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Abstract 11 

DNA methylation in bacteria frequently serves as a simple immune system, allowing 12 
recognition of DNA from foreign sources, such as phages or selfish genetic elements. It is 13 

not well established whether methylation also frequently serves a more general epigenetic 14 

function, modifying bacterial phenotypes in a heritable manner. To address this question, 15 
here we use Oxford Nanopore sequencing to profile DNA modification marks in three natural 16 

isolates of E. coli. We first identify the DNA sequence motifs targeted by the 17 
methyltransferases in each strain. We then quantify the frequency of methylation at each of 18 

these motifs across the genome in different growth conditions. We find that motifs in specific 19 
regions of the genome consistently exhibit high or low levels of methylation. Furthermore, 20 

we show that there are replicable and consistent differences in methylated regions across 21 
different growth conditions. This suggests that during growth, E. coli transiently differentiates 22 

into distinct methylation states that depend on the growth state, raising the possibility that 23 

measuring DNA methylation alone can be used to infer bacterial growth states without 24 
additional information such as transcriptome or proteome data. These results provide new 25 

insights into the dynamics of methylation during bacterial growth, and provide evidence of 26 
differentiated cell states, a transient analogue to what is observed in the differentiation of 27 

cell types in multicellular organisms.  28 
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Introduction 29 

Cellular phenotypes are determined not only by genetic and environmental factors, but also 30 
epigenetic factors (heritable changes to the phenotype which are not caused by changes to 31 

the DNA sequence). In bacteria, epigenetic inheritance of phenotypes is known to occur via 32 

a range of mechanisms, including transgenerational inheritance of transcription factors or 33 
membrane transport proteins (Lambert and Kussell 2014; Kaiser et al. 2018), protein 34 

aggregates (Govers et al. 2018), or by covalent modifications to DNA, such as methylation 35 
(Sánchez-Romero and Casadesús 2020; Hale, van der Woude, and Low 1994). There are 36 

three types of covalent DNA modifications commonly found in bacteria: C5-methyl-cytosine 37 
(5mC), C6-methyl-adenine (6mA) and N4-methyl-cytosine (4mC) (Sánchez-Romero, Cota, 38 

and Casadesús 2015; Blow et al. 2016; Oliveira 2021; John Beaulaurier, Schadt, and Fang 39 
2019). Methylation at these sites occurs via the action of DNA methyltransferases (Heard 40 

and Martienssen 2014; Jablonka and Raz 2009; Casadesús and Low 2006), which are 41 

ubiquitous across bacteria (Oliveira and Fang 2021).  42 

Despite the ubiquity of DNA methylation, how often it serves an epigenetic function in 43 
bacteria is not well-established. In many cases, DNA methylation does not lead to different 44 

heritable phenotypes, and thus does not function as an epigenetic mark (Waldminghaus and 45 
Skarstad 2009; Skarstad, Boye, and Steen 1986; Collier 2009). However, a number of 46 

studies have established that DNA methylation can act to regulate cellular processes, 47 
including gene expression (D. Roberts et al. 1985; Seong, Han, and Sul 2021), sometimes 48 

in a heritable manner (Low, Weyand, and Mahan 2001; van der Woude, Hale, and Low 49 

1998; Casadesús and Low 2006; Sánchez-Romero and Casadesús 2020). These 50 
modifications can have significant downstream phenotypic effects (Sánchez-Romero and 51 

Casadesús 2020; Park et al. 2019). Notably, in almost all well-established cases, when DNA 52 
methylation functions in an epigenetic manner, it is highly localised (e.g. at the operon-level) 53 

(Hale, van der Woude, and Low 1994), or even for a single site (Birkholz et al. 2022). One 54 
exception to this is a recent study, which suggested that genome-wide DNA methylation 55 

patterns differ between free-living and terminally differentiated bacteroids of the soil 56 
bacterium Rhizobium leguminosarum (Afonin et al. 2021).  57 

To further probe possible epigenetic functions of DNA methylation in bacteria, here we 58 
characterise methylation patterns for three natural isolates of E. coli across a wide range of 59 

growth conditions. We profile DNA methylation using Oxford Nanopore (ONT) sequencing 60 
(Simpson et al. 2017; Rand et al. 2017), and show that by comparing samples of native 61 
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methylated genomic DNA to whole genome amplified DNA it is possible to identify the 62 

expected methyltransferase binding motifs. We then use a quantitative approach to show 63 
that across the genome, methylation levels vary in a predictable fashion, and that levels of 64 

methylation differ between growth conditions. These data suggest that E. coli cells undergo 65 
environment-dependent transient differentiation into different methylation states during 66 

growth. These changes are not a reflection of cell cycle states, but instead are heritable 67 
changes that are gradually lost after growth ends. These results raise the possibility that in 68 

bacteria, growth states can be inferred solely by quantifying DNA methylation patterns, and 69 

that these patterns correspond to transiently differentiated epigenetic cell states.  70 

Results  71 

Determination of Methylation Motifs 72 

We first sought to determine which methyltransferases were present in each of three natural 73 

isolates of E. coli, denoted here as SC419, SC452, and SC469 (Ishii et al. 2006). We found 74 
the adenine methyltransferase dam (which recognizes GATC motifs) and the cytosine 75 

methyltransferase dcm (which recognizes CCWGG motifs) in all three strains. We also 76 
found one of the adenine methyltransferases EcoKII or EcoGVI in each of the three strains. 77 

