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Abstract 

Language processing is a highly integrative function, intertwining linguistic operations 

(processing the language code intentionally used for communication) and extra-linguistic 

processes (e.g., attention monitoring, predictive inference, long-term memory). This synergetic 

cognitive architecture requires a distributed and specialized neural substrate. Brain systems 

have mostly been examined at rest. However, task-related functional connectivity provides 

additional and valuable information about how information is processed when various cognitive 

states are involved. We gathered thirteen language fMRI tasks in a unique database of one 

hundred and fifty neurotypical adults (InLang database). The tasks were designed to assess a 

wide range of linguistic processes and subprocesses. From this database, we applied network 

theory as a computational tool to model the task-related functional connectome of language 

(LANG). The organization of this data-driven neurocognitive atlas of language is examined at 

multiple levels, uncovering its major components (or crucial subnetworks) and its anatomical 

and functional correlates. Furthermore, we estimate its reconfiguration as a function of 

linguistic demand (flexibility), or several factors such as age or gender (variability). By 

accounting for the multifaceted nature of language and modulating factors, this study can 

contribute to enrich and refine existing neurocognitive models of language. The LANG atlas 

can also be considered as a reference for comparative or clinical studies, involving a variety of 

patients and conditions.  
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1 Introduction 

Language is optimized for human communication. It is an efficient vector of information 

transmission, shaped under cultural and environmental constraints to meet physical, 

technological and social needs (e.g., Kirby et al., 2015; Lupyan & Dale, 2016; Millikan, 2005; 

Scott-Phillips, 2015; Tamariz & Kirby, 2016). Language is also adapted to thinking and 

interpretation, playing a scaffolding role in cognition (e.g., Carruthers, 2002; Chomsky, 2014; 

Clark, 2006; Jackendoff, 1996; Reboul, 2015). Finally, language plays a crucial role in meta-

cognition including self-evaluation, self-regulation and autonoetic consciousness (Alderson-

Day & Fernyhough, 2015; Perrone-Bertolotti et al., 2014). 

In order to combine both effectiveness (Gibson et al. 2019) and utility (Jaeger & Tily, 2011) of 

language production and comprehension, several essential abilities are required. The first one, 

is the combinatory skill (Boer et al., 2012; Friederici et al., 2017; Zuidema & de Boer, 2018). 

Language is compositional and recursive, implying specialized processing of intra-linguistic 

aspects (i.e., an aptitude to handle various combinatorics, perceptive, syntactic or 

semantic/conceptual; Pylkkänen, 2019). A second important ability relates to multisensory 

integration which arguably facilitates spoken communication and enhances speech 

intelligibility (Chandrasekaran et al., 2009; Ghazanfar & Schroeder, 2006; Luo et al., 2010; 

Noppeney et al., 2008; Schroeder & Foxe, 2005; Schwartz et al., 2004; Sumby & Pollack, 

1954). Beyond the multisensory facilitation (or low-level multimodal integration; Holler & 

Levinson, 2019), high level cognitive abilities related to top-down multimodal mechanisms 

have also been emphasized. A shared understanding, a relevant and contextually-adapted 

discourse, requires aligning the partners' representations, considering shared knowledge, past 

experiences, or even making assumptions about the other's perspectives. Establishing “common 

ground” between conversational partners (Clark & Marshall, 1981) relies on  a wide range of 

“high-level” cognitive functions such as working memory (resonance-based theory of common 
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ground, Horton, 2007), long term memory (Brown-Schmidt & Duff, 2016), theory of mind or 

mentalizing (Vanlangendonck et al., 2018) processes. Language use is therefore adapted online, 

enabling communication in a range of environmental and social contexts, meeting various 

cognitive demands and individual metacognitive needs. Given the pressure exerted by 

communication, cognitive and metacognitive demands, language has evolved as an adaptive 

and complex system, which requires taking into account external (context) and internal 

(individual needs and goals) signals, while processing both intra- and extra-linguistic signals 

(e.g. Holler & Levinson 2019, for a multimodal language-in-situ framework). 

How are these various abilities integrated in order to sustain language functions and how are 

they implemented in the brain? The exploration of brain networks and the unique lens it 

provides for understanding cognitive function has become an important part of the cognitive 

neuroscience landscape (Fornito et al., 2013). Brain network descriptions have revealed that the 

brain is organized as a “small-world” network (Achard & Bullmore, 2007), favoring 

optimization of information transfer (Laughlin & Sejnowski, 2003). This organization is 

characterized by a balance between segregation and integration, that is by short communication 

paths creating specialized subsystems (segregation), whose interconnectivity is coordinated by 

distant highly connected brain regions (integration; Heuvel & Sporns, 2013). Functionally, 

local systems or highly connected “modules” for the processing of information in a given 

modality (visual, auditory, etc.) are linked together by sparse and specific fiber paths over long 

distances, according to a connectivity principle of “local richness and long-range sparseness” 

(Pulvermüller, 2018). This organization allows efficient serial, parallel and distributed brain 

activity (Herbet & Duffau, 2020). Integrative areas (sometimes referred to as connector hubs), 

at the interface between local systems, are particularly important for the multimodal neural 

integration of information (Cocchi et al., 2013; Fornito et al., 2015; van den Heuvel & Sporns, 

2013). With regard to the language circuitry, integration/segregation subsystems and specific 
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connector hubs have been previously identified for both language production and 

comprehension (e.g., Friederici, 2012; Hagoort, 2016; Hertrich et al., 2020; Roger et al., 2022). 

However, language is multi-faceted and a comprehensive analysis of the functional properties 

of the language connectome in a broader framework would contribute to a more accurate 

description. 

In an attempt to fill this gap, in this study, we propose to examine the functional attributes of 

language at the brain level through an integrative perspective, mixing several linguistic tasks 

explored in the light of graph theory. This research is naturally framed within the substantial 

legacy of the study of language and its brain foundations (since the beginnings of modern 

neurology) whose growing and diverse observations have been accompanied by the evolution 

of investigative techniques. In the past decades, many authors have highlighted brain function 

and structure associated with language through theoretical neurocognitive models (e.g., Duffau 

et al., 2014; Friederici et al., 2017; Hagoort, 2016, 2019; Hickok & Poeppel, 2007; Indefrey, 

2011; Levelt, 1989; Price, 2012; Rauschecker & Scott, 2009). However, this study, which is in 

direct continuation with past legacy, adds further value by investigating functional cerebral 

connectivity (FC) based on task data. The anatomo-functional substrates associated with 

language are indeed highly task-dependent (Hickok & Poeppel, 2000).  

The task-based FC analyses presented here rely on an fMRI database compiling a broad 

spectrum of language-related tasks (InLang database: doi.org/10.5281/zenodo.6402396). More 

precisely, InLang is composed of thirteen language tasks, performed cross-sectionally by 150 

right-handed neurotypical adults. The database is unique in that it covers a broad spectrum of 

language features: semantic and conceptual processing, decoding (phonology, sound), lexico-

syntactic formulation (production), dialogality (social aspects of language), monitoring of self 

and others, and unintentional speech (Figure 1A; Appendix S1).  Such a database is essential to 

uncover the functional architecture of the multifaceted language processes in an integrative 
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approach. It makes it possible to modelled a comprehensive connectomic atlas of language and 

to explore its fundamental properties in depth. To this end, we analyzed task connectomes using 

graph metrics applied at multiple scales, which allowed us to expose: (1) the overarching FC 

profile of different language tasks and latent subprocesses; (2) the architecture of the general 

language connectome (LANG); (3) the functional roles of crucial language subnetworks and 

brain regions; (4) the anatomo-functional correlates; and (5) the flexibility and variability 

exerted on the LANG connectome. Figure 1 provides an overview of the InLang database and 

the methodology used to address these 5 main axes. 

