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Abstract 10 

Inadvertent social information (ISI) use, i.e., the exploitation of social cues including the 11 

presence and behaviour of others, has been predicted to mediate population-level processes 12 

even in the absence of cohesive grouping. However, we know little about how such effects 13 

may arise when the prey population lacks social structure beyond the spatiotemporal 14 

autocorrelation originating from the random movement of individuals. In this study, we built 15 

an individual-based model where predator avoidance behaviour could spread among 16 

randomly moving prey through the network of nearby observers. We qualitatively assessed 17 

how ISI use may affect prey population size when cue detection was associated with different 18 

probabilities and fitness costs, and characterised the structural properties of the emerging 19 

detection networks that would provide pathways for information spread in prey. We found 20 

that ISI use was among the most influential model parameters affecting prey abundance and 21 

increased equilibrium population sizes in most examined scenarios. Moreover, it could 22 

substantially contribute to population survival under high predation pressure, but this effect 23 

strongly depended on the level of predator detection ability. When prey exploited social cues 24 

in the presence of high predation risk, the observed detection networks consisted of a larger 25 

number of connected components with smaller sizes and smaller ego networks than 26 

corresponding randomized networks; this resulted in efficient information spread among 27 

connected individuals in the detection networks. Our study provides hypothetical mechanisms 28 

about how temporary local densities may allow information diffusion about predation threats 29 

among conspecifics and facilitate population stability and persistence in non-grouping 30 

animals. 31 

 32 

Keywords: social information use, detection networks, predator-prey relationship, non-33 

grouping animals, equilibrium population size, individual-based model 34 
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Significance Statement 35 

The exploitation of inadvertently produced social cues may not only modify individual 36 

behaviour but also fundamentally influence population dynamics and species interactions. 37 

Using an individual-based model, we investigated how the detection and spread of adaptive 38 

antipredator behaviour may cascade to changes in the demographic performance of randomly 39 

moving (i.e., non-grouping) prey. We found that social information use contributed to 40 

population stability and persistence by reducing predation-related per capita mortality and 41 

raising equilibrium population sizes when predator detection ability reached a sufficient level. 42 

We also showed that temporary detection networks had structural properties that allowed 43 

efficient information spread among prey under high predation pressure. Our work represents a 44 

general modelling approach that could be adapted to specific predator-prey systems and 45 

scrutinize how temporary local densities allow dynamic information diffusion about predation 46 

threats and facilitate population stability in non-grouping animals. 47 
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Introduction 48 

Organisms have to gather information about their surroundings to overcome challenges such 49 

as finding resources and avoiding danger (Dall and Johnstone 2002). For that, individuals 50 

directly interact with the environment to gain up-to-date information about its state (‘personal 51 

information’; Dall et al. 2005), but they can also complement that knowledge by utilizing 52 

social information for optimal decision-making (Galef and Giraldeau 2001; Bonnie and 53 

Earley 2007; Hoppitt and Laland 2013). One type of social information is associated with 54 

inadvertently produced social cues that include the presence or the behaviour of others, or the 55 

product of their behaviour such as scent marks, excretions or food remnants, all of which may 56 

provide relevant information about current environmental conditions. Inadvertent social 57 

information (ISI) use is known to occur in many ecological contexts, including predator 58 

avoidance, foraging and habitat choice (Danchin et al. 2004; Gil et al. 2018), and is usually 59 

associated with species where social interactions promote information transmission among 60 

group-mates (King and Cowlishaw 2007; Duboscq et al. 2016; Gil et al. 2017). 61 

Under predation risk, dynamic information about threats is transmitted from alarmed 62 

group members to naïve ones, a phenomenon that is commonly called collective detection 63 

(Lima 1990; Pays et al. 2013). This process often takes place through evolved signals such as 64 

alarm calls, but social cues including sudden movements (Coleman 2008; Hingee and 65 

