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ABSTRACT 

One of the more interesting ideas for achieving personalized, preventive, and participatory medicine 

is the concept of a digital twin. A digital twin is a personalized computer model of a patient. So far, 

digital twins have been constructed using either mechanistic models, which can simulate the trajectory 

of physiological and biochemical processes in a person, or using machine learning models, which for 

example can be used to estimate the risk of having a stroke given a cross-section profile at a given 

timepoint. These two modelling approaches have complementary strengths which can be combined 

into a hybrid model. However, even though hybrid modelling combining mechanistic modelling and 

machine learning have been proposed, there are few, if any, real examples of hybrid digital twins 

available. We now present such a hybrid model for the simulation of ischemic stroke. On the 

mechanistic side, we develop a new model for blood pressure and integrate this with an existing multi-

level and multi-timescale model for the development of type 2 diabetes. This mechanistic model can 

simulate the evolution of known physiological risk factors (such as weight, diabetes development, and 

blood pressure) through time, under different intervention scenarios, involving a change in diet, 

exercise, and certain medications. These forecast trajectories of the physiological risk factors are then 

used by a machine learning model to calculate the 5-year risk of stroke, which thus also can be 

calculated for each timepoint in the simulated scenarios. We discuss and illustrate practical issues with 

clinical implementation, such as data gathering and harmonization. By improving patients’ 

understanding of their body and health, the digital twin can serve as a valuable tool for patient 

education and as a conversation aid during the clinical encounter. As such, it can facilitate shared 

decision-making, promote behavior change towards a healthy lifestyle, and improve adherence to 

prescribed medications.  
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Introduction 
 

Healthcare is currently moving towards P4 medicine - personalized, predictive, preventive, and 

participatory medicine (1). This development away from reactive medicine, towards P4 medicine, is 

driven and facilitated by the increase in chronic diseases (2), by a general increase in mechanistic 

understanding behind disease development, and by technological advancements (3,4).  

One already existing clinical practice, which has the potential to include all P4 principles, is the 

preventive health dialogue (Figure 1A). During such a health conversation, an individual and a 

specialized nurse discuss different health aspects regarding the individual’s current lifestyle and health 

status. The discussions cover the current and projected risk of getting different lifestyle related 

diseases, such as a stroke. The discussions also cover what an individual can do to decrease that risk 

(Figure 1A and B). With this as a basis, the individual decides which lifestyle changes to do, and is also 

responsible for maintaining those lifestyle changes (Figure 1C). 

While the existing health dialogue already features some aspects of the P4 principles, these principles 

could be further strengthened in various ways. Firstly, today, the health dialogue does not make use 

of advanced predictions using personalized computer models. In Figure 1B, such predictions show the 

effect of two different lifestyles on the risk of a stroke, by simulating physiological variables such as 

blood pressure and BMI. Secondly, another possibility with computer models is to zoom in on things 

happening on shorter timescales and other biological levels, using multi-level and multi-timescale 

models (Figure 1C). By simulating short-term changes, one can compare those predicted changes with 

measured outcomes during different time points. If those predictions turn out to be correct, it has the 

potential to increase faith in the long-term predictions, give continuous feedback on progress, and 

thereby increase motivation. In Figure 1C, this potential is exemplified with a simulated long-term 

decrease in BMI, which is associated with changes in short-term meal response. One technology that 

could contribute to all these possibilities is digital twins. 

A digital twin of an individual is a personalized computer model of that individual, and it has been 

suggested that such twins can be used for prevention of cardiometabolic diseases such as diabetes and 

stroke (5–7). Digital twins can be described by black box phenomenological models or by mechanistic 

physiology-based models. Phenomenological black box models are suited for making predictions and 

statistical assessments, such as the risk of a stroke. In contrast, mechanistic models describe physiology 

and biochemistry using mechanistic data, typically time series. These mechanistic models are first 

developed using varying amounts of in vitro, in vivo, and clinical population data, to be able to describe 

the physiological and biochemical processes (8). Then, these models are individualized using data from 

the particular individual, to be able to make personalized predictions. Finally, a twin can be either 

online, if it is continuously updated, or offline, if it is occasionally updated (9)  
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Figure 1: Vision for P4 medicine - preventive, predictive, personalized, and participatory medicine. A) 

during preventive health dialogues, different future scenarios are presented and discussed. Here, two 

examples of such scenarios are shown - B) Lifestyle 1: The person does not take any blood pressure 

medication. The person continues the unhealthy lifestyle, thereby increasing BMI, and eventually 

developing diabetes. The risk increases during the simulated 40 years. Lifestyle 2: The person starts to 

lose weight at 40, consequently decreasing BMI, and starts to take blood pressure medication when 

turning 50. The risk of stroke does not increase much during the 40 years. C) The person participates in 

his/her own care by choosing what lifestyle changes to make and by continuously monitoring the 

progress and results of the lifestyle changes. Here, this monitoring is exemplified by looking at how 

weight loss intervention results in improved meal glucose response. By continuously comparing such 

predictions with data, the person can continuously deepen their understanding of their own body, and 

hopefully better maintain motivation. 

 

One area where digital twins are especially suited is for preventative care of cardiovascular diseases 

such as stroke. These diseases are at least in part preventable with life-style changes and early medical 

interventions, and have a complex pathophysiology. The complexity of cardiovascular diseases 

comprises several medical and environmental factors, and involves multiple organs, timescales, and 

control mechanisms (10). This complexity makes it difficult to make individual predictions without help 

from advanced analytical tools such as digital twins. Capturing the complexity with a digital twin could 
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potentially help physicians and patients choose patient-specific preventive measures, by first testing 

the different measures on the digital twin and thus identifying the one with the most promising effects 

for that individual. Despite this potential, digital twins have only rarely been used in healthcare, partly 

because the models are not yet ready for usage.  

