21 
 

that has a summary method that returns the coordinates of centroids and areas of ellipses. A total 

of 123 samples collected from the sediments and cultures were sequenced, yielding 4,632,919 

reads after quality control (4,858 to 169,903 reads per sample).  

 

Metagenomic sequencing and data analysis 

18 samples were selected for metagenomic, metatranscriptomic and metaproteomic 

analysis (Fig. S6). These samples were collected at the final oxic and anoxic phases of the 

triplicated treatments (2×3×3=18). For metagenomics, extracted DNA (see above) was fragmented 

to an average insert size of ~350 bp using acoustic sonication (Covaris model S220).  Adapter-

ligated fragment libraries were generated using the Kapa Biosystems HyperPrep PCR-free library 

preparation workflow, according to the manufacturer’s protocol. The libraries were quantified with 

the KAPA qPCR library quantitation assay and sequenced on an Illumina NextSeq 500 platform 

with the 300 cycle Mid-Output Kit (2 x 151 bp paired end sequencing). The final output was ~7.2 

M read pairs (~2.2 Gb) per sample.  

Raw reads were filtered with BBduk. First, the last base off of 151bp reads was trimmed 

with “ftm=5”. Adapters were clipped off with “tbo tpe k=23 mink=11 hdist=1 ktrim=r”. PhiX 

sequences were filtered out with “k=31 hdist=1”. 3’ low quality bases were clipped off with 

“qtrim=rl trimq=15 minlength=30”.  Quality-controlled reads were assembled separately for each 

sample and co-assembled for all samples with MEGAHIT v1.2.2-beta47. Contigs shorter than 500 

bp were not further considered. Per contig sequencing depth was determined with BBMap v38.06 

with the parameter “minid=0.99”. The coassembly and each individually assembled sample were 

binned separately by three methods, MetaBat v2:2.1548, MaxBin v2.2.749 and CONCOCT v1.1.050. 

DASTool v1.1.2 was applied to select the best bins from the three binning methods for each 
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library51. dRep v3.0.0 was used to dereplicate bins obtained from different assemblies52. 

Completeness and contamination of bins (MAGs) were estimated by CheckM v1.1.353. MAGs 

were taxonomically classified with GTDBtk v1.3.054. Unbinned contigs were dereplicated by blast 

searches to each other. If an unbinned contig was 99% identical to a binned contig, the unbinned 

contig was discarded. If two unbinned contigs had 99% identity to each other, only the longer one 

was kept. Sequencing depth information of all non-redundant contigs were aggregated from 

mapping results using the script “jgi_summarize_bam_contig_depths” provided with MetaBat48. 

Contigs were annotated using MetaErg v1.2.355.  

The relative sequence abundance of each population associated with a MAG in 

metagenomes was calculated by dividing the sequencing depth of the MAG by the sum of 

sequencing depths of all MAGs and the unbinned contigs. Each MAG was associated with 

corresponding ASVs based on abundance and taxonomy. The replication rate of each population 

was estimated with iRep31. The codon usage bias of MAGs were estimated with gRodon33 using 

“Partial” mode. 

 

RNA extraction and metatranscriptomic sequencing 

Pellets from 50 ml culture were processed for RNA extraction using the RNeasy 

PowerSoil Total RNA Kit (Qiagen, USA). A DNase kit (Invitrogen, CA) was used for RNA 

purification. The RNA concentration was checked with a Qubit 2.0 Fluorometer (Invitrogen, CA). 

Libraries were prepared using the New England Biolabs NEBNext rRNA depletion kit (Bacteria) 

and NEBNext Ultra II Directional RNA library prep kit (Illumina, San Diego, CA). The libraries 

were quantified by KAPA qPCR library quantitation assays and sequenced paired-end using 
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MiSeq platform (Illumina, San Diego, CA) with a 150 cycle v3 sequencing kit, yielding ~1.5 M 

reads pairs for each sample.   

Read quality control was performed using the procedure described above. Reads mapping 

to ribosomal genes were filtered out with SortMeRNA v4.2.056 with a 1×e-10 e-value cutoff. The 

filtered reads were mapped to the dereplicated contigs with 99% identity. Relative transcriptional 

activity for each gene was calculated based on per base sequencing depth.  