Both of these target the same motif, ATGCAT, and are present in most E. coli  strains (Fang 78 

et al. 2012; Adzitey et al. 2020). We identified the methyltransferase EcoGIX in strains 79 
SC419 and SC469. EcoGIX is an adenine methyltransferase, with a loosely defined motif 80 

sequence (Fang et al. 2012; Forde et al. 2015). Finally, we identified EcoGVII in strain 81 
SC469, which is a close homologue of DAM (Fang et al. 2012), and recognises the same 82 

target motif. 83 

To determine whether each of these methyltransferases was active we used ONT 84 
sequencing to identify genomic sites where DNA was modified. We sequenced native DNA 85 

which may contain modified bases, and whole genome amplified (WGA) DNA which 86 

contains few, if any, modifications. We generated at least 50-fold genomic coverage of ONT 87 
data from native DNA and at least 100-fold genomic coverage of ONT data from WGA DNA. 88 

(Methods). Note that these fold-coverage values are mean coverage values over the whole 89 
genome. To determine which genomic sites were modified we used a simple statistical 90 

approach implemented by Nanodisco (Tourancheau et al. 2021). Nanodisco uses the 91 
differences in the raw nanopore signals from each sample to assign a p-value to every 92 

position in the genome using a Mann-Whitney U-test.   93 
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Fig.1 Experimental design for sampling native (possibly modified) and unmodified DNA. 
To sample native DNA, we grew cultures until exponential phase (for the minimal M9 media, 
rich LB media, 42ºC and 25ºC growth conditions); or late stationary phase (for the 96-hour 
growth condition). For whole genome amplification, we isolated DNA from early stationary 
phase (24 hours of growth). After purification of genomic DNA (and whole genome 
amplification when necessary), we sequenced the samples using the ONT platform. To infer 
DNA modifications, we compared the signals from native and WGA DNA using Nanodisco. 

 94 

We selected flanking regions from the 5,000 bases with the lowest p-values for input into 95 

MEME (Bailey et al. 2009) to identify motifs associated with modified bases. However, we 96 
found that in almost all cases, MEME identified only the cytosine methyltransferase DCM 97 

motif (CCWGG). We hypothesised that this was because methylated DCM motifs generally 98 
have smaller p-values than other motifs, due to larger signal deviations from unmethylated 99 

motifs. Because there are more than 13,000 DCM sites in each genome, the vast majority of 100 
the regions with low p-values would have been DCM sites, even when considering a very 101 

large number of sites (e.g., more than 10,000). We found that using a larger number of 102 
regions for input into MEME was computationally prohibitive. We thus randomly subsampled 103 

100,000 base pairs (and associated p-values) from the genome (representing approximately 104 

2% of the genome). From this subsample, we selected the flanking regions for the 5,000 105 
base pairs with the lowest p-values for input into MEME. 106 

For all three strains, MEME identified GATC and CCWGG as significant motifs (Table 1). 107 

These are the canonical motifs for the DAM and DCM methyltransferases, respectively, and 108 
we had bioinformatically identified both in all three strains. As these match the DAM and 109 

DCM motifs, we assumed that they contain C6-methyl-adenine (6mA) at the A position and 110 

C5-methyl-cytosine (5mC) at the second cytosine, respectively. Although we computationally 111 
identified the adenine methyltransferases EcoKII and EcoGVI in the three strains, we did not 112 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 24, 2022. ; https://doi.org/10.1101/2022.03.24.485589doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485589
http://creativecommons.org/licenses/by/4.0/


 

6 

identify their target motif ATGCAT in any strains. We speculate that this is because 113 

methylated adenines are more difficult to identify (see above), and because this six-base 114 
pair motif is considerably rarer than the four-base pair motifs recognised by DAM and DCM.  115 

We also identified methyltransferase activity at two additional motifs, CCGG and GAGCC, in 116 
SC419 and SC452, respectively.  Although there are no experimentally validated 117 

methyltransferases in the REBASE Gold database that are known to target these motifs, 118 
there are several putative type III R-M system methyltransferases that are thought to target 119 

these motifs. We mapped the sequences of each of these putative methyltransferases 120 

against each genome and identified a single genomic region in SC452 that matched all the 121 
putative GAGCC modifying methyltransferases (Table 2). This methyltransferase has a non-122 

palindromic motif, and thus methylates only a single strand (Meisel et al. 1992). Surprisingly, 123 
we did not identify any CCGG-targeting methyltransferase in the SC419 genome. Finally, for 124 

the last two computationally identified methyltransferases, EcoGIX and EcoGVII, we could 125 
not unambiguously confirm any activity. This is not unexpected, as the EcoGIX motif is 126 

indefinite and the EcoGVII motif overlaps with DAM. 127 

 128 

Table 1. Matches between sequence motifs identified by MEME and REBASE Gold 129 
methyltransferases. Each row indicates the top three motifs as reported by MEME.  130 
Strain Target motif 

reported by MEME 
Number of motifs 
identified in 100 Kbp 

MEME 
p-value 

Inferred REBASE 
Gold enzyme 

SC419 CCWGG 632 3.1e-457 DCM 
GATC 625 4.9e-177 DAM 
CCGG 376 2.3e-259 unknown 

SC452 CCWGG 750 2.3e-628 DCM 
GATC 681 3.3e-235 DAM 
GAGCC 111 4.1e-24 M.EcoB0880RFEP1 

SC469 CCWGG 371 1.2e-212 DCM 
GATC 185 1.4e-30 DAM 

1 This is a putative methyltransferase that is not found in the experimentally confirmed REBASE Gold database 131 

 132 

Quantitative Analysis of Methylation Levels 133 

We next sought to determine whether there was variation in the levels of methylation across 134 

the genome, or whether all regions were equally methylated. We focused only on the most 135 
commonly methylated motifs in each genome, GATC (containing methylated adenines via 136 
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DAM) and CCWGG (containing methylated cytosines via DCM). Critically, the likelihood that 137 

a site is identified as methylated depends on the coverage of that site (Fig. S1). Thus, to 138 
increase the likelihood that all sites across the genome had an equal probability of being 139 

identified as methylated, we subsampled each of the ONT sequencing datasets to 140 
standardise coverage across the genome (Methods). 141 