One of the reasons that the models are not ready for usage is that the development of these models 

has relied upon either of two different modelling approaches: mechanistic or black box machine 

learning models. Mechanistic models describe the underlying physiological processes, leading to 

changes over time (Figure 2A). Specifically, they can take lifestyle variables (e.g. energy expenditure) 

and personal parameters (e.g. age) as input, and can then be used to simulate the evolution of 

biomarkers and their covariation with other biomarkers. These kinds of models can then be used to 

simulate different scenarios (e.g. different lifestyles) and compare them with each other, on both the 

long term-level and on short-term effects. Since this approach directly uses prior physiological 

understanding to develop the models, the resulting models can give comprehensive physiological 

explanations for their predictions. Mechanistic models are primarily used for improved mechanistic 

understanding or for predicting the dynamics of physiological variables. Machine learning models, on 

the other hand, can map between inputs and outputs, such as risk factors and risk scores, without 

needing any information about the physiological mechanisms in that mapping. These models usually 

do not learn anything new about the mechanisms of the physiological system that produced the 

predicted output. Machine learning has within health care been successful in e.g. classifying images 

(11) and calculating risk scores (12–15). Both modelling approaches have different needs regarding 

data: machine learning models need a lot of data (1000s of subjects), preferably from different 

sources/demographics to ensure generalizability, and mechanistic models need time-series data for 

the response to some perturbation of a system, e.g. a meal or a medication. 
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Figure 2: Two different modelling approaches, mechanistic and machine learning can be used on their 

own and in a combined hybrid scheme. A) Mechanistic models can make use of personal parameters 

and lifestyle data to simulate the evolution of different biomarkers (e.g. BMI and glucose meal 

response). As such, mechanistic models can be used to simulate different scenarios (e.g. different 

lifestyles or drugs) and give physiological explanations of these predictions. In this figure, an increase 
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in energy expenditure is used as input, and the model is used to simulate BMI over 80 years, as well as 

meal glucose levels at different time points during these 80 years. B) Machine learning models can use 

different risk factors as input and give an estimated risk score as output. These models are so called 

black box models, i.e. one cannot look at their model structure and discern any physiological 

understanding. C) The complementary benefits of the two different modelling approaches can be 

utilized in a hybrid scheme. Here we suggest and present such a scheme. First, data from an individual 

are used to personalize the mechanistic model. Second, lifestyle inputs, such as food, age, drug, 

exercise, are used to make simulations of relevant biomarkers over time. Finally, these simulations, 

together with other risk factors not simulated by the mechanistic models, are then used to simulate the 

time-varying risk of stroke. 

 

Since the two modelling approaches have complementary abilities, a combination of the two has 

sometimes been proposed (10,16–19), even though few examples exist. Such combinations have for 

instance been used to improve MRI classification (20–22), for predicting tumor growth and density 

(23), and for predicting phenotypes based on genotypes (24). Hybrid schemas, where ML is used to 

formulate the mechanistic models, or where mechanistic models are used to constrain ML models, 

have also been proposed and developed (17,25). For example, ML techniques have been used to train 

and develop a mechanistic network model that were then used to predict cell responses to 

combinations of perturbations (e.g. drugs) (26). Within the field of cardiovascular diseases specifically, 

a hybrid model that combines a discrete model with an agent-based model has been used to simulate 

treatment procedures of heart failure and comparing both health outcomes and financial aspects (27). 

However, despite these many suggestions and first examples, and despite the importance of 

developing digital twins for stroke, no hybrid model underlying digital twins for stroke has yet been 

developed.  

Herein, we present a digital twin for stroke prediction, combining multi-level and multi-timescale 

mechanistic models with a machine learning model that calculates the 5-year risk of stroke, and show 

how it can be used in health care. The mechanistic models combine a model for the progression of 

type 2 diabetes with a new model of how blood pressure changes with age and medication (Figure 3A). 

We show how this mechanistic model can simulate how different lifestyle choices lead to different 

scenarios for the evolution of both the overall risk of stroke, and for known physiological risk factors, 

such as weight, diabetes development, and blood pressure (Figures 9-11). Finally, we discuss outline 

solutions to practical issues regarding implementation, such as data harmonization, and ethics.   
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Figure 3: The models included in the herein presented hybrid model. A) The mechanistic part consists 

of three different biological levels: whole-body, organ/tissue, and cell level. The models can also 

simulate dynamics on different time scales: on seconds and minutes up to days and months, even years. 
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B) The risk model consists of an ensemble of 4 different logistic regression models for 4 different age 

groups, taking in the same risk factors as input. The final risk score is a weighted sum of the risk scores 

from each of the models. 

2 Method 

 
2.1 Mechanistic models 

The mechanistic models are built up by ordinary differential equations (ODEs) in the standard form:  

                 
𝑑𝑋

𝑑𝑡
=  𝑓(𝑋, 𝑡, 𝑞, 𝑢)   (1) 

𝑋(𝑡0)  =  𝑋0(𝑞)   (2) 

                  �̇�  =  𝑔(𝑋, 𝑡, 𝑞, 𝑢)   (3) 

where 𝑋 is a vector of state variables,  𝑓 and 𝑔 are non-linear smooth functions, 𝑔 a vector of model 

parameters, u an input signal, 𝑋(𝑡0) initial conditions, and �̇� is the simulated model output. 

The complete interconnected model consists of four different sub-models describing metabolic control 

at three different levels: cell, organ/tissue, and whole-body (Figure 3A). All of the equations are given 

in the Supplementary material (which is based on (28,29)) both as equations and as simulation files. 

The initial values were obtained through steady state simulation, set to match the scenarios, or kept 

the same as in original articles. All initial values used in the simulations can be found in the 

Supplementary material. The fit of the 4 insulin resistance parameters were adjusted by hand, to get 

a diabetic behavior of relevant variables, corresponding to that of the diabetes parameters in (30). The 

simulation of the mechanistic model, and numerical optimization of model parameters, were carried 

out using MATLAB 2018b and the SBtoolbox2 package. 

 

2.2. Parameter estimation in the blood pressure model 

The parameter estimation, done only for the new blood pressure model, was done using the traditional 

weighted least square cost function: 

𝑣(𝜃) =  ∑ (
𝑦𝑡− �̂�𝑡 

𝑆𝐸𝑀𝑡
)

2

𝑡      (4) 

where 𝑦𝑡 is the measured data at timepoint 𝑡, �̂�𝑡  the simulation value at time point 𝑡, and 𝑆𝐸𝑀𝑡 is the 

standard error of mean at time point 𝑡. This cost function is then minimized over the free parameters. 