To investigate transcriptional regulation of each gene in each MAG, transcriptional 

abundance of each gene in each MAG was normalized by total transcriptional abundance of all 

genes in the MAG. Relative abundance of transcripts dedicated to key metabolic processes in each 

MAG was calculated. Transcriptome turnover of each MAG was defined as the percentage of gene 

transcripts that were different between two phases or replicates. For transcriptome turnover 

calculations, only genes with sequencing depths of ≥ 20 in the sum of two phases or replicates 

were included. Transcriptome turnover for each MAG was calculated by dividing the sum of the 

absolute differences in normalized transcriptome sequencing depth of the genes in the MAG by 

two and by the number of included genes with the ‘tidyverse’ package in R v4.0.3. Transcriptome 

turnover values between phases and replicates were compared within and between groups in t-

tests, with P-values < 0.05 considered as significant. Transcriptome turnover was also compared 

to expected growth of a population, assuming per population abundances did not change between 

phases (Supplementary Method). If the transcriptome turnover was higher than the theoretical no-

change value, this was taken as evidence that a population was actively degrading old transcripts. 

 

Protein extraction and metaproteomics 
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For protein extraction, 50 mL culture pellets were transferred to lysing matrix bead tubes 

A (MP Biomedicals) with the addition of SDT-lysis buffer (0.1M DTT) in a 10:1 ratio57. Matrix 

tubes were bead-beated in an OMNI Bead Ruptor 24 for 45 s at 6 m s−1 and then incubated at 95 °C 

for 10 min. These steps led to pelleted, lysed cells. Peptides were isolated from pellets by filter-

aided sample preparation (FASP)58. A Qubit 2.0 Fluorometer (Invitrogen, CA) was used to check 

protein concentrations. For proteomics, peptides were first separated on a 50 cm × 75 μm analytical 

EASY-Spray column by an an UltiMate 3000 RSLCnano Liquid Chromatograph (Thermo Fisher 

Scientific, Waltham, MA, USA) as previously described59. Eluting peptides were analyzed in a 

QExactive Plus hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, CA, 

USA).  

Expressed proteins were identified and quantified with Proteome Discoverer version 

2.0.0.802 (Thermo Fisher Scientific, CA, USA), using the Sequest HT node57. The Percolator 

Node and FidoCT were used to estimate false discovery rates (FDR) at the peptide and protein 

level, respectively. Peptides and proteins with FDR > 5% were discarded59. Relative abundance of 

proteins was estimated based on normalized peptide-spectral matches (PSMs). The identification 

database was prepared based on predicted protein sequences of all binned and unbinned contigs. 

Redundant proteins (> 95% amino acid identity) were removed by cd-hit60, while giving preference 

to proteins from binned contigs57. Phosphorylated and acetylated proteins were identified in 

parallel. Only unambiguous PSMs with “high” FDR confidence were included in further 

phosphorylation and acetylation analysis. In total, 2,216,073 MS/MS spectra were acquired, 

yielding 616,029 PSMs, 20,928 identified proteins and 10,655 proteins of at least “medium” 

confidence. 
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Proteomic abundance of each gene in each MAG was normalized by total protein 

abundance of all genes in the MAG. Relative abundance of proteins dedicated to key metabolic 

processes in each MAG was calculated. Proteome turnover of each MAG was defined as the 

percentage of proteins that were different between two phases or replicates. For proteome turnover 

calculations, only genes with ≥ 10 detected PSMs in the sum of two phases or replicates were 

included. Proteome turnover for each MAG was calculated by dividing the sum of the absolute 

relative protein abundance differences of the genes in the MAG by two and by the number of 

included genes. Proteome turnover was compared to expected growth of a population, assuming 

per population abundances did not change between phases (Supplementary Method). If the 

proteome turnover was higher than the theoretical no-change value, this was taken as evidence that 

a population was actively degrading old proteins. Calculation of correlation between 

transcriptional and translational regulation only included genes with the sum of transcript 

sequencing depths ≥ 60 and the sum of detected PSMs ≥ 30 in triplicates in two phases. For each 

MAG, the Pearson correlation coefficient between the transcriptome differences and the proteome 

differences of the involved genes between phases was calculated. Calculations of turnover and 

correlation were performed with the ‘tydiverse’ package in R v4.0.3. Turnover and correlation 

values were compared within and between groups in t-tests, with P-values < 0.05 considered as 

significant. 