Magrath 2009; Boujja-Miljour et al. 2017), fright responses (Chivers and Ferrari 2014; Cruz 66 

et al. 2020), or changes in posture (Brown et al. 1999; Pays et al. 2013) have also been found 67 

to convey information about the presence of predators in animal collectives. Adjustments to 68 

the behaviour of others (also referred to as ‘behavioural contagion’; Firth 2020) do not only 69 

affect individual fitness by increasing survival probabilities, but can also lead to the 70 

emergence of correlated behaviours and space use in many individuals and thus influence 71 

system-level functions (Goodale et al. 2010; Gil et al. 2018; Tóth 2021). Previous theoretical 72 
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models have predicted that ISI use can prevent population collapses under high predation 73 

pressure (Gil et al. 2017, 2018) and facilitate the coexistence of competing species that share 74 

common predators (Parejo and Avilés 2016; Gil et al. 2019). Empirical evidence also 75 

indicates that the utilization of social information can influence the material flux on the 76 

ecosystem level (Gil and Hein 2017). By promoting adaptive behavioural responses to 77 

environmental uncertainties (e.g., due to anthropogenic effects [Greggor et al. 2017], in the 78 

distribution of resources [O’Mara et al. 2014] or predation risk [Crane et al. 2021]), ISI use 79 

has the potential to render morphological, physiological or genetic adaptations redundant or 80 

only partially necessary (Laland 1992). 81 

Lacking motivation for social cohesion, non-grouping animals do not maintain spatial 82 

proximity with others, and thus direct interactions between conspecifics can be infrequent. 83 

Nevertheless, such individuals may also exploit social cues (e.g., visual, acoustic, chemical or 84 

vibrational cues) when these are within the range of relevant sensory perception. Moreover, 85 

social information may also diffuse among nearby observers via ‘detection networks’ 86 

(reviewed in Tóth et al. 2020). If so, spatial changes in social cues over time (e.g., relative 87 

differences in activity and associated conspicuousness; Chivers and Ferrari 2014) can provide 88 

dynamic information about predation threats in many terrestrial and aquatic systems (Gil et al. 89 

2017). In accordance with this idea, wood crickets (Nemobius sylvestris) adaptively change 90 

their behaviour after having observed the predator avoidance behaviour of knowledgeable 91 

conspecifics, and this information is transmitted to and utilized by other naïve individuals as 92 

well (Coolen et al. 2005). In temporary aggregations, escape responses of Iberian green frogs 93 

(Rana perezi) are also influenced by the behaviour of adjacent conspecifics (Martín et al. 94 

2006). In mixed-species aggregations of non-schooling fish, the density and behaviour (when 95 

to feed in and when to flee from the foraging area) of nearby individuals are being used as 96 

inadvertent social information (Gil and Hein 2017). The resulting behavioural coupling 97 
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among individuals, in turn, affects both species abundance and the amount of algae consumed 98 

and as a result, determines the total material flow in the coral reef ecosystem. While such 99 

observations prove that threat-related social cues can be exploited by non-grouping animals in 100 

some instances, the general conditions under which ISI use exerts a positive effect on 101 

population stability and persistence in such species have remained largely unexplored. For 102 

example, thresholds associated with the cost of antipredator behaviour and probabilities of cue 103 

detection (i.e., the detection of predators or conspecifics’ behaviour) may set boundaries for 104 

social information-modulated population-level effects under different predation pressure 105 

regimes. Similarly, detection networks may have only a limited capacity to provide efficient 106 

information pathways for the emergence of such effects. 107 

In this study, we investigated how the detection and spread of predator avoidance 108 

behaviour among conspecifics affected demographic performance in non-grouping prey. We 109 

constructed an individual-based model of prey and generalist predator populations where 110 

individuals (both prey and predators) moved randomly on the landscape, and social 111 

information could diffuse through the observation of antipredator behaviour in prey. This 112 

model, an extension of our earlier model presented by Tóth (2021), allowed us to assess 113 

qualitatively how ISI use may cascade to changes in population size and examine the 114 

structural properties of detection networks in prey populations that lack social structure. 115 

 116 

Materials and Methods 117 

Model construction 118 

We simulated a continuous 2D landscape (80 × 80 spatial units) where both prey and 119 

predators moved randomly by exhibiting correlated random walks (CRW). CRW considers 120 

short-term correlations between successive step orientations and has been used to model 121 

animals’ random search paths for a long time (Benhamou 2006; Codling et al. 2008). At the 122 
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start of a simulation cycle, 500 prey and 150 predators were randomly placed on the 123 

landscape, and then individuals performed a given set of behaviours (Fig. 1, Table 1). During 124 

movement, each individual’s movement distance was randomly selected between zero and a 125 

maximum value given by the parameters dprey and dP for prey and predators, respectively. 126 