We then used Nanodisco to compare the native and WGA datasets for all three genomes, 142 
and for each known DAM and DCM motif site identified the lowest p-value from within the 143 

3bp surrounding each motif (see Methods, Quantification of methylation at individual sites). 144 
These p-values should be indicative of the methylation status of a site, as they result from a 145 

Mann-Whitney U-test comparing the signal levels of modified and unmodified DNA. In 146 
addition, we hypothesised that sites at which all DNA molecules have a methylated 147 

nucleotide would have smaller p-values compared to sites at which only a small number of 148 
molecules are methylated, and that p-values are thus a quantitative indication of methylation 149 

status. 150 

To directly test this hypothesis, we subsampled reads from the WGA data (which arises 151 

from fully unmethylated reads) to reach 50x coverage across the genome. We compared 152 
this WGA data with mixed native and WGA datasets having 50x coverage but consisting of 153 

0%, 25%, 50%, 75% or 100% native reads. We expected that many of the native reads were 154 
fully methylated at DCM and DAM motifs. We then used Nanodisco to infer methylation 155 

status for all positions in the genome in these datasets with different ratios of WGA and 156 
native reads. We found a clear negative relationship between the fraction of native reads in 157 

the dataset and the associated p-values for each position (Fig. 2): as the fraction of native 158 

(possibly methylated) reads in the dataset increased, the p-values decreased. This indicates 159 
that the p-values returned by Nanodisco are correlated with the fraction of methylated 160 

molecules at a site and may provide quantitative insight into the fraction of molecules that 161 
are methylated at any DAM or DCM position in the genome. However, there are also clear 162 

complicating factors; for example, there is likely to be context-dependence of these p-values 163 
on the local nucleotide sequence. 164 

We then implemented a simple binary classification of DAM and DCM sites as being 165 
methylated or unmethylated (or less methylated) using a p-value cut-off (Fig. S2 and Fig. 166 

S3). We placed this cut-off such that 10% of non-methylated sites were inferred as being 167 
methylated, analogous to implementing a false discovery rate of 0.1 (Methods; Fig. S4 and 168 

Fig. S5). Although it would also be possible to implement a generative model specifying the 169 
fraction of molecules that are methylated at any one location in the genome, without a 170 
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ground truth set of data for both unmethylated and methylated molecules, this is 171 

complicated. Thus, we use a simplistic binary classification. We note that, this division into 172 
methylated and unmethylated status for each site does not indicate definitively that a site is 173 

methylated or unmethylated. Rather, the division establishes that specific sites are more or 174 
less methylated (Fig. 2). We next used this classification of sites as methylated or 175 

unmethylated to test whether there were consistent differences in methylation rates across 176 
the genome or across growth conditions. 177 

 

Figure 2. The p-values resulting from Mann-Whitney U-tests for signal deviations at DAM 
and DCM sites are correlated with the fraction of methylated molecules. We mixed known 
fractions of WGA reads (unmethylated) and native reads (possibly methylated) in silico and used 
Nanodisco to determine the p-value of a Mann Whitney U test at each position in the genome. We 
then determined the lowest p-value in a three bp window surrounding each hypothetically modified 
base in DAM (GATC) or DCM (GGCC) motif. For both methyltransferases, the sensitivity of the test 
increases as the fraction of native reads increases, with the DCM p-values decreasing to a much 
larger extent.  

 178 

Identification of Local and Global Methylation Patterns 179 

To test for differences in methylation across growth conditions, for each strain we isolated 180 

DNA from cultures grown to exponential phase in five different conditions: two replicate 181 
cultures grown at 37ºC in minimal media (M9 glucose), one grown at 37ºC in LB broth (rich 182 

media), one grown at 25ºC in minimal media (low temperature stress), one grown at 42ºC in 183 
minimal media (heat stress), and one after 96 hours of growth in minimal media (late 184 

stationary phase). For each of these growth conditions, we performed the same p-value 185 
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based analyses outlined above to determine whether DAM and DCM sites were classified 186 

as methylated or unmethylated. 187 

We then used this data to look at large scale variation in methylation marks across the 188 

genome, based on both strain and growth environment. Rather than consider single sites, 189 
which exhibit considerable noise in being classified as methylated or unmethylated, we 190 

calculated the fraction of methylated sites in 10 Kbp windows across the genome 191 
(approximately 500 windows in total for a 5 Mbp genome; see Methods). Each of these 192 

windows contained approximately 40 DAM or DCM sites. We found that the fraction of sites 193 
classified as methylated within each 10 Kbp window varied by methyltransferase, strain, and 194 

environment (Fig. 3).  195 

Overall, we inferred that a much higher fraction of DCM sites were methylated compared to 196 

DAM sites (Fig 3.). Part of this difference is likely due to the fact that the signal differences 197 
between methylated and unmethylated cytosines at DCM sites are much larger than 198 

between methylated and unmethylated adenines at DAM sites (Fig. 2). In these cases, it 199 
does not reflect biological differences but differences in the sensitivity of each statistical test. 200 