 

Data availability  

All sequences of this study, including amplicons, metagenomes, metagenome-assembled genomes 

and transcriptomes, are under the Bioproject PRJNA749639 (NCBI). The Biosamples of the 16S 

rRNA sequence are: SAMN20427124-SAMN20427234, SAMN26746688-SAMN26746699. The 
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Biosamples for the metagenome raw reads are SAMN20395938-SAMN20395955 and the 

Biosamples for the metatranscriptome raw reads are SAMN20446884-SAMN20446901. The 

Biosamples for the MAGs are SAMN20395959-SAMN20395984. The mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner 

repository61 with the dataset identifier PXD028583.  
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Fig. 1 | Experimental design of this study. Alternating phases of oxic and anoxic conditions were 

established in the three sets of triplicated chemostats. The phases differed in length for each set, 

but the dilution rate was the same for all chemostats. 
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Fig. 2 | Concentrations of acetate, ammonia, sulfate and sulfide during oxic and anoxic phases 

at different frequencies. Triplicates are indicated by black, red and blue lines and symbols. The 

green bar at the top shows chemostat dilutions. In the second bar, oxic and anoxic phases are shown 

in red and blue, respectively. 
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Fig. 3 | Community dynamics in the chemostats. a, Change in relative sequence abundances of 

the ten most abundant populations (amplicon sequence variants, ASVs) in chemostat incubations, 

based on 16S rRNA gene amplicon sequencing. Outcomes of triplicated experiments are shown 

individually for each frequency. The green bar at the top enumerates chemostat dilutions. In the 

second bar, oxic and anoxic phases are shown in red and blue respectively. b, Non-metric 
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multidimensional scaling (NMDS) (based on Bray-Curtis distances) of all samples collected along 

the chemostat incubations and c, only samples collected during the final oxic and the final anoxic 

phases. Colored ellipses show variation among samples of the two phases of each treatment 

obtained with the ‘ordiellipse’ function from the ‘vegan’ package in R.  
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Fig. 4 | Enriched populations associated with metagenome-assembled genomes (MAGs) in 

the three sets of chemostats during the final oxic phase and the final anoxic phase. a, 

Metabolic potential, taxonomy and relative sequence abundance of the populations 

(Supplementary Tables 5-31). R1, R2 and R3 represent the chemostat triplicates. Fast copiotrophs, 

slow copiotrophs and oligotrophs are indicated by blue, yellow and pink taxon names, respectively. 
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“d” represents the minimum doubling time predicted by gRodon33 (Supplementary Table 33).  b, 

iRep values (Supplementary Table 32) of the populations. c, Relative abundance of fast 

copiotrophs, slow copiotrophs and oligotrophs in the three sets of chemostats. Horizontal lines 

show significant differences determined in t-tests, with P-values <0.01 indicated with “**” and < 

0.001 indicated with “***”.  
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Fig. 5 | Change in transcriptomes and proteomes in the three sets of chemostats. a, Fold 

change in activity of genes associated with key metabolic subsystems (Supplementary Table 34-

41) from the final oxic phase to the final anoxic phase. The circled numbers indicate the 

corresponding enzymes involved in the metabolic subsystems. Each data point is associated with 

one of 26 MAGs. Results are shown for transcriptomes (left) and proteomes (right), each at the 

three different frequencies of change. Significances, determined with t-tests, are indicated, with P-

values <0.05 as “*”, <0.01 as “**” and < 0.001 as “***”. b, Turnover of transcriptomes across 

phases and replicates (Supplementary Table 42). Each dot shows overall transcriptome turnover 
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between phases and replicates for a single MAG. c, Turnover of proteomes across phases and 

replicates (Supplementary Table 42). Each dot shows overall proteome turnover between phases 

and replicates for a single MAG. d, Pearson correlation coefficients of transcriptome differences 

and proteome differences between phases for a single MAG (Supplementary Table 43). Each dot 

shows the correlation between the transcriptome and the proteome for a single MAG.  Horizontal 

lines in b, c and d show significant differences determined with t-tests.  
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