 

Figure 1: Overview of the InLang database and methodological outlines 

A. The InLang database: the thirteen language tasks and the main dimensions manipulated by 

the protocols. The protocols have been previously published and the MRI data have been 

acquired between 2010 and 2019. InLang gathers, in a unique database, a cross-sectional cohort 

of 150 different healthy individuals and 359 functional scans (see Materials and Method Section 

5.1 and Appendix S1 for more details about tasks and protocols). Table S2 contains the subjects' 

characteristics, by tasks. 

 

B. Brief summary of the steps performed to obtain the task connectomes. For a given task, we 

extracted the beta values from the individual functional activation maps, on a parcellation 

covering the whole brain (Power et al., 2011). The beta values were then used to compute the 
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task-specific connectivity matrix (correlation matrix). The same procedure was repeated for all 

tasks to obtain the respective functional matrices and connectomes. 

 

C. Outline of the multi-level statistical analyses performed on functional connectivity (FC) 

measures (i.e., graph theory parameters) to address 5 main axes.  

 

2 Results 

2.1. Towards a task-based connectomic atlas of language 

2.1.1. Global profile of the tasks and latent subprocesses 

Data-driven clustering, based on the similarity between the global FC profile of the 13 tasks 

(i.e., a profile combining the global efficiency: 𝐸𝑔𝑙𝑜𝑏, the local efficiency: 𝐸𝑙𝑜𝑐, the mean 

geodesic distance: 𝑑̅, and the total number of network nodes: N; Figure 2A), reveals an optimal 

5-cluster solution. This solution is consistent with that obtained based on BOLD functional 

activations (Appendix S1; Figure S1). The internal composition of the five task groups was 

used to label them according to the underlying language subprocess that might be primarily 

involved (Figure 2A), namely: G1 = MONITORING (MS, MO, DO tasks); G2 = DECODING 

(PHON, RHYM and PROS tasks); G3 = SEMANTIC (SEM and SP tasks); G4 = 

PRODUCTION (NAM, FLU, GENE, and REP tasks); G5 = WANDERING (VMW task). 

Indeed, the monologal and dialogal inner speech with own and other voice (MS, MO, DO) 

mainly engage MONITORING processes (inner voice control). Phoneme detection (PHON), 

rhyme judgment (RHYM) and prosodic detection (PROS) first involve phonology and/or 

prosody DECODING (sound control). Semantic categorization (SEM) and speech perception 

(SP) respectively engage word and sentence comprehension. They both primarily require 

SEMANTIC processing (conceptual knowledge). Object naming (NAM), categorical fluency 

(FLU), sentence generation (GENE), word repetition (REP) rely on lexical/lexico-syntactic 

formulation or word PRODUCTION (conceptual knowledge). Finally, verbal mind wandering 
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(VMW) involves spontaneous speech production underpinned by introspective WANDERING 

processes (or unintentional thought). Details of the tasks and the language subprocesses 

theoretically and primarily targeted according to statistical fMRI contrasts performed are 

provided in Appendix S1 (see also the summary Table S1).  

Interestingly, language tasks and subprocesses can also be grouped according to the physical 

distance of their functional connectivity within the brain. By contrasting the 

integration/segregation balance (I:S) with the mean geodesic distance 𝑑̅, we observe a 

significant relationship between the two parameters (r = 0.8, p < .001; Figure 2B), bringing out 

a gradual organization of tasks and subprocesses according to 3 canonical profiles of average 

connectivity: C1 = long-range connections; C2 = middle-range connections; C3 = short-range 

connections (Figure 2B). The more segregated rather than integrated the networks are (i.e., 

negative difference, in favor of 𝐸𝑙𝑜𝑐), the shorter the physical internodal distance (short-distance 

functional connections, as for the control tasks of language involving DECODING and 

MONITORING subprocesses). Conversely, the more integrated rather than segregated the 

networks are (positive difference, in favor of 𝐸𝑔𝑙𝑜𝑏), the longer the physical internodal distance 

(long-range functional connectivity, as for the WANDERING and SEMANTIC task groups).  

2.1.2. Global topology of the general LANG connectome 

After excluding irrelevant functional connections (see Material & Methods, Section 5.2.), 

LANG is composed of 131 non-isolated regions of interest (ROIs; Power’s parcellation: Power 

et al. 2011), distributed over the two hemispheres (nLH = 80; nRH = 46) and the cerebellum 

(nCER=5). Connectivity between LANG ROIs appears balanced between integration and 

segregation (I:S = 0.049), associated with a rather long-range connectivity profile (𝑑̅ = 68.1). 

Table S3 (Appendix S2) summarizes the global network properties of the tasks, of the 
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subprocesses and of the general LANG connectome. Figure 2C shows the LANG connectome 

as a graph projected into a reduced two-dimensional space.  

 

 

Figure 2: Global connectomic profiles of the tasks, the subprocesses and the LANG 

connectome 

A. Hierarchical clustering of parameters used to define global FC profiles (𝐸𝑔𝑙𝑜𝑏= global 

efficiency, 𝐸𝑙𝑜𝑐= local efficiency,  𝑑̅ = mean geodesic distance; N = total number of nodes; top); 

and of individual tasks, to cluster them into groups of underlying subprocesses (bottom). See 

also Appendix S1 for the rationale of the subprocesses labels (Table S1) and for the clustering 

applied to BOLD functional activations (Figure S1). Table S3 in Appendix S2 summarizes the 

global measures for each task and subprocess. 

B. Non-linear significant relationship between the integration/segregation balance (I:S) and the 

average geodesic distance of the network's functional connections, for the different tasks and 

subprocesses. 3 types of connectivity are distinguished according to the I:S/geodesic distance 

profile (short-range, middle-range, and long-range). The colored lines come from the centroids 

estimated from the observed data (at the level of brain region) in relation to the regression 

polynomial curve. 

C. Global topology of the LANG task-based connectome. The 131 regions of interest (ROIs) 

of LANG (Power et al., 2011; LH = 61%, RH = 35%, CER = 4%) are projected here in a reduced 

two-dimensional space (PCA layout) and anatomo-functional labels of randomly selected 

LANG ROIs are shown for illustrative purposes only (Table S4 includes their full name). 
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2.1.3. LANG partition and hubs (intermediate and local scale) 

Community-based detection applied to the LANG connectome defines 4 distinct components 

(or functional subnetworks, called Nets; see Figure 3A, for projection into a reduced space). 

Figure 3B shows the mapping of the Nets onto the brain and cerebellum templates. Figure 3C 

highlights their internal composition in terms of discrete intrinsic networks (as previously 

characterized by Ji et al. 2019; Cole-Anticevic Brain-wide Network Partition: CAB-NP). 

Considering the composition, Net1 could correspond to the core component of language, 

engaged in the coding-decoding of linguistic signals of multiple nature: e.g., acoustic, syntactic, 

conceptual, articulatory (Coding-Decoding system). Net2 is represented by executive-

attentional functional networks (Control-Executive system). Net3 is mainly composed of 

regions of the default mode network (DMN) known to be involved in high-level cognitive 

abstraction and can thus be regarded as a "conceptual" knowledge network (Abstract-

Knowledge system). Finally, Net4 involves a large majority of perceptual and motor brain areas, 

suggesting that it is the "Sensori-Motor" system of language. A supported argument and in-

depth discussion of the putative functional roles of these LANG Nets is raised in the discussion 

section (Section 5).  

The Nets’ composition, coupled with their topological organization in the reduced space, 

provides evidence for the possible meaning of the 2 main axes (i.e., the principal components; 

Figure 3A). PC1 extends from auditory to sensorimotor components of language and may 

reflect the axis of externally oriented cognition (from verbal-specific to domain-general 

somatosensory systems). PC2 progressively involves control executive regions to semantic 

associative regions and may represent the axis of high-level internal cognition associated with 

language.  
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Interestingly, the core Net1 is located at the crossroads of these two internal-external axes. 