Nonetheless, we observed that in some growth conditions, a strain exhibited similar levels of 201 
methylation at both DCM and DAM sites (e.g., SC452 at 42ºC) whereas another strain in the 202 

same condition could exhibit different levels of methylation (e.g., SC469 at 42ºC). This 203 
indicates that it is unlikely that the lower levels of DAM methylation are due solely to 204 

decreased sensitivity, but instead to differences in the activity of each methyltransferase. 205 

We also observed general strain-specific differences in methylation, for example, generally 206 

lower levels of both DCM and DAM methylation for SC469. However, it is difficult to 207 
determine whether this reflects real differences in methyltransferase activity between 208 

strains, or whether it is an artefact of the data analysis: for all cases, we inferred methylation 209 
status from a single unmethylated WGA dataset for each strain, and this in itself may cause 210 

differences in inferred methylation levels. 211 
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Figure 3. The fraction of DAM 6mA and DCM 5mC methylated sites within 10 Kbp windows 
varies according to strain and growth condition. The histograms in each panel indicate the 
distribution of 10 Kbp windows in which a certain fraction of sites are DAM (left panel) or DCM 
(right panel) methylated. This fraction ranges from almost 100% of all sites in all windows (e.g., for 
SC419 DCM in the 42ºC growth condition) to less than 50% of all sites in most windows (e.g., for 
SC469 DAM in the 42ºC growth condition). Except for the LB rich media sample, all cultures were 
grown in M9 minimal glucose media. 

 212 

We next considered whether there were more localised patterns of methylation across the 213 

genome. To do this, we tested for correlations in the fraction of methylated sites within the 214 
10 Kbp windows between growth conditions. Across different sets of growth conditions, we 215 

found that some 10 Kbp windows consistently had the majority of sites methylated, while 216 
other windows had many fewer sites methylated (Fig. 4A). It is possible that some of this is 217 

due to differences in coverage, as the relationship between inferred methylation status and 218 
coverage was not totally mitigated by our subsampling scheme (Methods). To minimise this 219 

dependence, we calculated the partial correlations in methylated fractions for each 10 Kbp 220 
window accounting for genome coverage (see Methods).  221 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 24, 2022. ; https://doi.org/10.1101/2022.03.24.485589doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485589
http://creativecommons.org/licenses/by/4.0/


 

11 

 

Figure 4. (A) The fraction of methylated sites in 10Kbp windows across the genome is correlated across 
growth conditions. The three panels indicate the fraction of methylated DCM sites within a 10 Kbp window that 
we inferred as methylated for strain SC469. We observed strong positive correlations in methylation patterns in 
replicate cultures of minimal M9 glucose media, slightly weaker correlations between M9 media and 96-hour 
stationary phase cultures, and almost no correlation between patterns in rich LB media and 96 hours stationary 
phase. Pearson partial correlations and corresponding p-values are indicated in each plot. (B) Pairwise partial 
correlations in DAM and (C) DCM methylation patterns between all growth environments accounting for 
genome coverage. Each panel shows all pairwise Pearson partial correlations between growth conditions in the 
fraction of methylated sites for all 10 Kbp windows in the genome, controlling for genome and WGA coverage in 
each of the growth conditions. 

 222 
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We calculated pairwise correlations in the fraction of methylated sites in 10 Kbp windows 223 

across the genome for both DAM and DCM in each strain across all pairs of growth 224 
conditions. We found replicable differences across the genome in methylation fractions (Fig. 225 

4), with the correlations between some conditions being higher than others. Critically, we 226 
found that in all cases except one, the replicate cultures grown in M9 minimal glucose media 227 

at 37ºC exhibited the strongest correlation with the other M9 replicate. For example, for 228 
strain SC469 DCM the partial correlation between M9 replicates 1 and 2 was 0.56. The 229 

second strongest correlations for each were with cultures at 96 hours extended stationary 230 

phase (0.51 and 0.52 for replicates 1 and 2, respectively). Similarly, for SC469 DAM, the 231 
correlation between M9 replicates was 0.61. The second strongest correlations for each 232 

replicate were with growth at 25ºC (replicate 1, 0.58) and growth at 42ºC (replicate 2, 0.56).  233 

This pattern, in which each M9 minimal media replicate correlated most strongly with the 234 
other replicate, extended to almost all strains and methyltransferases, with the single 235 

exception of DAM in strain SC419, for which methylation patterns correlated very similarly 236 

for all pairs of conditions (Fig. 4C, rightmost panel). As there are a total of six independent 237 
growth conditions, there is only a one in five chance that the two M9 replicates are most 238 

highly correlated. Thus, the likelihood that they would be the most highly correlated in 239 
almost all strains for both DCM and DAM strongly suggests there are growth-condition 240 

methylation states. Furthermore, these differences exist even when growth conditions differ 241 
only subtly (e.g., growth in minimal M9 glucose media at 37ºC versus M9 at 42ºC or growth 242 

in minimal media at 37ºC versus rich media at 37ºC). 243 

In addition to high correlations between identical growth conditions, we often found 244 

consistent correlations in methylation status between different growth conditions. For 245 
example, the methylation patterns in the rich media LB condition (grown at 37ºC) often 246 

exhibited very strong correlations with methylation patterns in the minimal media 25ºC 247 
growth condition. In three cases (SC469 DCM, SC469 DAM, and SC419 DCM), these two 248 

conditions exhibited the strongest correlation of any pair of conditions. The convergent 249 
methylation states in these two conditions may be driven by similar changes in 250 

transcriptional activity, which could have an inhibitory effect on methylation. 251 

The lowest levels of correlation we observed were for 96 hours extended stationary phase 252 

for strain SC419 DCM (Fig. 4B, rightmost panel). In some cases, the partial correlations 253 
were slightly negative. However, many of the 10 Kbp windows in this condition had almost 254 

100% of all DAM sites methylated (Fig 3, right panel). Such low variability in methylation 255 
status means that strong correlations are difficult to obtain. 256 
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Figure 5. Genome wide patterns in the fraction of methylated sites. Each panel shows the fraction of 
methylated sites in 10 Kbp windows across the entire genome, with different growth conditions indicated in 
different colours. No long-range correlations, such as higher methylation at the replication terminus, were 
apparent. 