Only the parameters of the new blood pressure model were fit to data, and there is no cross-talk 

between the blood pressure model and the metabolic models. Two datasets were used: Framingham 

and VALUE. For the Framingham data, the blood pressure parameters were optimized to minimize the 

cost using two MATLAB functions, first particleswarm and then simulannealbnd. For the VALUE data, 

the model parameters were manually adjusted to fit to data. Since no standard deviation was given in 

the Framingham data, the standard deviation was approximated to 3 in the SBP and 2 in the DBP when 

using a χ2-test for the training, and standard deviations of 4 for SBP and 2 for DBP in the cross-

validation. 
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2.3 𝛘𝟐-test 

The parameter estimation was evaluated using a χ2-test of the size of the residuals. The null hypothesis 

for this test is that the experimental data have been generated by the model with additive and 

normally distributed noise. The test statistic value that is compared with the cost function is given by 

the inverse cumulative density function, 

𝑇χ2
0 =  ℱχ2

𝑐𝑑𝑓−𝑖𝑛𝑣(1 − 𝛼, 𝑣)   (5) 

where  𝑇χ2
0  is the test statistic, ℱχ2

𝑐𝑑𝑓−𝑖𝑛𝑣
 is the inverse cumulative density function, α is the significance 

level (α = 0.05 was used), and v is the degrees of freedom, which was equal to the number of data 

points in the training dataset. If the model cost is larger than the χ2-threshold, the model is rejected.  

 

2.4 Blood pressure model 

The new blood pressure model consists of 2 states: 

                                                           
𝑑

𝑑𝑡
(𝑆𝐵𝑃) = ((𝑘1𝑆𝐵𝑃 + 𝑘2𝑆𝐵𝑃 ∙ 𝑎𝑔𝑒) ∙ 𝑆𝐵𝑃vsIC) − 𝑑𝑟𝑢𝑔𝑆   (6) 

 

                                                             
𝑑

𝑑𝑡
(𝐷𝐵𝑃) = ((𝑘1𝐷𝐵𝑃 − 𝑘2𝐷𝐵𝑃 ∙ 𝑎𝑔𝑒) ∙ 𝐷𝐵𝑃vsIC) − 𝑑𝑟𝑢𝑔𝐷   (7) 

 

𝑆𝐵𝑃vsIC =
𝐼𝐶𝑆𝐵𝑃−𝑏𝑆𝐵𝑃

𝑖𝑛𝑖𝑡𝑆𝐵𝑃−𝑏𝑆𝐵𝑃
  (8) 

 

  𝐷𝐵𝑃vsIC =  
𝐼𝐶𝐷𝐵𝑃−𝑏𝐷𝐵𝑃

𝑖𝑛𝑖𝑡𝐷𝐵𝑃−𝑏𝐷𝐵𝑃
   (9) 

 

Where 𝑆𝐵𝑃 and 𝐷𝐵𝑃 are blood pressures, 𝑑𝑟𝑢𝑔𝑆 and 𝑑𝑟𝑢𝑔𝐷 are the drug effects, 𝑘1𝑆𝐵𝑃, 𝑘2𝑆𝐵𝑃, 

𝑘1𝐷𝐵𝑃, 𝑘2𝐷𝐵𝑃, 𝑘1𝐷𝐵𝑃, and 𝑘2𝐷𝐵𝑃 are parameters, 𝑆𝐵𝑃vsIC and 𝐷𝐵𝑃vsIC are patient-specific constants 

that depend on the initial blood pressure values at age 30, parameters 𝑏𝐷𝐵𝑃 and 𝑏𝑆𝐵𝑃 are 

parameters that determine the difference in the age-related increase in blood pressure between 

different patients with different initial blood pressure values, and 𝑖𝑛𝑖𝑡𝑆𝐵𝑃 and 𝑖𝑛𝑖𝑡𝐷𝐵𝑃 are constants 

set to the initial values in the non-hypertensive group 2 in the Framingham data. 

,  
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Figure 4: Overview of the blood pressure model. SBP is systolic blood pressure, DBP is diastolic blood 

pressure, and both are affected by both age and by the drug.  

 

2.5 ML risk model 

The used machine learning risk model is based on a set of four independent logistic regression models 

that are designed to predict the 5-year risk of initial ischemic stroke for an individual, belonging to four 

different age groups, as already presented in (31). There is a logistic regression model for each of the 

following four age groups: under 50, 50-59, 60-69 and over 70. Each of the four age-specific models 

has the same risk factors as predictors. The risk factor factors included in the model are: sex, systolic 

blood pressure (SBP), diastolic blood pressure (DBP), BMI, average cigarettes smoked per day, atrial 

fibrillation and diabetes. To determine an individual’s risk score, their risk factors are used as input into 

the appropriate model for the individual’s age. To use the age models in the hybrid modelling 

approach, we have adapted the independent set of logistic regression models into an ensemble model 

as described below. 

Age-specific models have been shown to capture the non-proportionality of risk factors by age and are 

better calibrated to the younger and older populations compared to a model that is trained on all ages 

with age included as a risk factor. Thus, age-specific models are particularly suited to this hybrid 

modelling approach that aims to calculate the risk based on simulated scenarios across time, as they 

will identify and use the risk factors that are most important to the individual’s stroke risk at a given 

time point (31). 

However, there are some disadvantages associated with the use of independent age-specific models 

for the hybrid model. In particular, when the age switches from one age-group to another, there may 

be a discontinuous jump in the risk, since one switches from one model to another. To avoid this 

problem, instead of assigning an individual to a given age group and basing their stroke risk solely on 

the prediction of the age specific model corresponding to their age group, we calculate their risk in 

each age group in parallel and then take a weighted average of these risks. In other words, we convert 

the set of age-specific models from a set of independent models to an ensemble, with the predictions 

from each of the models being integrated to generate a single overall risk for an individual. To weigh 

the stroke risk score for an individual returned by each age-group specific model, we use the distance 

from the individual’s age to the corresponding age group of the model that returned the risk score. 

The function used to calculate the distance 𝑑 is given in Equation 10 which returns the square root of 

the sum of the difference between an individual’s 𝐴𝑔𝑒 and the minimum value in an 𝐴𝑔𝑒𝐺𝑟𝑜𝑢𝑝 

squared with the difference between an individual’s age and the maximum value in an age group 

squared. 

