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Summary 

 

Background: The etiology of dental caries remains poorly understood. With the advent of next generation 

sequencing, a number of studies have focused on the microbial ecology of the disease. However, taxonomic 

associations with caries have not been consistent.  Researchers have also pursued function-centric studies of 

the caries microbial communities aiming to identify consistently conserved functional pathways. A major 

question is whether changes in microbiome are a cause or a consequence of the disease. Thus, there is a 

critical need to define conserved functional biomarkers at the onset of dental caries. 

 

 

Methods: Since it is unethical to induce carious lesions clinically, we developed an innovative longitudinal 

ex-vivo model integrated with the advanced non-invasive multiphoton second harmonic generation 

bioimaging to spot the very early signs of dental caries, combined with 16S rRNA short amplicon 

sequencing and liquid chromatography-mass spectrometry-based targeted metabolomics. 

 

Findings: For the first time, we induced longitudinally-monitored caries lesions validated with the scanning 

electron microscope. Consequently, we spotted the caries onset and, associated to it, distinguished five 

differentiating metabolites - Lactate, Pyruvate, Dihydroxyacetone phosphate, Glyceraldehyde 3-phosphate 

(upregulated) and Fumarate (downregulated). Those metabolites co-occurred with certain bacterial taxa; 

Streptococcus, Veillonella, Actinomyces, Porphyromonas, Fusobacterium, and Granulicatella, regardless of 

the abundance of other taxa. 

 

Interpretation: These findings are crucial for understanding the etiology and dynamics of dental 

caries, and devising targeted interventions to prevent disease progression.  

 

Funding: The study was funded by the National Institute for Dental and Craniofacial Research of the 

National Institutes of Health and the University of Minnesota. 

 

Keywords: Dental Caries, Longitudinal Model, Biomarkers, Metabolomics, Genomics, Non-invasive 

Bioimaging   
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Research in Context  

 

Evidence before this study 

Studies have shown that dental caries, tooth decay, occurs as a result of disruptive imbalance in the oral 

ecosystem. Excessive dietary intake of fermentable carbohydrates is a critical contributor to disease 

progression by promoting bacterial production of acids, which shifts the microbial community to an 

imbalanced and a less diverse one. Studies have also shown that microbial associations with caries have not 

been consistent while their functions are relatively conserved across individuals. Still, the specific microbial 

functions associated with the dental caries onset is still unknown due to its infeasible clinical diagnosis. 

 

Added value of this study 

This study applied a novel longitudinal ex-vivo model, integrated with advanced non-invasive bioimaging, for 

experimental dental caries induction. This model enabled the detection of the exact onset of the disease, which 

is undetected clinically. Then, the microbial communities accompanying the caries onset were analyzed for 

their microbial composition and metabolic functions in comparison to normal conditions. Our study identified 

five metabolites differentiating the caries onset. Further, we investigated the co-occurrence of these metabolic 

biomarkers with certain oral bacteria. 

 

Implications of all the available evidence 

Our study provides carefully validated evidence for biomarkers of the dental caries onset. These data are 

critical for early diagnostics and development of timely intervention strategies to interfere with the disease 

progression that otherwise requires invasive and costly health care expenses. Moreover, our data open new 

avenues for developing therapeutics to neutralize the identified metabolic biomarkers or target the accountable 

bacteria for caries prevention. 
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Introduction: 

 

Although dental caries remains the most common chronic disease globally, affecting more than 95% of 

adults (1, 2) (3-5) there is a significant gap in our understanding of its exact underlying pathogenesis. Dental 

caries can be considered as the outcome of dysbiotic changes in the biofilm community of supragingival 

dental plaque (6, 7). Demineralized carious lesions occur as the cumulative outcome of repeated shifts 

towards a less diverse microbiota that produces and tolerates a low pH (8) (9, 10). This disruptive imbalance 

in the oral ecosystem is often caused by excessive dietary intake of readily fermentable carbohydrates (11, 

12). In metagenomic and marker gene studies, caries-associated communities are typically less diverse than 

healthy supragingival plaque. However, those dysbiotic communities still display considerable taxonomic 

diversity between affected individuals and, notably, caries associations have not been consistent between 

studies (13-17). On the other hand, a consensus has been reached that dental caries is a community-scale 

metabolic disorder (7, 18, 19),(20) (21) and despite the large variation in the microbial community structure, 

conserved metabolic pathways exist across individuals for supragingival plaque (22). Thus, there is a critical 

need to define functional biomarkers of dysbiosis that are less dependent on taxonomy (21, 23, 24) to better 

understand the disease etiology and pathogenesis. Correspondingly, our first hypothesis is that 

supragingival plaque microbial communities undergo conserved changes in metabolism during caries-

inducing conditions, regardless of taxonomic assortment. 

Another layer of complication is that caries is a dynamic and progressive disease associated with continuous 

changes of the community compositional profile (21). It remains unclear how these progressive changes 

impact microbiota function early in the disease course. Accordingly, the analysis of the functional changes 

associated with the transition from health to carious lesions is critical to determine etiological factors of this 

disease. Unlike the reversible early periodontal diseases, such as gingivitis, that can be induced by refraining 

the patients from brushing over a three-week experimental period (25), inducing clinical early carious 

lesions is not possible, which hinders the analysis of the associated microbial functions in the transition 

from health to disease. Alternatively, examining a massively large numbers of healthy and disease-

associated microbial communities could allow the characterization of their corresponding common features. 

However, this would represent an unfeasible experimental approach in addition to its limitation to spot the 

lesions in preclinical stages or at the early onset. Thus, ex-vivo models to induce carious lesions emerge as 

the most clinically-relevant alternative approach. These models have been optimized to obtain reproducible 

biofilms with taxonomic and metabolic diversity approaching that of the human oral microbiome (26, 27).  

The successful implementation of these ex-vivo models requires a reliable assessment of the different stages 

during progression of the disease. However, access to non-invasive monitoring systems that are sensitive 
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enough to detect the early dental changes at the disease onset and can be implemented to longitudinally 

monitoring the progression of lesions has been a technological hurdle.  

 

With the advent of multiphoton second harmonic generation (MP-SHG) imaging technology, early 

recognition of ex-vivo induced dental caries has been enabled through non-invasive and label-free 

monitoring of the subtle changes in both mineralized and collagenous phases comprising the dental hard 

tissues (28, 29). MP-SHG is based on a pulsed near-infrared laser allowing the excitation of the biological 

samples to penetration depths inaccessible to 1-photon conventional confocal microscopy (30). The MP 

component, that collects the signals for the mineral phase (enamel), strongly suppresses the background 

signal, optimizes the signal-to-noise ratio, and reduces the phototoxicity to the focal region for high 

resolution optical sectioning (28, 31). Meanwhile, the SHG that depends on the polarization, orientation, 

and symmetry properties of collagen chiral molecules offers novel opportunities to investigate the three-

dimensional structure of the label-free collagen molecules within biological tissues (29, 32, 33). Slimani et 

al 2018 showed that SHG imaging of dentin produced extremely accurate signals for detecting early stages 

of dental caries as dentin is particularly efficient in producing SHG (29) because of the presence of self-

assembled fibers of collagen type I; >90% of the organic matrix (34). 

Herein, we also hypothesize that the longitudinal analysis of the genomic diversity and metabolic profiles 

of supragingival microbiota associated with ex-vivo dental caries onset and after progressing to overt lesions 

enables the detection of caries etiological factors. To our knowledge, this will be the first study integrating 

advanced bioimaging, microbial ecology and metabolomics analyses to study the etiology of dental caries 

implementing an ex-vivo caries-induction model with reproducible and taxonomically diverse oral 

microcosm biofilms. Our ultimate goal is to capture the conserved functional biomarkers accompanying the 

induced caries onset to determine the etiology of the disease at the early, otherwise clinically undiagnosable 

stage. Better understanding of the microbial functions associated with early onset of carious lesions is 

critical to develop targeted prophylactic approaches to prevent the progression of this widespread disease 

and to reduce the associated massive health care expenditures. 

 

Material and Methods 
 

Microcosm supragingival plaque biofilm: 

In this study, we used the reproducible taxonomically diverse oral microcosm biofilm model of dental caries 

developed by Rudney et al., 2012 (27). Briefly, 11 supragingival dental plaque samples from high caries risk 

subjects were collected at the University of Minnesota (Institutional Review Board #1403M48865). All 

subjects were in good general health and had not taken antibiotics within 3 months of plaque sampling. The 
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microcosm biofilms were grown on hydroxyapatite (HA) discs in CDC biofilm reactor without (NS) or with 

sucrose (WS) to simulate the oral conditions in the flow of saliva and dietary carbohydrates across biofilm 

surfaces as described in (27). Each pair of NS and WS microcosm was grown from a single plaque 

inoculum mimicking health and sucrose-induced dysbiotic models that evolved from the same patient.  