 257 

One explanation for the correlations in methylation fractions across growth conditions is that 258 

there are consistent long-range intragenomic correlations driven by periodicity in 259 
methylation, e.g. methylation fractions are generally lower at the origin of replication and 260 

higher at the terminus, or that there is transient methylation behind the replication fork 261 

(Anton and Roberts 2021). This would be apparent as long-range correlations in the fraction 262 
of methylated sites across the genome. For example, any two windows separated by a 263 

distance that is less than the periodicity should exhibit positive correlations. However, 264 
plotting the fraction of methylated sites across the genome revealed no strong long-range 265 

patterns (Fig. 5). To test for long-range patterns more systematically, we calculated 266 
correlations in the fraction of methylated sites within windows of increasing size, from 250 267 

bp to 500 Kbp, separated by distances of increasing size, from 0 bp to 1 Mbp. This is similar 268 
to calculating an autocorrelation function, but for almost all step sizes (Methods). Again, we 269 

found no strong patterns of correlation between any windows larger than 5 Kbp, nor 270 

windows separated by more than 5 Kbp (Fig. S7 and. Fig. S8). This suggests that short-271 
range correlations dominate, and there are few long-range correlations in the fraction of 272 
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methylated sites that are driven by factors such as higher levels of methylation at the 273 

terminus.  274 

Discussion 275 

Here we have identified DNA modifications in three E. coli natural isolates across a range of 276 

growth conditions using ONT sequencing. We have shown that it is possible to determine 277 
the motifs at which DNA modifications occur, and that these match the motifs expected 278 

given the restriction modification systems present in each genome. However, we also found 279 
one motif (CCGG) for which we could not identify a matching RM system; this motif may be 280 

modified by a novel methyltransferase. 281 

Furthermore, we have shown that by using a simple binary classification of sites as 282 

methylated or unmethylated, it is possible to discern replicable and consistent differences in 283 
localised methylation frequency across the genome. The methylation patterns we have 284 

observed are dependent on growth conditions, with specific localised regions (on the order 285 
of thousands of kilobases) in the genome tending to be fully methylated, while others are 286 

less methylated. These conclusions differ from some previous work. A study on diverse 287 
strains of M. tuberculosis showed that most differences in methylation across the genome 288 

(as determined via SMRT sequencing) are due to stochasticity in intracellular methylation, 289 
rather than consistent differences between cells in methylation rates. Consistent differences 290 

between loci in methylation (hypomethylation) were found to be exceedingly rare, on the 291 
order of 10 to 20 sites across the genome (Modlin et al. 2020). Other work has also shown 292 

that methylation remains remarkably consistent across different growth conditions, including 293 

antibiotic stress (Cohen et al. 2016) and over the growth cycle (Payelleville et al. 2018).  A 294 
significant difference between these latter two studies and the data we present here is the 295 

inclusion of methylation at DCM sites (CCWGG) in addition to DAM sites (DAM). Indeed, the 296 
most notable methylation patterns that we find – although subtle – are due to differences at 297 

DCM sites (Fig. 4B). Differential methylation at DCM sites has been connected to major 298 
changes in ribosomal gene regulation (Militello et al. 2012). 299 

Critical to our proposal that these methylation patterns have epigenetic effects is that DNA 300 
methylation is heritable. Sites at which both the top and bottom strand are methylated will 301 

impart hemimethylated strands to both daughter cells, which will become fully methylated by 302 
“maintenance” methyltransferases (Anton and Roberts 2021); sites that are hemimethylated 303 

will impart one hemimethylated strand to one daughter cell and one unmethylated strand, 304 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 24, 2022. ; https://doi.org/10.1101/2022.03.24.485589doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485589
http://creativecommons.org/licenses/by/4.0/


 

15 

which is more likely to remain unmethylated. This means that mother cells with methylation 305 

at a certain genomic location will have daughter cells that are also methylated at that 306 
location, but this will vary across daughter cells. Thus, if methylation affects phenotype, and 307 

methylation varies between individual cells in a population, then it acts as an epigenetic 308 
mark for the instances we have described here. 309 

It is possible that there are unrecognised causes that drive some of the inferred differences 310 
in methylation status across the genome. For example, subtle differences in nucleotide 311 

context affect both the activity of the methyltransferase and the deviations in ONT signal. 312 
This undoubtedly influences our ability to accurately infer methylation status. However, we 313 

do not expect these differences to be dependent on growth conditions. Thus, the fact that 314 
we find both higher correlations between identical growth conditions, and consistently higher 315 

correlations between specific pairs of growth conditions (e.g., rich media (LB) at 37ºC and 316 
M9 minimal glucose media at 25ºC), suggest that nucleotide context is not the only force 317 

driving this correlation in methylation states. Additional work is required to test the 318 

repeatability of methylation patterns in different conditions, and whether other divergent 319 
growth conditions, for example antibiotic stresses or additional heat stress, lead to greater 320 

differences in methylation patterns. Similarly, methylation patterns should converge as 321 
growth conditions converge - for example we would expect more similar patterns comparing 322 

methylation during growth at 37ºC and 39ºC than to 42ºC. Again, more experimentation is 323 
needed here. 324 