Turning angles were determined by random deviates drawn from wrapped Cauchy circular 127 

distribution with μ=0 and ρ=0.8. At the landscape edge, individuals moved to the opposite 128 

side of the landscape when crossing a boundary and continued moving (i.e., torus landscape 129 

with no edge). Both prey and predator could also detect other individuals through the 130 

landscape boundary. We assumed that only one individual could survive within the range of 131 

one spatial unit due to competition in both prey and predators (after movement and dispersion 132 

of offspring; see Fig. 1), introducing density-dependent mortality in their populations. In this 133 

system, we assumed non-dynamic predators that can exert high pressure on the prey 134 

population, thus predator population size was determined only by their reproductive rate and 135 

density-dependent mortality, but was unaffected by the success of hunting (as if switching to 136 

alternative prey when necessary). Consequently, predator and prey populations were 137 

noncyclic and demographically decoupled (for a similar approach, see Gil et al. 2019), and 138 

prey populations experienced predation pressures that were directly proportional to the given 139 

value of predators’ reproduction-related parameter (Table 1). 140 

In the absence of predators, prey moved, competed, fed and reproduced in the 141 

simulated landscape. Prey population size resulted in this scenario was regarded as being in 142 

equilibrium at the carrying capacity of the environment. When present, each predator could 143 

consume a maximum of two prey individuals in a cycle within its hunting range, which was 144 

defined as an rP distance from the predator’s position in any direction. Prey could detect 145 

predators that were rprey distance with a probability given by Pdetect (determined by individual 146 

Bernoulli trials). Upon successfully detecting a predator, prey became alarmed and hid, and 147 
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thus was undetectable to predators. However, these individuals did not feed either and 148 

consequently could have a reduced reproduction rate. Thus, prey animals were capable of 149 

behaviourally adjusting their exposure to predators (with the probability ranging between 0.1 150 

and 0.9; see Table 1), but this antipredator behaviour potentially incurred a fitness cost. Lima 151 

and Dill (1990) summarized supporting evidence for such scenarios in multiple taxa. 152 

Predators hunted on visible, feeding prey with a 50% success (determined by individual 153 

Bernoulli trials). Prey could also detect predators indirectly by observing alarmed 154 

conspecifics within rprey distance with a probability given by Pisi (determined by individual 155 

Bernoulli trials). Being alarmed had the same consequences (i.e., immune to predation, 156 

reduced reproduction rate) irrespective of the detection mode. We did not manipulate cue 157 

reliability in the model, we simply considered that ISI use had a higher cost when social cues 158 

could also be false and individuals responded to those indiscriminately. Prey feeding occurred 159 

once in a cycle in prey that was not hiding. The number of offspring for each individual was 160 

sampled from a Poisson distribution with the shape parameter given by λreduced for alarmed 161 

prey, λmax for fed prey, and λP for predators in each cycle. Offspring dispersed in the same 162 

cycle 8, 9 or 10 spatial units away (randomly chosen) from the parent in both prey and 163 

predators. These higher step values (10 spatial units is the double of maximum dprey and dP) 164 

were chosen to reflect that juvenile dispersion distances can far exceed adult movement 165 

ranges. 166 

 167 

Detection networks 168 

From the spatial distribution of prey, we defined detection networks based on the range within 169 

which individuals could observe the behaviour of others (i.e., exploit social cues if present) in 170 

each simulation cycle (Fig. 2). In such networks, nodes represent individuals, and edges 171 

denote the possibility of mutual observation. If a prey individual became alarmed because it 172 
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successfully detected a predator, information could spread from this individual to other 173 

conspecifics in the network under the following rules. The probability of information 174 

acquisition from one node to another is given by wk, where w is the edge weight 175 

(corresponding to the probability of information spread from one node to another through the 176 

edge between them and specified by the parameter Pisi in the model) and k is the number of 177 

steps on the shortest path between the two nodes. Only shortest paths were used to minimize 178 

the “travel time” of information between nodes in the network. During simulations, the 179 

maximum number of steps between the focal and the observed nodes was set to two and the 180 

total number of observed neighbours to ten (i.e., kmax=2 and ∑(n)max=5 in each k step). Thus, 181 

an individual could receive information from a maximum of ten of its neighbours that were a 182 

maximum of two steps away in the detection network. With such restrictions, ISI use did not 183 

facilitate the emergence of large aggregations in prey and did not occur far outside the hunting 184 

range of predators. If there were more than five nodes at k step to a focal node, we randomly 185 

selected five. For any individual, the total probability of receiving information from its 186 

neighbours was calculated using the inclusion-exclusion principle (Allenby and Slomson 187 