𝑑  = √(𝐴𝑔𝑒  −   min 𝐴 𝑔𝑒𝐺𝑟𝑜𝑢𝑝)2 + (𝐴𝑔𝑒  −   max 𝐴 𝑔𝑒𝐺𝑟𝑜𝑢𝑝)2    (10) 

Where 𝐴𝑔𝑒 is the age, and 𝐴𝑔𝑒𝐺𝑟𝑜𝑢𝑝 is the age group. Within an age group, the smallest value for 

the distance will be for the age in the middle of the age group and the largest distance will be at the 

maximum or minimum age. For example, in the 50 to 59 age group, an individual aged 54 or 55 would 

have the smallest distance to the group while an individual aged 50 or 59 would have the largest. For 

those not in the age group, the ages closest to the group will have the smallest distance. Someone 

aged 60 would have a shorter distance to the 50 to 59 age group than someone aged 70. For an 

individual, the distance to each age group is calculated and then these distances are used to weigh risk 

scores from corresponding age group specific models and the weighted sum of the risk scores is the 

individuals total risk score. If we take the example of a 57-year-old person, they will have four distance 
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parameters, d50, d5059, d6069 and d70 , and four weights w50, w5059, w6069, w70. These distances would be 

calculated as follows: 

𝑑50 = √(57  −  25)2 + (57 −  49)2 =  32.98    (11) 

𝑑5059 = √(57  − 50)2 + (57 −  59)2 =  7.28     (12) 

𝑑6069 = √(57  − 60)2 + (57 −  69)2 =  12.37    (13) 

𝑑70 = √(57  − 70)2 + (57 −  96)2 =  41.11       (14) 

The weights for each risk model are created using inverse distance weights and are defined below: 

𝑤50  =  

1

𝑑50
1

𝑑50
 +

1

𝑑5059
 + 

1

𝑑6069
 + 

1

𝑑70
 
   (15) 

𝑤5059  =  

1

𝑑5059
1

𝑑50
 +

1

𝑑5059
 + 

1

𝑑6069
 + 

1

𝑑70
 
  (16) 

𝑤6069  =  

1

𝑑6069
1

𝑑50
 +

1

𝑑5059
 + 

1

𝑑6069
 + 

1

𝑑70
 
 (17) 

𝑤70  =  

1

𝑑70
1

𝑑50
 +

1

𝑑5059
 + 

1

𝑑6069
 + 

1

𝑑70
 
  (18) 

For the 57 year old, if we plug the distances found in Equations 11 - 14 we get the following weights: 

w50 = 0.11, w5059 = 0.50, w6069 = 0.30, and w70 = 0.09. 

To calculate the final risk score we then use the following formula where the variables R50, R5059, R6069, 

R70 are the risk scores calculated by each of the four independent age group specific models: 

𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒  = 𝑤50 ∗ 𝑅50 + 𝑤5059 ∗ 𝑅5059  + 𝑤6069 ∗ 𝑅6069  +  𝑤70 ∗ 𝑅70 (19) 

For the 57 year old, we see that the risk score from the 50-59 age model is weighted the highest 

followed by the risk score from the 60-69 age model; then the under 50 model and finally the over 70 

model. 

 

2.6 Code availability 

All code will become available, when this manuscript has been accepted in a journal.  

 

3. Results 
 

3.1. Development and validation of the new mechanistic blood pressure model 

The blood pressure model describes the effect of aging on systolic and diastolic brachial blood 

pressure. The model of aging was trained on data from the Framingham Heart Study (32), including 

four groups with different SBP at the end of the study (Figure 5). The model passes a χ2-test for all 4 

groups (V(θ)=32.5 < 111= χ2
cum,inv(88,0.05)). A model validation was performed on the same data by 
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leaving out one group during model training and then use the left-out group as validation data (Figure 

6). The cross-validation in the Framingham data also passes a χ2-test (V(θ)= 3.03, 0.97, 17,2, 26.5<33.9 

= χ2
cum,inv(22,0.05)). 

A drug mechanism was added to the model to describe the decline in blood pressure due to anti-

hypertensive drugs (Figure 7). The combined long-term model of blood pressure was then trained on 

data from an angiotensin receptor blocker (ARB)-based treatment from the VALUE trial, where 

treatment started at the age of 67.2+-8.2 (33). The fit of the trained model to the drug-treatment data 

passes a χ2-test (V(θ)=0.8 < 26.3 = χ2
cum,inv(16,0.05)).  

The VALUE trial data were also used to choose the timepoint for start of drug treatment used in the 

hybrid simulation of blood pressure (Figure 10). This timepoint was chosen as the timepoint where the 

group from the Framingham-data with the highest SBP had the closest SBP to the mean baseline value 

from the VALUE trial and was found at t=62 years. This choice of timepoint was based on the fact that 

the person in the simulated scenario is within the age span of the subjects from the VALUE trial (67.2+-

8.2). The reduction in blood pressure was assumed to be the same for all values of the blood pressure 

at the start of treatment. The simulation of normal aging used is the same as was fitted to all four 

groups from the Framingham study.  

 

 

 

 
Figure 5: Fit to data of aging from Framingham Heart Study. 
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Figure 6: Cross-validation on data from the Framingham Heart Study.  

 

 

 
Figure 7: Fit to data of Valsartan-based treatment, where the final trained model was used to 

simulate an ARB-based treatment starting at the age of 45 compared to no treatment. 

 

 

3.2. Validation of the ensemble-based risk model 

The independent age-specific models, without the ensemble approach, were evaluated in (31). 

However, since we do a new ensemble-based combination of these age-specific models, it is necessary 

to look at the evaluation metrics of the ensemble model. We look at discrimination and calibration for 

the model as a whole and for each of the age groups using an 80:20 train:test split, where we use 80% 

of each age group data set to train the corresponding age group specific model and then combine the 

left over 20% of data from each age group to test the weighted model. Looking at both discrimination 

and calibration is important to fully understand the performance of the model. While the 
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discrimination metrics provide a measure of the predictive capabilities of the model, the calibration 

measures the difference between the estimated and true risk, which can help to identify if the model 

does not predict well for certain groups (34). For discrimination we look at the F1 measure, the AUC, 

and the accuracy of the model. The F1 measure is the harmonic mean of how often a model makes a 

positive prediction that is true (precision) and the true positive rate (recall). The AUC is the area under 

the receiver operating characteristic (ROC) curve which plots the true positive rate against the false 

positive rate as the prediction threshold of the model moves between 0 and 1. Accuracy is the portion 

of predictions that are correct (35). To look at calibration, we use the Spiegelhalter’s Z-test, which 

separates the calibration aspects out of the Brier Score (the mean squared error between the outcome 

and the estimated probabilities), and the Hosmer-Lemeshow test, which examines goodness of fit. If 

the p-value is significant in either of these two tests, the model is assumed to be not well calibrated.  