In eukaryotes, it is well-established that methylation affects gene expression (Song et al. 325 

2005; Vanderkraats et al. 2013), and thus cell phenotypes. Here we have shown that 326 

methylation patterns are consistent and replicable in different growth conditions in E. coli. In 327 
addition, for identical growth conditions (in the data here, M9 minimal glucose media), there 328 

are strong correlations in which specific regions of the genome are methylated. There are 329 
two readily apparent explanations for these results. Either growth phenotypes affect patterns 330 

of methylation, or methylation patterns affect growth phenotypes (or both). We propose that 331 
it is likely that (as with eukaryotic cells) methylation affects gene expression in E. coli in 332 

different growth environments, although we have not established causation (Chen et al. 333 
2018). This connection between methylation and transcriptional regulation has been 334 

proposed previously (Beaulaurier et al. 2015), and there are data that both support 335 

(Gaultney et al. 2020) and refute the connection (Mehershahi and Chen 2021). However, we 336 
note that there are many other well-established instances in which this causal direction has 337 

been established (Sánchez-Romero and Casadesús 2020). 338 
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Regardless of whether methylation functions as an epigenetic mark, and regardless of its 339 

causality, we have shown that just as bacterial cells undergo transient differentiation into 340 
different growth phenotypes, they also undergo transient differentiation into distinct 341 

methylation states. As we have not used synchronised cultures, it is unlikely that the 342 
correlated methylation is due to synchrony in the cell cycle that differs between growth 343 

conditions. This is further supported by the fact that we have shown that correlations do not 344 
arise because of short- or long-range correlation in methylation fractions (e.g., differences in 345 

methylation at the chromosomal replication ori or terminus). Rather, these correlations arise 346 

from localised differences across the chromosome. 347 

This work raises the possibility of discerning bacterial growth states without measuring cell 348 
physiology or quantifying the transcriptome, similar to what can be done for differentiated 349 

eukaryotic cells. We propose that with sufficiently long reads and precise measurements, it 350 
will be possible to quantify methylation states across single molecules, and from there infer 351 

the growth state of a cell from which a particular DNA molecule has originated. In addition, 352 

with more nuanced model-based or machine learning analyses, it may be possible to assign 353 
genomic methylation patterns more specifically to specific growth states. This contrasts with 354 

more standard approaches such as single-cell transcriptome profiling, which is often of 355 
limited use in bacteria given the extremely small number of transcripts contained in most 356 

cells. 357 

  358 
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Methods  359 

Bacterial Growth 360 

We grew overnight cultures from single colonies for each natural isolate in 3mL of liquid LB 361 
media at 37°C. We then inoculated 75mL of the relevant growth media (either LB or M9 362 

minimal media with 0.2% glucose) in a 250ml Erlenmeyer Flask with 75uL of overnight 363 
culture. We grew these at the relevant temperature (37°C, 25°C, 42°C) until an OD600 364 

between 0.4 and 0.5 was reached, or for 24 hours or 96 hours (for WGA and late stationary 365 
phase samples). 5ml of media was removed into a 15ml falcon tube and the cells were 366 

pelleted by centrifugation at 14,000 RPM for four minutes. We removed the media and spun 367 

the cells for an additional two minutes, after which we pipetted off any remaining media. We 368 
stored the cell pellets at -20°C until DNA extraction.  369 

DNA extraction and whole genome amplification 370 

We extracted DNA using the Promega Wizard DNA extraction kit following the gram-371 

negative bacterial extraction protocol. We performed whole genome amplification (WGA) 372 
using the Qiagen RepliG kit according to the manufacturer's protocol. We used a Qubit 373 

fluorometer to measure DNA concentration, ensuring that each sample had sufficient DNA 374 
for a ligation library prep without further concentrating the sample. We measured DNA purity 375 

with a Nanodrop. For all samples, the 260/230 and 280/230 ratios were between 1.5 and 376 
2.3. We stored DNA at -20°C until library prep and sequencing. 377 

Library preparation and DNA sequencing 378 

We prepared ONT sequencing libraries for both the WGA and native DNA using either the 379 

SQK-LSK109 kit with barcode expansion kit EXP-NBD104 or the SQK-RBK004 kit. For the 380 
SQK-LSK109 kit we followed the manufacturer's protocol with no modifications. We modified 381 

the SQK-RBK004 protocol as follows: we eluted the samples off Agencourt Ampure XP 382 
beads using TE buffer pre-warmed to 50°C; we performed the elution itself at 50°C; and we 383 

increased the incubation time for elution to 10 minutes.  384 

We performed ONT sequencing on a MinION Mk1B device using R9.4.1 flowcells. We used 385 

eight flowcells in total (two with SQK-RBK004 libraries and six with SQK-LSK109 libraries), 386 
with 12 samples run per flow cell. One additional flow cell was used to produce an additional 387 
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1 Gbp for a single sample that had low coverage. For each sequencing run, we 388 

demultiplexed and basecalled using Guppy v4.2.2. 389 

For quantitative analysis of methylation, we subsampled all WGA and native sequencing 390 

reads to ensure even coverage across the genome using the following strategy: for each 391 
sample, we mapped all reads onto the relevant reference genome and determined the 392 

lowest 5th percentile of coverage over all samples, excluding the 96-hour sample, which had 393 
lower coverage for all strains (see below). For the 96-hour samples, we calculated the 5th 394 

percentile of coverage only for those samples, rather than across all samples. 395 