2010). 188 

 189 

Analysis of simulation outputs 190 

All simulations and calculations were performed in R 4.0.4 (R Core Team 2021). Instead of 191 

frequentist hypothesis testing, we focused on evaluating the magnitude of differences between 192 

simulation runs with different parameter settings (White et al. 2014). We ran the population 193 

simulations for 200 cycles (this interval was sufficient to reach equilibrium prey population 194 

size in the studied scenarios; see in Fig. 3a) and used the data from the last cycle in all 195 

calculations. R script for model construction and simulated data are available at Figshare 196 

(https://figshare.com/s/34fc714342dab9123193). 197 
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We characterised prey population sizes by calculating the mean, standard deviation, 198 

maximum and minimum values in four settings: in the absence of predators, with minimal 199 

Pdetect, with nominal Pdetect, and with nominal Pdetect and Pisi parameter values, respectively. All 200 

other parameters were set to their initial values; for each model type, simulations were iterated 201 

50 times. When the predator detection probability was set to its minimal value, the prey 202 

population died out in a single iteration; prey extinction was not observed in other settings. 203 

We used Morris’s „OAT” elementary effects screening method (Morris 1991) with the 204 

extension introduced by Campolongo et al. (2007) as a global sensitivity analysis (SA) to rank 205 

the model parameters according to their impact on prey population size. We chose this SA 206 

because it produces results comparable to the more complex methods (Confalonieri et al. 207 

2010) and is applicable to uncover the mechanisms and patterns produced by individual-based 208 

models (Imron et al. 2012; Beaudouin et al. 2015; Ten Broeke et al. 2016). The mean of the 209 

absolute value of the elementary effect (��
�
) provides a measure for the overall influence of 210 

each input variable on the model output, whereas the standard deviation of the elementary 211 

effect (��� indicates possible non-linear effects or interactions among variables (Campolongo 212 

et al. 2007; Iooss & Lemaître 2015). We also ranked the model parameters using a global 213 

index (GI) (Ciric et al. 2012) calculated as: 214 

 215 

�� �  �	��
�

� � ����� 

 216 

For the space-filling sampling strategy proposed by Campolongo et al. (2007), we generated 217 

r2 = 1000 Morris trajectories and then retained r1 = 50 with the highest ‘spread’ in the input 218 

space to calculate the elementary effect for each model parameter. 219 

We examined how predator density affected mortality rate due to predation in prey in 220 

the presence of minimal Pdetect, nominal Pdetect, and nominal Pdetect and Pisi parameter values, 221 
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respectively. All other parameters were set to their initial values. In each setting, simulation 222 

runs were iterated 50 times. If the prey population died out before the 200th simulation cycle, 223 

the given run was omitted from the dataset (n=209; only in the ‘minimal predator detection’ 224 

setting). 225 

We also explored a specific part of the parameter space that included the parameters 226 

Pdetect, Pisi, λP and λreduced. Specifically, we investigated the effect of ISI use at low, 227 

intermediate and high levels of predator detection probabilities. In each scenario, predator 228 

avoidance behaviour had either no cost or incurred moderate fitness cost (i.e., decreased by 229 

one third compared to the maximum) and predation pressure was either low (0.025), 230 

intermediate (0.05) or high (0.075). In each setting, we used the complete range of parameter 231 

values for Pisi (Table 1). Simulations were iterated 30 times. In the low predator detection 232 

probability scenario coupled with high predation pressure, the prey population died out in the 233 

majority of simulation runs (n=581); these simulation outputs were omitted from the 234 

assembled dataset. 235 

We generated network data by running the model with λP=0.075 (i.e., under a high 236 

level of predation pressure) and Pisi=0 or 0.5 (all other parameters were set to their nominal 237 

values). Then, we calculated the number of components, component size, average ego 238 

network and average global efficiency as structural network properties to characterize the 239 

emerging detection networks. Simulations were repeated 50 times in each parameter setting. 240 

To test whether the global structure of these networks is different from random, we calculated 241 

the same characteristics for randomised detection networks. These were constructed from the 242 

observed detection networks by randomly reshuffling the edges between nodes while also 243 

retaining the original degree distributions. Thus, randomisation was constrained based on the 244 

most fundamental structure of the original networks (Croft et al. 2011). The number of 245 

components represents the number of connected parts in the detection networks (isolated 246 
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nodes excluded). We computed component size as the number of components divided by the 247 

number of connected nodes; this measure denotes the average number of nodes embedded 248 

within components. We calculated the average size of ego networks as the mean number of 249 

reachable nodes within two steps in the components. To estimate transmissibility within 250 

components, we used the measure ‘global efficiency’ (Pasquaretta et al. 2014; Romano et al. 251 