Using both the discrimination and calibration metrics described above, we compare the ensemble of 

age-specific models with two models from (31): a set of independent age-specific models (i.e., where 

the predicted risk for an individual is based solely on the prediction of the age-group specific model 

that covers their age), and a single model that includes age as a risk factor and that is trained on data 

from all the age groups. Note that the set of independent age-specific models are, in fact, the 

component models that are used to construct our ensemble model. In other words, the comparison 

between these two models directly assesses the contribution of our function for weighting different 

risks. Figure 8 provides a visualization of the three stroke risk prediction models.   
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Figure 8: The ensemble model.  

 

3.2.1 Discrimination analysis of the stroke risk model 

Table 1 shows the values for AUC, F1, and accuracy for the ensemble of age-specific models tested on 

the individual age groups, as well as the same measures for the set of independent age-specific models 

and the single model with age as an input. Comparing the results in Table 1, we see that the set of 

independent age-group specific models has the highest AUC in all categories and the single model with 

age as an explicit input (which is representative of a standard approach to stroke risk modeling) has 

the lowest AUC in all age categories. With respect to F1 the ensemble of the age-specific models has 

the best performance in all age categories except 60-69, where the independent age specific model 

has best performance. Finally, looking at accuracy, the independent age-specific models have the best 

accuracy in the younger age-groups (Under 50, and 50-59). However, in the older age groups the single 

model with age as an input has slightly better performance and the performance of the ensemble of 

age specific models either matches or exceeds the performance of the independent age-specific 

models. Overall, however, we conclude that our new ensemble-approach used to smooth out 

transitions between the age group model still produces a roughly equal discriminative ability.  

 

Table 1: Discrimination Metrics 

  AUC F1 Accuracy 

Under 50       

Ensemble of Age-Group Models 0.57 0.37 0.66 

Independent Age-Group Models 0.67 0.22 0.70 

Single Model 0.52 0.31 0.64 

50-59       

Ensemble of Age-Group Models 0.66 0.45 0.68 

Independent Age-Group Models 0.70 0.41 0.71 

Single Model 0.64 0.43 0.66 

60-69       

Ensemble of Age-Group Models 0.71 0.41 0.68 

Independent Age-Group Models 0.72 0.47 0.68 

Single Model 0.69 0.37 0.69 

70 Plus       

Ensemble of Age-Group Models 0.69 0.49 0.72 

Independent Age-Group Models 0.70 0.44 0.71 

Single Model 0.69 0.49 0.73 
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3.2.2 Calibration analysis of the new risk model 

Table 2 shows the p-values for the two calibration tests for the ensemble of age-group-specific models, 

the independent age-group models, and the single model. From the table, we can see that in both the 

ensemble and independent age models, all age groups have p-values for the goodness of fit tests 

greater than 0.05, suggesting that these models are well-calibrated across all age groups. This is an 

improvement from the single-age risk model and suggests that the new ensemble approach does not 

alter the acceptable calibration property of the previous model  (31). 

 

Table 2: Calibration Metrics 

  Hosmer-

Lemeshow 

Spiegelhalter

’s 

Under 50     

Ensemble of Age-Group Models 0.19 0.14 

Independent Age-Group Models 0.23 0.34 

Single Model 3.45e-5 0.002 

50-59     

Ensemble of Age-Group Models 0.17 0.40 

Independent Age-Group Models 0.34 0.52 

Single Model 0.03 0.09 

60-69     

Ensemble of Age-Group Models 0.32 0.54 

Independent Age-Group Models 0.32 0.44 

Single Model 0.44 0.24 

70 Plus     

Ensemble of Age-Group Models 0.38 0.65 

Independent Age-Group Models 0.35 0.58 

Single Model 0.12 0.38 

 

3.3. Simulation of scenarios with the hybrid model 

Five different scenarios are simulated by the hybrid model, and each time two related scenarios are 

compared. The Five scenarios are summarized in Table 3. In all these scenarios, the person whose 

variables are simulated is, at the start, a 40-year-old man, with a start weight of 90 kilos, 36% fat, and 

a height of 185 cm.  

 

Table 3: Risk factors for the 5 different scenarios. 
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 Weight 

loss 

Weight 

gain 

Blood 

pressure 

medication 

Diabetes Smoking Atrial 

fibrillation 

Gender 

Scenario 1  X  X   Male 

Scenario 2 X      Male 

Scenario 3  X X    Male 

Scenario 4  X  X X X Male 

Scenario 5 X  X    Male 

 

3.3.1 Scenario 1 and 2 
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Figure 9: Simulations and comparisons of scenario 1 and 2. A) Scenario 1: A high-calorie diet, with a 

daily increase of 400 kcal, and a lack of exercise, leads to an increase of BMI over 40 years. The short-

term dynamics at age 80 are here different from the ones at age 40 – plasma insulin has decreased, 

plasma glucose has increased to diabetic levels, glucose uptake in muscle tissue has decreased, glucose 

uptake in fat tissue is at the same total amount, but done over a period of time, and insulin-induced 

signaling IRS1 and PKB308 in isolated fat cells taken from the patient at these two time-points have 

decreased.  B) Scenario 2: A low-calorie diet, decreasing the amount of food per day by 100 kcal, while 

also increasing the amount of exercise, which leads to a decrease in BMI over the 40 years. The short-

term dynamics at age 40, before the weight decrease started, and at age 80, are more or less the same 

at both the organ/tissue and at the cell level. C) The risk of having a stroke as a function of age for the 

two scenarios. The risk is constantly higher for scenario 2. 

In scenario 1 (Figure 9A), a 40-year-old person that eats approximately 400 extra kcal/day for 40 years, 

goes from a BMI of around 28, indicating a slight overweight, to a BMI of almost 40, indicating obesity. 