We then standardised coverage across the chromosomal contig at this 5th percentile level. 396 
We first calculated the mean read length for each dataset. We then divided the genome into 397 

10 Kbp windows and sampled an appropriate number of reads originating within each 398 

window such that the read length and the target coverage matched (e.g., if mean read 399 
length was 2 Kbp and the target coverage was 100X, then we selected 500 reads originating 400 

within the 10 Kbp window). We then mapped all reads back onto the genome to confirm that 401 
we had reached the coverage targets. If the target coverage was not achieved (for example 402 

due to irregularities in the read length distribution), the mean read length was adjusted to 403 
represent the mapped reads and reads were resampled. We then used the ONT-fast5-api to 404 

extract the corresponding fast5 reads for each dataset (see GitHub).  405 

Identification of methyltransferases  406 

We previously produced reference-level genomes for each strain (Breckell and Silander 407 
2020) using Prokka (Seemann 2014). We identified methyltransferases by using bwa mem 408 

(Li 2013) to map all restriction enzymes and methyltransferase enzymes in the REBASE 409 
Gold database (R. J. Roberts et al. 2010) to each strain. The REBASE Gold database 410 

contains only experimentally validated methyltransferase and restriction modification 411 

systems. We filtered the alignments to include only those genes which aligned for more than 412 
97% of their length. 413 

DNA modification analyses 414 

Detection of modified sites using Nanodisco 415 

We used Nanodisco to detect DNA methylation (Tourancheau et al. 2021) with the 416 

recommended default settings. We processed fast5 reads from both WGA and native DNA 417 
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samples separately with the Nanodisco pre-process command before running the 418 

Nanodisco difference command to calculate differences in the WGA and native DNA signals 419 
at each position. We used the Nanodisco merge command to create a single output file 420 

containing the native and WGA coverage for each genomic location, the mean signal 421 
difference and U- and t-test p-values reporting the significance of the signal difference at 422 

each site.  423 

Quantification of methylation at individual sites 424 

The Nanodisco output includes a p-value of a two-tailed Mann-Whitney U-test for each site 425 
indicating whether the signal at that site differs between the modified and unmodified 426 

samples. However, this p-value is not necessarily lowest at the actual point of modification, 427 
as the nanopore detects five bases at once, and the methylation can affect the signal in 428 

unpredictable ways. For example, many bases that were identified as having signals that 429 
differed between native and WGA DNA were not highest at the expected cytosine position 430 

within GATC motifs. To ensure we identified methylated motifs, we first identified all motif 431 
locations (DCM and DAM) in the genome (CCWGG and GATC, respectively), and then 432 

identified the lowest p-value out of the focal base and either neighbouring base. We used 433 
this p-value as an indication of whether a CCWGG or GATC site was methylated. 434 

To account for false positive identification of modified sites, we used the p-values from 435 
above for the DCM and DAM sites located in the first 1 Mbp of the genome. We also 436 

identified an equal number of random locations in the first 1 Mbp of the genome, and 437 
identified the lowest p-value of each random bp or either neighbouring bp. We performed 438 

this analysis only in the first 1 Mbp of the genome to minimise computational effort; it is 439 
highly unlikely that this has any effect on the results. This resulted in a set of p-values for 440 

possibly methylated sites within each target motif, and likely unmethylated random sites. We 441 

used the p-values from the random sites to establish a null distribution of p-values for 442 
unmethylated bases. We designated all DAM and DCM sites with p-values lower than the 443 

10th percentile of the null distribution as methylated (Fig. S1). All other DAM and DCM sites 444 
we designated as unmethylated. The precise implementation of this method is available 445 

through the GitHub repository indicated above. 446 

Correlation in methylation fractions 447 

To calculate correlations in the fraction of methylated sites, we first determined the number 448 

of DAM or DCM binding motifs within each 10 Kbp window for each genome. We used this 449 
as an estimate for the number of potential DAM or DCM modifications and then calculated 450 
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the fraction of DAM or DCM sites which we experimentally identified as modified in each 451 

window. We calculated the correlation between the fraction of modified sites in each window 452 
as a Pearson correlation or a partial correlation accounting for sequencing coverage, as 453 

sequencing coverage affects the likelihood that a site will be detected as modified.  454 

Genome wide methylation patterns 455 

We assessed genome wide methylation patterns by comparing the fraction of known sites 456 

vs modified sites in windows across 10 Kbp windows in the genome. We discarded any 457 

regions that contained no DAM or DCM sites, as this would result in a division-by-zero 458 
problem. For the normalised data presented in Fig. S6, we simply divided the fraction of 459 

methylated sites in each window by the mean of all windows across the genome.  460 
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Supplementary Figures 628 

 

Supplementary Figure S1. Correlation between coverage and the Nanodisco-derived p-
values. Each point indicates the coverage at individual DAM or DCM sites and the p-value of the 
Nanodisco Mann-Whitney U-test. There is a clear relationship between the likelihood the p-value 
returned by Nanodisco (indicating a site is likely modified) and the coverage at that site, with both 
the coverage of the native DNA sample and the WGA sample affecting the test implemented by 
Nanodisco. The four examples above are all for DCM sites in two strains and two growth conditions 
for each. In all plots, only the sites that have p-values significantly lower than the null model 
background are shown. The native coverage at these sites is shown in purple; the WGA coverage 
at these same sites is in blue. For both native and WGA coverage, there is a strong negative 
correlation - sites with higher coverage have a lower p-value and a higher probability of being 
identified as methylated, although this differs between datasets. For example, there is only a weak 
relationship (R = -0.06) between native coverage and the p-value to the test in the SC469 DCM 
dataset. 