Moreover, Net1 is the component with the highest portion of connector nodes (Net1= 40.7%, 

distributed in both hemispheres; Table S4, Appendix S2) reflecting a high capacity to integrate 

information from regions belonging to the same network (intra-FC), as well as to other 

specialized networks (inter-FC; high zi, high Pi class). Net1 also exhibits a “rich club” 

organization (from a rich club regime of k >17 to k < 26; Φnorm(k) >1, p < .001, 10.000 

permutations). Restricting to the level of k where the strongest rich club effect was observed 

(k=24), we found a set of 5 left perisylvian hubs constituting the “rich-club” of Net1 (areas: 

STGa, 45, 55b, PFm, STV; Figure 3C). These nodes also form the maximal Net1 clique (i.e., 

the maximal complete subgraph; ω(LANG/Net1) = 5). 

 

 

Figure 3: Global, intermediate and local connectomic features of the LANG connectome 

A. Four main components identified within the LANG network (optimal partition, Louvain 

method). The components (Nets) are displayed on the connectome projected in the reduced 2D 

space. The number of ROIs per Nets (Power ROIs; including both hemispheres and cerebellum) 

is distributed as follows: Net1 = 54 (41.2%), Net2 = 28 (21.4%), Net3= 26 (19.8%), Net4 = 23 

(17.6%). ASSO = associative; EXE = executive; AUD = auditory; SMN = sensorimotor. 

B. Illustration of the LANG connectome and its 4-Net functional subdivision on the parcelled 

brain. Distribution on a multimodal parcellation of the brain (HCP_MMP1.0; Glasser et al. 

2016) and cerebellum (SUIT; Diedrichsen et al. 2009). Only the left hemisphere (LH) is 

represented here (see Appendix S2 for a complete representation of the connectomic atlas) 
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C. Intrinsic functional composition of LANG Nets (top), in accordance with the resting state 

networks (RSNs) proposed by Ji and collaborators (Cole-Anticevic brain-wide network 

partition; CAB-NP; Ji et al., 2019) on the same template (HCP_MMP1.0 borders). Nodal 

properties of LANG (bottom), showing the distribution of the main hubs, connector hubs as 

well as the regions belonging to the maximal clique (complete subgraph; diamond). Only the 

LH is represented here. 

 

Table S2 includes information about the LANG modules and hubs for each region. Appendix 

S2 presents the LANG connectomic atlas including the right hemisphere (RH), as well as details 

of its components. 

2.2. Properties of the LANG connectomic atlas 

2.2.1. Functional correlates 

On average, the LANG’s FC laterality index indicates a slight LH predominance (LI(LANG)= 

+0.23), but hemispheric asymmetry is variable across the Nets. The proportion of nodes that 

are more strongly connected is higher in LH for Net1 (LI(Net1) = +0.41) than for the other Nets 

(Figure 4A). By comparison, the FC of the nodes belonging to the “sensory-motor component” 

are bilaterally distributed (LI(Net4) = -0.12). Overall, the FC asymmetry of LANG Nets (from 

bilateral to LH) is arranged along the following gradient: Net4 < Net3 < Net2 < Net1. 

In addition, some LANG Nets are spatially congruent with the mapping of neurotransmitter 

receptor pathways. In particular, the LH nodes of Net2 and Net3 show a high spatial matching 

with the serotonin receptors 5HT2a (SMC Net2/5HT2a = 0.68; SMC Net3/5HT2a = 0.74). 

Those of Net4 overlapped with the noradrenergic transporters NAT_MRB (SMC 

Net4/NAT_MRB = 0.7). Figure 4B shows the distribution of the LANG ROIs that match (or 

do not match) with the PET receptors (see also Figure S3 in Appendix S2). 
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2.2.2. Structural correlates 

The endings of some large white matter (WM) bundles are spatially concordant with the LANG 

Nets (Figure 4C; Figure S2 in Appendix S2). The best overlap between the bundles and Net1 

(LH ROIs) is obtained by combining the ending masks of the left arcuate fascicle (AF), superior 

longitudinal fascicle branch III (SLFIII), inferior longitudinal fascicle (ILF) and the thalamo-

premotor (T_PREM) projections (SMC Net1/AF-SLFIII-ILF-T_PREM complex = 0.9). The 

concordance rate increases to 92% when the ending masks of the middle cerebellar peduncle 

(MCP) and the cerebellar ROIs of Net1 are included. At a more restricted level, the unique 

contribution of the left AF provides a high spatial concordance with the Net1 lateral LH nodes 

(SMC Net1/AF = 0.72). Regarding Net2 (LH ROIs), the best matching is reached with the 

combination of the left superior longitudinal fascicle branch II (SLF-II) and the cingulum (CG) 

bundle (SMC Net2/SLFII-CG = 0.76). The concordance between the SLFII individually taken 

and the lateral LH Net2 ROIs is close to 70% agreement (SMC Net2/SLFII = 0.68). Net3 (LH 

ROIs) has almost complete coverage when considering the combination of CG, the middle 

longitudinal fascicle (MLF) and the fornix (FX; SMC Net3/CG-MLF-FX = 0.98). Finally, Net4 

(LH ROIs) is spatially well covered by the combination of the cortico-spinal (CST) and the 

striato-precentral (ST_PREC) tracts (SMC Net4/CST-ST_PREC = 0.78). 
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Figure 4: Functional attributes and structural underpinnings of the LANG connectome 

A. Asymmetry of FC estimated on LANG ROIs and their distribution as a function of Nets. 

Left hemispheric FC dominance can be considered if IL > +0.2 (see Method section). 

B. Spatial concordance with neurotransmitter receptors maps (receptomes) of: serotonergic 

(5HT2a [F18]altanserin PET; Savli et al. 2012) and catecholaminergic/noradrenergic (NET 

(S,S)-[(11)C]O-methylreboxetine (MRB) PET; Hesse et al. 2017) pathways. All the 

neurotransmitters’ maps implemented in JuSpace (Dukart et al., 2021) were tested, but only 

spatial matches considered sufficient are shown here (SMC > 0.67; see Method section). LANG 

regions with significant coverage (>40% of overlap) are in red: those with no or insufficient 

coverage (<40%) are in gray. 

C. Structural concordance with large white matter (WM) bundle terminations provided by 

TractSeg (Wasserthal et al., 2018). Only the best bundles combinations allowing for the highest 

match are displayed here. The red/gray color code corresponds to the same definition as for 

Panel B. 
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2.2.3. Flexibility and variability 

The module assignments of LANG ROIs vary according to the linguistic subprocesses 

involved. We have calculated the flexibility coefficients to capture the FC versatility of the 

ROIs engaged in the different Nets, depending on the subprocess at work. The average 

flexibility coefficient (F) is rather low for Net1 (F Net1 = 0.21) and Net4 (F Net2 = 0.32); while 

those for Net2 and Net3 are twice as high (F Net2 = 0.55; F Net3 = 0.64). Ordering LANG 

networks according to their functional versatility yields: Net1 < Net4 < Net2 < Net3; from 

invariant to highly flexible (Figure 5A). 

Although modest, there is also some inter-individual variability in FC when individuals perform 

the language tasks (Figure 5B). We find the highest inter-subject variability on Net3, but the 

variance remains low on average (mean z score = 0.56). FC variability between participants is 

more visible at the regional level than at the network scale. In addition, we found a high 

matching coefficient between the “universal language network” (ULN; as proposed by Ayyash 

et al., (2021) and the lateral LH ROIs of Net1 (SMC Net1/ULN = 0.84; Appendix S2), 

suggesting some between-individual and cross-cultural consistency in key language network 

involvement.  