2018; Latora and Marchiori 2001). Global efficiency for a graph with N vertices is: 252 

 253 

��������G� �  1
��� � 1��

1
���

���

 

 254 

where dij is the shortest path length between nodes i and j. The value of this measure ranges 255 

from 0 to 1, and represents how fast information may spread from the source to the most 256 

peripheral network positions with the least number of connections (Romano et al. 2018). We 257 

computed global efficiency for the largest components in the networks. For the calculation of 258 

the above network properties, we used the ‘igraph’ and ‘brainGraph’ R packages (Csardi and 259 

Nepusz 2016; Watson 2020).  260 

 261 

Results 262 

We found that nominal predation pressure coupled with minimal predator detection 263 

probability (Pdetect=0.1) led to small prey population size with high variation among runs 264 

compared to the null model when predators were absent and prey population existed at the 265 

carrying capacity of the environment (Fig. 3a, Table 2). Nominal predator detection 266 

probability (Pdetect=0.5) increased mean prey population size and stabilised the prey 267 

population at higher abundance values, while in the presence of nominal probability of ISI use 268 

in prey (Pdetect=0.5 & Pisi=0.5), prey population size increased further by approx. 53%. The 269 

sensitivity analysis also confirmed that Pisi was an influential model input in the constructed 270 
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model (Fig. 3b). As expected, the parameters driving antipredator behaviour, i.e. the level of 271 

predation pressure, the probability of predator detection directly or via conspecifics, and the 272 

cost associated with performing antipredator behaviour, were all important and characterised 273 

by non-linear effects on prey abundance and/or strong interactions with other parameters. The 274 

parameters dprey and dP had considerably less influence on the dispersion of the model output, 275 

and were fixed to their nominal values in the subsequent analyses. The mechanism behind the 276 

effect of Pisi was that the presence of ISI use could decrease the per capita mortality due to 277 

predation across the whole range of the examined predation pressure regime and substantially 278 

mitigate the positive relationship between predation-related mortality rate and predator 279 

population size (Fig. 4). 280 

 Consistent with expectations, Pisi affected prey number in all examined Pdetect 281 

scenarios in interaction with the effect of cost and predator pressure (Fig. 5). This relationship 282 

was positive and nonlinear in most cases. When the predation pressure was low, Pisi positively 283 

influenced prey abundance to a limited extent, while the effect of the associated cost, 284 

especially at lower Pisi values, depended on the value of Pdetect. When the predation pressure 285 

was intermediate or high, Pisi exerted a more substantial influence on prey abundance and had 286 

the capacity to double the number of prey individuals irrespective of the presence or absence 287 

of associated cost. Importantly, ISI use could counteract high predation pressure only when 288 

Pdetect had a sufficient value (directly dependent on the degree of predation pressure), and did 289 

not compensate for low predator detection ability as indicated by the high prevalence of 290 

population extinctions in prey when high predation pressure was coupled with low predator 291 

detection ability. The presence of associated fitness cost in the high predation pressure 292 

settings greatly reduced the magnitude of the effect of ISI use on prey population size, but Pisi 293 

could still increase prey population size even at intermediate values if Pdetect>0.25. 294 
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All structural properties of the detection networks differed qualitatively from corresponding 295 

randomised networks under high predation pressure, but mostly when social information 296 

spread through the detection networks (Fig. 6). In this scenario, the observed detection 297 

networks were characterized by higher numbers of components that consisted of fewer 298 

connected individuals and smaller ego networks than their randomized counterparts. Global 299 

efficiency within the largest components, therefore, was also high in the observed detection 300 

networks, indicating efficient information transmission among individuals whenever 301 

connected prey was able to detect nearby predators. These attributes of functioning detection 302 

networks were not the direct consequence of higher prey population size in the presence of ISI 303 

use, because the corresponding randomized networks did not show the same degree of 304 

structural changes compared to the Pisi=0 setting. 305 

 306 

Discussion 307 

Social information use has been assumed both to increase individual fitness and to affect 308 

population- and community-level processes (Dall et al. 2005; Gil et al. 2018). We expected 309 

that such effects could emerge in randomly moving non-grouping prey if behavioural 310 

contagion can occur through detection networks, i.e., a dynamic system of temporary 311 

observation-based connections between conspecifics. We found that irrespective of the 312 

apparent stochasticity in our model, the sharing of adaptive antipredator behaviour could 313 

contribute to population stability and persistence in prey by mitigating predation-related per 314 

capita mortality and raising equilibrium population sizes. We also showed that temporary 315 