 629 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 24, 2022. ; https://doi.org/10.1101/2022.03.24.485589doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485589
http://creativecommons.org/licenses/by/4.0/


 

28 

 

Supplementary Figure S2. Raw nanopore signal distributions on the forward and reverse 
strands at identical genomic locations of DCM sites that we inferred as methylated (top panels 
in each pair) or unmethylated (bottom panels in each pair). The change in the DCM CCwGG 
methylation status is apparent as a shift in the distribution of the red curves at the A / T position 
outlined with the blue box. In black are reads from the control (unmethylated whole genome amplified 
DNA); in red are the native DNA signals. In many cases, the shift in signal is subtle. However, the 
identification of these sites as methylated or unmethylated is a binary classification of a continuous 
state - sites that we identify as unmethylated may in fact be methylated in 40% of all cells; sites we 
identify as methylated may be methylated in only 60% of all cells. 
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 632 

 

Supplementary Figure S3. Identical DAM sites are inferred as methylated or 
unmethylated across different growth conditions. The change in the DAM GATC 
methylation status is apparent as a shift in the distribution of the raw nanopore signal 
from native DNA (red curves) at the T and A positions (the A is the modified base) 
compared to WGA unmodified DNA (black curves). Left panels: a DAM 6mA site that 
we inferred as methylated in M9 37ºC growth (top) but not during 25ºC growth 
(bottom). This is most apparent as a shift in the signal at the T position, for which the 
overlap between red and black is less in the top panel. Right panels: a DAM GATC site 
that we inferred as unmethylated in M9 37ºC growth (top) but methylated during 25ºC 
growth. Again, this is most apparent as a shift in the signal at the T position, with the 
overlap being higher in the top panel. Note that all native DNA molecules are not 
necessarily methylated at positions that we call as methylated, and vice versa: at 
positions that we call as unmethylated, all molecules are not necessarily unmethylated. 
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Supplementary Figure S4. Cumulative distributions of p-values for DAM sites relative to 
random (unmethylated) sites. For each combination of isolate and growth condition we used the 
distribution of p-values at DAM binding sites (blue) and an equal number of random sites (black) to 
determine a p-value cut-off. This cut-off was established such that 10% of all unmodified sites were 
inferred as being modified, equivalent to a 0.1 FDR. Each cut-off is shown in red, and the log10 of 
the p-value cut-off is noted within each plot.   
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Supplementary Figure S5. Cumulative distribution of p-values for DCM sites relative to 
random sites. For each combination of isolate and growth condition we used the cumulative 
distribution of p-values at DCM binding sites (blue) and an equal number of random sites (black) to 
determine a p-value cut-off equivalent to an FDR of 0.1. Each cut-off is shown in red, and the log 
10 of the p-value cut-off is noted within each plot.  
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Supplementary Figure S6. Mean-normalised fractions of modified sites across the genome. 
For each growth condition, we divided the fraction of modified sites in each window by the mean fraction of 
modified sites across all windows for that growth condition. This normalised fraction of modified sites are 
generally consistent across the genome for each methyltransferase and strain, which is clearly apparent in Fig. 
4.  
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Supplementary Figure S7. Global autocorrelation plots for DCM methylation. Each panel is a 
heatmap showing the correlation for the fraction of methylated DCM sites between windows of 
increasing size, ranging from 250 bp to 500 Kbp (different window sizes are plotted in columns), 
separated by increasing distances ranging from 0 (i.e., adjacent windows) to 1 Mbp (different distances 
are plotted in rows). Window sizes increase by a constant fraction of 4.7%; separating distances 
increase by a constant fraction of 9.6%. For example, the bottom left square in each heatmap shows the 
correlation in the fraction of methylated sites for neighbouring 250 bp windows; the middle square in 
each plot shows the correlation between 20.9 Kbp windows separated by 7.6 Kbp; the top right indicates 
500 Kbp windows separated by 1 Mbp. In the example here, a standard autocorrelation function (ACF) 
would plot the correlations between windows of a certain size separated by a specific number of 
windows (e.g., 10 Kbp windows separated by 0 bp (neighbouring), 10 Kbp (one window), 20 Kbp (two 
windows), etc. This would be similar to several squares in the 53rd column in this plot: the squares in 
rows 1 (0 bp distance between windows), 56 (10 Kbp distance), 64 (20 Kbp distance), 68 (30.2 Kbp 
distance), 71, 74, and 76. However, this plot shows the analogous set of correlations at almost all 
window sizes and distances. For clarity only correlations with p < 0.01 are shown. In almost all cases, 
the correlations are positive (i.e., windows that are close tend to have similar levels of methylation), but 
this correlation only exists for windows up to approximately 5-8 Kbp in size and separated by a maximum 
of 5 Kbp. This suggests that there are no long-range correlations in the fraction of methylated sites. Note 
that the strongest correlations are observed for strain SC469, which is also the strain that exhibited the 
greatest variance in fraction methylated across genomic windows (Fig. 3). For other strains, the low level 
of variance in methylated fractions necessarily weakens the correlations. 
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Supplementary Figure S8. Global autocorrelation plots for DAM methylation. The annotation and 
details of this plot are the same as those shown in Supp. Fig. S7 but for DAM methylation. Again, for 
clarity only correlations in p < 0.01 are shown. The correlations here in the fraction of methylated sites in 
a window are in general stronger but extend to a similar distance to those observed for DCM. Again, the 
strongest correlations are observed for strain SC469. However, correlations are also apparent for other 
strains in other conditions, also most likely because DAM methylated fractions exhibited much greater 
variation than DCM (Fig. 3). 
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