Teeth preparation: 

A total of 30 sound extracted human third molars were selected from a pool of unidentified extracted teeth 

previously obtained as surgical waste from oral surgery clinics, that is exempt from IRB review, at the 

University of Minnesota and in the Minneapolis/Saint Paul metropolitan area (35). They were screened 

visually, tactilely by explorers, and by magnifying stereomicroscope (MVX10, Olympus, Tokyo, Japan) for 

any early carious lesions. 14 teeth were selected to be used as substrates to grow biofilms after slicing. The 

roots as well as the proximal enamel sides were sectioned using a diamond saw (IsometTM, 

Buehler, Lake Bluff, IL, USA) and discarded. Coronal proximal slices were then sectioned occluso-

cervically from the mesial and distal sides of each tooth. Each resultant slice included enamel and dentin 

tissues. The sliced specimens were then ground to 0.2 mm, polished with 320-, 600-, and 1200-grit Si-C 

papers using a polishing machine (Ecomet 3, Buehler, IL, USA), and ultrasonicated in a water bath for 20 

min (36). 

Pre-inoculation screening of dental specimens with stereomicroscopy and MP-SHG: 

Fourteen pairs of polished teeth specimens were screened initially with the stereomicroscope then analyzed 

at high magnification with non-invasive MP-SHG advanced microscopy to distinguish any early lesions or 

structural anomalies according to the protocol we previously developed for dental hard tissue bioimaging 

(36, 37). MP-SHG collects the MP fluorescence signals emitted from the mineralized phase, mainly in 

enamel, and the SHG signals emitted from the collagen network, exclusively in dentin, non-linearly and via 

2 separate channels without labelling and in fully-hydrated conditions (32). MP-SHG images were acquired 

using a Leica SP5 confocal laser scanning microscope (Leica Microsystems CMS GmbH, Am Friedensplatz 

3, D- 68165 Mannheim, Germany). Excitation of the samples was performed with a Spectra-Physics 15W 

Mai Tai DeepSee tunable IR laser tuned to 870 nm. Non-descanned highly sensitive GaAsP detectors were 

used to allow visualization of multiple fluorophores located deep within the specimen. The IR laser was 

operated in pulsed mode and was focused onto the sample using a 25x NA0.95 water-immersion objective 

with a 2.4 mm working distance suitable for deep imaging. The SHG signal was collected at 400-450 nm 

using a spectral HyD PMT and the multiphoton fluorescence was collected at 450-700 nm using a spectral 

PMT with a maximally open pinhole set to 10.74 airy units. The samples were scanned in 512x512 pixel 

frames (0.714x0.714 µm pixel size) and 50 µm of dentin thickness was sampled with a 0.49 µm step size in 
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Z. Images were compiled and analyzed with FIJI software (Fiji Is Just) ImageJ, version: 2.1.0/1.53c 

https://imagej.net/Contributors (38). 

Caries onset induction: 

11 pairs of microcosm biofilms, NS and WS culturing conditions, were grown on the 11 pairs of the 

proximal coronal sections of human teeth. Each pair of either microcosm biofilms or teeth specimens was 

originated from a single patient (Figure 1). The teeth specimens were disinfected by immersion in 70% 

ethanol for 5 min and left to dry for 10 min in a biosafety cabinet then loaded in 24 suspension culture well 

plate to be inoculated. Overnight cultures of NS and WS microcosms were grown in basal mucin medium 

(BMM) (39) without or with 5% sucrose supplementation, respectively. BMM is a complex medium that 

was developed as saliva analog and has been used successfully in previous oral microcosm models 

containing hog gastric mucin as the primary source of carbohydrate (Supplemental Table 1) (23, 27). The 

inoculum was adjusted at 1x106 cell/ml and the inoculated samples were incubated aerobically at body 

temperature under continuous shaking to simulate the ecological succession of supragingival plaque. The 

WS samples were subjected to sucrose bath pattern of 5h/day, hence the samples were switched between the 

BMM media with and without sucrose for periods of 5 and 19 h, respectively where the inoculation was 

consistently with the same WS microcosm. The pH was monitored at intervals up to 48 h where the media 

was replenished (Supplemental Table 2). New inoculation was introduced every 96 h. Based on results from 

our preceding pilot and corresponding to the development of incipient lesions, 88 h was set as the 1st time 

point (1st phase – caries onset) at which the experiment was paused for detaching biofilms. 

Detaching biofilms: 

The media was gently aspirated and the specimens were washed with sterile 10 mM ammonium 

bicarbonate. Each sample was then immersed in 1.5 ml of cold 10 mM ammonium bicarbonate (Sigma-

Aldrich, Burlington, MA), bath sonicated, to minimize heating, for 30 min followed by brief vortexing for 

detaching biofilms (40). Ammonium bicarbonate was used due to its compatibility with the liquid 

chromatography-mass spectrometry and moderate pH buffering (41). The detached biofilms were 

transferred to 1.5 ml low retention microcentrifuge tubes and split-divided for extracting DNA and 

metabolites separately for the 1st time point analysis. 

Stereomicroscopy and MP-SHG monitoring of the caries onset: 

All samples were re-screened in their well-plates for any visualized early lesions using the 

stereomicroscope. Then, samples were loaded fully hydrated in sterile and adhesive silicon isolators (Press-

to-Seal™, Thermo Fischer Scientific) for cellular imaging to avoid any cross contamination during MP-

SHG monitoring of early lesions. All imaging parameters were set as mentioned above in the pre-

inoculation screening and throughout the study. 
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Overt caries lesions induction: 

Biofilms were regrown on same samples using same microcosms under same conditions as mentioned 

above till overt lesion were visualized by naked eyes after 17 days. All biofilms were detached as detailed 

above and split-divided for extracting DNA and metabolites for the 2nd time point analysis (2nd phase – overt 

lesions). The overt lesions were visualized with the stereomicroscope and examined with MP-SHG for 

ultrastructural characterization. 

Scanning electron microscopy characterization of the induced lesions: 

Scanning electron microscope (SEM) analysis was conducted to validate if ex-vivo induced lesions show 

structural changes similar to the clinical carious lesions at the dentin-enamel junction (DEJ) area for the 

induced incipient or/and overt lesions. Slices of sound teeth were used as a control after a mild etching, 

pH=1.95, with 25 % polyacrylic acid (50,000 wt.%) in H2O to remove the smear layer with minimal 

associated demineralization. These specifications were reached after a few pilots testing a range of different 

polyacrylic acid concentrations (10%-25%), different molecular weights (2000-50,000 wt.%), different 

application time (5, 7, 10, and 15 s), and different pH (1.5-3.2). 

The samples were prepared following the optimized protocols developed by Perdigão et al as detailed in 

(43). Samples were fixed in 2.5% glutaraldehyde with 2% paraformaldehyde in 0.1 M cacodylate buffer 

(Electron Microscope Sciences, Hatfield, PA) at pH=7.4 for 12 h at 4˚C, rinsed in 0.2 M cacodylate buffer 

at pH=7.4 for three consecutive periods of 20 min each, and rinsed with distilled water for 1 min. Then, the 

samples were dehydrated in ascending grades of ethanol: 25%, 50%, 75% ethanol for 15 min each, 95% 

ethanol for 30 min, and 100% ethanol for 60 min. Under the hood, the samples were immersed in 50/50 

100% ethanol/ hexamethyldisilazane (HDMS) for 2 min. Then, the samples were transferred to absolute 

HDMS for 10 min and were let to dry in a desiccator with silica for 24 h. The HDMS desiccation method 

was used to replace the critical point drying step aiming to better preserve the collagen network and the 

micro-porosity of the demineralized dentin surface (43). The samples were mounted on aluminum stubs 

with a double-sided carbon tape and the periphery was painted with silver ink to avoid over-flowing and 

disturbing the imaging area of interest as well as enhancing the electron conductivity. The samples were 

then coated with 5 nm iridium (EM ACE600, Leica Microsystems Inc., Buffalo Groove, IL) and observed 

with a Hitachi S-4700 field-emission scanning electron microscope (Hitachi, Tokyo, Japan) at an 

accelerating voltage of 5-10 kV and a working distance of 12-14 mm. 

DNA extraction:  

As mentioned above, the detached biofilms from all samples at the two time points, 44 samples in total other 

than the controls (control media and control teeth slices), were split-divided for microbiome and 

metabolome analyses. Genomic DNA was extracted following the protocol amended from Epicentre 
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MasterPure™ DNA Purification Kit (http://homings.forsyth.org/DNA%20Isolation%20Protocol.pdf). The 

DNA yield was assessed with a NanoDrop™ 2000 spectrophotometer. The yield extracted from WS 

biofilms, i.e., grown in cariogenic conditions, was consistently higher compared to NS biofilms 

(Supplemental Table 3). Samples were submitted to the University of Minnesota Genomics Center for dual-

indexed amplicon sequencing of 16S rRNA bacterial gene (V4 region) on the Illumina MiSeq platform (2x 

300PE) (primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’)). 

Metabolites extraction:  

Efficient extraction of the metabolite class of interest is essential to the success of targeted metabolomics 

approaches. This is because, unlike untargeted metabolomics, we focus only on a subset of metabolites for 

downstream analyses. The extraction method was tailored to the physico-chemical properties of the 

byproducts of central carbon metabolism, excluding other components such as proteins (44). Briefly, the 

half of detached biofilms assigned for metabolites extraction was pelleted at 5000x g for 10 min at 4 °C, 

then resuspended in a mix of  50 µl of 10 mM ammonium bicarbonate and 50 µl of methanol. Three freeze-

thaw cycles were conducted where samples were frozen at -80 °C for 15 min and then, thawed in a water 

bath at room temperature for 10 min with 1 min vigorous vortexing in-between cycles. Then, 4 volumes of 

chilled 90/10 methanol/acetone were added to each sample and vortexed at high speed for 1 min to denature 

the proteins. Samples were then incubated at -10°C for 15 min and centrifuged at 13,000 x g for 15 min at 

4°C. Supernatants were carefully transferred to new microfuge tubes avoiding the soft pellets. The samples 

were dried by evaporation under a stream of inert nitrogen gas and reconstituted in 75 µl of 5% acetonitrile, 

0.1% formic acid. To resuspend any particulates, the samples were vortexed and then centrifuged at 13,000 

x g for 5 min at 4 °C. Samples were stored at -80°C until used for mass spectrometry.  