In contrast, in scenario 2 (Figure 9B), the same person instead decreases their energy intake with 100 

kcal/day and therefore has a BMI of 22 after 40 years. When zooming in and comparing the meal 

response for scenario 1 at age 40 and 80 (Figure 9A), one can see that for example the plasma glucose 

levels are higher both at start and at its peak, at age 80 compared with age 40. Insulin, on the other 

hand, is lower at age 80, due to the beta cell collapse, meaning that the person has gone from pre-

diabetes to fully developed type 2 diabetes. Another difference that can be seen is that the glucose 

uptake in muscle tissue has decreased at age 80, but not in the expanded adipose tissue, which is 

another hallmark of diabetes. When looking at the risks for these two scenarios (Figure 9C), the risk 

increases slightly more for scenario 1, until age 50, when the diabetes kicks in, and the risk increases 

prominently. Note that the discrete nature of this jump probably is over-exaggerated, and due to the 

fact that the risk model is based on discrete diagnosis variable, and not on the more continuously 

changing physiological variables.  

 

3.3.2 Scenario 2 and 3 
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Figure 10: Simulations of scenario 2 and 3 compared. A) Scenario 2: No blood pressure drug is taken. 

B) Scenario 3: Blood pressure increases with age, and at age 50, the person starts taking a blood 
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pressure drug. C) The risk of having a stroke as a function of age for the two scenarios. The risk is 

constantly higher for scenario 2, because of the blood pressure medication has taken in scenario 3. 

In scenario 3, the person starts taking a blood pressure medication at age 45, consequently decreasing 

both the SBP and DBP (Figure 10B). This scenario is compared with scenario 2 (Figure 10A), where no 

medication is taken, and the SBP thus consistently increases with time. Note, however, that the DBP 

increases at first, and then starts to decrease around age 50. All other risk factors are kept the same 

for these two scenarios. When comparing the risks for the two scenarios (Figure 10C), one can see a 

drop in the stroke risk for scenario 3 at the same time that the blood pressure medication is introduced. 

Note that this reduced risk is maintained throughout the remaining 30 years of simulated time.   

 

3.3.3 Scenario 4 and 5 

Let us, finally, compare two more extreme scenarios, to see how much of a difference the lifestyle 

really can make (Fig 11). In the best-case scenario, the 40-year old reduces weight (as in scenario 1), 

stops smoking, and also takes a blood pressure medication. Just as in scenario 1, the risk is consistently 

low, throughout the 40 years of simulated time. In contrast, in scenario 5, the patient gains weight and 

does not take blood pressure medications, just as in scenario 2. However, here these outcomes are 

further compounded by the advent of diabetes and atrial fibrillation and continued smoking. As can 

be seen, the difference in absolute risk is more than 10 times higher in the worst-case scenario, 

compared to the best case. This shows how big of a difference lifestyle changes can make, and could 

be the basis of a new digital twin technology, useful in preventive healthcare.  

 

Figure 11: Risk scores for scenario 4 and 5, the worst- and best-case scenarios. In Scenario 4, a weight 

gain is compounded by continued smoking, diabetes, atrial fibrillation, and the omission of blood 
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pressure medications. In Scenario 5, weight loss and quitting smoking is combined with blood pressure 

medication.   

 

3.4 Health informatics harmonization, to help bring the hybrid model into the clinic 

If the digital twin models should become a ready-to-use eHealth technology, additional work needs to 

be done, for example concerning health informatics and end-usage design. There is some, but not 

much, previous work that focus on data management concerning digital twins (36). Some challenges 

mentioned include data heterogeneity, the potentially large size of data, the fact that the data is 

dynamic, i.e. changes over time, and the related data mining problems that these challenges give rise 

to (36).  

Here we focus on the data heterogeneity and the need for semantic harmonization and integration. In 

the healthcare domain, future digital twins will need to access large amounts of complex 

heterogeneous data (e.g. omics data, EHR data, wearables data, etc.) which are heterogeneously 

structured and represented using a wide variety of formats.  

There are multiple standards to enable data sharing among systems such as the EHR data exchange 

standards ISO 13606 (37), HL7 FHIR (38), and openEHR (39) as well as the OHDSI OMOP (40) and i2b2 

(41) approaches, which are more oriented to clinical research.  Thus, one of the main challenges is to 

deliver methods that enable the meaningful transformation of data across the existing heterogeneous 

representation formats. Among others, such methods will need to support the building of federated 

architectures for digital twins (42,43).  

Within the Precise4Q project, where these digital twins for stroke have been developed, we have 

implemented a semantic-driven framework for semantically harmonizing and integrating data across 

systems, which facilitates data analysis and exploitation. A data transformation pipeline semantically 

harmonizes and standardizes the data input to the digital twins. The core of the framework is an 

ontology-based data model, which uses a top-level ontology to standardize data modelling and ensure 

interoperability among different ontologies, and the SNOMED CT terminology is used as a reference 

ontology to represent the clinical concepts.  
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Figure 12: Simplified representation of the result of transforming csv data from two datasets into RDF 
triples according to the ontology model. Data is shown in blue. SCT concepts are represented as dashed 
grey squares 

 

Data from the different sources are usually provided as comma-separated values (CSV). We have 

therefore implemented a data transformation pipeline that takes CSV data as input, transforms it into 

RDF triples (44) according to the ontology data model, and stores it in a graph-database. Finally, data 

can be accessed by ML models by using a REST API. Figure 12 depicts the graphical representation of 

harmonized data from two datasets with patient examination and diagnostic data used in the models 

herein. Dashed grey squares are SNOMED CT concepts that univocally identify the data elements (e.g. 

BMI, SPB, Atrial fibrillation, etc.). These variables are related according to the mentioned ontology-

based data model. Each data element is always represented together with its contextual information 

given by the specific process used to acquire the data (e.g. blood pressure taking process at some 

specific time point). This graph-based structure allows for further exploitation of biomedical 

knowledge and relations within the heterogenous data, for example for predicting new relations 

between terms such as genes, diseases, drugs, or symptoms (45,46). 