However, the LANG connectome undergoes changes with age (Figure 5D). We observe both 

positive and negative correlations between age and degree centralities (DCs). Net3 and Net2 

are the components showing the most important modulations with age. More specifically, ROIs 

of Net2 are negatively correlated with age (mean r = -0.39); while ROIs of Net3 are, on average, 

positively correlated with age (mean r = 0.31). Thus, the older the individuals, the less 

functionally connected the Net2 regions are (decrease in functional hubs for this network in 

LANG). By contrast, the Net3 regions tend to be more strongly interconnected in LANG with 

age. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486594doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486594
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Finally, gender also modulates LANG connectivity. The strongest LANG ROIs for males 

compared to females (M > F) in terms of DCs are distributed between Net1 (61.54%) and Net2 

(38.46%) in LH. The strongest LANG ROIs for females compared to males (F > M) are 

practically all located in Net3 (92.3%). Figure 5C shows the LANG ROIs with the most 

divergent FC. 

 

Figure 5: Variability of the functional attributes of the LANG connectome 

A. Variability induced by the linguistic demand (i.e., the linguistic sub-process involved in the 

task). Representation of the flexibility score of each of the LANG ROIs as well as their 

distribution in each of the Nets. 

B. Inter-individual variability. Representation of the betas z-scores estimated on the LANG 

ROIs for all subjects (young) as well as their distribution in each of the Nets. 

C. Variability determined by age. Illustration of the correlation coefficients between age and 

ROI DCs, as well as their distribution in each of the Nets. The correlations were performed on 

the naming task (NAM) that includes healthy participants over a wide age range: 82 subjects 

aged 18 to 84 years. 

D. Variability induced by gender. Top 10% of the most different LANG ROIs between males 

(M) and females (F; self-reported gender). In cyan, the top 10% of ROIs where nodal 
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connectivity (DC) is higher in males compared to females. In magenta, the top 10% of regions 

where nodal connectivity is comparatively higher in females than in males. 

 

 

3 Discussion 

The main objective of this study was to provide an in-depth, multi-scale view of the 

organization of brain function associated with language from a connectomic perspective. We 

leveraged an extensive fMRI database of multi-paradigm language tasks (InLang database) and 

we applied a state-of-the-art functional connectivity (FC) methodology that provides unique 

insights on brain networks. The central finding of this research is that the general language 

connectome can be objectively partitioned into four main non-overlapping subnetworks 

(referred to as “Nets”), possessing distinctive and marked features. Table 1 provides a complete 

overview of these Nets. 

The most extensive subnetwork, Net1, corresponds to a “specialized” language system shaped 

for the encoding-decoding of auditory-verbal signals. Indeed, Net1 consists primarily of areas 

belonging to the intrinsic networks previously designated as "auditory" and "language" (CAB-

NP RSNs: Ji et al. 2019, Figure 3C). It indeed includes a set of both primary, secondary and 

associative areas, previously noted as specialized for language (e.g., Labache et al. 2019; Price 

2012). In particular, a subset of Net1 composed of key brain regions densely interconnected to 

each other, forms a critical set for information integration and communication during language 

tasks (Figure 3C). These core network structures are inscribed in the left perisylvian zone, 

namely: the anterior part of the superior temporal gyrus (STGa), the posterior part of the pars 

triangularis of the inferior frontal gyrus (pIFG, 45/44), posterior middle frontal gyrus/premotor 

cortex (pMFG, 55b area), inferior parietal cortex, supramarginal gyrus (PF/PFm,), temporo-

parieto-occipital junction (STV/TPOJ1). Our analyses to determine the functional role of brain 
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regions within networks have identified them all as “connector” hubs, which is consistent with 

previous observations (e.g., IFG/TPJ/STG: Goucha, Zaccarella, et Friederici 2017; Hagoort 

2016; PF/SMG: Braga et al. 2013; pMFG, 55b: Hazem et al. 2021). Connector hubs are most 

likely to be located at the contact points of several white matter (WM) fascicles, actively 

supporting long-distance information transport and processing (e.g., at the AF/SLF 

convergence areas for the IFG and TPJ; Roger et al. 2022). We have indeed observed a strong 

matching with the AF endpoints (whose involvement in language has been widely and more 

directly reported; e.g., Forkel et al. 2022 for a meta-analysis) and the lateral perisylvian part of 

Net1. But more than a one-to-one relationship between structure and function, a combination 

of various WM bundle terminations seems to underlie the entire network (Figure 4C). In 

addition, and beyond the clique, Net1 embeds other connector areas, some of which in the right 

hemisphere, others in the basal ganglia (the anterior parts of the thalamus and the putamen) or 

in the right cerebellum (Crus I) as well (Table S4, Appendix S2). Large cortico-basal ganglia-

cerebellar loops would be involved during language tasks, supporting a substantial role of the 

subcortical structures in high-level cognition including language (Murphy et al., 2022).  

Individually, brain areas have their own anatomical and microstructural properties 

(cytoarchitectonic features, Zilles et Amunts 2010) and may thus be biased – under normal 

conditions – to respond efficiently and preferentially to certain types of input. They can be 

tuned for functional selectivity to linguistic phonological, syntactic, lexical or even semantic 

units (Friederici 2011). However, the underlying computational processing (i.e., the functional 

role) of regions belonging to the same Net could be deeply similar. Computational building 

blocks (called primitives: Poeppel 2012; elementary linguistic operations: Hagoort 2019; or 

neural operations: Buzsáki 2020) of Net1 could imply here the segmentation-fusion of the 

linguistic signal, yielding the generation of a verbal information stream of increasing and 

ordered complexity (Zaccarella & Friederici, 2015). Multiple combinatorial operations of 
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language on different linguistic representations have already been reported (e.g., the 

combinatorial network of language of Pylkkänen 2019). Net1 and its constituents could 

represent the foundation of these combinatorics in task. The modularity analysis we applied on 

multiple language tasks would indeed have captured a common "language combinatorial" 

computational mechanism for Net1, making this network a cornerstone of a “language-

specialized” encoding-decoding system (Hagoort, 2017).  

Consistent with a central system, Net1, is topologically situated at the interface of the other 

components, between an internally and externally oriented cognition (Figure 3A). Moreover, 

Net1 was found to be a globally inflexible (unchanged) configuration regardless of task and 

linguistic demand (Figure 4A). It also appears spatially consistent with the “universal language 

network” proposed by Ayyash et al. 2021, as an invariant, cross-cultural, functional language 

network (see Appendix S2). A number of universals of language (apart from the “universal 

grammar”; Chomsky 1995, which is debated) have been reported (Coupé et al., 2019) and 

concern both semantics (Gibson et al., 2017), syntax (Futrell et al., 2015) or even pragmatics 

(Piantadosi et al., 2011). The constraints applied to shape languages seem to follow common 

rules of optimization of coding and information transfer towards a fundamental principle of 

efficiency. The functional selectivity of Net1 regions is likely to be inherited from our ancestors 

and to be part of a language-ready brain (Boeckx & Benítez-Burraco, 2014). They are also 

supported by a specific brain architecture already present in children (Friederici, 2017) whose 

functional connectivity is genetically encoded (Mekki et al. 2022, for the genetic regulation 

specifically involved in the perceptual-motor and semantic pathways of language).  

At the boundaries of Net1, we also detected two networks that are integral parts of the general 

LANG connectome (Nets2-3). Net2 is dominated by intrinsic attentional and executive control 

networks (cingulo-opercular and fronto-parietal networks; Figure 3C). First, the cingulo-

opercular network (CON) is a superordinate system encompassing the salience network (Ji et 
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al., 2019), involved in external-signal-driven attentional control or top-down, "exogenous" 

redirection of attention (Matthen, 2005). The specialization of such a network in the active 

controlled integration of exteroceptive information may lead to the provision of relevant 

information in working memory (Parr & Friston, 2017) in order to construct an internal 

representation of the external world that is relevant to the individual at a specific time. Second, 

the fronto-parietal network [FPN; close to the Multiple Demand Network (MDN): Smith et al., 

2021, or to the Central Executive Network (CEN); Doucet et al., 2019] is a network involved 

in all processing requiring controlled attention directed toward internal cues and goals. This 

network operates for endogenous and top-down attentional redirection (Perrone-Bertolotti et 

al., 2020) and is engaged in verbal working memory and “fluid” cognition (Assem et al., 2020). 