16S rRNA sequencing:  

Raw reads were processed to remove primers and low-quality base pairs (q<30) using cutadapt (45) and 

fastx_toolkit (46). Processed high quality sequences were further processed using the DADA2 plugin (47) 

within Qiime2 (46) to generate Amplicon Sequence Variants (ASVs). For taxonomic assignment of these 

ASVs, reference sequences (clustered at 99% sequence identity) from the Greengenes database, v13_8 (48) 

were downloaded and used for training the naïve Bayes classifier, using the feature-classifier fit-classifier-

naive-bayes function of Qiime2. This trained classifier was then used for assigning taxonomy for each ASV 

detected using the feature-classifier classify-sklearn function of Qiime2. Taxa abundances at the ASV level 

were then used for downstream statistical analysis.  

Targeted analysis of the central carbon metabolism (Liquid Chromatography-Mass Spectrometry “LC-

MS”):  
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Central carbon metabolites were analyzed using the Selective Reaction Monitoring (SRM). Samples (10 µl) 

for SRM analysis were subjected to separation using a Shimadzu system, coupled to an analytical SeQuant 

ZIC-pHILIC (150 mm x 4.6 mm at 30 °C connected to the Applied Biosystem 5500 iontrap) and fitted with 

a turbo V electrospray source run in negative mode with declustering potential and collision energies as 

listed in table (Supplemental Table 4). The samples were subjected to a linear gradient of A: 75% 

Acetonitrile, B: 20% acetonitrile, 10 mM ammonium acetate for 22 min at a column flow rate of 400 

µl/min. The column was cleared for 2 min with 60% B and then equilibrated to buffer A for 10 min.  

Transitions were monitored as shown in (Supplemental Table 4) and were then established using the 

instrument’s compound optimization mode with direct injection for each compound. The data were analyzed 

using MultiQuant™ (ABI Sciex Framingham, MA), which provided the peak area. A standard curve was 

constructed from picomole to nanomole in 10 µl. Samples were run in duplicate and concentrations 

determined from the standard curve. 

Bioinformatics and statistical analysis: 

16S rRNA analyses: 

Statistical analyses of microbiome data were performed using the R statistical interface, version 4.0.2 (49). 

ASV tables were filtered using the R labdsv package (50) to remove ASVs that were likely to be sequencing 

artifacts due to their presence at extremely low frequencies or only in 3 or fewer samples. Alpha diversity 

analyses, beta diversity using Bray-Curtis distances and permutational multivariate analysis of variance 

(PERMANOVA) were performed using the vegan package (51). Principal coordinate analyses (PCoA) 

based on Bray-Curtis or Euclidean distances, were created using the ape package (52). Discriminating 

taxonomic features were identified based on fold changes and p-values calculated using the DESeq package 

(53), and by indicator species analyses using the labdsv package (54). 

Metabolome analyses 

Metabolomic analyses were performed using MetaboAnalyst 5.0  https://www.metaboanalyst.ca/ (55). 

Briefly, LC-MS data were normalized using Log transformation and Pareto scaling. Partial least squares 

discriminant analyses (PLS-DA) and variable importance in projection (VIP) scores were used to explore 

the extent to which the metabolite data predicted phenotypes of interest and to identify metabolites that 

distinguished each phenotype. PLS-DA analyses were validated through permutation tests, including Q2 and 

R2 statistics.  Metabolomic data were also visualized via clustering analyses (Euclidean Distance and 

weighted Averages plotted on heatmaps) and using PCoA, in tandem with PERMANOVA as described with 

the microbiome data. Associations between metabolomic and microbiome data were performed using 

Procrustes and Mantel tests in the vegan package of R (56) and mmvec (57). 
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The false discovery rate (FDR) was applied for multiple comparisons correction of all microbial and 

metabolite biomarkers to limit false positives while maximizing power. The FDR creates a balance between 

the number of true and false positives that is automatically calibrated (q value) with each tested feature (58). 

The significance cut-off of the FDR adjusted p-value (or q value) was set at 0.05.  

The sample size was outlined based on the developed 11 pairs of the reproducible oral microcosm biofilm 

model for dental caries by Rudney et al., 2012 (27). 

 

Results 
In this study, we analyzed the 16S rRNA bacterial gene, targeted central carbon metabolites via LC-MS, and 

their interrelationships on a supragingival dental plaque microcosm grown ex-vivo in normal and cariogenic 

conditions (Figure 1).  

Pre-inoculation screening of dental specimens with stereomicroscopy and MP-SHG: 

MP-SHG and stereomicroscopy representative images of pre-inoculated teeth slices are shown in (Figure 2 

and 3) and a set of images for all screened validated samples are depicted in (Supplemental Figure 1). Two 

of the screened specimens showed attenuated signals, which suggested the presence of potential subclinical 

lesions (28, 29). Accordingly, these two specimens and their parent teeth were excluded from the study. 

Induction of ex-vivo caries lesions: 

Caries lesions were induced by inoculating 11 pairs of human teeth slices with eleven pairs of supragingival 

plaque microcosms, developed in normal and dysbiotic conditions, without (NS) and with sucrose (WS) 

supplementation, respectively. In the first 3 h after inoculation, the pH of all bacterial cultures, NS and WS, 

were ~ 6.5-7. Afterwards, the acidity of the WS cultures increased significantly and the pH dropped between 

3-4 while NS cultures remain at the range of pH=7-8 (Supplemental Table 2). The same pattern of pH 

changes was observed with the periodic media change (every 48h) and with the periodic inoculation (every 

96h). 

MP-SHG characterization of the induced caries lesions: 

After 88h of incubation, initial spots of disintegration were observed using MP-SHG microscopy across WS 

samples, particularly around the dentin-enamel junction (DEJ) (Figure 2, Supplemental Figure 1, and  

Supplemental Videos 1).  None of these incipient lesions were recognized with either the naked eye or 

stereomicroscopy (Figure 3 and Supplemental Figure 2). After 17 days of incubation, overt brownish soft 

lesions were detected in dentin below the DEJ area in the WS samples (Figure 3 and Supplemental Figure 

2). The MP-SHG characterization revealed a distinct band of disintegrated dentin just below the DEJ area 

(Figure 2, Supplemental Figure 3, and Supplemental Videos 2). The collateral specimens that were sliced 

from same teeth and were inoculated with the same microcosm but with no sucrose supplementation (NS), 
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did not show similar areas of disintegration or discoloration at any stage of analysis (Supplemental Figure 

2). 

 SEM characterization of the induced caries lesions: 

At a low magnification (250 X), SEM micrographs showed signs of demineralization and degradation at the 

DEJ of the induced incipient lesions compared to the intact sound controls (Figure 3). Complete separation 

between enamel and dentin at the DEJ was observed in the induced overt lesion with substantial signs of 

demineralization, which appeared notably similar to that of actual clinical lesions (Figure 3). Observation at 

high magnification of the mantle dentin, 30 µm below the DEJ, revealed that the dentinal tubules were 

surrounded by a thickened collar of peritubular dentin in the sound controls and the collagen fibers had 

sound organized arrangements (Figure 3). However, in the induced incipient lesions, the peritubular dentin 

collar was partially demineralized with areas of discontinuation along the perimeter of the tubules, 

accompanied with collagen fibers disorganization (Figure 3).  Induced overt lesions and clinical lesions 

displayed complete demineralization and disorganization of the peritubular dentin. Collagen fibers had also 

signs of denaturation as the collagen banding pattern was lost (Figure 3). Similar demineralization patterns 

were observed for incipient and overt induced lesions at far distances (83µm and 272 µm) from the DEJ but 

less progressive (Supplemental Figure 4). 

16S rRNA sequencing: 

 

We assessed beta and alpha bacterial diversity within the 16S rRNA data sets of supragingival plaque 

microcosms grown in dysbiotic (cariogenic, WS) and non-dysbiotic (control, NS) conditions at the caries 

onset (TimePoint1 “T1”), and after progression to overt caries lesions (TimePoint2 “T2”) (Figure 4). Beta 

diversity analyses (Bray-Curtis dissimilarity) showed distinct clustering, mainly according to time points 

sampled (PCoA axis 1, 45% of variation), followed by condition (PCoA axis 2, 16%) (Figure 4a). That is, 

overall shifts in bacterial community composition were more influenced by temporal scale rather than by 

treatment, where the most distinct and tightly clustered groups were WS_T2 followed by NS_T2; these 

groups represent the tested second time points of test and control groups (Figure 4a). Nonetheless, alpha 

diversity (Number of ASVs, Shannon and Simpson indices) did not show significant differences among the 

tested groups (Figure 4b). PERMANOVA confirms significant differences in microbiome composition (F-

model: 10.83, 16.87, 2,71; R2: 0.15, 0.24,  0.038; and P-value: 0.001, 0.001, 0.012) for  treatment, time 

points and their interactions respectively (Supplemental Figure 5c). 