detection networks had structural properties that allowed the efficient spread of adaptive 316 

antipredator behaviour among prey under high predation pressure. In animal groups, 317 

information spreads via social connections among individuals and social network positions 318 

strongly interact with individual spatial behaviour (Firth and Sheldon 2016; Spiegel et al. 319 
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2016; Webber & Vander Wal 2018; Albery et al. 2021), thus movement characteristics and 320 

space use are shaping information transmission by affecting social connections. Our findings 321 

indicate that non-grouping animals, by being embedded in detection networks based on their 322 

perception attributes and spatial locations, can benefit from similar information transmission 323 

processes as well. 324 

Our results corroborate with previous studies indicating that social information may 325 

act as a stabilizing mechanism in systems where predators can exert high pressure on prey 326 

populations (Gil et al. 2017, 2018, 2019). While in those models social information directly 327 

reduced (following a specific function) the per capita mortality (e.g., Gil et al. 2018), the 328 

presented work offers a more mechanistic understanding of how inadvertent social 329 

information could propagate through a population of randomly moving individuals. Our 330 

findings indicate that predator detection ability had to reach a sufficient level, strongly 331 

dependent on the actual level of predation pressure, for ISI use to facilitate prey population 332 

persistence. Notably, when this condition was met, ISI use exerted a detectable positive 333 

influence on prey population size by relaxing predation pressure even at low probabilities and 334 

even if the adaptive antipredator behaviour incurred a fitness cost. Although the depth of our 335 

understanding of the detected non-linear relationships and potential thresholds is limited by 336 

their coarse-grained variation in these parameters examined here, simulations nonetheless 337 

prove that in a substantial part of the parameter space social information use can be expected 338 

to raise non-grouping prey population size and facilitate its persistence. These findings may 339 

have crucial implications in many theoretical and applied ecological contexts, ranging from 340 

the invasive dynamics of predator-prey systems to the efficiency of biological control 341 

practices. For instance, the recognition of novel predators by naïve prey has been associated 342 

with social information use via different perception modalities in fish (Ferrari et al. 2005; 343 

Manassa et al. 2013), and similar utilization of social cues in birds has been shown to 344 
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facilitate the spread of novel aposematic prey (Thorogood et al. 2017; Hämäläinen et al. 345 

2021). Such social information-mediated interactions between prey and predators might be 346 

more prevalent in natural ecosystems that include non-grouping species as well, contributing 347 

to deviations from the predictions of theoretical models in the dynamics of trophic 348 

interactions (Polis et al. 2000). When natural enemies are used as biological control agents for 349 

pest management, social diffusion of antipredator responses may substantially reduce 350 

predation rates rendering these practices less effective and profitable. Besides, it may also 351 

mitigate the expected positive impact of the non-consumptive effects of predators (NCEs; 352 

Preisser et al. 2007; Sih et al. 2010) such as decreased crop damage due to reduced feeding 353 

rate in pests (Beleznai et al. 2017; Tholt et al. 2018). This inflation of NCEs due to 354 

information spread can generate discrepancies in the findings of large-scale field studies and 355 

laboratory experiments (see in Weissburg et al. 2014), and should be taken into consideration 356 

in investigations that aim to evaluate how NCEs may trigger trophic cascades in different 357 

ecosystems (Herman and Landis 2017; Haggerty et al. 2018; Pessarrodona et al. 2019). 358 

Detection networks had distinct structural characteristics compared to the randomised 359 

networks when prey experienced high predation pressure and exploited social cues to avoid 360 

predators. These networks typically consisted of many components with few connected 361 

individuals and small average ego networks, and within these small components, social 362 

information could spread with relatively high efficiency. The key to understanding the 363 

differences in structural properties of detection networks in the presence and absence of ISI 364 

use lies in identifying the process that generates more and smaller components. One plausible 365 

explanation is that prey distribution in the simulated landscape could remain more 366 

homogeneous due to a decreased susceptibility to predation in the vicinity of predators as the 367 

diffusion of social information greatly enhances the probability of predator detection even 368 

among a few nearby individuals. While high network efficiency has previously been 369 
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identified in small groups, cognitive abilities and strong social affiliations have usually been 370 

involved in explaining this emergent property (Waters and Fewell 2012; Pasquaretta et al. 371 

2014). Our findings indicate that incidental connections may generate networks that have 372 

similar favourable attributes. In addition to differences in the sizes of connected components, 373 

there may be other key differences in how information spreads through detection or sensory 374 

networks among group-living (Strandburg-Peshkin et al. 2013; Rosenthal et al. 2015; 375 