Overall, Net2 is a controlled, executive language system that captures both endogenous and 

exogenous attentional aspects. Net3, on the other hand, is almost exclusively composed of 

DMN regions (Figure 3C). At rest, the default state is thought to be involved in “random 

episodic silent thought” promoting creativity (Andreasen, 2011). Task-based studies have 

shown its involvement in natural language processing (Simony et al., 2016). As a foundation 

of the episodic-semantic memory spectrum (and more broadly language-memory; Roger et al. 

2022), the DMN is a multimodal experiential system (Xu et al., 2017) that fosters resonance 

and binding between environmental features and those derived from similar prior knowledge 

and states (Binder & Desai, 2011; Constantinescu et al., 2016). For these reasons, Net3 has 

been referred to here as the “Abstract-Knowledge system” of language. 

Even if their functional role in cognition is distinct, Net2 and Net3 are both involved in high-

level cognition. They display similar network features in terms of hub properties, with a very 

high proportion of “satellite” key regions compared to other Nets (Table S4, Appendix S2). 

Satellite centers are regions whose functional communication supports dialogue between 

components (van den Heuvel & Sporns, 2013). In our case, they favor communication with 
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regions belonging to other Nets, facilitating multimodal integration or information linking over 

the course of the tasks. Moreover, we have observed specifically in Net2 and Net3 a clear 

tendency to reconfigure according to the linguistic demand (i.e., versatile networks with a 

flexible modular configuration that depends on the language subprocesses involved; Figure 

4A). This is consistent with studies showing that these systems are rather auxiliary and 

differentially involved depending on the nature of task (Fedorenko & Thompson-Schill, 2014). 

For instance, FPN/MDN is functionally active in controlled and challenging semantic tasks but 

not in less demanding linguistic tasks (Diachek et al., 2020), which is consistent with the 

supposed role of FPN in attentional processes and fluid cognition (Assem et al., 2020; Perrone-

Bertolotti et al., 2020). In the same line, the Net3 configuration is more likely to be engaged 

primarily in tasks involving the projection of spontaneous and self-oriented thoughts (such as 

in verbal mind wandering; Andrews-Hanna, Smallwood, et Spreng 2014; Binder et Desai 2011; 

Humphreys et Lambon Ralph 2015; Konishi et al. 2015; Lau et al. 2013; Raichle 2015; Wang 

et al. 2020). Interestingly, the brain spatial distribution of Net2 and Net3 specifically 

corresponds to the mapping of the 5HT2A receptors involved in serotoninergic transmission 

(Figure 4B; Savli et al. 2012 ; see also Beliveau et al. 2017, for a high resolution and in vivo 

brain atlas of the serotoninergic system), capable of amplifying or sustaining cortical excitation 

(Puig & Gulledge, 2011). These receptors indeed modulate whole-brain connectivity, promote 

flexibility between brain states and processes (Jancke et al. 2021), and thus constitute a relevant 

biomarker of the functional flexibility as evidenced in Nets 2-3. 

However, the two networks are distinct, underpinned largely by specific anatomic connectivity 

(Figure 4C). In addition, they are differentially sensitive to gender (Figure 4D). Hubs of Net3 

show higher FC during tasks in females compared to males, which is consistent with whole-

brain FC studies showing that the “females-greater-than-males” regions are mostly located 

within the DMN (Liang et al., 2021). It is also in line with studies highlighting gender 
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differences on language tasks. Females rely more on a supramodal language network during 

linguistic processing, whereas men tend to process information in modality-specific cortical 

regions (Burman et al., 2008; Kaushanskaya et al., 2011). Finally, Net2 and 3 are both subject 

to the pressures of age but here again differently (Figure 4C). Net2 is negatively impacted by 

aging. The older the age, the less Net2 regions are functionally connected. This reduction with 

age in attentional-controlled FC is consistent with the alteration in executive functioning 

traditionally observed in older subjects (Reuter-Lorenz et al., 2016). Net3, on the contrary, has 

a high share of hubs that are more densely connected with age, which may reflect a 

compensatory pathway traditionally observed in aging concerning language (i.e., a semantic 

strategy: Baciu et al. 2021). 

The last system, Net4, holds bilateral sensorimotor cortico-subcortical brain areas. This fourth 

component of the language connectome is distinct from the perceptual and motor auditory-

verbal structures included in Net1 (Figure 2B) but could be an important part of the action-

perception circuits of language. The brain regions involved in Net4 have already been described 

as engaged in several sensorimotor aspects related to language production, in particular: general 

action selection (premotor); motor execution (SMA); orofacial motor activity (precentral and 

postcentral language areas); or even timing of motor outputs (putamen and cerebellum; Price 

2012 for an exhaustive overview). Besides the primary and secondary sensorimotor regions, 

Net4 also encompasses a large part of the precuneus. Precuneus supports a high level of 

interconnectivity with other brain regions, which has led to the identification of functional 

subdivisions (posterior-visual; central-cognitive/associative; anterior-sensorimotor; Margulies 

et al. 2009) and has indeed been considered as an important sensorimotor connector hub of the 

language connectome in our analysis (Table S4, Appendix S2). Importantly, it is a crucial site 

of production-comprehension coupling in natural speech (Silbert et al., 2014). In addition to 

speech production, Net4 can indeed be engaged in language comprehension. Semantic 
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grounding, i.e., the semantic links between words and their actions, referent objects and related 

concepts, appears to depend on semantic circuits that bring together both the circuits related to 

word form (perisylvian, Net1) and conceptual circuits that underlie, among other aspects, 

sensory-motor experience (extrasylvian, including Net4). The involvement of the motor system 

in speech perception and understanding has been observed in various contexts (Fernandino et 

al. 2022; Schomers et Pulvermüller 2016; Skipper, Devlin, et Lametti 2017 and see 

Pulvermüller 2018 for the hypothesis of neural reuse of action perception circuits in language), 

which may explain why Net4 is globally engaged regardless of the subprocess involved in the 

language tasks (Figure 4A). Finally, several neurotransmitters are involved in the regulation of 

the activity of sensorimotor regions. However, we observed a specific spatial matching between 

the sensorimotor language system and the noradrenergic receptor mapping (Figure 4B). 

Catecholamine noradrenaline has indeed substantial projections to somatosensory and motor 

areas including primary cortices and the modulatory effects of noradrenaline on sensorimotor 

processing are diverse. If its contribution to the modulation of arousal states (Holland et al., 

2021) and in adapting sensory circuits for optimal behavior in animals is well documented (see 

Jacob et Nienborg 2018 for a review), its precise function in humans and in language remains 

to be investigated. 