The relative abundance of the bacterial taxa (ASVs) characterizing each of the tested groups was visualized 

on volcano plots, showing fold changes and significance according to time point sampled and treatments 

using pairwise comparisons (Figure 5a and Supplemental Table 5 and 6). Few taxa showed significant 

changes timewise. For the NS groups, Enterobacteriaceae and Atopobium showed significant increase at T2 
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while one of Streptococcus ASV showed significant increase at T1. Likewise, the WS_T2 group showed a 

significant increase in Corynebacterium compared to NS_T2.  Only a ASV of the genus Bacillus was 

detected significantly abundant in WS_T1 (Figure 5a and Supplemental Table 5). Sucrose-supplementation 

shifted several taxa consistently and significantly at any given time point, compared to the number of taxa 

observed with no sucrose groups, after the p-value was adjusted for the FDR. 

WS_T1 displayed a significant increase of unknown ASVs affiliated to Lactobacillus, Streptococcus, 

Staphylococcus and Enterobacteriaceae, as well as Veillonella dispar and Veillonella purvula.  WS_T1 also 

showed a significant decrease in ASVs affiliated to Porphyromonas, Paenibacillus, Streptococcus, 

Actinomyces, Gemellaceae, Granulicatella and Abiotrophia. The microcosms supplemented with sucrose, at 

timepoint 2 (WS_T2), were characterized by a significant increase in unknown ASVs affiliated to 

Staphylococcus Enterococcus, Lactobacillus, Streptococcus Fusobacterium, Atopobium, Neisseriaceae and 

Eikenella, as well as Veillonella dispar and Streptococcus anginosus. WS_T2 also displayed a significant 

decrease of ASVs affiliated to Bacillus, Porphyromonas and Paenibacillus (Figure 5a and Supplemental 

Table 6). 

We corroborated these biomarkers using indicator species analyses and its indicator value “IndVal” index to 

detect taxa that specifically characterized treatment (e.g. sucrose supplementation) and each time point (4-

way comparisons, Supplemental Table 7). Representative taxa for each studied group showing IndVal 

index, >0.4, and corroborated using an FDR-adjusted P-value (multiple comparisons) are presented in 

Figure 5b. The rest of the identified indicator taxa (25 in total) and their IndVal and probabilities are listed in 

Supplemental Table 7. The ASVs with the strongest IndVals were associated with WS_T2, which 

represented overt lesions; these taxa belonged to Lactobacillus, Atopobium and Enterococcus. Strong 

indicator ASVs for NS_T1 include Abiotrophia and Porphyromonas, while incipient early lesions (WS_T1) 

corroborated high abundance of Streptococcus (Supplemental Table 7). 

Targeted analysis of the central carbon metabolism: 

LC-MS was used  to comprehensively identify and quantify metabolites in the central carbon metabolism – 

glycolysis pathways (the Embden-Meyerhof-Parnas (EMP) pathway, the pyruvate metabolism, the pentose-

phosphate pathway, the Leloir pathway, and the TCA cycle) contained in the biofilms grown on teeth slices 

for ex-vivo caries induction.  A total of 18 metabolites were identified and the area under the peak was 

calculated for each: Acetyl coenzyme A (ACoA), Alpha-ketoglutarate (α-KetoGlu), Citrate, 

Dihydroxyacetone phosphate (DHAP), Fructose 1,6-bisphosphate (F1,6bP), Fructose 6-phosphate (F6P), 

Fumarate, Glucose 1-phosphate (G1P), Glyceraldehyde 3-phosphate (G3P), Glucose 6-phosphate (G6P), 

Galactose-1-phosphate (Gal1P), Lactate, Malate, Phosphoenolpyruvate (PEP), Pyruvate, Ribose 5-

phosphate (R5P), Ribulose 5-phosphate (RL5P), Succinate (Succ). For the metabolomic data analysis, the 
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peak area was normalized, log-transformed and pareto-scaled to keep data structure partially intact, non-

dimensionless, and closer to the original measurement compared to other scaling methods (59) 

(Supplemental Figure 6).  

The unsupervised Principal Component Analysis (PCA) and supervised Partial Least Squares-Discriminant 

Analysis (PLS-DA) showed a greater distinction between the treatment groups than between time points 

(Figure 6a and C respectively). Permutation tests for the PLS-DA model, as calculated by separation 

distances (1000 permutations), corroborated significant distinction (p-value < 0.001) and cross validation for 

two components showed R2= 0.91 and Q2=0.86 (Supplemental Figure 6). Correspondence between the 

tested metabolites and samples was depicted in a loadings biplot (Figure 6b) where arrows represent the 

association of a given metabolite with samples displayed in the PCA ordination (Figure 6a). WS_T2 

samples, representing overt lesions, were closely associated with ACoA, DHAB, G3P, G6P, Lactate and 

Pyruvate, circled in the top dashed blue oval (Figure 6b). Conversely, Fumarate was exclusively associated 

with samples grown in NS conditions, circled in the bottom left dashed blue oval (Figure 6b). α-KetoGlu, 

F1,6bP, G1P, PEP, R5P, RL5P were not specifically associated with any tested group (Figure 6 B) and 

showed the least importance on the PLS-DA projection (Variable Importance in Projection “VIP” scores), 

which scores metabolites based on their influence in distinguishing each group (Figure 6d, blue oval). 

Lactate and Pyruvate recorded the highest VIP scores, indicating that they are the most influential 

metabolites in predicting the phenotypes of interest as shown in the PLS-DA model (Figure 6d). A 

hierarchically-clustered heat map, with a dendrogram based on Euclidean distances and Average algorithm, 

showed detailed associations between all tested metabolites and samples, where the samples clustered 

closely together, first according to the treatments and subsequently by time point (Figure 6e). A heat map 

focused on average abundances of a metabolite across all samples of a given comparison group collectively 

summarizes these patterns (Figure 6f). During caries onset, WS_T1, DHAB, G3P, Lactate and Pyruvate 

were significantly upregulated, which corresponded with a  depletion of Fumarate, the only significantly 

downregulated metabolite compared to the normal NS conditions (Figure 6f).  

 

We conducted pairwise comparisons of the quantified metabolites in cariogenic and control conditions at 

caries onset and after progression along the glycolysis pathways (Figure 7). We found 9 metabolites 

significantly upregulated at the caries onset (ACoA, DHAP, F6P, G1P, Gal1P, G6P, G3P, Lactate, 

Pyruvate) circled in dashed red ovals (Figure 7). Four of them had key large differences and highly 

significant q values compared to the rest of the metabolites (DHAB “q=0.007”, G3P “q=“0.005”, Lactate 

“q=7x10-9”, Pyruvate “q=4x10-8”) (Table 1). Fumarate was the only downregulated metabolite and at a 

significant level at the caries onset (Figure 7) (Table 1). The above four key upregulated metabolites with 
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the caries onset, and the correspondent depletion of fumarate are highlighted in the aforementioned heat 

maps (Figure 6e and f). For the overt lesions, 11 highly upregulated metabolites and 2 downregulated ones 

were identified (Table 1). Significance values for the upregulation and downregulation of all metabolites 

associated with the caries onset and overt lesions compared to collateral normal conditions are listed in 

Table 1.  

Table 1: The statistical significance values of the pairwise comparisons of the quantified metabolites 

in dysbiotic (cariogenic) and non-dysbiotic (control) conditions at each time point. q value denotes the 

p value that has been adjusted for the false discover rate (FDR). Double asterisks denote key large 

differences. 

Principal coordinates analyses (Bray-Curtis distances) on the targeted metabolome data corroborated 

differentiation between samples based on the sucrose treatment rather than time elapsed, unlike the 

temporally-dominating changes observed with the 16S rRNA data (Supplemental Figure 5a). Further, unlike 

the patterns observed with 16S data, hierarchical clustering of Bray-Curtis distances on the metabolome data 

showed two distinct groups under health (NS) and cariogenic conditions (WS). This observation indicates 

the existence of shared metabolic pathways among taxonomically diverse biofilms (Supplemental Figure 

5b). The PERMANOVA test for both the metabolome and microbiome profiles showed statical significance 

for the treatment effect, for the time effect, and for their interaction (Supplemental Figure 5c). However, as 

expected, the PERMANOVA R2 for treatment was higher in the metabolome data compared to 16S data; 

0.59 and 0.15 respectively, while the R2 for time point was higher in the 16S data compared to metabolome 

data; 0.24 and 0.10 respectively (Supplemental Figure 5c). 