Davidson et al. 2021) and non-grouping individuals, however. First, behavioural contagion 376 

can be complex, and the number of non-alarmed individuals within the detection range 377 

influences the likelihood of adopting a specific behaviour (Firth 2020). Previous works on 378 

social species have provided mounting evidence for such complex contagion (Hoppitt and 379 

Laland 2013; Grüter and Leadbeater 2014; Kendal et al. 2018). Second, imperfect copying 380 

might decrease the intensity of behavioural responses with each transmission step, and under 381 

a given threshold intensity, social cues exert no response from nearby observers. In this case, 382 

individuals’ ability to convey information about predation hazards is related to the extent of 383 

behavioural change compared to a baseline level (Chivers and Ferrari 2014). Third, 384 

phenotypic heterogeneity among individuals may influence information diffusion if individual 385 

traits (e.g., related to hunger, age or developmental stage) or functional traits that transcend 386 

species (e.g., similarity in body size that may lead to shared predators) affects the individual 387 

capacity to produce social information (Farine et al. 2015). 388 

To describe how ISI use may affect population dynamics in non-grouping prey, we 389 

constructed a tentative model with naturalistic predator-to-prey ratios (1:1.03 [when predator 390 

detection probabilities was set to minimal]–1:4.23 [with nominal predator detection and ISI 391 

use probabilities]; see in Donald and Anderson 2003). Previous observations indicate that 392 

predator detection probability, which has been found to play a crucial role in the emergence of 393 

social information-mediated effects in our study, can have a value within the upper half of the 394 
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range examined here (i.e., >0.5) under relevant conditions (e.g., Tisdale and Fernández-Juricic 395 

2009; Manzur et al. 2018). However, being strongly dependent on the neuronal pathways 396 

underlying detection mode and the processing capacity of the brain (Clark and Dukas 2003, 397 

Pereira and Moita 2016), it can differ significantly between species and even within the same 398 

species as it may also depend on the forager’s state of energy reserves (Clark and Mangel 399 

2000). Therefore, to construct a more realistic model, both species-specific and context-400 

specific information for existing predator-prey relationships need to be incorporated, which 401 

can be done only at the expense of generality. Model precision may be further enhanced by 402 

incorporating additional variables including the functional response of specific predator 403 

species (Dunn and Hovel 2020), different non-consumptive effects (other than reduced 404 

feeding rate) (Peckarsky et al. 2008), a measure of social cue reliability (Dunlap et al. 2016), 405 

social information use in predators (Falk et al. 2015), or landscape heterogeneity that could 406 

alter the space use of individuals (Albery et al. 2021). The effects of different transmission 407 

modes can also be tested, for instance, by weighting the probability of information diffusion 408 

among conspecifics by the proportion of alarmed and non-alarmed individuals within the 409 

detection zone or incorporating heterogeneity among individuals in attributes that affect their 410 

propensity to act as social cue producers. Our work, thus, represents a general modelling 411 

approach that could be applied to predator-prey systems in which populations are 412 

demographically decoupled, and prey may mitigate predation hazards through the exploitation 413 

of incidentally produced social information. 414 
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Table 1. Model parameters and their range for sensitivity analysis (SA). Maximum movement 646 

distances indicate the maximum number of spatial units that an individual could travel on the 647 

landscape in a simulation cycle; the actual integer value was randomly selected between zero 648 

and this maximum value. 649 

Symbol Description Nominal 

value 

Unit/Scale Range 

for SA 

dprey Prey maximum movement distance  5 1 3-8 

dP Predator maximum movement distance 5 1 3-8 

rprey Prey detection range 2.5 

(constant) 

- - 

rP Predator hunting range 3.5 

(constant) 

- - 

rc Competition range within which only one 

individual could survive 

1 

(constant) 

- - 

Pdetect Probability of prey detecting a nearby 

predator; determined by individual Bernoulli 

trials 

0.5 0.1 0.1-0.9 

Pisi Probability of prey ISI use (i.e., copying the 

defensive behaviour of others); determined by 

individual Bernoulli trials 

0.5 0.1 0-0.9 

λmax Prey reproduction-related shape parameter 

when prey feed; used to draw a random 

number of offspring for each individual from 

a Poisson distribution  

0.75 

(constant) 