 

4. Discussion 

4.1. Summary 

Herein, we have presented the basis for a new digital twin technology, which uses a hybrid 

combination of a machine learning model with a multi-level, multi-timescale, mechanistic model. This 

hybrid model can show both the evolution of stroke risk and simulations of physiological variables, 

such as the progression of diabetes, weight, and blood pressure. The new hybrid model is based on a 

combination of existing and new models. The multi-level and multi-timescale model describes weight 

changes and glucose homeostasis (28,29). One of the new models (Figure 4) describes blood pressure 

as a function of age (Figure 5-7) and medications (Figure 7), and can both agree with estimation data 

(Figure 5,7), and correctly predict validation data (Figure 6). The second new model is a modification 
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of the stroke risk model from (31), using a new ensemble approach (Figure 8). This ensemble approach 

was introduced to smooth out discontinuities, when moving from one age group model to another, 

and we show that the performance of the new model is as good as the previous model (31), both 

regarding discrimination (Table 1) and calibration (Table 2). We illustrate how the hybrid model can be 

used, by simulating and comparing different lifestyle scenarios: for example comparing the health 

trajectory for an individual who gains weight and develops diabetes (Figure 9, scenario 1) with that of 

an individual who loses weight and thereby improves their glucose meal response (Figure 9-10, 

scenario 2); other scenarios considered include an individual who gains weight but take blood pressure 

medication (Figure 10, scenario 3), an individual who smokes and develops atrial fibrillation (Figure 11, 

scenario 4), and an individual who loses weight and takes blood pressure medication (Figure 11, 

scenario 5). Finally, we also discuss and exemplify how health informatics solutions could be used to 

facilitate the usage of our hybrid model, both in the clinic and at home.  

 

4.2. Strengths of our new models 

New blood pressure model 

The blood pressure model is new because it can describe both how blood pressure increases with age 

and how medication lowers the blood pressure. In the literature, there exist several models of the 

regulation of blood pressure, but only a few of them focus on long-term regulation. Guyton’s models 

created the groundwork for modeling long-term regulation of blood pressure based on simulations 

and animal data, including detailed descriptions of the salt-fluid balance (47,48). After Guyton’s model, 

many similar models have been developed (49), along with short-term Windkessel- (50) and time-

varying elastance (51)-based models with more focus on the arterial system and the heart (52,53). For 

instance, Maksuti et al used a Windkessel-based model to describe blood pressure changes in aging 

using some of the Framingham data (54). However, the Maksuti model only describes blood pressure 

changes during normal aging, thus leaving out the three other groups in the Framingham data (Figure 

5-6), and did not include effects of blood pressure-lowering drugs, as in the model presented herein 

(Figure 7). Apart from these models, only a few models describe the dynamics of long-term changes in 

systolic as well as diastolic blood pressure, such as aging and effects of anti-hypertensive drugs (49,54). 

Additionally, many of the previous models are not, or are only sparsely, based on human data, do not 

consider parameter estimation or validation with independent data, and/or do not combine several 

effects, such as both drugs and normal and hypertensive aging (49,54).  

 

New ensemble-based risk model 

The ensemble-based machine learning model deals with many of the most important risk factors, does 

so in an age-dependent way, while avoiding discontinuities, when moving from one age group to 

another. The model enables different risk factors to contribute to the risk scores in different amounts 

at different stages of life by having different models for different age groups. This is important, because 

the same risk factors will have different contributions in different stages of life, meaning that it is not 

sufficient to have age as an independent risk factor, along with the other ones (31). Moreover, the 

model generates smooths changes in risk score when entering a new age group by using a combined 

risk score for all age groups. Without this combination, an individual that ages and moves between age 

groups may display an unrealistic jump, between two risks. For example, a 49-year-old might see a 

decrease in risk score when they turn 50, even though none of their risk factors have changed. Another 

reason why this new ensemble-based approach is valuable is that there can be a difference between 
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a person’s chronological age, which would be used to select the appropriate model to predict a 

person’s age, and their biological age. A number of studies have shown that stroke patients tend to 

have higher biological ages compared to non-stroke patients with the same chronological age (55). For 

this reason, it may be beneficial to down-play the importance of chronological age, and focus more on 

the other risk factors, which are a reflection of the biological age. This down-playing of chronological 

age appears since we use a weighted combination age-specific sub-models, thereby smoothly 

integrating information from different age cohorts. In these sub-models, age is less important, 

compared to in all-age models, where age is a more dominant risk factor.  

 

The new hybrid model 

The combined hybrid model is the first of its kind for stroke care, since it both can predict the risk of 

stroke, as well as predict the evolution of risk factors and other physiological variables, ranging from 

intracellular insulin signaling to organ fluxes, and whole-body variables. This combined ability is 

possible from our sequential hybrid modelling approach, where the mechanistic model is simulated 

first, and where that serves as an input to the stroke risk model. This combined ability is important in 

a clinical context, since one then needs to both see how the risk is expected to change as a function of 

lifestyle, and understand why these changes are happening, i.e. see the underlying physiological 

changes (Figure 1). Furthermore, it is also important to be able to simulate on a both long and short 

timescale, since it is only via short-term simulations (days-months) that one can compare predictions 

with observed changes and thus gain more faith in the models, and since it is only via long-term 

simulations (years-decades) that risks are substantially altered. Finally, as mentioned in the 

introduction, there are some, but not many, hybrid models in biomedicine already available (20–27), 

but no other model exists for multi-scale simulations of stroke risk.  

 

4.3. Limitations of our models 

Multi-level multi-timescale model 

The multi-level, multi-timescale mechanistic model used herein constitutes a first step towards a 

model of stroke progression, but it has as several crucial limitations. Firstly, the weight-driven insulin 

resistance is constructed in a top-down fashion. The top-level is the weight-change, which is altered 

by changes to the balance between energy intake and consumption. These top-level weight-changes 

then affect tissue and cellular processes. However, the short-term dynamics on the lower levels does 

not propagate up to the top-level. This is a limitation, since long-term changes are nothing else than 

the cumulative impact of short-term changes, and this means that short-term changes seen during a 

few days do not impact the long-term predictions. Second, some of the organs and tissues represented 

are described by highly simplified sub-models. Therefore, in such organs, e.g. muscle, liver and brain, 

only a few variables can be simulated, such as glucose uptake. There are more detailed models for 

these organs (56–58), but these models have not yet been integrated into our multi-level model. A 

third limitation is the lack of other processes related to stroke represented in the mode. Now, the 

model focuses on the development of insulin resistance and diabetes, which are important in the early 

etiology of the metabolic syndrome. Future versions of our digital twin models should include 

mechanisms such as the development of arterial fibrillation, atherosclerosis, and thrombosis.  