Metabolites/Biomarkers Caries Onset Overt Lesions

1 Acetyl-CoA up regulated (q=0.01)* up regulated (q=6.95x10-4)**

2 Dihydroxyacetone phosphate up regulated (q=0.007)** up regulated (q=1.7x10-5)**

3 Fructose 6-phosphate up regulated (q=0.014)* up regulated (q=1.59x10-5)**

4 Fructose 1,6-bisphosphate up regulated (q=2.42x10-3)**

5 Fumarate down regulated (q=0.015)* down regulated (q=1.59x10-5)**

6 Glucose 1-phosphate up regulated (q=0.015) *

7 Galactose 1-phosphate up regulated (q=0.014)* up regulated (q=9.72x10-5)**

8 Glucose 6-phosphate up regulated (q=0.014)* up regulated (q=5.05x10-5)**

9 Glyceraldehyde 3-phosphate up regulated (q=0.005)** up regulated (q=1.59x10-5)**

10 Lactate up regulated (q=7.18x10-9)** up regulated (q=1.56x10-11)**

11 Malate up regulated (q=1.59x10-5)**

12 Pyruvate up regulated (q=4.26x10-8)** up regulated (q=1.23x10-4)**

13 Ribulose 5-phosphate down regulated (q=2.67x10-5)**

14 Succinate up regulated (q=1.23x10-4)**
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Lastly, we investigated the level of association or correspondence between metabolome and microbiome 

biomarkers (Figure 8). These associations were initially tested using Procrustes and Mantel tests (Procrustes 

M2 = 0.65, r = 0.59,  p = 0.001; Mantel r = 0.3, p = 0.001, 999 permutations), showing that the two distance 

matrices (Bray-Curtis) are significantly correlated. Subsequently, we tested associations between specific 

bacterial taxa (ASVs) and metabolites using mmvec; this procedure identifies the highest co-

occurrence probabilities; i.e., the metabolites that mostly corresponded with abundance of  a given bacterial 

taxa. Larger positive log conditional probabilities, displayed in red in figure 8, indicate a stronger likelihood 

of co-occurrence, while low correspondence (negative values), displayed from white to blue, indicate no 

relationship, but not necessarily a negative correlation (Figure 8). We found strong associations between 

specific taxa and key upregulated metabolites associated with caries onset, especially Lactate and DHAP. 

Specifically, strong associations were found between DHAP and Actinomyces and between Lactate, DHAP 

and Veillonella parvula, Streptococcus, Porphyromonas and Granulicatella (Figure 8). Weaker associations 

were found between Pyruvate and Paenibacillus and Fusobacterium (Figure 8). Other strong associations 

were found between ACoA and Enterococcus, Actinomyces, Haemophilus parainfluenzae, and 

Paenibacillus; and between F6P and Paenibacillus (Figure 8). No significant associations were found 

between Fumarate, the only downregulated metabolite in WS-T1and WS-T2, and any of the aforementioned 

taxa (Figure 8). 

 

Discussion 

 
Although a dysbiotic state is agreed to be a key factor contributing to the onset of dental caries, our 

understanding of the functional changes accompanying the transition from a healthy oral ecosystem to the 

dysbiotic onset of caries is seldomly studied. Given the site-specific and dynamic nature of dental caries, 

profound understanding requires a longitudinal and multi -level analysis that includes taxonomic assessment 

(composition) and potential functions (metagenome), and/or active functions (metatranscriptome), and/or 

encoded functions (metaproteome and metabolome) within the context of this complex oral ecosystem (60) 

(61) . In contrast to metatranscriptome and metaproteome analyses, which represent one aspect of cellular 

function, metabolomic profiling can provide an instantaneous snapshot of the physiological performance of 

a given microecosystem. Thus, metabolomic profiling reveals what is actually happening as opposed to the 

potential for something to happen. Furthermore, the metabolome is the closest link to the phenotype that 

reflects all the information expressed and modulated by all other Omic-layers along the biological hierarchy 

(62).  

Herein, we present the first integrative downstream analysis of the bacterial compositional and metabolic 

changes of an ex-vivo ecosystem model of supragingival plaque associated with dental caries onset and 
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progression. Our objective was to capture the etiological changes of this disease that are otherwise 

undetected clinically (Figure 1). We focused on analyzing the compositional and metabolic patterns 

associated with sucrose-induced pH-changes because of the evident direct relation between organic acids 

produced by dietary carbohydrate metabolism and the pathogenicity of dental caries (63-65) (Supplemental 

Table 2).  

Our novel ex-vivo model allowed us to provide a quantitative analysis of changes in central carbon 

metabolism captured at the dental caries onset, in tandem with the associated microecological changes. Not 

only the microcosm model used exhibits a highly diverse community approaching the diversity of human 

supragingival plaque (26, 27), but also each tested pair of the ex-vivo model, the microcosm pairs and teeth 

substrates pairs, is derived from a single patient. This test-control matching is vital to circumvent the 

biologically confounding factors inherent to high interindividual variation observed in the oral ecosystem 

(Figure 1). 

Besides, this ex-vivo model integrated with a powerful non-invasive advanced bioimaging, MP-SHG, has 

also enabled us to simultaneously track structural changes in enamel (rich in minerals only), and dentin 

(comprised of minerals and collagen), aiming to capture the earliest subtle changes taking place in either 

one. Although dental caries typically starts in the external layer of enamel (66), we tested both 

aforementioned tissues for two reasons. First, enamel caries could be arrested for years unlike when the 

lesion reaches the dentin, where it flares up and necessitates quick response through restorative treatments 

(66). Second, caries can start right in dentin in cases of severe enamel attrition, abrasion and/or erosion as 

well as in geriatric patients who experienced gingival recession and root surface exposure (67).  

The MP-SHG ultrastructural non-invasive imaging was key to set the 1st timepoint that corresponds to the 

caries onset ; i.e., incipient lesions that could not be otherwise detected (66) (Figure 3 and Supplemental 

Figure 2). Additionally, MP-SHG enabled the longitudinal study design to track changes in the same 

samples from the sound start until the detection of overt lesions, going through the critical stage of transition 

from health to disease (Figures 2, Figure 3, and Supplemental Videos 1). At the caries onset, the major 

structural disintegration was particularly and consistently observed at the junction between enamel and 

dentin - DEJ - while the collateral samples derived from same patients and inoculated with the same 

microcosms, except for the sucrose supplementation, did not display any of these disintegrative signs 

(Figure 2 and Supplemental Figure 1). As lesions progressed and became overt to visualize, a remarkable 

band of disintegration was observed with MP-SHG in the dentin side of the DEJ (Supplemental Figure 3 

and Supplemental Videos 2). The dentin layer that is just subsequent to the DEJ, 20-30 um, called mantle 

dentin and typically has more collagen, fewer tubules and less overall mineral than the bulk dentin (68-71). 

The mantle’s softer structure might explain the earlier effect on this layer compared to other zones of 
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cultured dental substrates. This imaging approach is novel in the field, no references were available to 

validate the lesions we induced ex-vivo compared to clinical carious lesions. Accordingly, we implemented 

another well-established characterization method in the dental literature, SEM, to validate our ex-vivo 

induced lesions by comparison with well-reported clinical carious lesions at the DEJ area (43, 72-74) 

(Figure 3 and Supplemental Figure 4). Given that the SEM is an invasive technique and cannot be applied in 

a longitudinal study design, we implemented it just to characterize each stage of induced lesions 

individually. Evidently, the SEM micrographs confirmed the carious nature of the induced lesions based on 

the observed demineralization and disintegration patterns as well as collagen disorganization (Figure 3 and 

Supplemental Figure 4) (75, 76). Correspondingly, we proceeded to the microbiome and metabolome 

analyses.  

16S rRNA data-driven analyses stratified our tested samples into four clusters (Figure 4). Despite changes in 

the microbial community composition mainly corresponded to temporal dynamics, with samples tightly 

clustered along PCo.1 (Figure 4a) , both effects of treatment and time were significant as well as their 

interaction as denoted by PERMANOVA tests. The treatment-based changes were delineated in the log 

fold-change pairwise comparisons where several ASVs showed consistent and significant changes in 

relative abundances across the 11 human subject-derived microcosms upon sucrose supplementation (Figure 

5a and Supplemental Tables 5 and 6). Some taxa that tolerated the sucrose-induced acidic conditions were 

significantly abundant at the caries onset (WS_T1), such as Veillonella dispar, Veillonella purvula, and 

unknown ASVs from Lactobacillus, Enterobacteriaceae, Streptococcus and Staphylococcus (Figure 5a and 

Supplemental Table 6). However, most of these taxa were also found abundant after the lesions became 

overt (WS_T2), which makes it challenging to point to specific taxa as responsible or exclusively associated 

with the disease onset. Our identified taxa are among the most-commonly recognized in previous caries 

association studies; though, these studies identified taxa from different stages of clinical lesions beyond the 

onset of the disease (13, 18, 77-79). Other genera that were also highlighted for their strong associations and 

their important influence in polymicrobial carious lesions are the poorly studied Fusobacterium and 

Atopobium (77, 80-82), which we also identified but in the overt lesion stage (Figure 5a and Supplemental 

Table 6). 

Furthermore, indicator taxa analyses (IndVal > 0.6) showed only a few ASVs faithfully distinguishing 

NS_T1 and in WS_T2, which correspond to early controls and overt lesions (Figure 5b and Supplemental 

Table 7). Only ASVs affiliated to the Streptococcus genus  were associated with caries onset (WS_T1), but 

exact species could not be identified; noting a significant limitation of the 16S rRNA sequencing. 

Nonetheless, even if the sequencing is capable of providing species-level resolution, the presence of one or 

more species would not ascertain the causative organisms for the disease; first, because bacterial abundance 
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is not indicative of their activity (17, 77, 83); and second, because the heterogenic polymicrobial nature of 

this disease significantly varies among individuals (7). Given these two requirements, the indicator ASVs 

reported herein may be co-incidentally shared among the tested subjects, but they may not give reliable 

inference about their actual activity within the tested ecosystem. 