 

Table 1: Summary of the properties associated with each of the language networks 

LANG 

Nets 

Composition & main features Functional attributes Anatomical underpinnings 

Net1 

Coding-

Decoding 

System 

- Language/auditory-verbal 

component (RSNs: 

LANG/AUD)  

- Strongly interconnected 

(perisylvian rich-club) 

- At the crossroads of the other 

Nets (Core) 

- Systematically engaged in 

language tasks (unflexible) 

- Compatible with the “universal 

language network”  

- LH lateralized  

- Supported by a complex of 

long-range fascicles 

(AF-SLFIII-ILF-ST_PREM; 

lateral part: AF +++) 
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Net2 

Control-

Executive 

System 

Net3 

Abstract-

Knowledge 

System 

 

- Associative regions involved 

in high-level cognition (RSNs 

Net2: CON/FPN; Net3: DMN) 

- Flexible according to the 

linguistic subprocesses involved 

(versatile) 

- Age-sensitive (Net2: DC ↓ with 

age; Net3: DC ↑ with age) 

- Serotoninergic pathway 

- Long-range associative WM 

fascicles (Net2: SLFII-CG; 

Net3: MLF-CG-FX) 

Net4 

Sensori-

Motor 

System 

 

- “Grounded” cognition (RSN: 

SMN) 

- Globally engaged in language 

tasks 

- FC bilaterally distributed 

- Resistant to aging 

- Noradrenergic pathway 

- Coupled with projection 

fibers (CST-ST_PREC) 

 

Overall, our observations reinforce and complement past observations about the neurocognitive 

architecture of language. The concept of multiple language networks (Hagoort, 2019) or the 

“theoretical” subdivision of the vast language network into a key system accompanied by 

several additional systems (or margins; Hertrich et al. 2020) have been previously discussed. It 

is interesting to note that even if the number of proposed networks varies according to methods 

used or to primary theoretical frameworks, the task-based networks or systems defined herein 

are broadly consistent with previous partitioning proposals. The great benefit of a partitioning 

emerging directly from data is to pinpoint latent mechanisms that transcend our classical 

cognitive descriptions (see interesting discussions on the current problem of brain-behavior 

concordance or the blurriness and ambiguity associated with terminology and definition of 

psychological constructs: Anderson 2011; Buzsáki 2020). Data-driven ontology provide an 

independent view, here from a neuro-centric perspective (Roger et al., 2022) and can serve as 

“lingua franca across disciplines and theoretical gaps” (Eisenberg et al., 2019).   

However, since they are derived from the observations, these partitions depend directly on the 

quantity, quality, sensitivity and validity of the data used. This study has the advantage of being 

based on a database including a rich diversity of fMRI protocols, varying on a wide range of 

language characteristics (Figure 1). However, task paradigms are less easy to implement than 
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the resting state. They are often very controlled, require multiple repetitions to obtain a robust 

signal/noise ratio, are more prone to movement artifacts, and induce higher interindividual 

variability (Park et al., 2020). This often leads to smaller final samples, which may be an 

important issue for subsequent analyses. Taking into consideration the need to maximize 

observations to ensure robust results, we have focused most of our analysis on the investigation 

of the general connectome or on the subprocesses common to several tasks (and not on 

individual tasks). The compilation of even larger databases will allow for broader and more 

detailed investigations. For example, it would be important to take into account the pragmatic 

aspects of language (Rasgado-Toledo et al., 2021), which are not specifically valued in the 

InLang database. Moreover, the current trend is to extend the framework of fMRI paradigms 

traditionally employed in “laboratory” settings to less controlled and more ecological protocols 

(Verga & Kotz, 2019). As evidenced by the recent Neuroimage Special Issue (Finn et al., 2022), 

several initiatives and datasets are steering towards accounts of cognition in more natural 

settings (e.g., Bhattasali et al. 2020; LeBel, Jain, et Huth 2021; Nastase, Goldstein, et Hasson 

2020 for language). Similarly, (neuroimaging) multimodal initiatives have flourished in recent 

years [e.g., HCP: Van Essen et al., (2013); UK Biobank: Sudlow et al., (2015); ENIGMA: 

Thompson et al., (2020) ; CamCAN : Taylor et al., (2017) data collections]. In this direction, 

multimodal datasets including language tasks performed in both fMRI and MEG for example 

are interesting to address more directly the neurobiological correlates of language, in terms of 

anatomy or temporal evolution (i.e., dynamics; e.g., the MOUS dataset: Schoffelen et al. 2019). 

However, the (language) tasks included in such multimodal datasets are still generally limited. 

The present study offers a language atlas that relies on a thorough topological (i.e., spatial) 

analysis of FC. The next step is to identify the causal organization (e.g., 

hierarchies/heterarchies) and precise timeframes in which its components/regions engage 

depending on subprocesses/mechanisms at work. MEG or electroencephalography (EEG; 
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placed on the scalp, the cortex or intracranial) are valuable tools for the evaluation of such 

dynamics. To this end, and using intracranial EEG recordings, a recent study examined the 

dynamic organization of naming (Forseth et al., 2021). They observed that regions were mainly 

co-activated during extended periods, confirming that complex behaviors such as speech 

production requires the coordination of discrete network states (defined as set of reference 

dynamics that coordinate the generation and transmission of information throughout the cortex; 

see also the concept of meta-networking of Herbet & Duffau, 2020). They were able to 

sequence, map and identify the temporality of the different transient states; globally confirming 

the seminal model of word production proposed by Indefrey & Levelt, 2004). Ultimately, the 

definition of a comprehensive repertoire of language states and causal relationships (i.e., 

effective and directed functional connectivity; e.g., Deco, Vidaurre, et Kringelbach 2021) in 

various tasks may extend our understanding of language functioning. Finally, although we 

explored a number of modulators, a study of LANG properties on data acquired in multilingual 

individuals (Li et al., 2021), in pediatric populations (Wang et al., 2022), or in pathology in 

relation with neuropsychology (neuroplasticity and neurocognitive efficiency; e.g., Banjac et 

al. 2021) would also enrich our findings. 

 

 

4 Conclusion 

Language is a multi-faceted cognitive function. In an attempt to account for the 

multidimensionality of language, we performed functional connectivity analyses on a multi-

paradigm fMRI database (InLang), gathering thirteen different language tasks. It allowed us to 

inspect the language connectome in depth, in particular on its spatial properties and functional 

attributes. In all, this study reaffirms that high-level cognition such as language emanates from 
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synergistic exchanges of external and internal information across specialized systems. Our 

results highlight the involvement of essential discrete networks (or components) that are settled 

around a core “language-related” system. In addition, the flexible engagement of some key 

regions depending on several modulating factors such as the linguistic demand points to the 

dynamic nature of language. From ontology-based data integration, we propose a connectomic 

atlas of the "language mosaic", which can serve as a reference for investigating additional 

conditions or pathologies altering language functioning. 
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5 Materials and Methods 

 

5.1. Dataset  

The InLang database contains data of 13 different linguistic tasks from 7 previously published 

fMRI protocols (Baciu et al., 2016; Banjac et al., 2020; Grandchamp et al., 2019; Haldin et al., 

2018; Hoyau, 2018; Perrone-Bertolotti et al., 2011, 2015, 2017; Perrone‐Bertolotti et al., 2012), 

as well as respective structural MRIs (T1w). In all, 359 functional scans have been acquired 

between 2010 and 2019 from 150 healthy adults (all right-handed; 64 females: F/86 males: M; 

Table S1 contains the subjects' characteristics, by tasks). The database includes 114 “young” 

(18-59; 50F/64M) and 36 “senior” (60-85; 14F/22M) volunteers (Figure 1). fMRI and T1w 

scans of all participants have been formatted in BIDS standard and preprocessed using 

conventional tools (Appendix S1). 

 

5.2. Task-based connectomes  

Regions of interest (ROIs) covering both the brain and the cerebellum were defined from 6 mm 

radius spherical regions built around the 264 coordinates in MNI space proposed by Power et 

al. (2011). The images used for signal extraction (beta values) were the statistical parametric 

maps containing the linear contrasts between the HRF parameter estimates for the conditions 

of interest (henceforth “contrast images”). Nilearn (https://nilearn.github.io/stable/index.html; 

Abraham et al., 2014) was used to delineate ROIs and extract the signal. Mean signal for each 

of these ROIs was extracted by participant and task for each project separately (Appendix S1). 

We then estimated task-based connectomes for each task individually by correlating the beta 

signals extracted from all nodes (264 ROIs; Pearson correlations). These matrices of functional 

connectivity (FC) were thresholded. We applied a 5% threshold, which defines the 5% of the 
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highest positive correlation values, considered to represent non-spurious internodal 

connections. The matrices were binarized: 1 was assigned to internode connections which 

survived to the given density threshold, and 0 was assigned otherwise. Task-based connectomes 

were thus built from these binarized matrices, reduced to a fixed number of edges (top 5%, 

3485 edges). Different graph metrics were computed on the task-based connectomes: global 

(network-wide), intermediate (modularity) and local (nodal), using Networkx 

(https://networkx.org/). 