- - 

λreduced Prey reproduction-related shape parameter 0.75 5×10-2 0.5-0.75 
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when prey is alarmed (i.e., does not feed); 

used to draw a random number of offspring 

for each individual from a Poisson 

distribution 

λP Predator reproduction-related shape 

parameter; used to draw a random number of 

offspring for each individual from a Poisson 

distribution 

5×10-2 5×10-3 2.5×10-2- 

7.5×10-2 

 650 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 22, 2022. ; https://doi.org/10.1101/2022.03.21.484882doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.21.484882


31 
 

Table 2. Descriptive statistics of the simulated prey populations computed from the 200th 651 

simulation cycle calculated from 50 replicates (49 in the case of the second model type as 652 

prey population died out in a single iteration). 653 

Models Parameters  Prey population 

size 

 

 Pdetect Pisi Mean ± SD Range 

No predators (n=50) - - 1198.16 ± 24.37 1115-

1251 

Minimal predator detection (n=49) 0.1 0 154.45 ± 56.49 24-257 

Nominal predator detection (n=50) 0.5 0 516.18 ± 50.36 408-637 

Nominal predator detection & ISI use 

(n=50) 

0.5 0.5 789.52 ± 48.05 632-891 
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Figure legends 654 

 655 

Figure 1. Model flowchart for a single simulation cycle. Sequential prey and predator 656 

behaviours are listed together with the model parameter(s) associated with the given steps. 657 

Behavioural steps resulting in a decrease in population size, i.e., mortality due to intraspecific 658 

competition (in rounded rectangles) or predation (in diamond) are shown in light and dark 659 

grey, respectively. 660 

 661 

Figure 2. Schematic figure of a detection network (a) and segment of an individual ego 662 

network embedded within that network (b). Nodes represent individuals and edges denote the 663 

possibility of mutual observation. The probability of information acquisition from one node to 664 

another is given by wk, where w is the edge weight and k is the number of steps on the shortest 665 

path between the two nodes. For any individual, the total probability of receiving information 666 

from neighbours is calculated using the inclusion-exclusion principle. In our model, we used 667 

the settings kmax=2 and ∑nmax=5 in each k step, so the focal individual (black circle) could 668 

receive social information from a maximum of ten neighbours that were a maximum of two 669 

steps away in the detection network (orange circles). 670 

 671 

Figure 3. Effects of the Pdetect and Pisi model parameters on the prey population. (a) Temporal 672 

fluctuations in prey abundance (means with range) without predators (grey) and under 673 

nominal parameter settings (with nominal Pdetect & Pisi – orange, with nominal Pdetect – dark 674 

blue, with minimal Pdetect – light blue). When the predator detection probability was set to its 675 

minimal value, the prey population died out in a single iteration; in all other cases, the number 676 

of iterations was set to 50. (b) Results of the global sensitivity analysis (SA) depicting the 677 

impact of each model parameter on the mean (x-axis) and standard deviation (y-axis) of prey 678 
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abundance; mean ± SD values for each parameter were calculated from five independent SA 679 

runs. Inset shows the model parameters ordered according to their overall influence on the 680 

model output. 681 

 682 

Figure 4. The relationship between per capita mortality due to predation and the number of 683 

predators using the same parameter settings as in Fig. 3a (but without the ‘No predators’ 684 

group). Trend lines were fitted using second-order polynomial approximation. Simulation 685 

results from incomplete runs (i.e., simulation cycles were less than 200) were omitted from 686 

the dataset (n=204; only in the ‘minimal predator detection’ model type). 687 

 688 

Figure 5. Interactive effects of the probability of ISI use (Pisi), predation pressure (λP) and the 689 

presence of fitness cost (associated with the defensive behaviour; λreduced) on prey population 690 

size in three Pdetect scenarios. The colour of the boxplots indicates the level of predation 691 

pressure (purple: high, blue: intermediate, green: low), while the colour tone is associated 692 

with the presence of cost (dark: costly defensive behaviour, light: no cost). Trend lines were 693 

fitted using the ‘LOESS’ regression method for smoothing with the default value of span 694 

(0.75); presented only for illustration purposes. Simulation results from incomplete runs were 695 

omitted from the dataset (n=581; only in the ‘Pdetect=0.25’ setting). 696 

 697 

Figure 6. Four structural network properties (a: number of components, b: component size, c: 698 

average size of ego networks, d: global network efficiency in the largest components) 699 

calculated for the observed detection networks (circles) and corresponding randomized 700 

networks (diamonds). Predation pressure was set to ‘high’ (i.e., λP=0.075). The colour of the 701 

boxplots indicates the absence (gray; Pisi=0) or presence of ISI use (orange; Pisi=0.5). 702 
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