For functional profiling, we looked at discernable signatures in the central carbon metabolism at health and 

cariogenic conditions, while testing their associations with the microbiome taxonomic profiles. This 

approach previously revealed that stable metabolic pathways may exist despite taxonomic heterogeneity 

across individuals for supragingival plaque (22, 84).  

Interestingly, we found that 6 metabolites - ACoA, DHAB, G3P, G6P, Lactate and Pyruvate - specifically 

associated with samples incubated in cariogenic conditions, whereas one metabolite – Fumarate - was 

exclusively associated with the controls (Figure 6b). Our findings align to a great extent with previous in-

vivo studies for metabolome profiling of the supragingival dental plaque before and after glucose 

supplementation (65, 85). Obviously, the in-vivo environment is more taxonomically rich than the 

microcosm ecosystem; however, these findings support that oral microbial communities share conserved 

specific metabolic pathways under dysbiotic conditions, despite heterogenous taxonomic composition (65, 

85, 86). Additionally, these findings further validate our microcosm model, which previously showed 

conserved proteome patterns despite taxonomic variability (23).  

Worthy of mention, not all identified key metabolites showed the same influence in discriminating between 

conditions. Lactate was found to be the most powerful differentiating metabolite followed by Pyruvate 

(Figure 6d). The rest of the studied 18 metabolites showed a gradually decreasing influence, where 6 of 

them showed a minimal influence; (Figure 6d) and were also found to be not specifically associated with 

any tested group (Figure 6b).  

For the caries onset in particular, five significantly expressed metabolites were observed differentiating 

caries onset from the control condition, and progression to overt lesions: Lactate, Pyruvate, DHAB, G3P 

were upregulated, while Fumarate was downregulated (Figure 6e and f and Table 1). Not only the 

aforementioned 5 key metabolites were significantly different at the caries onset, but also 5 more 

metabolites - ACoA, F6P, G1P, Gal1P, G6P - were found significantly upregulated at the same time point 

(WS_T1) (Figure 7 and Table 1). However, these additionally upregulated metabolites did not show high 

statistical significance as the 5 key metabolites featured in the heat maps (Figure 6e and f and Table 1), nor 

were they among the metabolites with the highest VIP scores (Figure 6d). As the lesions progressed 

(WS_T2), a list of 13 metabolites showed high statistical significance; 11 upregulated and 2 downregulated 

(Figure 7 and Table 1). These finding suggest that the high abundance of Lactate, Pyruvate, G3P, and 
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DHAB, along with the depletion of Fumarate, are enough to denote the onset of dysbiosis and potential 

incipient lesions existence.  

These data are crucial to devise timely interventions with offsetting clinical strategies; such as controlling 

dietary and hygienic habits (87) and/or developing modern therapeutics for caries prevention or arresting 

before the disease progresses to overt lesions, which would necessitate invasive restorative dental 

treatments. Some contemporary approaches include probiotics that antagonize acidogenic/aciduric species 

(88), targeted antimicrobials that suppress specific pathogens (89), modulating the early acquired enamel 

pellicle that governs the succession of biofilms (90), and developing alkali production therapeutics, such as 

arginine, to neutralize glycolytic acids (91). 

The upregulation of some metabolites along the glycolysis pathways is self-explanatory based on the 

fermentation of carbohydrates induced by bacterial metabolism. However, the depletion of Fumarate was an 

interesting finding that triggered our curiosity (Figure 7and Table 1). Fischbach and Sonnenburg 

systematically explained this phenomenon in the context of how anaerobic bacteria generate energy (ATP), 

maintain redox balance, and acquire carbon and nitrogen to synthesize primary metabolites  (92). They 

elucidated how Fumarate is key for anaerobic ATP synthesis in the final step of the primitive electron 

transport chain through its reduction to succinate, pointing to this metabolite as the most common terminal 

electron acceptor for anaerobic respiration (93). Since biofilms were grown in an aerobic environment, as it 

happens with supragingival plaque in-vivo, excessive Fumarate consumption could be attributed to the 

presence of some strict anaerobic species within the microbial community - such as Veillonella (in WS_T1 

and T2) and Fusobacterium (in WS_T2) - which strive to maintain their survival and energy production as 

aforementioned. Intriguingly, Ribulose-5-phosphate, also showed significant depletion at a later stage, when 

the lesions became overt (Figure 7and Table 1). The mechanisms behind depletion of this metabolite are 

unclear; however, ribulose-1,5-bisphosphate - the product of the phosphorylation of ribulose-5-phosphate- 

has been found to be the most important CO2 fixing pathway in prokaryotes, particularly around oxic/anoxic 

(free oxygen containing/free oxygen lacking) interfaces (94) that develop as a consequence of oxygen 

consumption (95). Collectively, Ribulose-5-phosphate consumption seems to be also involved in bacterial 

adaptation mechanisms used for managing CO2 deficiency at an advanced stage of biofilm maturations.  

We sought to shed light on microbe-metabolite associations behind the metabolic profiles observed (Figure 

8). For example, we found strong co-occurrence patterns between Lactate and DHAB, two of the 5 key 

metabolites associated with the caries onset, and Veillonella parvula, Streptococcus, Porphyromonas and 

Granulicatella. Interestingly, although the association of Streptococcus and Veillonella parvula with the 

caries onset were recapitulated in the IndVal and Volcano plot analyses, respectively, neither 

Porphyromonas nor Granulicatella were found to characterize cariogenesis. Another example is the strong 
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co-occurrence detected between DHAB and an Actinomyces ASV (Figure 8), where the latter was not 

significantly associated with cariogenic conditions at any time point (Figure 5a and Supplemental Tables 5 

and 6). Furthermore, Pyruvate, another strong caries onset biomarker, was found associated with 

Fusobacterium (Figure 8) which was identified demarcating the overt stage taxonomy (Figure 5a and 

Supplemental Tables 5 and 6).  

These findings further imply that the mere abundance and/or presence of specific bacteria does not reflect 

their active role in disease initiation or progression, while the functional profiles/outcomes could be central 

in controlling the course of the disease (17, 77, 83, 96). Moreover, our findings confirm that taxonomically 

similar microbiomes may have different metabolic roles in the supragingival microenvironment (97). This 

scenario is also supported by observations that two ASVs from the same genus; Actinomyces, show different 

patterns of association with DHAB (Figure 8). Likewise three different Streptococcus ASVs show various 

co-occurrence probabilities with Lactate, spanning from no-relationship to strong co-occurrence (Figure 8). 

In addition, given the limitations of short amplicon sequencing approaches to resolve strain identity, the data 

may also show that the role of oral bacteria in caries onset and progression is also characterized by fine-

level strain or variant dynamics within specific bacterial taxa (21). 

Still, all the aforementioned examples of the bacteria associated with the key metabolites are 

acidogenic/aciduric and have evident roles in dental caries course as reviewed in (78). As such, acidogenic, 

and acid tolerant bacteria are more likely to contribute to the caries process than other microbiome residents. 

Nonetheless, as shown here, acidogenic roles can be carried out by different species in different individuals 

and populations (78). 

Study Limitations 

The use of 16S rRNA sequencing techniques poses limitation due to its inability to reveal strain-level 

characterization of bacterial taxa associated with carries onset or progression (98). Although we 

identified several ASVs affiliated to same genera, such as Streptococcus, Actinomyces, and 

Fusobacterium, displaying different co-occurrence patterns with the metabolomic biomarkers, their 

precise taxonomic identification and associated metabolic roles in the studied microenvironment 

could not be resolved (97). For example, Streptococcus comprises both commensals, like S. gordonii 

or S. sanguinis, and acidogenic and/or aciduric strains, like S. mutans or S. sobrinus  (78, 89), which 

we could not determine using 16S rRNA short amplicon sequencing. Alongside, the ex-vivo model 

cannot be taken as a surrogate of actual in-vivo conditions, especially when considering true microbial 

diversity. This limitation, in turn, could have influenced the metabolite pool detected in the system. 

Regardless, we believe the polyphasic approach used, in tandem with the controlled conditions 

brought by the carefully validated ex-vivo model, allowed us to present functional biomarkers, free 
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from the lifestyle confounders imposed by in-vivo settings, of the dental caries onset that is otherwise 

undetected clinically.  

 

Conclusions 

 
In this study, we implemented a novel longitudinal ex-vivo model with the aid of advanced non-invasive and 

label free MP-SHG bioimaging to induce dental caries experimentally, and characterize the very early signs 

of the disease, which correspond to undiagnosable subclinical lesions. We analyzed the microbial 

communities at the disease onset and after progression, using 16S rRNA short amplicon sequencing and 

central carbon metabolomics. This combined approach allowed us to simultaneously characterize 

microbiome changes and functional phenotypes associated with the disease, while elucidating associations 

between microbial biomarkers and metabolic outcomes. Our data revealed five key metabolites significantly 

expressed with the induced caries onset that did not necessarily co-occur with the most abundant taxa 

identified under the same condition. This study confirms the crucial role of bacterial activity over their 

taxonomic abundance in controlling caries pathogenesis, aligning with previous findings using other 

functional omics platforms. The biomarkers we report for the onset of caries can be key to prevent/arrest the 

disease at its early stage before it progresses to overt lesions, so that invasive restorative treatments as well 

as massive expenses in healthcare budgets can be prevented. 
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Figure Legends 

 

 
Figure 1. Schematic diagram depicting the study design and workflow for identifying bacterial and metabolites 

changes associated with dental caries onset and progressive overt lesions. Eleven pairs of supragingival plaque 
microcosms were developed in normal and dysbiotic conditions, without (NS) and with sucrose (WS) and grown on 11 

pairs of human teeth slices. Each pair of microcosm was originated from a single individual and each pair of teeth 

specimens was sliced from a single tooth. All the specimens were screened at high magnification with the label-free 
and non-invasive Multiphoton-Second Harmonic Generation microscopy (MP-SHG) to discard the specimens with any 

potential lesions before starting the inoculation. The dental caries was induced ex-vivo and the associated biofilms were 

analyzed at two longitudinal phases, the first and second phases correspond to the caries onset and overt lesions, 

respectively. The caries onset was validated with MP-SHG before proceeding with inducing progressive overt lesions. 
Induced caries onset as well as overt lesions were further validated individually with Scanning Electron Microscopy 

(SEM). The biofilms associated with all samples at the 2 phases were detached and split-divided for16S rRNA genomic 

analysis and targeted central carbon metabolomic analysis. Along the manuscript, the red and green shades denote the 
samples grown in control and dysbiotic conditions, respectively. 