 

New blood pressure model 
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While our new blood pressure model is the first to both describe changes with age and medications, 

and while it is able to both describe estimation data and correctly predict independent validation data, 

it is still a simple, isolated, and phenomenological model. First, the new blood pressure model is not 

based on mechanistic Windkessel models, and can thus not simulate short-term dynamics, such as the 

blood pressure propagation during a single heartbeat. Second, for the same reason, our model is 

phenomenological, and predicts the long-term changes in systolic and diastolic blood pressure, 

without predicting the underlying changes in the mechanisms that are involved in regulating the blood 

pressure. For instance, the model does not include changes to arterial properties, such as stiffness and 

elastance, or changes to kidneys, etc. The reason for this limitation is that the required data for such a 

model - e.g. 4D-flow MRI data collected over long-term longitudinal studies - does not yet exist. Finally, 

the blood pressure model is not connected to the multi-level, multi-timescale model for weight and 

glucose homeostasis, even though blood flow has a mutual interplay with e.g. glucose uptake and 

diabetes (28).  

 

New ensemble-based risk model 

The risk model presented herein includes 7 of the most important risk factors for stroke (Figure 4), but 

there are several other risk factors that are not included. These risk factors include other heart 

diseases, birth control pills, previous strokes or TIAs, high red blood count, high blood cholesterol and 

lipids, alcohol and drug use, cardiac structural abnormalities, and social and economic factors. All these 

risk factors are manageable to some extent at least, and not including them in a risk model used in the 

clinic could mean that important possible changes to reduce the risk are overlooked. To include more 

risk factors would, however, also mean that missing values need to be addressed in some way, both 

during training and during usage of the risk model. The risk factors currently included are all easy to 

know or measure, and are measured in all known databases, and this is the case also for several other 

risk factors not included. Such variables would be straightforward to add to our model, and missing 

values could be handled by using some imputation method. In contrast, some other risk factors are 

measured only rarely, and are thus not included in all large databases. For instance, cardiac structural 

abnormalities are diagnosed using echocardiography, which is done in the clinic only if there is a strong 

suspicion of disease, and not a part the Framingham study, used for our risk models. Addition of such 

variables would thus require the usage of other databases, combine with usage of a transfer learning 

approach to merge the insights from analysis of such different databases (59).  

 

The new hybrid model 

Our hybrid risk model for stroke is the first of its kind, and is to be considered a first step, with many 

future improvements possible. The limitations of the different sub-models of course carry over to the 

combined hybrid model as well. Apart from this, there are several hybrid approaches that are not 

utilized in our model. The approach that we do use, sequential hybrid modelling, is the simplest one, 

since you can simulate one model first, and then use that as an input to the second model. A more 

intricate form of hybrid modelling is called blended modelling, where the different models interact 

with each other, and thus must be analyzed together. One way to do such blended modelling, would 

be to use nonlinear mixed-effects modelling (60,61), which is a way of bringing in statistical properties, 

regarding e.g. the distribution of parameters across a population, into the mechanistic simulations. 

Another way to do such blended modelling would be to have a sub-model to the big multi-level model 

that is described using a phenomenological machine-learning model. Finally, another important 

sequential hybrid combination not pursued herein, would be to use a machine-learning or 
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bioinformatics network model as an input to the ultimate risk model. Such a model could e.g. be a 

polygenic risk score model, which takes all the genes and calculate a smaller set of risk factors, which 

then goes into the ultimate risk model. These different future possibilities are reviewed for the context 

of stroke in (10).  

 

4.4. Future steps towards potential clinical implementation 

The hybrid model presented herein opens up for a future, fully realized, implementation of P4 

medicine in health care, i.e. Predictive, Preventive, Personalized and Participatory healthcare (Figure 

1). The Predictive part comes through the predictive simulations and risk scores (Figure 9-11, the 

scenarios); the Preventive part comes from using the predictions in e.g. the preventive health dialogue; 

Personalization comes through the fact that the models are personalized; and finally, the Participatory 

part comes from the fact that the simulation empowers patients to make  informed decisions about 

their health behaviors, lifestyle choices, and interventions, not just in connection to the Health 

Conversation, but continuously throughout life. This last potential was also mentioned in the 

introduction (Figure 1). Short-term simulations can be compared with data and can thus be used to 

examine and verify the short-term effects (e.g. glucose meal response) of the long-term changes (e.g. 

weight changes). This can be done whenever the patient so decides, i.e. after a year, half a year, or 

even a day. By improving patients’ understanding of how different health and lifestyle factors and 

changes will impact their stroke risk, the digital twin can serve as a valuable tool for patient education 

and as a conversation aid during the clinical encounter. Being able to simulate how different types of 

interventions or lack thereof may reduce or increase the risk of suffering a stroke, enables patients to 

make informed decision about their health at eye level with healthcare professionals. Moreover, if 

predictions are consistent with the observed changes, this can increase patients’ trust in the model, 

including for the long-term predictions, and as a result increase their motivation and compliance to 

lifestyle changes.  

Despite the great potential of predictive health information to empower individuals, it is important to 

consider some of the pitfalls and potential challenges patients may face in making effective use of this 

information. Even though the digital twin can foster awareness of much needed lifestyle changes, it 

does not help patients to overcome the environmental or social factors that may prevent them from 

adopting a healthier lifestyle. It is also important to note that not all patients are willing and capable 

to take on such an active role in managing their own health and may feel burdened by the responsibility 

of having to do so. This is where healthcare professionals are called upon to support patients in 

identifying not only the right type of lifestyle intervention but also how it can be achieved.  

Finally, when bringing the herein presented hybrid model all the way to an implemented eHealth 

technology, there are several additional steps needed. For instance, data from different sources need 

to be integrated and harmonized in a secure way. User interfaces need to be co-designed with end-

users, including both patients, clinicians, and other persons that may be involved, such as personal 

trainers, coaches, relatives, and friends.   
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