 

5.3. Network measures  

5.3.1. Global connectivity profiles 

To determine the global functional connectivity (FC) profile of the language tasks, we 

computed several parameters at the global level (i.e., network-wide estimates), namely: 

- The global efficiency (Eglob) as proposed by Latora & Marchiori (2001), which is the 

average of the unweighted efficiencies over all pairs of nodes: 

𝐸𝑔𝑙𝑜𝑏(𝐺) =
1

𝑁(𝑁 − 1)
 ∑

1

𝑑𝑖𝑗
𝑖≠𝑗𝜖𝐺

 

where N is the total number of nodes in the network G, the distance d(i,j) corresponds to the 

number of edges in a shortest path between any two nodes i and j.  Eglob represents the capacity 

of a given network to efficiently integrate and transmit information between the network 

components or subnetworks (e.g., Bullmore et Sporns 2012; Roger et al. 2019; Stanley et al. 

2015). The higher the value, the more likely that information transfer is fast. 

- The local efficiency (Eloc) which is the average of the local efficiencies of each node. 
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Local efficiency of a node i corresponds to the average global efficiency of a subgraph induced 

by the neighbors of i (Latora & Marchiori, 2001):  

𝐸𝑙𝑜𝑐(𝐺) =
1

𝑁
 ∑ 𝐸𝑔𝑙𝑜𝑏(𝐺𝑖)

𝑖𝜖𝐺

 

Eloc reveals the network's tendency to effectively share information within immediate local 

communities or the capacity of a given network to segregate the information processing (e.g., 

Bullmore et Sporns 2012; Roger et al. 2019; Stanley et al. 2015). The higher the value, the more 

locally efficient the network is. 

- The integration–segregation balance (I:S) as expressed by the difference between Eglob 

and Eloc (Eglob – Eloc).  

The integration–segregation balance allows to estimate how the functional organization of a 

task promotes either (1) more independent processing of specialized subsystems (i.e., 

segregation) or (2) cooperation between different subsystems (i.e., integration; Wang & al., 

2021). A positive balance reflects a network with a general tendency toward functional 

integration (Eglob > Eloc) while a negative balance reflects a general tendency toward functional 

segregation (Eloc > Eglob). 

- The mean geodesic cortical distance (𝑑̅) between functionally interconnected nodes 

(𝑑̅(G)). 

We extracted the relative spatial layout of regions along the cortical surface by using existing 

scripts (https://github.com/margulies/topography/tree/master/utils) based on an algorithm 

developed to approximate the exact geodesic distance from triangular meshes (Oligschläger et 

al., 2017). “Physical” geodesic distances between pairs of nodes, estimated in mm, were 

quantified from the Power’s nodes coordinates, projected onto a template surface mesh 

(fsaverage5). This resulted in a node-by-node matrix of geodesic cortical distance. From the 
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geodesic distance matrix, we averaged the distribution of distance-to-connected-areas of the 

relevant functional connections identified from the thresholded FC matrices. We thus obtained 

the global geodesic distance of the functional connectivity for each of the networks 

corresponding to the different language tasks.  The higher the mean geodesic distance between 

functionally connected regions, the further apart the connected regions are on average along the 

cortical surface. 

 

5.3.2. General LANG connectome and subprocesses  

We have estimated the similarity of the global FC profiles of the different language tasks based 

on the Euclidean distance. We applied data-driven hierarchical clustering approach on the 

similarity matrix and estimated the partitioning. Thus, we identified categories of tasks with 

more or less similar connectivity profiles or global network topology. The internal composition 

and nature of the tasks assigned to each of the identified groups can reveal putative linguistic 

subprocesses that may be latent and common to several tasks (see also Appendix S1 for a 

rationale and a similar method applied to functional activation maps). Starting from the 

partitioning, we estimated the FC matrices of each of these main task groups – hereafter referred 

to as subprocesses – from the scans of the respectively involved tasks and using the same 

procedure described above (Section 5.2.). 

In addition, and still following the same procedure, we generated the general task-based 

language connectome – abbreviated LANG – corresponding to the FC matrix derived from all 

language tasks (and thus also from the subprocesses). Only scans corresponding to the 

“younger” InLang cohort were considered for the calculation of task, subprocess, and LANG 

FC matrices. Scans from the “older” group were used for other analyses described later. The 
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global FC parameters reported in the previous section (Section 5.3.1) were also extracted for 

LANG and the subprocesses.  

 

5.3.3. Intermediate composition of LANG 

We performed modularity analyses to determining community structure of the general LANG 

connectome. We used the Louvain community detection algorithm (Blondel et al., 2008) 

implemented in Networkx (https://networkx.org/). Louvain’s method is widely used for 

community detection in neuroscience and has been previously shown to outperform other 

community detection methods (Yang et al., 2016). To ensure the stability of the final partition, 

we repeated the modular partitioning process 100 times (Schedlbauer & Ekstrom, 2019) and 

we evaluated the best LANG partition (Aynaud, 2018) on the matrix averaging the results of 

all iterations. Each ROI was assigned to a specific community (i.e., a subnet, here denoted 

LANG “Net”). To facilitate subsequent analyses and interpretations, the Power’s coordinates 

of LANG ROIs were mapped to the HCP’s multimodal parcellation (version 1.0: 

HCP_MMP1.0 proposed by Glasser et al. 2016), which consists of 180 brain parcels. 

Cerebellum coordinates were mapped to the probabilistic human cerebellum atlas SUIT 

(Diedrichsen et al., 2009). 

Still concerning intermediate configurations between the global level of the network and the 

nodal ROIs level, we focused on identifying densely interconnected subgraphs of LANG. 

Complete subgraphs, called cliques, are all-to-all connected sets of brain regions providing 

architecture that isolates information transmission processes (Giusti et al., 2016) and supports 

efficient and specialized processing (Sizemore et al., 2018). A maximal clique is one that 

includes the largest possible number of nodes and to which no more nodes can be added. Using 
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Networkx, we estimated ω(G) which is the number of nodes in a maximal clique of G and 

marked the relevant nodes. 

 

5.3.4. Nodal properties of LANG 

We calculated the degree centrality (DC; denoted k) of each node i as the number of adjacent 

edges to the node (ki), from the reduced and unweighted adjacency LANG matrix. DCs are a 

convenient metric for highlighting brain regions with a high degree of connectivity or "hubs", 

and form the basis for other measures of nodal graph theory.  

From the DCs (k), we computed the within-component degree z-score (zi), that expresses the 

extent to which node i is connected to other nodes in its respective component and is calculated 

as follows (Guimerà & Nunes Amaral, 2005): 

𝑧𝑖 =
𝑘𝑖𝑆 − 𝑘𝑆

 𝜎𝑆𝑖
 

with kiS the number of connections of node i to the other nodes in the subgraph component S 

(i.e., the Net) and kS and σSi respectively the mean and SD of the within-component DC over 

all nodes in S. 

 

To quantify to what extent a node connects across all components, we measure the participation 

coefficient (PCi). The following conventional formula (Guimerà & Nunes Amaral, 2005) was 

applied, with m the set of components S or Nets (here 4): 

𝑃𝐶𝑖 = 1 − ∑ (
𝑘𝑖𝑆

 𝑘𝑖
)

2𝑚

𝑆=1
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Following Schedlbauer & Ekstrom (2019) and because of the narrow distribution of the PCs 

we z-scored the coefficients (zPCi) from each network. 

The zi and zPCi values have enabled to assign a specific role to each of the LANG ROIs. The 

nodes were classified according to their type of functional communication within the 

connectome as follows: connector (high zi/high zPCi; high intra-Net and high inter-Net FC); 

provincial (high zi/low zPCi; high intra-Net FC); satellite (high zi/low zPCi; high inter-Net FC); 

or peripheral (low zi/low zPCi; low inter-Net FC). We applied this classification as proposed in 

previous studies (Bertolero et al., 2015; Cohen & D’Esposito, 2016; van den Heuvel & Sporns, 

2013) and with zi > 0 corresponding to “high zi” and zPCi > 0 corresponding to “high Pi”. 