 

Figure 2. Multiphoton-second harmonic generation (MP-SHG) bio-imaging examination of the dentin-enamel 

junction (DEJ) area before and along the course of ex-vivo dental caries induction. The green signals show the MP 
autofluorescence emitted from the mineralized phase (mainly enamel). The blue signals show the SHG exclusively 

emitted from the collagen network of dentin. The columns show the maximum intensity projection of the acquired Z-

stacks and the 3D renders of sound teeth slices (pre-inoculation), induced incipient caries lesions (caries onset), and 
induced overt caries lesions; the videos are provided in Supplemental Videos 1. The rows show three representative 

samples; all tested samples are displayed in Supplement Figures 1 and 3. 

 
Figure 3. Characterization of the stages of induced ex-vivo caries lesion in comparison to the clinical caries lesion. 

The columns from left to right show the pre-inoculation stage, induced caries onset, induced overt caries lesion, and 

clinical caries lesion. The rows from top to bottom show the characterization methods with stereomicroscopy, 

Multiphoton-second harmonic generation microscopy (MP-SHG) and Scanning Electron Microscopy (SEM). The 
stereomicroscope images show the overall changes of the teeth specimens in reflection and transmission light modes. 

The specific dentin-enamel junction (DEJ) areas assigned for ultrastructural characterization are outlined with black 

dashed boxes. The MP-SHG examination shows the degradation of the enamel and dentin around the DEJ and spotted 
the early lesion in the mantle dentin zone, just beneath the DEJ. The SEM further characterized the ultrastructural 

changes of the mantle dentin associated with the ex-vivo caries induction compared to a clinical caries lesion. The 

micrographs showed the gradual degradation of the peritubular dentin and disorganization of the collagen fibers along 
the cariogenesis course; portraying the structural similarities between the induced overt lesions and clinical caries 

developed in the same dentin area.  

 

Figure 4. Beta and alpha diversity of supragingival plaque microcosms grown in dysbiotic (cariogenic) and non-

dysbiotic (control) conditions at the ex-vivo dental caries onset and after progression. A) Principal coordinates 

analysis (PCoA) of 16S rRNA sequencing reads of all tested samples. The red and green shades denote the samples 

grown in control and dysbiotic conditions respectively, where the lighter tones refer to the first time point and the darker 
tones refer to the second time point of analysis. 16S rRNA sequencing reads were categorized into distinct amplicon 
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sequence variants (ASVs) using standard QIIME scripts. Beta-diversity between samples was measured through a Bray-
Curtis dissimilarity analysis based on relative abundance of ASVs. The percent of variability accounted for by each axis 

is indicated. B) Differences in alpha diversity between dysbiotic and non-dysbiotic samples at each time-point were 

measured as number of amplicon sequence variants “No. of ASVs”, Shannon, and Simpson indices. No statistical 

differences were found among the alpha diversity indices of the tested groups. (T1, T2) stand for (Time Point 1-1st 
phase/caries onset, Time Point 2-2nd phase/overt lesions) and (WS, NS) stand for (With Sucrose, No Sucrose). 

 
Figure 5. Differential relative abundance analysis of the supragingival plaque bacterial taxa associated with 

dysbiotic (cariogenic) and non-dysbiotic (control) conditions at the ex-vivo dental caries onset and after 

progression to over lesions. A) Volcano plots display the fold changes in relative abundance (log 2) on the x axes 

between the first and second time points (caries onset and overt lesion) on left (time-based changes) and between 
dysbiotic and non-dysbiotic conditions on right (treatment-based changes). The dashed vertical lines denote a 2-fold 

change in relative abundance (log
2
2 = 1). The y axes display the −log10 of the adjusted p values (q values) of the test 

statistic. The dashed horizontal line corresponds to the q value of 0.05. The green points that appear outside the enclosed 

dashed box formed by the x and y axis intercepts are points that show both significant and proportionally large shifts in 

relative abundance. The gray points below the significance threshold denote non-significant shifts in relative abundance. 
A full list of taxa showing significant shifts in relative abundance is provided in Figure5-table supplement 1 and 2.  B) 

Indicator value “IndVal” analysis-based box plots showing the most abundant taxa associated with each group. The red 

and green shades denote the samples grown in control and dysbiotic conditions respectively, where the lighter tones 
refer to the first time point and the darker tones refer to the second time point of analysis. The detailed analysis of 

IndVal index showing the full list of taxa associated with each group is provided in Figure5-table supplement 3. (T1, 

T2) stands for (Time Point 1-1st phase/caries onset, Time Point 2-2nd phase/overt lesions) and (WS, NS) stands for (With 
Sucrose, No Sucrose). 

 

Figure 6. Differential metabolomic profiling of the central carbon metabolism associated with dysbiotic 

(cariogenic) and non-dysbiotic (control) conditions at the ex-vivo dental caries onset and after progression to 

overt lesions. A) Principal Component Analysis (PCA) shows clustering of samples from each group, and color-

coded ovals displaying 95% confidence intervals in multivariate space; the red and green shades denote the samples 

grown in control and dysbiotic conditions respectively, where lighter tones refer to first time points and darker tones 
refer to the second time points of analysis. The percent of variability accounted for by each axis is indicated. B) Biplot 

illustrating the correspondence between metabolites and samples. Arrows portray the association of specific 

metabolites with the samples displayed in PCA. The arrow length represents the influence of the metabolite and arrows 

that have a small angle between them are indicative of metabolites that co-occur with each other. C) Partial Least 

Squares-Discriminant Analysis (PLS-DA) for both classification and feature selection. The permutation and cross-

validation tests of the model are detailed in Figure 6–figure supplement 1. D) Variable Importance in Projection 

(VIP) scores. VIP is a weighted sum of squares of the PLS weights, which indicates the importance of each variable or 
metabolite to the model and to differentiate the groups. VIP values <0.5 show the metabolites that were not influential 

in this study. E) Heat map analysis with the dendrogram based on Euclidean distance and Average algorithm. 

Columns represent individual tested samples and rows represent 18 targeted metabolites of the central carbon 
metabolism. The relative abundance of each metabolite is represented by color in each cell. The color-coded groups are 

presented on the top of the heat map. F) Average heat map showing differential metabolites per group. The dashed 

boxes indicate the upregulated and downregulated metabolites significantly associated with the caries onset. “NS_T1” 

stands for No Sucrose at Time Point 1-1st phase/caries onset, “NS_T2” stands for No Sucrose at Time Point 2-2nd 
phase/overt lesions, “WS_T1” stands for With Sucrose at Time Point 1-1st phase/caries onset and “WS_T2” stands for 

With Sucrose at Time Point 2-2nd phase/over lesions. 

 
Figure 7. Pairwise comparisons of the profiled and quantified metabolites in dysbiotic (cariogenic) and non-

dysbiotic (control) conditions at the ex-vivo dental caries onset and after progression along the specified glycolysis 

pathways. Per each metabolite cluster, the dysbiotic and non-dysbiotic conditions are depicted in green and red shades, 
respectively, where the first time point-1st phase/caries onset analysis is shown on left and the second time point-2nd 

phase/overt lesions is on right. The black dashed arrows inside each box plot show the significantly upregulated or 

down-regulated metabolites at either time point. The red dashed ovals mark the significantly different metabolites, 

specifically at the first time points that correspond to the caries onset. 
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Figure 8. Co-occurrence analyses between microbes and metabolites in supragingival plaque microcosms in 

dysbiotic (cariogenic) and non-dysbiotic (control) conditions at the ex-vivo dental caries onset and after 

progression. The metabolites are displayed at the top of the heat map while the key taxa (ASVs) and their clustering 

dendrogram are displayed on the sides. The clustered heat map infers the log conditional probabilities between taxa and 

metabolites where larger positive conditional probabilities (displayed in red) indicate a stronger likelihood of co-
occurrence and low and negative values (displayed from white to blue) indicate no relationship but not necessarily a 

negative correlation.  
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Figure 1. Schematic diagram depicting the study design and workflow for identifying bacterial and metabolites changes associated with dental caries 

onset and progressive overt lesions. Eleven pairs of supragingival plaque microcosms were developed in normal and dysbiotic conditions, without (NS) and with 

sucrose (WS) and grown on 11 pairs of human teeth slices. Each pair of microcosm was originated from a single individual and each pair of teeth specimens was 

sliced from a single tooth. All the specimens were screened at high magnification with the label-free and non-invasive Multiphoton-Second Harmonic Generation 
microscopy (MP-SHG) to discard the specimens with any potential lesions before starting the inoculation. The dental caries was induced ex-vivo and the associated 

biofilms were analyzed at two longitudinal phases, the first and second phases correspond to the caries onset and overt lesions, respectively. The caries onset was 

validated with MP-SHG before proceeding with inducing progressive overt lesions. Induced caries onset as well as overt lesions were further validated individually 
with Scanning Electron Microscopy (SEM). The biofilms associated with all samples at the 2 phases were detached and split-divided for16S rRNA genomic 

analysis and targeted central carbon metabolomic analysis. Along the manuscript, the red and green shades denote the samples  

grown in control and dysbiotic conditions, respectively. 
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Figure 2. Multiphoton-second harmonic generation (MP-SHG) bio-imaging examination of the dentin-enamel junction (DEJ) area before and along 

the course of ex-vivo dental caries induction. The green signals show the MP autofluorescence emitted from the mineralized phase (mainly enamel). The 

blue signals show the SHG exclusively emitted from the collagen network of dentin. The columns show the maximum intensity projection of the acquired Z-

stacks and the 3D renders of sound teeth slices (pre-inoculation), induced incipient caries lesions (caries onset), and induced overt caries lesions; the movies 

are provided in Supplemental Videos . The rows show three representative samples; all tested samples are displayed in Supplement Figures 1 and 3. 
  

Label-Free Multiphoton-Second Harmonic Generation Bioimaging

Sound Tooth Slice

(Pre-inoculation)

Z-Stacks

Sound Tooth Slice

(Pre-inoculation)

3D Render

Induced Incipient Lesions

(Caries Onset)

Z-Stacks

Induced Incipient Lesions

(Caries Onset) 

3D Render

Induced Overt Lesions

(Caries Lesions) 

Z-Stacks

Induced Overt Lesions

(Caries Lesions)

3D Render

100μm

100μm

100μm

100μm

100μm

100μm

100μm

100μm

100μm

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.04.01.486588doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486588


 3 

 
 

Figure 3. Characterization of the stages of induced ex-vivo caries lesion in comparison to the clinical caries lesion. 

The columns from left to right show the pre-inoculation stage, induced caries onset, induced overt caries lesion, and clinical 

caries lesion. The rows from top to bottom show the characterization methods with stereomicroscopy, Multiphoton-second 

harmonic generation microscopy (MP-SHG) and Scanning Electron Microscopy (SEM). The stereomicroscope images 
show the overall changes of the teeth specimens in reflection and transmission light modes. The specific dentin-enamel 

junction (DEJ) areas assigned for ultrastructural characterization are outlined with black dashed boxes. The MP-SHG 

examination shows the degradation of the enamel and dentin around the DEJ and spotted the early lesion in the mantle 

dentin zone, just beneath the DEJ. The SEM further characterized the ultrastructural changes of the mantle dentin associated 
with the ex-vivo caries induction compared to a clinical caries lesion. The micrographs showed the gradual degradation of 

the peritubular dentin and disorganization of the collagen fibers along the cariogenesis course; portraying the structural 

similarities between the induced overt lesions and clinical caries developed in the same dentin area.  
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Figure 4. Beta and alpha diversity of supragingival plaque microcosms grown in dysbiotic (cariogenic) and non-

dysbiotic (control) conditions at the ex-vivo dental caries onset and after progression. a) Principal coordinates 
analysis (PCoA) of 16S rRNA sequencing reads of all tested samples. The red and green shades denote the samples 

grown in control and dysbiotic conditions respectively, where the lighter tones refer to the first time point and the darker 

tones refer to the second time point of analysis. 16S rRNA sequencing reads were categorized into distinct amplicon 

sequence variants (ASVs) using standard QIIME scripts. Beta-diversity between samples was measured through a Bray-
Curtis dissimilarity analysis based on relative abundance of ASVs. The percent of variability accounted for by each axis 

is indicated. b) Differences in alpha diversity between dysbiotic and non-dysbiotic samples at each time-point were 

measured as number of amplicon sequence variants “No. of ASVs”, Shannon, and Simpson indices. No statistical 
differences were found among the alpha diversity indices of the tested groups. (T1, T2) stand for (Time Point 1-1st 

phase/caries onset, Time Point 2-2nd phase/overt lesions) and (WS, NS) stand for (With Sucrose, No Sucrose). 
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Figure 5. Differential relative abundance analysis of the supragingival plaque bacterial taxa associated with dysbiotic (cariogenic) and non-

dysbiotic (control) conditions at the ex-vivo dental caries onset and after progression to over lesions. a) Volcano plots display the fold changes 

in relative abundance (log 2) on the x axes between the first and second time points (caries onset and overt lesion) on left (time-based changes) and 
between dysbiotic and non-dysbiotic conditions on right (treatment-based changes). The dashed vertical lines denote a 2-fold change in relative 

abundance (log
2
2 = 1). The y axes display the −log10 of the adjusted p values (q values) of the test statistic. The dashed horizontal line corresponds 

to the q value of 0.05. The green points that appear outside the enclosed dashed box formed by the x and y axis intercepts are points that show both 

significant and proportionally large shifts in relative abundance. The gray points below the significance threshold denote non-significant shifts in 

relative abundance. A full list of taxa showing significant shifts in relative abundance is provided in Figure5-table supplement 1 and 2.  b) Indicator 
value “IndVal” analysis-based box plots showing the most abundant taxa associated with each group. The red and green shades denote the samples 

grown in control and dysbiotic conditions respectively, where the lighter tones refer to the first time point and the darker tones refer to the second 

time point of analysis. The detailed analysis of IndVal index showing the full list of taxa associated with each group is provided in Figure5-table 
supplement 3. (T1, T2) stands for (Time Point 1-1st phase/caries onset, Time Point 2-2nd phase/overt lesions) and (WS, NS) stands for (With Sucrose, 

No Sucrose). 
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Figure 6. Differential metabolomic profiling of the central carbon metabolism associated with dysbiotic 

(cariogenic) and non-dysbiotic (control) conditions at the ex-vivo dental caries onset and after progression 

to overt lesions. a) Principal Component Analysis (PCA) shows clustering of samples from each group, and 

color-coded ovals displaying 95% confidence intervals in multivariate space; the red and green shades denote the 

samples grown in control and dysbiotic conditions respectively, where lighter tones refer to first time points and 
darker tones refer to the second time points of analysis. The percent of variability accounted for by each axis is 

indicated. b) Biplot illustrating the correspondence between metabolites and samples. Arrows portray the 

association of specific metabolites with the samples displayed in PCA. The arrow length represents the influence 
of the metabolite and arrows that have a small angle between them are indicative of metabolites that co-occur with 

each other. c) Partial Least Squares-Discriminant Analysis (PLS-DA) for both classification and feature 

selection. The permutation and cross-validation tests of the model are detailed in Figure 6–figure supplement 1. d) 

Variable Importance in Projection (VIP) scores. VIP is a weighted sum of squares of the PLS weights, which 
indicates the importance of each variable or metabolite to the model and to differentiate the groups. VIP values 

<0.5 show the metabolites that were not influential in this study. e) Heat map analysis with the dendrogram 

based on Euclidean distance and Average algorithm. Columns represent individual tested samples and rows 
represent 18 targeted metabolites of the central carbon metabolism. The relative abundance of each metabolite is 

represented by color in each cell. The color-coded groups are presented on the top of the heat map. f) Average heat 

map showing differential metabolites per group. The dashed boxes indicate the upregulated and downregulated 
metabolites significantly associated with the caries onset. “NS_T1” stands for No Sucrose at Time Point 1-1st 

phase/caries onset, “NS_T2” stands for No Sucrose at Time Point 2-2nd phase/overt lesions, “WS_T1” stands for 

With Sucrose at Time Point 1-1st phase/caries onset and “WS_T2” stands for With Sucrose at Time Point 2-2nd 

phase/over lesions. 
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Figure 7. Pairwise comparisons of the profiled and quantified metabolites in dysbiotic (cariogenic) and non-dysbiotic (control) conditions at the ex-

vivo dental caries onset and after progression along the specified glycolysis pathways. Per each metabolite cluster, the dysbiotic and non-dysbiotic 

conditions are depicted in green and red shades, respectively, where the first time point-1st phase/caries onset analysis is shown on left and the second time 

point-2nd phase/overt lesions is on right. The black dashed arrows inside each box plot show the significantly upregulated or down-regulated metabolites at 
either time point. The red dashed ovals mark the significantly different metabolites, specifically at the first time points that correspond to the caries onset. 
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Figure 8. Co-occurrence analyses between microbes and metabolites in supragingival plaque microcosms in 

dysbiotic (cariogenic) and non-dysbiotic (control) conditions at the ex-vivo dental caries onset and after 

progression. The metabolites are displayed at the top of the heat map while the key taxa (ASVs) and their clustering 

dendrogram are displayed on the sides. The clustered heat map infers the log conditional probabilities between taxa and 

metabolites where larger positive conditional probabilities (displayed in red) indicate a stronger likelihood of co-
occurrence and low and negative values (displayed from white to blue) indicate no relationship but not necessarily a 

negative correlation. 
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