Finally, we were interested in quantifying the rich club organization of the networks. A rich 

club reflects a set of nodes in the network of whose level of interconnectivity (i.e., richness) 

exceeds the level of FC that can be expected by chance. For each degree k, the rich-club 

coefficient (𝜙) is the ratio of the number of actual to the number of potential edges for nodes 

with degree greater than k (Colizza et al., 2006): 

𝜙(𝑘) =
2𝐸𝑘

𝑁𝑘(𝑁𝑘 − 1)
 

where Nk is the number of nodes with degree larger than k, and Ek is the number of edges 

among those nodes.  

We compared and normalized the rich club coefficient to sets of “equivalent” random networks. 

An empirical null distribution constituted from the average of 1000 random networks of equal 

size and degree distribution was generated (𝜙𝑟𝑎𝑛𝑑(𝑘)). 

The difference between 𝜙(𝑘) and 𝜙𝑟𝑎𝑛𝑑(𝑘) allowed us to obtain the normalized rich club 

coefficient 𝜙𝑛𝑜𝑟𝑚(𝑘): 
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𝜙𝑛𝑜𝑟𝑚(𝑘) =
𝜙(𝑘)

𝜙𝑟𝑎𝑛𝑑(𝑘)
 

In line with previous work (Colizza et al., 2006; Grayson et al., 2014; Heuvel & Sporns, 2011), 

a network was considered to have rich club organization when 𝜙𝑛𝑜𝑟𝑚 was greater than 1 for a 

continuous range of increasing k (rich club regime). Rich club nodes were brain regions taking 

part in these densely connected networks (or rich clubs), forming a functional unit. We 

considered as rich club hubs the nodes taking part in the club at value k where the strongest rich 

club effect was observed. 

 

5.4. Statistics 

5.4.1. Hemispheric asymmetry 

The FC hemispheric asymmetry of the ROIs was estimated with the DCs. We derived a 

connectivity-based lateralization index (LI), by contrasting the k values of homotopic nodes 

(comparison of FC between mirror areas), according to the following formula: 

𝐿𝐼(𝑘) =
𝐿𝐻(𝑘) − 𝑅𝐻(𝑘)

𝐿𝐻(𝑘) + 𝑅𝐻(𝑘)
 

With LH(k) being the DC for the ROI in left hemisphere, RH(k) the DC for the homolateral 

ROI in the right hemisphere. 

We also calculated global LIs at the connectome or Net level by averaging the corresponding 

nodal LIs. LI values can range continuously from -1 to 1 and the following landmarks were 

considered for interpretation: -1 = complete RH dominance; +1 = complete LH dominance and 

between -0.2 and +0.2 = no clear dominance (Roger, Pichat, Renard, et al., 2019; Rolinski et 

al., 2020; Seghier, 2008).  
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5.4.2. Functional and structural matching 

We used mappings provided by previously published tools to estimate the spatial concordance 

between LANG and (1) the neurotransmitter pathways; or (2) the terminations of large white 

matter (WM) bundles. The “functional” maps are issued from nuclear imaging-derived 

neurotransmitter maps implemented in the JuSpace toolkit (Dukart et al., 2021), specifically 

designed to link neuroimaging (MRI data) with underlying neurotransmitter information (as 

revealed by PET and SPECT tracers). The “structural” maps came from the deep-learning 

algorithm TractSeg (Wasserthal et al., 2018), which offers the segmentation of the main long-

range WM brain bundles. It also allows the generation of grey matter masks that are linked by 

the bundles (ending masks). These ending masks were used here to define the structural 

connection maps of each bundle or combination of bundles.  

The functional and structural maps were registered to the surface template and binarized. Each 

parcel of the HCP_MMP1.0 template was coded according to the presence/absence of map 

coverage, with: 1 corresponding to at least 40% coverage of the parcel surface (> 40%); and 0 

to less than 40% coverage (< 40%). 

We then used the simple matching coefficient (SMC; Boriah et al., 2008; Sokal & Michener, 

1958) method to quantify the spatial concordance between LANG and each of the functional 

and structural binary maps. SMC indicates the coincidence ratio between the mutual presences 

(and absences) and the length of the binary sequences: 0% means that the labels have nothing 

in common and 100% that they have identical sequences. Only coefficients exceeding 2/3 of 

the total agreement (SMC > 0.67) were considered relevant.  

 

5.4.3. Cross-processes flexibility  
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We computed a flexibility index by using multilayer network model and with a method close 

to that of Betzel et al. (2017). The layers of the model were constituted from the matrices of the 

5 groups of tasks (i.e., subprocesses) identified with data-driven clustering analyses (see Section 

5.3.2). To keep a common reference across the layers, the matrices were restricted to the LANG 

131 ROIs and re-estimated on this basis. We applied the generalized Louvain package (Jeub et 

al., 2011), suited to determine community structure in multiplex graphs (Bassett et al., 2011, 

2013; Mucha et al., 2010). This method has the advantage of preserving the community labels 

consistently across layers (here the task groups), avoiding thus the issue of community matching 

(Yang et al., 2021). 

From the communities assigned across layers, we calculated a flexibility score as previously 

proposed by (Bassett et al., 2011). Flexibility fi of a node corresponds to the number of times 

that a node changes its modular assignment across layers, normalized by the total number of 

possible changes (i.e., the total number of layers minus 1, here 4). In short, the f-score reflects 

the frequency a brain region changes its community assignment. It ranges from 0 to 1, where 0 

corresponds to a region that never changes module whatever the subprocess/task involved 

(stable across all layers); and 1 corresponds to a region that never belongs to the same module 

on the 5 layers. We also calculated the mean flexibility (F) over all nodes in the network to 

examine the global flexibility of the system. 

𝐹 =
1

𝑁
− ∑ 𝑓𝑖

𝑁

𝑖=1

 

5.4.4. Inter-individual variability 

We assessed inter-subject variability by considering the individual signal values, extracted for 

each (young) individual and on each of the LANG ROIs. In order to remove the variability 

induced by the task, we normalized the beta values, considering the mean and standard 
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deviation of the other subjects who performed the given task (z-score betas). When individuals 

performed multiple tasks (for subjects enrolled in the same protocol), we averaged the z score 

betas for these subjects to avoid accounting for additional intra-individual variability. We thus 

performed the measurement of inter-individual variability by considering the subjects and not 

the scans. In addition, we considered only the “young” participant cohort to limit the age effect. 

The average and absolute z scores of each region were then divided into 3 bins of increasing 

interindividual variability. 

5.4.5. Age effect 

To highlight LANG ROIs that are the most resilient/vulnerable to the aging effect, we examined 

the subjects from our two “young” and “old” cohorts who performed the same task (NAM: 

NAM young; NAM old). Age was considered continuously in our statistical analyses, from age 

20 to 85 (n = 82). We computed standard correlation coefficients (Pearson r) between the age 

and DC (here estimated on the basis of individual connectivity matrices). This allowed us to 

observe a positive (positive and high r) or negative (negative and high r) age effect on task-

based FC.  

5.4.6. Gender effect 

We estimated the gender effect by generating the FC matrices reduced to the LANG ROIs for 

males (M) and females (F; self-reported gender) separately. The average DCs obtained for each 

ROI were then compared between the two groups. Only the top 10% of the largest differences 

(Males>Females and Females>Males, independently) were retained to define the most 

diverging ROIs. 
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6 Supporting information (SI) 
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Description of the InLang database 

fMRI protocol details  

Participants information 

Data acquisitions & (pre)processing 

 

Appendix S2: Results SI 

Supplementary tables (global and nodal properties) 

LANG package files 

LANG maps (Nets, correlates, variability) 
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